Abstract

We propose a novel drug delivery system (DDS) by using a PANDA ring resonator to form, transmit and receive the microscopic volume by controlling some suitable ring parameters. The optical vortices (gradient optical field/well) can be generated and used to form the trapping tool in the same way as the optical tweezers. The microscopic volume (drug) can be trapped and moved (transported) dynamically within the wavelength router or network. In principle, the trapping force is formed by the combination between the gradient field and scattering photons, which has been reviewed. The advantage of the proposed system is that a transmitter and receiver can be formed within the same system, which is called transceiver, in which the use of such a system for microscopic volume (drug volume) trapping and transportation (delivery) can be realized.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Rohrbach and E. H. Stelzer, “Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations,” Appl. Opt. 41(13), 2494–2507 (2002).
    [CrossRef] [PubMed]
  2. K. Uomwech, K. Sarapat, and P. P. Yupapin, “Dynamic modulated gaussian pulse propatation within the double panda ring resonator system,” Microw. Opt. Technol. Lett. 52(8), 1818–1821 (2010).
    [CrossRef]
  3. B. Piyatamrong, K. Kulsirirat, W. Techitdheera, S. Mitatha, and P. P. Yupapin, “Dynamic potential well generation and control using double resonators incorporating in an add/drop filter,” Mod. Phys. Lett. B 24(32), 3071–3082 (2010).
    [CrossRef]
  4. H. Cai and A. W. Poon, “Optical manipulation and transport of microparticles on silicon nitride microring-resonator-based add-drop devices,” Opt. Lett. 35(17), 2855–2857 (2010).
    [CrossRef] [PubMed]
  5. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [CrossRef] [PubMed]
  6. K. Egashira, A. Terasaki, and T. Kondow, “Photon-trap spectroscopy applied to molecules adsorbed on a solid surface: probing with a standing wave versus a propagating wave,” Appl. Opt. 49(7), 1151–1157 (2010).
    [CrossRef] [PubMed]
  7. A. V. Kachynski, A. N. Kuzmin, H. E. Pudavar, D. S. Kaputa, A. N. Cartwright, and P. N. Prasad, “Measurement of optical trapping forces by use of the two-photon-excited fluorescence of microspheres,” Opt. Lett. 28(23), 2288–2290 (2003).
    [CrossRef] [PubMed]
  8. M. Schulz, H. Crepaz, F. Schmidt-Kaler, J. Eschner, and R. Blatt, “Transfer of trapped atoms between two optical tweezer potentials,” J. Mod. Opt. 54(11), 1619–1626 (2007).
    [CrossRef]
  9. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
    [CrossRef] [PubMed]
  10. L. J. Anderson, E. Hansen, E. Y. Lukianova-Hleb, J. H. Hafner, and D. O. Lapotko, “Optically guided controlled release from liposomes with tunable plasmonic nanobubbles,” J. Control. Release 144(2), 151–158 (2010).
    [CrossRef] [PubMed]
  11. H. Shangguan, L. W. Casperson, A. Shearin, K. W. Gregory, and S. A. Prahl, “Drug delivery with microsecond laser pulses into gelatin,” Appl. Opt. 35(19), 3347–3357 (1996).
    [CrossRef] [PubMed]
  12. M. Biondi, F. Ungaro, F. Quaglia, and P. A. Netti, “Controlled drug delivery in tissue engineering,” Adv. Drug Deliv. Rev. 60(2), 229–242 (2008).
    [CrossRef] [PubMed]
  13. M. N. Ravi Kumar, “Nano and microparticles as controlled drug delivery devices,” J. Pharm. Pharm. Sci. 3(2), 234–258 (2000).
    [PubMed]
  14. M.Z hang, T. Tarn, Ning Xi “Micro-/nano-devices for controlled drug delivery,” in Proceeding of the International Conference on Robotics 6 Automation, New Orleans. LA., (2004), pp. 2068–2063.
  15. G. Huang, J. Gao, Z. Hu, J. V. St John, B. C. Ponder, and D. Moro, “Controlled drug release from hydrogel nanoparticle networks,” J. Control. Release 94(2-3), 303–311 (2004).
    [CrossRef] [PubMed]
  16. J. Hu, S. Lin, L. C. Kimerling, and K. Crozier, “Optical trapping of dielectric nanoparticles in resonant cavities,” Phys. Rev. A 82(5), 053819 (2010).
    [CrossRef]
  17. U. Troppenz, M. Hamacher, D. G. Rabus, and H. Heidrich, “All-active InGaAsP/InP ring cavities for widespread functionalities in the wavelength domain,” Proc. 14th Internat. Conf. Indium Phosphide and Related Materials (IPRM’02), Stockholm, Sweden, 475–478 (2002)
  18. S. Mikroulis, E. Roditi, and D. Syvridis, “Direct modulation properties of 1.55µm InGaAsP/InP Microring Lasers,” J. Lightwave Technol. 26(2), 251–256 (2008).
    [CrossRef]
  19. D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004).
    [CrossRef] [PubMed]
  20. T. Phatharaworamet, C. Teeka, R. Jomtarak, S. Mitatha, and P. P. Yupapin, “Random binary code generation using dark-bright soliton conversion control within a PANDA ring resonator,” J. Lightwave Technol. 28(19), 2804–2809 (2010).
    [CrossRef]
  21. K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
    [CrossRef] [PubMed]
  22. K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2007).
    [CrossRef] [PubMed]
  23. M. Tasakorn, C. Teeka, R. Jomtarak, and P. P. Yupapin, “Multitweezers generation control within a nanoring resonator system,” Opt. Eng. 49(7), 075002 (2010).
    [CrossRef]
  24. S. Mitatha, N. Pornsuwancharoen, and P. P. Yupapin, “A simultaneous short wave and millimeter wave generation using a soliton pulse within a nano-waveguide,” IEEE Photon. Technol. Lett. 21(13), 932–934 (2009).
    [CrossRef]
  25. Y. Kokubun, Y. Hatakeyama, M. Ogata, S. Suzuki, and N. Zaizen, “Fabrication technologies for vertically coupled microring resonator with multilevel crossing busline and ultracompact-ring radius,” IEEE J. Sel. Top. Quantum Electron. 11(1), 4–10 (2005).
    [CrossRef]
  26. P. P. Yupapin and W. Suwancharoen, “Chaotic signal generation and cancellation using a micro ring resonator incorporating an optical add/drop multiplexer,” Opt. Commun. 280(2), 343–350 (2007).
    [CrossRef]
  27. P. P. Yupapin, P. Saeung, and C. Li, “Characteristics of complementary ring-resonator add/drop filters modeling by using graphical approach,” Opt. Commun. 272(1), 81–86 (2007).
    [CrossRef]
  28. J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
    [CrossRef]

2010

K. Uomwech, K. Sarapat, and P. P. Yupapin, “Dynamic modulated gaussian pulse propatation within the double panda ring resonator system,” Microw. Opt. Technol. Lett. 52(8), 1818–1821 (2010).
[CrossRef]

B. Piyatamrong, K. Kulsirirat, W. Techitdheera, S. Mitatha, and P. P. Yupapin, “Dynamic potential well generation and control using double resonators incorporating in an add/drop filter,” Mod. Phys. Lett. B 24(32), 3071–3082 (2010).
[CrossRef]

L. J. Anderson, E. Hansen, E. Y. Lukianova-Hleb, J. H. Hafner, and D. O. Lapotko, “Optically guided controlled release from liposomes with tunable plasmonic nanobubbles,” J. Control. Release 144(2), 151–158 (2010).
[CrossRef] [PubMed]

J. Hu, S. Lin, L. C. Kimerling, and K. Crozier, “Optical trapping of dielectric nanoparticles in resonant cavities,” Phys. Rev. A 82(5), 053819 (2010).
[CrossRef]

M. Tasakorn, C. Teeka, R. Jomtarak, and P. P. Yupapin, “Multitweezers generation control within a nanoring resonator system,” Opt. Eng. 49(7), 075002 (2010).
[CrossRef]

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[CrossRef]

K. Egashira, A. Terasaki, and T. Kondow, “Photon-trap spectroscopy applied to molecules adsorbed on a solid surface: probing with a standing wave versus a propagating wave,” Appl. Opt. 49(7), 1151–1157 (2010).
[CrossRef] [PubMed]

H. Cai and A. W. Poon, “Optical manipulation and transport of microparticles on silicon nitride microring-resonator-based add-drop devices,” Opt. Lett. 35(17), 2855–2857 (2010).
[CrossRef] [PubMed]

T. Phatharaworamet, C. Teeka, R. Jomtarak, S. Mitatha, and P. P. Yupapin, “Random binary code generation using dark-bright soliton conversion control within a PANDA ring resonator,” J. Lightwave Technol. 28(19), 2804–2809 (2010).
[CrossRef]

2009

S. Mitatha, N. Pornsuwancharoen, and P. P. Yupapin, “A simultaneous short wave and millimeter wave generation using a soliton pulse within a nano-waveguide,” IEEE Photon. Technol. Lett. 21(13), 932–934 (2009).
[CrossRef]

2008

M. Biondi, F. Ungaro, F. Quaglia, and P. A. Netti, “Controlled drug delivery in tissue engineering,” Adv. Drug Deliv. Rev. 60(2), 229–242 (2008).
[CrossRef] [PubMed]

S. Mikroulis, E. Roditi, and D. Syvridis, “Direct modulation properties of 1.55µm InGaAsP/InP Microring Lasers,” J. Lightwave Technol. 26(2), 251–256 (2008).
[CrossRef]

2007

M. Schulz, H. Crepaz, F. Schmidt-Kaler, J. Eschner, and R. Blatt, “Transfer of trapped atoms between two optical tweezer potentials,” J. Mod. Opt. 54(11), 1619–1626 (2007).
[CrossRef]

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2007).
[CrossRef] [PubMed]

P. P. Yupapin and W. Suwancharoen, “Chaotic signal generation and cancellation using a micro ring resonator incorporating an optical add/drop multiplexer,” Opt. Commun. 280(2), 343–350 (2007).
[CrossRef]

P. P. Yupapin, P. Saeung, and C. Li, “Characteristics of complementary ring-resonator add/drop filters modeling by using graphical approach,” Opt. Commun. 272(1), 81–86 (2007).
[CrossRef]

2005

Y. Kokubun, Y. Hatakeyama, M. Ogata, S. Suzuki, and N. Zaizen, “Fabrication technologies for vertically coupled microring resonator with multilevel crossing busline and ultracompact-ring radius,” IEEE J. Sel. Top. Quantum Electron. 11(1), 4–10 (2005).
[CrossRef]

2004

G. Huang, J. Gao, Z. Hu, J. V. St John, B. C. Ponder, and D. Moro, “Controlled drug release from hydrogel nanoparticle networks,” J. Control. Release 94(2-3), 303–311 (2004).
[CrossRef] [PubMed]

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004).
[CrossRef] [PubMed]

2003

2002

2000

M. N. Ravi Kumar, “Nano and microparticles as controlled drug delivery devices,” J. Pharm. Pharm. Sci. 3(2), 234–258 (2000).
[PubMed]

1997

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
[CrossRef] [PubMed]

1996

1994

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[CrossRef] [PubMed]

1986

Anderson, L. J.

L. J. Anderson, E. Hansen, E. Y. Lukianova-Hleb, J. H. Hafner, and D. O. Lapotko, “Optically guided controlled release from liposomes with tunable plasmonic nanobubbles,” J. Control. Release 144(2), 151–158 (2010).
[CrossRef] [PubMed]

Ashkin, A.

Biondi, M.

M. Biondi, F. Ungaro, F. Quaglia, and P. A. Netti, “Controlled drug delivery in tissue engineering,” Adv. Drug Deliv. Rev. 60(2), 229–242 (2008).
[CrossRef] [PubMed]

Bjorkholm, J. E.

Blatt, R.

M. Schulz, H. Crepaz, F. Schmidt-Kaler, J. Eschner, and R. Blatt, “Transfer of trapped atoms between two optical tweezer potentials,” J. Mod. Opt. 54(11), 1619–1626 (2007).
[CrossRef]

Block, S. M.

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[CrossRef] [PubMed]

Cai, H.

Cartwright, A. N.

Casperson, L. W.

Chen, D. R.

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[CrossRef]

Chu, S.

Conroy, R. S.

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004).
[CrossRef] [PubMed]

Crepaz, H.

M. Schulz, H. Crepaz, F. Schmidt-Kaler, J. Eschner, and R. Blatt, “Transfer of trapped atoms between two optical tweezer potentials,” J. Mod. Opt. 54(11), 1619–1626 (2007).
[CrossRef]

Crozier, K.

J. Hu, S. Lin, L. C. Kimerling, and K. Crozier, “Optical trapping of dielectric nanoparticles in resonant cavities,” Phys. Rev. A 82(5), 053819 (2010).
[CrossRef]

Dholakia, K.

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2007).
[CrossRef] [PubMed]

Dziedzic, J. M.

Egashira, K.

Eschner, J.

M. Schulz, H. Crepaz, F. Schmidt-Kaler, J. Eschner, and R. Blatt, “Transfer of trapped atoms between two optical tweezer potentials,” J. Mod. Opt. 54(11), 1619–1626 (2007).
[CrossRef]

Fischbach, M. A.

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004).
[CrossRef] [PubMed]

Gao, J.

G. Huang, J. Gao, Z. Hu, J. V. St John, B. C. Ponder, and D. Moro, “Controlled drug release from hydrogel nanoparticle networks,” J. Control. Release 94(2-3), 303–311 (2004).
[CrossRef] [PubMed]

Garstecki, P.

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004).
[CrossRef] [PubMed]

Gregory, K. W.

Gu, M.

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2007).
[CrossRef] [PubMed]

Hafner, J. H.

L. J. Anderson, E. Hansen, E. Y. Lukianova-Hleb, J. H. Hafner, and D. O. Lapotko, “Optically guided controlled release from liposomes with tunable plasmonic nanobubbles,” J. Control. Release 144(2), 151–158 (2010).
[CrossRef] [PubMed]

Hansen, E.

L. J. Anderson, E. Hansen, E. Y. Lukianova-Hleb, J. H. Hafner, and D. O. Lapotko, “Optically guided controlled release from liposomes with tunable plasmonic nanobubbles,” J. Control. Release 144(2), 151–158 (2010).
[CrossRef] [PubMed]

Hatakeyama, Y.

Y. Kokubun, Y. Hatakeyama, M. Ogata, S. Suzuki, and N. Zaizen, “Fabrication technologies for vertically coupled microring resonator with multilevel crossing busline and ultracompact-ring radius,” IEEE J. Sel. Top. Quantum Electron. 11(1), 4–10 (2005).
[CrossRef]

He, L.

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[CrossRef]

Hu, J.

J. Hu, S. Lin, L. C. Kimerling, and K. Crozier, “Optical trapping of dielectric nanoparticles in resonant cavities,” Phys. Rev. A 82(5), 053819 (2010).
[CrossRef]

Hu, Z.

G. Huang, J. Gao, Z. Hu, J. V. St John, B. C. Ponder, and D. Moro, “Controlled drug release from hydrogel nanoparticle networks,” J. Control. Release 94(2-3), 303–311 (2004).
[CrossRef] [PubMed]

Huang, G.

G. Huang, J. Gao, Z. Hu, J. V. St John, B. C. Ponder, and D. Moro, “Controlled drug release from hydrogel nanoparticle networks,” J. Control. Release 94(2-3), 303–311 (2004).
[CrossRef] [PubMed]

Jomtarak, R.

Kachynski, A. V.

Kaputa, D. S.

Kimerling, L. C.

J. Hu, S. Lin, L. C. Kimerling, and K. Crozier, “Optical trapping of dielectric nanoparticles in resonant cavities,” Phys. Rev. A 82(5), 053819 (2010).
[CrossRef]

Kokubun, Y.

Y. Kokubun, Y. Hatakeyama, M. Ogata, S. Suzuki, and N. Zaizen, “Fabrication technologies for vertically coupled microring resonator with multilevel crossing busline and ultracompact-ring radius,” IEEE J. Sel. Top. Quantum Electron. 11(1), 4–10 (2005).
[CrossRef]

Kondow, T.

Kulsirirat, K.

B. Piyatamrong, K. Kulsirirat, W. Techitdheera, S. Mitatha, and P. P. Yupapin, “Dynamic potential well generation and control using double resonators incorporating in an add/drop filter,” Mod. Phys. Lett. B 24(32), 3071–3082 (2010).
[CrossRef]

Kuzmin, A. N.

Lapotko, D. O.

L. J. Anderson, E. Hansen, E. Y. Lukianova-Hleb, J. H. Hafner, and D. O. Lapotko, “Optically guided controlled release from liposomes with tunable plasmonic nanobubbles,” J. Control. Release 144(2), 151–158 (2010).
[CrossRef] [PubMed]

Li, C.

P. P. Yupapin, P. Saeung, and C. Li, “Characteristics of complementary ring-resonator add/drop filters modeling by using graphical approach,” Opt. Commun. 272(1), 81–86 (2007).
[CrossRef]

Li, L.

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[CrossRef]

Lin, S.

J. Hu, S. Lin, L. C. Kimerling, and K. Crozier, “Optical trapping of dielectric nanoparticles in resonant cavities,” Phys. Rev. A 82(5), 053819 (2010).
[CrossRef]

Lukianova-Hleb, E. Y.

L. J. Anderson, E. Hansen, E. Y. Lukianova-Hleb, J. H. Hafner, and D. O. Lapotko, “Optically guided controlled release from liposomes with tunable plasmonic nanobubbles,” J. Control. Release 144(2), 151–158 (2010).
[CrossRef] [PubMed]

Mayers, B. T.

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004).
[CrossRef] [PubMed]

Mikroulis, S.

Mitatha, S.

B. Piyatamrong, K. Kulsirirat, W. Techitdheera, S. Mitatha, and P. P. Yupapin, “Dynamic potential well generation and control using double resonators incorporating in an add/drop filter,” Mod. Phys. Lett. B 24(32), 3071–3082 (2010).
[CrossRef]

T. Phatharaworamet, C. Teeka, R. Jomtarak, S. Mitatha, and P. P. Yupapin, “Random binary code generation using dark-bright soliton conversion control within a PANDA ring resonator,” J. Lightwave Technol. 28(19), 2804–2809 (2010).
[CrossRef]

S. Mitatha, N. Pornsuwancharoen, and P. P. Yupapin, “A simultaneous short wave and millimeter wave generation using a soliton pulse within a nano-waveguide,” IEEE Photon. Technol. Lett. 21(13), 932–934 (2009).
[CrossRef]

Moro, D.

G. Huang, J. Gao, Z. Hu, J. V. St John, B. C. Ponder, and D. Moro, “Controlled drug release from hydrogel nanoparticle networks,” J. Control. Release 94(2-3), 303–311 (2004).
[CrossRef] [PubMed]

Netti, P. A.

M. Biondi, F. Ungaro, F. Quaglia, and P. A. Netti, “Controlled drug delivery in tissue engineering,” Adv. Drug Deliv. Rev. 60(2), 229–242 (2008).
[CrossRef] [PubMed]

Ogata, M.

Y. Kokubun, Y. Hatakeyama, M. Ogata, S. Suzuki, and N. Zaizen, “Fabrication technologies for vertically coupled microring resonator with multilevel crossing busline and ultracompact-ring radius,” IEEE J. Sel. Top. Quantum Electron. 11(1), 4–10 (2005).
[CrossRef]

Ozdemir, S. K.

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[CrossRef]

Paul, K. E.

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004).
[CrossRef] [PubMed]

Phatharaworamet, T.

Piyatamrong, B.

B. Piyatamrong, K. Kulsirirat, W. Techitdheera, S. Mitatha, and P. P. Yupapin, “Dynamic potential well generation and control using double resonators incorporating in an add/drop filter,” Mod. Phys. Lett. B 24(32), 3071–3082 (2010).
[CrossRef]

Ponder, B. C.

G. Huang, J. Gao, Z. Hu, J. V. St John, B. C. Ponder, and D. Moro, “Controlled drug release from hydrogel nanoparticle networks,” J. Control. Release 94(2-3), 303–311 (2004).
[CrossRef] [PubMed]

Poon, A. W.

Pornsuwancharoen, N.

S. Mitatha, N. Pornsuwancharoen, and P. P. Yupapin, “A simultaneous short wave and millimeter wave generation using a soliton pulse within a nano-waveguide,” IEEE Photon. Technol. Lett. 21(13), 932–934 (2009).
[CrossRef]

Prahl, S. A.

Prasad, P. N.

Prentiss, M.

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004).
[CrossRef] [PubMed]

Pudavar, H. E.

Quaglia, F.

M. Biondi, F. Ungaro, F. Quaglia, and P. A. Netti, “Controlled drug delivery in tissue engineering,” Adv. Drug Deliv. Rev. 60(2), 229–242 (2008).
[CrossRef] [PubMed]

Ravi Kumar, M. N.

M. N. Ravi Kumar, “Nano and microparticles as controlled drug delivery devices,” J. Pharm. Pharm. Sci. 3(2), 234–258 (2000).
[PubMed]

Reece, P.

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2007).
[CrossRef] [PubMed]

Roditi, E.

Rohrbach, A.

Saeung, P.

P. P. Yupapin, P. Saeung, and C. Li, “Characteristics of complementary ring-resonator add/drop filters modeling by using graphical approach,” Opt. Commun. 272(1), 81–86 (2007).
[CrossRef]

Sarapat, K.

K. Uomwech, K. Sarapat, and P. P. Yupapin, “Dynamic modulated gaussian pulse propatation within the double panda ring resonator system,” Microw. Opt. Technol. Lett. 52(8), 1818–1821 (2010).
[CrossRef]

Schmidt-Kaler, F.

M. Schulz, H. Crepaz, F. Schmidt-Kaler, J. Eschner, and R. Blatt, “Transfer of trapped atoms between two optical tweezer potentials,” J. Mod. Opt. 54(11), 1619–1626 (2007).
[CrossRef]

Schulz, M.

M. Schulz, H. Crepaz, F. Schmidt-Kaler, J. Eschner, and R. Blatt, “Transfer of trapped atoms between two optical tweezer potentials,” J. Mod. Opt. 54(11), 1619–1626 (2007).
[CrossRef]

Shangguan, H.

Shearin, A.

St John, J. V.

G. Huang, J. Gao, Z. Hu, J. V. St John, B. C. Ponder, and D. Moro, “Controlled drug release from hydrogel nanoparticle networks,” J. Control. Release 94(2-3), 303–311 (2004).
[CrossRef] [PubMed]

Stelzer, E. H.

Suwancharoen, W.

P. P. Yupapin and W. Suwancharoen, “Chaotic signal generation and cancellation using a micro ring resonator incorporating an optical add/drop multiplexer,” Opt. Commun. 280(2), 343–350 (2007).
[CrossRef]

Suzuki, S.

Y. Kokubun, Y. Hatakeyama, M. Ogata, S. Suzuki, and N. Zaizen, “Fabrication technologies for vertically coupled microring resonator with multilevel crossing busline and ultracompact-ring radius,” IEEE J. Sel. Top. Quantum Electron. 11(1), 4–10 (2005).
[CrossRef]

Svoboda, K.

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[CrossRef] [PubMed]

Syvridis, D.

Tasakorn, M.

M. Tasakorn, C. Teeka, R. Jomtarak, and P. P. Yupapin, “Multitweezers generation control within a nanoring resonator system,” Opt. Eng. 49(7), 075002 (2010).
[CrossRef]

Techitdheera, W.

B. Piyatamrong, K. Kulsirirat, W. Techitdheera, S. Mitatha, and P. P. Yupapin, “Dynamic potential well generation and control using double resonators incorporating in an add/drop filter,” Mod. Phys. Lett. B 24(32), 3071–3082 (2010).
[CrossRef]

Teeka, C.

Terasaki, A.

Ungaro, F.

M. Biondi, F. Ungaro, F. Quaglia, and P. A. Netti, “Controlled drug delivery in tissue engineering,” Adv. Drug Deliv. Rev. 60(2), 229–242 (2008).
[CrossRef] [PubMed]

Uomwech, K.

K. Uomwech, K. Sarapat, and P. P. Yupapin, “Dynamic modulated gaussian pulse propatation within the double panda ring resonator system,” Microw. Opt. Technol. Lett. 52(8), 1818–1821 (2010).
[CrossRef]

Whitesides, G. M.

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004).
[CrossRef] [PubMed]

Wolfe, D. B.

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004).
[CrossRef] [PubMed]

Xiao, Y. F.

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[CrossRef]

Yang, L.

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[CrossRef]

Yupapin, P. P.

K. Uomwech, K. Sarapat, and P. P. Yupapin, “Dynamic modulated gaussian pulse propatation within the double panda ring resonator system,” Microw. Opt. Technol. Lett. 52(8), 1818–1821 (2010).
[CrossRef]

M. Tasakorn, C. Teeka, R. Jomtarak, and P. P. Yupapin, “Multitweezers generation control within a nanoring resonator system,” Opt. Eng. 49(7), 075002 (2010).
[CrossRef]

T. Phatharaworamet, C. Teeka, R. Jomtarak, S. Mitatha, and P. P. Yupapin, “Random binary code generation using dark-bright soliton conversion control within a PANDA ring resonator,” J. Lightwave Technol. 28(19), 2804–2809 (2010).
[CrossRef]

B. Piyatamrong, K. Kulsirirat, W. Techitdheera, S. Mitatha, and P. P. Yupapin, “Dynamic potential well generation and control using double resonators incorporating in an add/drop filter,” Mod. Phys. Lett. B 24(32), 3071–3082 (2010).
[CrossRef]

S. Mitatha, N. Pornsuwancharoen, and P. P. Yupapin, “A simultaneous short wave and millimeter wave generation using a soliton pulse within a nano-waveguide,” IEEE Photon. Technol. Lett. 21(13), 932–934 (2009).
[CrossRef]

P. P. Yupapin, P. Saeung, and C. Li, “Characteristics of complementary ring-resonator add/drop filters modeling by using graphical approach,” Opt. Commun. 272(1), 81–86 (2007).
[CrossRef]

P. P. Yupapin and W. Suwancharoen, “Chaotic signal generation and cancellation using a micro ring resonator incorporating an optical add/drop multiplexer,” Opt. Commun. 280(2), 343–350 (2007).
[CrossRef]

Zaizen, N.

Y. Kokubun, Y. Hatakeyama, M. Ogata, S. Suzuki, and N. Zaizen, “Fabrication technologies for vertically coupled microring resonator with multilevel crossing busline and ultracompact-ring radius,” IEEE J. Sel. Top. Quantum Electron. 11(1), 4–10 (2005).
[CrossRef]

Zhu, J.

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[CrossRef]

Adv. Drug Deliv. Rev.

M. Biondi, F. Ungaro, F. Quaglia, and P. A. Netti, “Controlled drug delivery in tissue engineering,” Adv. Drug Deliv. Rev. 60(2), 229–242 (2008).
[CrossRef] [PubMed]

Annu. Rev. Biophys. Biomol. Struct.

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[CrossRef] [PubMed]

Appl. Opt.

Chem. Soc. Rev.

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2007).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron.

Y. Kokubun, Y. Hatakeyama, M. Ogata, S. Suzuki, and N. Zaizen, “Fabrication technologies for vertically coupled microring resonator with multilevel crossing busline and ultracompact-ring radius,” IEEE J. Sel. Top. Quantum Electron. 11(1), 4–10 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Mitatha, N. Pornsuwancharoen, and P. P. Yupapin, “A simultaneous short wave and millimeter wave generation using a soliton pulse within a nano-waveguide,” IEEE Photon. Technol. Lett. 21(13), 932–934 (2009).
[CrossRef]

J. Control. Release

L. J. Anderson, E. Hansen, E. Y. Lukianova-Hleb, J. H. Hafner, and D. O. Lapotko, “Optically guided controlled release from liposomes with tunable plasmonic nanobubbles,” J. Control. Release 144(2), 151–158 (2010).
[CrossRef] [PubMed]

G. Huang, J. Gao, Z. Hu, J. V. St John, B. C. Ponder, and D. Moro, “Controlled drug release from hydrogel nanoparticle networks,” J. Control. Release 94(2-3), 303–311 (2004).
[CrossRef] [PubMed]

J. Lightwave Technol.

J. Mod. Opt.

M. Schulz, H. Crepaz, F. Schmidt-Kaler, J. Eschner, and R. Blatt, “Transfer of trapped atoms between two optical tweezer potentials,” J. Mod. Opt. 54(11), 1619–1626 (2007).
[CrossRef]

J. Pharm. Pharm. Sci.

M. N. Ravi Kumar, “Nano and microparticles as controlled drug delivery devices,” J. Pharm. Pharm. Sci. 3(2), 234–258 (2000).
[PubMed]

Microw. Opt. Technol. Lett.

K. Uomwech, K. Sarapat, and P. P. Yupapin, “Dynamic modulated gaussian pulse propatation within the double panda ring resonator system,” Microw. Opt. Technol. Lett. 52(8), 1818–1821 (2010).
[CrossRef]

Mod. Phys. Lett. B

B. Piyatamrong, K. Kulsirirat, W. Techitdheera, S. Mitatha, and P. P. Yupapin, “Dynamic potential well generation and control using double resonators incorporating in an add/drop filter,” Mod. Phys. Lett. B 24(32), 3071–3082 (2010).
[CrossRef]

Nat. Photonics

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[CrossRef]

Opt. Commun.

P. P. Yupapin and W. Suwancharoen, “Chaotic signal generation and cancellation using a micro ring resonator incorporating an optical add/drop multiplexer,” Opt. Commun. 280(2), 343–350 (2007).
[CrossRef]

P. P. Yupapin, P. Saeung, and C. Li, “Characteristics of complementary ring-resonator add/drop filters modeling by using graphical approach,” Opt. Commun. 272(1), 81–86 (2007).
[CrossRef]

Opt. Eng.

M. Tasakorn, C. Teeka, R. Jomtarak, and P. P. Yupapin, “Multitweezers generation control within a nanoring resonator system,” Opt. Eng. 49(7), 075002 (2010).
[CrossRef]

Opt. Lett.

Phys. Rev. A

J. Hu, S. Lin, L. C. Kimerling, and K. Crozier, “Optical trapping of dielectric nanoparticles in resonant cavities,” Phys. Rev. A 82(5), 053819 (2010).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
[CrossRef] [PubMed]

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004).
[CrossRef] [PubMed]

Other

U. Troppenz, M. Hamacher, D. G. Rabus, and H. Heidrich, “All-active InGaAsP/InP ring cavities for widespread functionalities in the wavelength domain,” Proc. 14th Internat. Conf. Indium Phosphide and Related Materials (IPRM’02), Stockholm, Sweden, 475–478 (2002)

M.Z hang, T. Tarn, Ning Xi “Micro-/nano-devices for controlled drug delivery,” in Proceeding of the International Conference on Robotics 6 Automation, New Orleans. LA., (2004), pp. 2068–2063.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of a proposed PANDA ring resonator.

Fig. 2
Fig. 2

A system of drug delivery and distribution using optical vortices.

Fig. 3
Fig. 3

Simulation result of four potential wells (optical vortices/tweezers) with four different center wavelengths.

Fig. 4
Fig. 4

Simulation result of the tunable and amplified tweezers by varying the coupling coefficients.

Fig. 5
Fig. 5

Result of the dynamic tweezers with microscopic volumes, where the generated wavelengths are 1.4, 1.45, 1.5, 1.55 and 1.6 μm.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

F = Q n m P c = γ 0 x ˙
γ 0 = 6 π r ρ v
F s c a t t = S σ c
σ = 8 3 π ( k r ) 4 r 2 ( m 2 1 m 2 + 2 ) 2
F g r a d = α 2 E 2
α = n m 2 r 3 ( m 2 1 m 2 + 2 )
E i n ( t ) = A tanh [ T T 0 ] exp [ ( Z 2 L D ) i ω 0 t ]
E c o n t r o l ( t ) = A sec h [ T T 0 ] exp [ ( Z 2 L D ) i ω 0 t ]
E c o n t r o l ( t ) = E 0 exp [ ( Z 2 L D ) i ω 0 t ]
n = n 0 + n 2 I = n 0 + n 2 A e f f P
| E o u t ( t ) E i n ( t ) | 2 = ( 1 γ ) [ 1 ( 1 ( 1 γ ) x 2 ) κ ( 1 x 1 γ 1 κ ) 2 + 4    x    1 γ 1 κ sin 2 ( φ 2 ) ]
| E t E i n | 2 = [ ( 1 κ 1 ) + ( 1 κ 2 ) e α L 2 1 κ 1 1 κ 2 e α 2 L cos ( k n L ) ] [ 1 + ( 1 κ 1 ) ( 1 κ 2 ) e α L 2 1 κ 1 1 κ 2 e α 2 L cos ( k n L ) ]
| E d E i n | 2 = κ 1 κ 2 e α 2 L 1 + ( 1 κ 1 ) ( 1 κ 2 ) e α L 2 1 κ 1 1 κ 2 e α 2 L cos ( k n L )
E t 1 = A E i 1 B E i 2 e α L 2 j k n L 2 [ C E i 1 ( e α L 2 j k n L 2 ) 2 + D E i 2 ( e α L 2 j k n L 2 ) 3 1 E ( e α L 2 j k n L 2 ) 2 ] ,
P t 1 = | E t 1 | 2 .
E t 2 = ( 1 γ 2 ) ( 1 κ 2 ) E i 2 [ ( 1 γ 1 ) ( 1 γ 2 ) κ 1 κ 2 E 0 E i 1 e α L 2 j k n L 2 + X E 0 E 0 L E i 2 ( e α L 2 j k n L 2 ) 2 1 Y E 0 E 0 L ( e α L 2 j k n L 2 ) 2 ] ,
P t 2 = | E t 2 | 2 .

Metrics