Abstract

In the biomedical detection context, plasmonic tilted fiber Bragg gratings (TFBGs) have been demonstrated to be a very accurate and sensitive sensing tool, especially well-adapted for biochemical detection. In this work, we have developed an aptasensor following a triple strategy to improve the overall sensing performances and robustness. Single polarization fiber (SPF) is used as biosensor substrate while the demodulation is based on tracking a peculiar feature of the lower envelope of the cladding mode resonances spectrum. This method is highly sensitive and yields wavelength shifts several tens of times higher than the ones reported so far based on the tracking of individual modes of the spectrum. An amplification of the response is further performed through a sandwich assay by the use of specific antibodies. These improvements have been achieved on a biosensor developed for the detection of the HER2 (Human Epidermal Growth Factor Receptor-2) protein, a relevant breast cancer biomarker. These advanced developments can be very interesting for point-of-care biomedical measurements in a convenient practical way.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multimodal plasmonic optical fiber grating aptasensor

Maxime Lobry, Médéric Loyez, Eman M. Hassan, Karima Chah, Maria C. DeRosa, Erik Goormaghtigh, Ruddy Wattiez, and Christophe Caucheteur
Opt. Express 28(5) 7539-7551 (2020)

Optical imaging of metabolism in HER2 overexpressing breast cancer cells

Alex Walsh, Rebecca S. Cook, Brent Rexer, Carlos L. Arteaga, and Melissa C. Skala
Biomed. Opt. Express 3(1) 75-85 (2012)

Development of a highly specific amine-terminated aptamer functionalized surface plasmon resonance biosensor for blood protein detection

Rui Zheng, Byung-Wook Park, Dong-Shik Kim, and Brent D. Cameron
Biomed. Opt. Express 2(9) 2731-2740 (2011)

References

  • View by:
  • |
  • |
  • |

  1. B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
    [Crossref]
  2. J. P. Dakin, K. Hotate, R. A. Lieberman, and M. A. Marcus, “Optical fiber sensor,” in Handbook of Optoelectronics, J. P. Dakin and R. G. W. Brown, eds., 2nd ed. (CRC Press, 2017), pp. 1–84.
  3. K. T. V. Grattan and Y. N. Ning, “Optical current sensor technology,” in Optical Fiber Sensor Technology, K. T. V. Grattan and B. T. Meggitt, eds., 1st ed. (Springer, 1998), pp. 183–223.
  4. T. Guo, F. Liu, B. O. Guan, and J. Albert, “Tilted fiber grating mechanical and biochemical sensors,” Opt. Laser Technol. 78, 19–33 (2016).
    [Crossref]
  5. Z. Li, Z. Yu, Y. Shen, X. Ruan, and Y. Dai, “Graphene enhanced leaky mode resonance in tilted fiber Bragg grating: a new opportunity for highly sensitive fiber optic sensor,” IEEE Access 7, 26641–26651 (2019).
    [Crossref]
  6. Z. Li, J. Shen, Q. Ji, X. Ruan, Y. Zhang, Y. Dai, and Z. Cai, “Tuning the resonance of polarization-degenerate LP1,l cladding mode in excessively tilted long period fiber grating for highly sensitive refractive index sensing,” J. Opt. Soc. Am. A 35(3), 397–405 (2018).
    [Crossref]
  7. F. Ouellette, J. Li, Z. Ou, and J. Albert, “High-resolution interrogation of tilted fiber Bragg gratings using an extended range dual wavelength differential detection,” Opt. Express 28(10), 14662 (2020).
    [Crossref]
  8. S. Poeggel, D. Tosi, D. Duraibabu, G. Leen, D. McGrath, and E. Lewis, “Optical fibre pressure sensors in medical applications,” Sensors 15(7), 17115–17148 (2015).
    [Crossref]
  9. O. V. Butov, A. P. Bazakutsa, Y. K. Chamorovskiy, A. N. Fedorov, and I. A. Shevtsov, “All-fiber highly sensitive Bragg grating bend sensor,” Sensors 19(19), 4228 (2019).
    [Crossref]
  10. C. Christopher, A. Subrahmanyam, and V. V. R. Sai, “Gold sputtered U-bent plastic optical fiber probes as SPR- and LSPR-based compact plasmonic sensors,” Plasmonics 13(2), 493–502 (2018).
    [Crossref]
  11. A. Iadicicco, A. Cutolo, S. Campopiano, M. Giordano, and A. Cusano, “Advanced fiber optical refractometers based on partially etched fiber Bragg gratings,” 1218–1221 (2004).
  12. C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
    [Crossref]
  13. M. Lobry, D. Lahem, M. Loyez, M. Debliquy, K. Chah, M. David, and C. Caucheteur, “Non-enzymatic D-glucose plasmonic optical fiber grating biosensor,” Biosens. Bioelectron. 142, 111506 (2019).
    [Crossref]
  14. F. Chiavaioli, F. Baldini, S. Tombelli, C. Trono, and A. Giannetti, “Biosensing with optical fiber gratings,” Nanophotonics 6(4), 663–679 (2017).
    [Crossref]
  15. T. Guo, “Fiber grating-assisted surface plasmon resonance for biochemical and electrochemical sensing,” J. Lightwave Technol. 35(16), 3323–3333 (2017).
    [Crossref]
  16. M. E. Bosch, A. J. R. Sánchez, F. S. Rojas, and C. B. Ojeda, “Recent development in optical fiber biosensors,” Sensors 7(6), 797–859 (2007).
    [Crossref]
  17. J. H. Qu, A. Dillen, W. Saeys, J. Lammertyn, and D. Spasic, “Advancements in SPR biosensing technology: An overview of recent trends in smart layers design, multiplexing concepts, continuous monitoring and in vivo sensing,” Anal. Chim. Acta 1104, 10–27 (2020).
    [Crossref]
  18. M. jie Yin, B. Gu, Q. F. An, C. Yang, Y. L. Guan, and K. T. Yong, “Recent development of fiber-optic chemical sensors and biosensors: Mechanisms, materials, micro/nano-fabrications and applications,” Coord. Chem. Rev. 376, 348–392 (2018).
    [Crossref]
  19. M. Loyez, E. M. Hassan, M. Lobry, F. Liu, and C. Caucheteur, “Rapid detection of circulating breast cancer cells using a multi-resonant optical fiber aptasensor with plasmonic amplification,” ACS Sens. 5(2), 454–463 (2020).
    [Crossref]
  20. M. Loyez, M. Lobry, R. Wattiez, and C. Caucheteur, “Optical fiber gratings immunoassays,” Sensors 19(11), 2595 (2019).
    [Crossref]
  21. R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics,” CA. Cancer J. Clin. 68(1), 7–30 (2018).
    [Crossref]
  22. T. Doi, K. Shitara, Y. Naito, A. Shimomura, Y. Fujiwara, K. Yonemori, C. Shimizu, T. Shimoi, Y. Kuboki, N. Matsubara, A. Kitano, T. Jikoh, C. Lee, Y. Fujisaki, Y. Ogitani, A. Yver, and K. Tamura, “Safety, pharmacokinetics, and antitumour activity of trastuzumab deruxtecan (DS-8201), a HER2-targeting antibody–drug conjugate, in patients with advanced breast and gastric or gastro-oesophageal tumours: a phase 1 dose-escalation study,” Lancet Oncol. 18(11), 1512–1522 (2017).
    [Crossref]
  23. K. Araki and Y. Miyoshi, “Mechanism of resistance to endocrine therapy in breast cancer: the important role of PI3 K/Akt/mTOR in estrogen receptor-positive, HER2-negative breast cancer,” Breast Cancer 25(4), 392–401 (2018).
    [Crossref]
  24. V. Belli, N. Matrone, S. Napolitano, G. Migliardi, F. Cottino, A. Bertotti, L. Trusolino, E. Martinelli, F. Morgillo, D. Ciardiello, V. De Falco, E. F. Giunta, U. Bracale, F. Ciardiello, and T. Troiani, “Combined blockade of MEK and PI3KCA as an effective antitumor strategy in HER2 gene amplified human colorectal cancer models,” J. Exp. Clin. Cancer Res. 38(1), 236 (2019).
    [Crossref]
  25. J. S. Ross, J. A. Fletcher, G. P. Linette, J. Stec, E. Clark, M. Ayers, W. F. Symmans, L. Pusztai, and K. J. Bloom, “The HER-2/ neu gene and protein in breast cancer 2003: biomarker and target of therapy,” Oncologist 8(4), 307–325 (2003).
    [Crossref]
  26. D. L. Nielsen, M. Andersson, and C. Kamby, “HER2-targeted therapy in breast cancer. Monoclonal antibodies and tyrosine kinase inhibitors,” Cancer Treat. Rev. 35(2), 121–136 (2009).
    [Crossref]
  27. C. Ribaut, M. Loyez, J. C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
    [Crossref]
  28. T. Erdogan and J. E. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. A 13(2), 296 (1996).
    [Crossref]
  29. C. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007).
    [Crossref]
  30. J. Albert, L. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
    [Crossref]
  31. A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Refractive index sensor based on microstructured fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(6), 1250–1252 (2005).
    [Crossref]
  32. F. Chiavaioli, C. A. J. Gouveia, P. A. S. Jorge, and F. Baldini, “Towards a uniform metrological assessment of grating-based optical fiber sensors: from refractometers to biosensors,” Biosensors 7(4), 23–29 (2017).
    [Crossref]
  33. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996).
    [Crossref]
  34. G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
    [Crossref]
  35. K. A. Tomyshev, E. S. Manuilovich, D. K. Tazhetdinova, E. I. Dolzhenko, and O. V. Butov, “High-precision data analysis for TFBG-assisted refractometer,” Sens. Actuators, A 308, 112016 (2020).
    [Crossref]
  36. B. Spackova and J. Homola, “Theoretical analysis of a fiber optic surface plasmon resonance sensor utilizing a Bragg grating,” Opt. Express 17(25), 23254–23264 (2009).
    [Crossref]
  37. C. Caucheteur, V. Voisin, and J. Albert, “Near-infrared grating-assisted SPR optical fiber sensors: design rules for ultimate refractometric sensitivity,” Opt. Express 23(3), 2918–2932 (2015).
    [Crossref]
  38. Y. Schevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
    [Crossref]
  39. X. Chen, Y. Nan, X. Ma, H. Liu, W. Liu, L. Shi, and T. Guo, “In-Situ detection of small biomolecule interactions using a plasmonic tilted fiber grating sensor,” J. Lightwave Technol. 37(11), 2792–2799 (2019).
    [Crossref]
  40. V. Márquez-Cruz and J. Albert, “High resolution NIR TFBG-assisted biochemical sensors,” J. Lightwave Technol. 33(16), 3363–3373 (2015).
    [Crossref]
  41. E. M. Hassan, W. G. Willmore, B. C. Mckay, and M. C. DeRosa, “In vitro selections of mammaglobin A and mammaglobin B aptamers for the recognition of circulating breast tumor cells,” Sci. Rep. 7(1), 14487 (2017).
    [Crossref]
  42. M. Gijs, G. Penner, G. B. Blackler, N. R. E. N. Impens, S. Baatout, A. Luxen, and A. M. Aerts, “Improved aptamers for the diagnosis and potential treatment of HER2-positive cancer,” Pharmaceuticals 9(2), 29 (2016).
    [Crossref]
  43. V. Ranganathan, S. Srinivasan, A. Singh, and M. C. DeRosa, “An aptamer-based colorimetric lateral flow assay for the detection of human epidermal growth factor receptor 2 (HER2),” Anal. Biochem. 588, 113471 (2020).
    [Crossref]
  44. E. Manuylovich, K. Tomyshev, and O. V. Butov, “Method for determining the plasmon resonance wavelength in fiber sensors based on tilted fiber Bragg gratings,” Sensors 19(19), 4245 (2019).
    [Crossref]
  45. M. Loyez, C. Ribaut, C. Caucheteur, and R. Wattiez, “Chemical Functionalized gold electroless-plated optical fiber gratings for reliable surface biosensing,” Sens. Actuators, B 280, 54–61 (2019).
    [Crossref]

2020 (5)

F. Ouellette, J. Li, Z. Ou, and J. Albert, “High-resolution interrogation of tilted fiber Bragg gratings using an extended range dual wavelength differential detection,” Opt. Express 28(10), 14662 (2020).
[Crossref]

M. Loyez, E. M. Hassan, M. Lobry, F. Liu, and C. Caucheteur, “Rapid detection of circulating breast cancer cells using a multi-resonant optical fiber aptasensor with plasmonic amplification,” ACS Sens. 5(2), 454–463 (2020).
[Crossref]

J. H. Qu, A. Dillen, W. Saeys, J. Lammertyn, and D. Spasic, “Advancements in SPR biosensing technology: An overview of recent trends in smart layers design, multiplexing concepts, continuous monitoring and in vivo sensing,” Anal. Chim. Acta 1104, 10–27 (2020).
[Crossref]

K. A. Tomyshev, E. S. Manuilovich, D. K. Tazhetdinova, E. I. Dolzhenko, and O. V. Butov, “High-precision data analysis for TFBG-assisted refractometer,” Sens. Actuators, A 308, 112016 (2020).
[Crossref]

V. Ranganathan, S. Srinivasan, A. Singh, and M. C. DeRosa, “An aptamer-based colorimetric lateral flow assay for the detection of human epidermal growth factor receptor 2 (HER2),” Anal. Biochem. 588, 113471 (2020).
[Crossref]

2019 (8)

E. Manuylovich, K. Tomyshev, and O. V. Butov, “Method for determining the plasmon resonance wavelength in fiber sensors based on tilted fiber Bragg gratings,” Sensors 19(19), 4245 (2019).
[Crossref]

M. Loyez, C. Ribaut, C. Caucheteur, and R. Wattiez, “Chemical Functionalized gold electroless-plated optical fiber gratings for reliable surface biosensing,” Sens. Actuators, B 280, 54–61 (2019).
[Crossref]

X. Chen, Y. Nan, X. Ma, H. Liu, W. Liu, L. Shi, and T. Guo, “In-Situ detection of small biomolecule interactions using a plasmonic tilted fiber grating sensor,” J. Lightwave Technol. 37(11), 2792–2799 (2019).
[Crossref]

V. Belli, N. Matrone, S. Napolitano, G. Migliardi, F. Cottino, A. Bertotti, L. Trusolino, E. Martinelli, F. Morgillo, D. Ciardiello, V. De Falco, E. F. Giunta, U. Bracale, F. Ciardiello, and T. Troiani, “Combined blockade of MEK and PI3KCA as an effective antitumor strategy in HER2 gene amplified human colorectal cancer models,” J. Exp. Clin. Cancer Res. 38(1), 236 (2019).
[Crossref]

M. Loyez, M. Lobry, R. Wattiez, and C. Caucheteur, “Optical fiber gratings immunoassays,” Sensors 19(11), 2595 (2019).
[Crossref]

M. Lobry, D. Lahem, M. Loyez, M. Debliquy, K. Chah, M. David, and C. Caucheteur, “Non-enzymatic D-glucose plasmonic optical fiber grating biosensor,” Biosens. Bioelectron. 142, 111506 (2019).
[Crossref]

O. V. Butov, A. P. Bazakutsa, Y. K. Chamorovskiy, A. N. Fedorov, and I. A. Shevtsov, “All-fiber highly sensitive Bragg grating bend sensor,” Sensors 19(19), 4228 (2019).
[Crossref]

Z. Li, Z. Yu, Y. Shen, X. Ruan, and Y. Dai, “Graphene enhanced leaky mode resonance in tilted fiber Bragg grating: a new opportunity for highly sensitive fiber optic sensor,” IEEE Access 7, 26641–26651 (2019).
[Crossref]

2018 (5)

Z. Li, J. Shen, Q. Ji, X. Ruan, Y. Zhang, Y. Dai, and Z. Cai, “Tuning the resonance of polarization-degenerate LP1,l cladding mode in excessively tilted long period fiber grating for highly sensitive refractive index sensing,” J. Opt. Soc. Am. A 35(3), 397–405 (2018).
[Crossref]

C. Christopher, A. Subrahmanyam, and V. V. R. Sai, “Gold sputtered U-bent plastic optical fiber probes as SPR- and LSPR-based compact plasmonic sensors,” Plasmonics 13(2), 493–502 (2018).
[Crossref]

R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics,” CA. Cancer J. Clin. 68(1), 7–30 (2018).
[Crossref]

M. jie Yin, B. Gu, Q. F. An, C. Yang, Y. L. Guan, and K. T. Yong, “Recent development of fiber-optic chemical sensors and biosensors: Mechanisms, materials, micro/nano-fabrications and applications,” Coord. Chem. Rev. 376, 348–392 (2018).
[Crossref]

K. Araki and Y. Miyoshi, “Mechanism of resistance to endocrine therapy in breast cancer: the important role of PI3 K/Akt/mTOR in estrogen receptor-positive, HER2-negative breast cancer,” Breast Cancer 25(4), 392–401 (2018).
[Crossref]

2017 (6)

C. Ribaut, M. Loyez, J. C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[Crossref]

F. Chiavaioli, C. A. J. Gouveia, P. A. S. Jorge, and F. Baldini, “Towards a uniform metrological assessment of grating-based optical fiber sensors: from refractometers to biosensors,” Biosensors 7(4), 23–29 (2017).
[Crossref]

T. Doi, K. Shitara, Y. Naito, A. Shimomura, Y. Fujiwara, K. Yonemori, C. Shimizu, T. Shimoi, Y. Kuboki, N. Matsubara, A. Kitano, T. Jikoh, C. Lee, Y. Fujisaki, Y. Ogitani, A. Yver, and K. Tamura, “Safety, pharmacokinetics, and antitumour activity of trastuzumab deruxtecan (DS-8201), a HER2-targeting antibody–drug conjugate, in patients with advanced breast and gastric or gastro-oesophageal tumours: a phase 1 dose-escalation study,” Lancet Oncol. 18(11), 1512–1522 (2017).
[Crossref]

F. Chiavaioli, F. Baldini, S. Tombelli, C. Trono, and A. Giannetti, “Biosensing with optical fiber gratings,” Nanophotonics 6(4), 663–679 (2017).
[Crossref]

T. Guo, “Fiber grating-assisted surface plasmon resonance for biochemical and electrochemical sensing,” J. Lightwave Technol. 35(16), 3323–3333 (2017).
[Crossref]

E. M. Hassan, W. G. Willmore, B. C. Mckay, and M. C. DeRosa, “In vitro selections of mammaglobin A and mammaglobin B aptamers for the recognition of circulating breast tumor cells,” Sci. Rep. 7(1), 14487 (2017).
[Crossref]

2016 (2)

M. Gijs, G. Penner, G. B. Blackler, N. R. E. N. Impens, S. Baatout, A. Luxen, and A. M. Aerts, “Improved aptamers for the diagnosis and potential treatment of HER2-positive cancer,” Pharmaceuticals 9(2), 29 (2016).
[Crossref]

T. Guo, F. Liu, B. O. Guan, and J. Albert, “Tilted fiber grating mechanical and biochemical sensors,” Opt. Laser Technol. 78, 19–33 (2016).
[Crossref]

2015 (4)

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref]

S. Poeggel, D. Tosi, D. Duraibabu, G. Leen, D. McGrath, and E. Lewis, “Optical fibre pressure sensors in medical applications,” Sensors 15(7), 17115–17148 (2015).
[Crossref]

V. Márquez-Cruz and J. Albert, “High resolution NIR TFBG-assisted biochemical sensors,” J. Lightwave Technol. 33(16), 3363–3373 (2015).
[Crossref]

C. Caucheteur, V. Voisin, and J. Albert, “Near-infrared grating-assisted SPR optical fiber sensors: design rules for ultimate refractometric sensitivity,” Opt. Express 23(3), 2918–2932 (2015).
[Crossref]

2013 (1)

J. Albert, L. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

2011 (1)

Y. Schevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref]

2009 (2)

B. Spackova and J. Homola, “Theoretical analysis of a fiber optic surface plasmon resonance sensor utilizing a Bragg grating,” Opt. Express 17(25), 23254–23264 (2009).
[Crossref]

D. L. Nielsen, M. Andersson, and C. Kamby, “HER2-targeted therapy in breast cancer. Monoclonal antibodies and tyrosine kinase inhibitors,” Cancer Treat. Rev. 35(2), 121–136 (2009).
[Crossref]

2007 (2)

C. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007).
[Crossref]

M. E. Bosch, A. J. R. Sánchez, F. S. Rojas, and C. B. Ojeda, “Recent development in optical fiber biosensors,” Sensors 7(6), 797–859 (2007).
[Crossref]

2005 (1)

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Refractive index sensor based on microstructured fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(6), 1250–1252 (2005).
[Crossref]

2003 (2)

J. S. Ross, J. A. Fletcher, G. P. Linette, J. Stec, E. Clark, M. Ayers, W. F. Symmans, L. Pusztai, and K. J. Bloom, “The HER-2/ neu gene and protein in breast cancer 2003: biomarker and target of therapy,” Oncologist 8(4), 307–325 (2003).
[Crossref]

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[Crossref]

2001 (1)

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
[Crossref]

1996 (2)

Aerts, A. M.

M. Gijs, G. Penner, G. B. Blackler, N. R. E. N. Impens, S. Baatout, A. Luxen, and A. M. Aerts, “Improved aptamers for the diagnosis and potential treatment of HER2-positive cancer,” Pharmaceuticals 9(2), 29 (2016).
[Crossref]

Albert, J.

F. Ouellette, J. Li, Z. Ou, and J. Albert, “High-resolution interrogation of tilted fiber Bragg gratings using an extended range dual wavelength differential detection,” Opt. Express 28(10), 14662 (2020).
[Crossref]

T. Guo, F. Liu, B. O. Guan, and J. Albert, “Tilted fiber grating mechanical and biochemical sensors,” Opt. Laser Technol. 78, 19–33 (2016).
[Crossref]

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref]

V. Márquez-Cruz and J. Albert, “High resolution NIR TFBG-assisted biochemical sensors,” J. Lightwave Technol. 33(16), 3363–3373 (2015).
[Crossref]

C. Caucheteur, V. Voisin, and J. Albert, “Near-infrared grating-assisted SPR optical fiber sensors: design rules for ultimate refractometric sensitivity,” Opt. Express 23(3), 2918–2932 (2015).
[Crossref]

J. Albert, L. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

Y. Schevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref]

C. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007).
[Crossref]

An, Q. F.

M. jie Yin, B. Gu, Q. F. An, C. Yang, Y. L. Guan, and K. T. Yong, “Recent development of fiber-optic chemical sensors and biosensors: Mechanisms, materials, micro/nano-fabrications and applications,” Coord. Chem. Rev. 376, 348–392 (2018).
[Crossref]

Andersson, M.

D. L. Nielsen, M. Andersson, and C. Kamby, “HER2-targeted therapy in breast cancer. Monoclonal antibodies and tyrosine kinase inhibitors,” Cancer Treat. Rev. 35(2), 121–136 (2009).
[Crossref]

Araki, K.

K. Araki and Y. Miyoshi, “Mechanism of resistance to endocrine therapy in breast cancer: the important role of PI3 K/Akt/mTOR in estrogen receptor-positive, HER2-negative breast cancer,” Breast Cancer 25(4), 392–401 (2018).
[Crossref]

Ayers, M.

J. S. Ross, J. A. Fletcher, G. P. Linette, J. Stec, E. Clark, M. Ayers, W. F. Symmans, L. Pusztai, and K. J. Bloom, “The HER-2/ neu gene and protein in breast cancer 2003: biomarker and target of therapy,” Oncologist 8(4), 307–325 (2003).
[Crossref]

Baatout, S.

M. Gijs, G. Penner, G. B. Blackler, N. R. E. N. Impens, S. Baatout, A. Luxen, and A. M. Aerts, “Improved aptamers for the diagnosis and potential treatment of HER2-positive cancer,” Pharmaceuticals 9(2), 29 (2016).
[Crossref]

Baldini, F.

F. Chiavaioli, C. A. J. Gouveia, P. A. S. Jorge, and F. Baldini, “Towards a uniform metrological assessment of grating-based optical fiber sensors: from refractometers to biosensors,” Biosensors 7(4), 23–29 (2017).
[Crossref]

F. Chiavaioli, F. Baldini, S. Tombelli, C. Trono, and A. Giannetti, “Biosensing with optical fiber gratings,” Nanophotonics 6(4), 663–679 (2017).
[Crossref]

Bazakutsa, A. P.

O. V. Butov, A. P. Bazakutsa, Y. K. Chamorovskiy, A. N. Fedorov, and I. A. Shevtsov, “All-fiber highly sensitive Bragg grating bend sensor,” Sensors 19(19), 4228 (2019).
[Crossref]

Belli, V.

V. Belli, N. Matrone, S. Napolitano, G. Migliardi, F. Cottino, A. Bertotti, L. Trusolino, E. Martinelli, F. Morgillo, D. Ciardiello, V. De Falco, E. F. Giunta, U. Bracale, F. Ciardiello, and T. Troiani, “Combined blockade of MEK and PI3KCA as an effective antitumor strategy in HER2 gene amplified human colorectal cancer models,” J. Exp. Clin. Cancer Res. 38(1), 236 (2019).
[Crossref]

Bertotti, A.

V. Belli, N. Matrone, S. Napolitano, G. Migliardi, F. Cottino, A. Bertotti, L. Trusolino, E. Martinelli, F. Morgillo, D. Ciardiello, V. De Falco, E. F. Giunta, U. Bracale, F. Ciardiello, and T. Troiani, “Combined blockade of MEK and PI3KCA as an effective antitumor strategy in HER2 gene amplified human colorectal cancer models,” J. Exp. Clin. Cancer Res. 38(1), 236 (2019).
[Crossref]

Bhatia, V.

Blackler, G. B.

M. Gijs, G. Penner, G. B. Blackler, N. R. E. N. Impens, S. Baatout, A. Luxen, and A. M. Aerts, “Improved aptamers for the diagnosis and potential treatment of HER2-positive cancer,” Pharmaceuticals 9(2), 29 (2016).
[Crossref]

Blair, D. A. D.

Y. Schevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref]

Bloom, K. J.

J. S. Ross, J. A. Fletcher, G. P. Linette, J. Stec, E. Clark, M. Ayers, W. F. Symmans, L. Pusztai, and K. J. Bloom, “The HER-2/ neu gene and protein in breast cancer 2003: biomarker and target of therapy,” Oncologist 8(4), 307–325 (2003).
[Crossref]

Bosch, M. E.

M. E. Bosch, A. J. R. Sánchez, F. S. Rojas, and C. B. Ojeda, “Recent development in optical fiber biosensors,” Sensors 7(6), 797–859 (2007).
[Crossref]

Bracale, U.

V. Belli, N. Matrone, S. Napolitano, G. Migliardi, F. Cottino, A. Bertotti, L. Trusolino, E. Martinelli, F. Morgillo, D. Ciardiello, V. De Falco, E. F. Giunta, U. Bracale, F. Ciardiello, and T. Troiani, “Combined blockade of MEK and PI3KCA as an effective antitumor strategy in HER2 gene amplified human colorectal cancer models,” J. Exp. Clin. Cancer Res. 38(1), 236 (2019).
[Crossref]

Butov, O. V.

K. A. Tomyshev, E. S. Manuilovich, D. K. Tazhetdinova, E. I. Dolzhenko, and O. V. Butov, “High-precision data analysis for TFBG-assisted refractometer,” Sens. Actuators, A 308, 112016 (2020).
[Crossref]

E. Manuylovich, K. Tomyshev, and O. V. Butov, “Method for determining the plasmon resonance wavelength in fiber sensors based on tilted fiber Bragg gratings,” Sensors 19(19), 4245 (2019).
[Crossref]

O. V. Butov, A. P. Bazakutsa, Y. K. Chamorovskiy, A. N. Fedorov, and I. A. Shevtsov, “All-fiber highly sensitive Bragg grating bend sensor,” Sensors 19(19), 4228 (2019).
[Crossref]

Cai, Z.

Campopiano, S.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Refractive index sensor based on microstructured fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(6), 1250–1252 (2005).
[Crossref]

A. Iadicicco, A. Cutolo, S. Campopiano, M. Giordano, and A. Cusano, “Advanced fiber optical refractometers based on partially etched fiber Bragg gratings,” 1218–1221 (2004).

Caucheteur, C.

M. Loyez, E. M. Hassan, M. Lobry, F. Liu, and C. Caucheteur, “Rapid detection of circulating breast cancer cells using a multi-resonant optical fiber aptasensor with plasmonic amplification,” ACS Sens. 5(2), 454–463 (2020).
[Crossref]

M. Loyez, M. Lobry, R. Wattiez, and C. Caucheteur, “Optical fiber gratings immunoassays,” Sensors 19(11), 2595 (2019).
[Crossref]

M. Lobry, D. Lahem, M. Loyez, M. Debliquy, K. Chah, M. David, and C. Caucheteur, “Non-enzymatic D-glucose plasmonic optical fiber grating biosensor,” Biosens. Bioelectron. 142, 111506 (2019).
[Crossref]

M. Loyez, C. Ribaut, C. Caucheteur, and R. Wattiez, “Chemical Functionalized gold electroless-plated optical fiber gratings for reliable surface biosensing,” Sens. Actuators, B 280, 54–61 (2019).
[Crossref]

C. Ribaut, M. Loyez, J. C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[Crossref]

C. Caucheteur, V. Voisin, and J. Albert, “Near-infrared grating-assisted SPR optical fiber sensors: design rules for ultimate refractometric sensitivity,” Opt. Express 23(3), 2918–2932 (2015).
[Crossref]

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref]

J. Albert, L. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

Chah, K.

M. Lobry, D. Lahem, M. Loyez, M. Debliquy, K. Chah, M. David, and C. Caucheteur, “Non-enzymatic D-glucose plasmonic optical fiber grating biosensor,” Biosens. Bioelectron. 142, 111506 (2019).
[Crossref]

Chamorovskiy, Y. K.

O. V. Butov, A. P. Bazakutsa, Y. K. Chamorovskiy, A. N. Fedorov, and I. A. Shevtsov, “All-fiber highly sensitive Bragg grating bend sensor,” Sensors 19(19), 4228 (2019).
[Crossref]

Chan, C.

Chen, C.

Chen, X.

Chevineau, S.

C. Ribaut, M. Loyez, J. C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[Crossref]

Chiavaioli, F.

F. Chiavaioli, F. Baldini, S. Tombelli, C. Trono, and A. Giannetti, “Biosensing with optical fiber gratings,” Nanophotonics 6(4), 663–679 (2017).
[Crossref]

F. Chiavaioli, C. A. J. Gouveia, P. A. S. Jorge, and F. Baldini, “Towards a uniform metrological assessment of grating-based optical fiber sensors: from refractometers to biosensors,” Biosensors 7(4), 23–29 (2017).
[Crossref]

Christopher, C.

C. Christopher, A. Subrahmanyam, and V. V. R. Sai, “Gold sputtered U-bent plastic optical fiber probes as SPR- and LSPR-based compact plasmonic sensors,” Plasmonics 13(2), 493–502 (2018).
[Crossref]

Ciardiello, D.

V. Belli, N. Matrone, S. Napolitano, G. Migliardi, F. Cottino, A. Bertotti, L. Trusolino, E. Martinelli, F. Morgillo, D. Ciardiello, V. De Falco, E. F. Giunta, U. Bracale, F. Ciardiello, and T. Troiani, “Combined blockade of MEK and PI3KCA as an effective antitumor strategy in HER2 gene amplified human colorectal cancer models,” J. Exp. Clin. Cancer Res. 38(1), 236 (2019).
[Crossref]

Ciardiello, F.

V. Belli, N. Matrone, S. Napolitano, G. Migliardi, F. Cottino, A. Bertotti, L. Trusolino, E. Martinelli, F. Morgillo, D. Ciardiello, V. De Falco, E. F. Giunta, U. Bracale, F. Ciardiello, and T. Troiani, “Combined blockade of MEK and PI3KCA as an effective antitumor strategy in HER2 gene amplified human colorectal cancer models,” J. Exp. Clin. Cancer Res. 38(1), 236 (2019).
[Crossref]

Clark, E.

J. S. Ross, J. A. Fletcher, G. P. Linette, J. Stec, E. Clark, M. Ayers, W. F. Symmans, L. Pusztai, and K. J. Bloom, “The HER-2/ neu gene and protein in breast cancer 2003: biomarker and target of therapy,” Oncologist 8(4), 307–325 (2003).
[Crossref]

Cottino, F.

V. Belli, N. Matrone, S. Napolitano, G. Migliardi, F. Cottino, A. Bertotti, L. Trusolino, E. Martinelli, F. Morgillo, D. Ciardiello, V. De Falco, E. F. Giunta, U. Bracale, F. Ciardiello, and T. Troiani, “Combined blockade of MEK and PI3KCA as an effective antitumor strategy in HER2 gene amplified human colorectal cancer models,” J. Exp. Clin. Cancer Res. 38(1), 236 (2019).
[Crossref]

Cusano, A.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Refractive index sensor based on microstructured fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(6), 1250–1252 (2005).
[Crossref]

A. Iadicicco, A. Cutolo, S. Campopiano, M. Giordano, and A. Cusano, “Advanced fiber optical refractometers based on partially etched fiber Bragg gratings,” 1218–1221 (2004).

Cutolo, A.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Refractive index sensor based on microstructured fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(6), 1250–1252 (2005).
[Crossref]

A. Iadicicco, A. Cutolo, S. Campopiano, M. Giordano, and A. Cusano, “Advanced fiber optical refractometers based on partially etched fiber Bragg gratings,” 1218–1221 (2004).

Dai, Y.

Z. Li, Z. Yu, Y. Shen, X. Ruan, and Y. Dai, “Graphene enhanced leaky mode resonance in tilted fiber Bragg grating: a new opportunity for highly sensitive fiber optic sensor,” IEEE Access 7, 26641–26651 (2019).
[Crossref]

Z. Li, J. Shen, Q. Ji, X. Ruan, Y. Zhang, Y. Dai, and Z. Cai, “Tuning the resonance of polarization-degenerate LP1,l cladding mode in excessively tilted long period fiber grating for highly sensitive refractive index sensing,” J. Opt. Soc. Am. A 35(3), 397–405 (2018).
[Crossref]

Dakin, J. P.

J. P. Dakin, K. Hotate, R. A. Lieberman, and M. A. Marcus, “Optical fiber sensor,” in Handbook of Optoelectronics, J. P. Dakin and R. G. W. Brown, eds., 2nd ed. (CRC Press, 2017), pp. 1–84.

David, M.

M. Lobry, D. Lahem, M. Loyez, M. Debliquy, K. Chah, M. David, and C. Caucheteur, “Non-enzymatic D-glucose plasmonic optical fiber grating biosensor,” Biosens. Bioelectron. 142, 111506 (2019).
[Crossref]

De Falco, V.

V. Belli, N. Matrone, S. Napolitano, G. Migliardi, F. Cottino, A. Bertotti, L. Trusolino, E. Martinelli, F. Morgillo, D. Ciardiello, V. De Falco, E. F. Giunta, U. Bracale, F. Ciardiello, and T. Troiani, “Combined blockade of MEK and PI3KCA as an effective antitumor strategy in HER2 gene amplified human colorectal cancer models,” J. Exp. Clin. Cancer Res. 38(1), 236 (2019).
[Crossref]

Debliquy, M.

M. Lobry, D. Lahem, M. Loyez, M. Debliquy, K. Chah, M. David, and C. Caucheteur, “Non-enzymatic D-glucose plasmonic optical fiber grating biosensor,” Biosens. Bioelectron. 142, 111506 (2019).
[Crossref]

DeRosa, M. C.

V. Ranganathan, S. Srinivasan, A. Singh, and M. C. DeRosa, “An aptamer-based colorimetric lateral flow assay for the detection of human epidermal growth factor receptor 2 (HER2),” Anal. Biochem. 588, 113471 (2020).
[Crossref]

E. M. Hassan, W. G. Willmore, B. C. Mckay, and M. C. DeRosa, “In vitro selections of mammaglobin A and mammaglobin B aptamers for the recognition of circulating breast tumor cells,” Sci. Rep. 7(1), 14487 (2017).
[Crossref]

Y. Schevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref]

Dillen, A.

J. H. Qu, A. Dillen, W. Saeys, J. Lammertyn, and D. Spasic, “Advancements in SPR biosensing technology: An overview of recent trends in smart layers design, multiplexing concepts, continuous monitoring and in vivo sensing,” Anal. Chim. Acta 1104, 10–27 (2020).
[Crossref]

Doi, T.

T. Doi, K. Shitara, Y. Naito, A. Shimomura, Y. Fujiwara, K. Yonemori, C. Shimizu, T. Shimoi, Y. Kuboki, N. Matsubara, A. Kitano, T. Jikoh, C. Lee, Y. Fujisaki, Y. Ogitani, A. Yver, and K. Tamura, “Safety, pharmacokinetics, and antitumour activity of trastuzumab deruxtecan (DS-8201), a HER2-targeting antibody–drug conjugate, in patients with advanced breast and gastric or gastro-oesophageal tumours: a phase 1 dose-escalation study,” Lancet Oncol. 18(11), 1512–1522 (2017).
[Crossref]

Dolzhenko, E. I.

K. A. Tomyshev, E. S. Manuilovich, D. K. Tazhetdinova, E. I. Dolzhenko, and O. V. Butov, “High-precision data analysis for TFBG-assisted refractometer,” Sens. Actuators, A 308, 112016 (2020).
[Crossref]

Duraibabu, D.

S. Poeggel, D. Tosi, D. Duraibabu, G. Leen, D. McGrath, and E. Lewis, “Optical fibre pressure sensors in medical applications,” Sensors 15(7), 17115–17148 (2015).
[Crossref]

Erdogan, T.

Fedorov, A. N.

O. V. Butov, A. P. Bazakutsa, Y. K. Chamorovskiy, A. N. Fedorov, and I. A. Shevtsov, “All-fiber highly sensitive Bragg grating bend sensor,” Sensors 19(19), 4228 (2019).
[Crossref]

Ferdinand, P.

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
[Crossref]

Fletcher, J. A.

J. S. Ross, J. A. Fletcher, G. P. Linette, J. Stec, E. Clark, M. Ayers, W. F. Symmans, L. Pusztai, and K. J. Bloom, “The HER-2/ neu gene and protein in breast cancer 2003: biomarker and target of therapy,” Oncologist 8(4), 307–325 (2003).
[Crossref]

Francis, T. J.

Y. Schevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref]

Fujisaki, Y.

T. Doi, K. Shitara, Y. Naito, A. Shimomura, Y. Fujiwara, K. Yonemori, C. Shimizu, T. Shimoi, Y. Kuboki, N. Matsubara, A. Kitano, T. Jikoh, C. Lee, Y. Fujisaki, Y. Ogitani, A. Yver, and K. Tamura, “Safety, pharmacokinetics, and antitumour activity of trastuzumab deruxtecan (DS-8201), a HER2-targeting antibody–drug conjugate, in patients with advanced breast and gastric or gastro-oesophageal tumours: a phase 1 dose-escalation study,” Lancet Oncol. 18(11), 1512–1522 (2017).
[Crossref]

Fujiwara, Y.

T. Doi, K. Shitara, Y. Naito, A. Shimomura, Y. Fujiwara, K. Yonemori, C. Shimizu, T. Shimoi, Y. Kuboki, N. Matsubara, A. Kitano, T. Jikoh, C. Lee, Y. Fujisaki, Y. Ogitani, A. Yver, and K. Tamura, “Safety, pharmacokinetics, and antitumour activity of trastuzumab deruxtecan (DS-8201), a HER2-targeting antibody–drug conjugate, in patients with advanced breast and gastric or gastro-oesophageal tumours: a phase 1 dose-escalation study,” Lancet Oncol. 18(11), 1512–1522 (2017).
[Crossref]

Giannetti, A.

F. Chiavaioli, F. Baldini, S. Tombelli, C. Trono, and A. Giannetti, “Biosensing with optical fiber gratings,” Nanophotonics 6(4), 663–679 (2017).
[Crossref]

Gijs, M.

M. Gijs, G. Penner, G. B. Blackler, N. R. E. N. Impens, S. Baatout, A. Luxen, and A. M. Aerts, “Improved aptamers for the diagnosis and potential treatment of HER2-positive cancer,” Pharmaceuticals 9(2), 29 (2016).
[Crossref]

Giordano, M.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Refractive index sensor based on microstructured fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(6), 1250–1252 (2005).
[Crossref]

A. Iadicicco, A. Cutolo, S. Campopiano, M. Giordano, and A. Cusano, “Advanced fiber optical refractometers based on partially etched fiber Bragg gratings,” 1218–1221 (2004).

Giunta, E. F.

V. Belli, N. Matrone, S. Napolitano, G. Migliardi, F. Cottino, A. Bertotti, L. Trusolino, E. Martinelli, F. Morgillo, D. Ciardiello, V. De Falco, E. F. Giunta, U. Bracale, F. Ciardiello, and T. Troiani, “Combined blockade of MEK and PI3KCA as an effective antitumor strategy in HER2 gene amplified human colorectal cancer models,” J. Exp. Clin. Cancer Res. 38(1), 236 (2019).
[Crossref]

Gouveia, C. A. J.

F. Chiavaioli, C. A. J. Gouveia, P. A. S. Jorge, and F. Baldini, “Towards a uniform metrological assessment of grating-based optical fiber sensors: from refractometers to biosensors,” Biosensors 7(4), 23–29 (2017).
[Crossref]

Grattan, K. T. V.

K. T. V. Grattan and Y. N. Ning, “Optical current sensor technology,” in Optical Fiber Sensor Technology, K. T. V. Grattan and B. T. Meggitt, eds., 1st ed. (Springer, 1998), pp. 183–223.

Gu, B.

M. jie Yin, B. Gu, Q. F. An, C. Yang, Y. L. Guan, and K. T. Yong, “Recent development of fiber-optic chemical sensors and biosensors: Mechanisms, materials, micro/nano-fabrications and applications,” Coord. Chem. Rev. 376, 348–392 (2018).
[Crossref]

Guan, B. O.

T. Guo, F. Liu, B. O. Guan, and J. Albert, “Tilted fiber grating mechanical and biochemical sensors,” Opt. Laser Technol. 78, 19–33 (2016).
[Crossref]

Guan, Y. L.

M. jie Yin, B. Gu, Q. F. An, C. Yang, Y. L. Guan, and K. T. Yong, “Recent development of fiber-optic chemical sensors and biosensors: Mechanisms, materials, micro/nano-fabrications and applications,” Coord. Chem. Rev. 376, 348–392 (2018).
[Crossref]

Guo, T.

X. Chen, Y. Nan, X. Ma, H. Liu, W. Liu, L. Shi, and T. Guo, “In-Situ detection of small biomolecule interactions using a plasmonic tilted fiber grating sensor,” J. Lightwave Technol. 37(11), 2792–2799 (2019).
[Crossref]

T. Guo, “Fiber grating-assisted surface plasmon resonance for biochemical and electrochemical sensing,” J. Lightwave Technol. 35(16), 3323–3333 (2017).
[Crossref]

T. Guo, F. Liu, B. O. Guan, and J. Albert, “Tilted fiber grating mechanical and biochemical sensors,” Opt. Laser Technol. 78, 19–33 (2016).
[Crossref]

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref]

Hassan, E. M.

M. Loyez, E. M. Hassan, M. Lobry, F. Liu, and C. Caucheteur, “Rapid detection of circulating breast cancer cells using a multi-resonant optical fiber aptasensor with plasmonic amplification,” ACS Sens. 5(2), 454–463 (2020).
[Crossref]

E. M. Hassan, W. G. Willmore, B. C. Mckay, and M. C. DeRosa, “In vitro selections of mammaglobin A and mammaglobin B aptamers for the recognition of circulating breast tumor cells,” Sci. Rep. 7(1), 14487 (2017).
[Crossref]

Homola, J.

Hotate, K.

J. P. Dakin, K. Hotate, R. A. Lieberman, and M. A. Marcus, “Optical fiber sensor,” in Handbook of Optoelectronics, J. P. Dakin and R. G. W. Brown, eds., 2nd ed. (CRC Press, 2017), pp. 1–84.

Iadicicco, A.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Refractive index sensor based on microstructured fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(6), 1250–1252 (2005).
[Crossref]

A. Iadicicco, A. Cutolo, S. Campopiano, M. Giordano, and A. Cusano, “Advanced fiber optical refractometers based on partially etched fiber Bragg gratings,” 1218–1221 (2004).

Impens, N. R. E. N.

M. Gijs, G. Penner, G. B. Blackler, N. R. E. N. Impens, S. Baatout, A. Luxen, and A. M. Aerts, “Improved aptamers for the diagnosis and potential treatment of HER2-positive cancer,” Pharmaceuticals 9(2), 29 (2016).
[Crossref]

Jafari, A.

Jemal, A.

R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics,” CA. Cancer J. Clin. 68(1), 7–30 (2018).
[Crossref]

Ji, Q.

jie Yin, M.

M. jie Yin, B. Gu, Q. F. An, C. Yang, Y. L. Guan, and K. T. Yong, “Recent development of fiber-optic chemical sensors and biosensors: Mechanisms, materials, micro/nano-fabrications and applications,” Coord. Chem. Rev. 376, 348–392 (2018).
[Crossref]

Jikoh, T.

T. Doi, K. Shitara, Y. Naito, A. Shimomura, Y. Fujiwara, K. Yonemori, C. Shimizu, T. Shimoi, Y. Kuboki, N. Matsubara, A. Kitano, T. Jikoh, C. Lee, Y. Fujisaki, Y. Ogitani, A. Yver, and K. Tamura, “Safety, pharmacokinetics, and antitumour activity of trastuzumab deruxtecan (DS-8201), a HER2-targeting antibody–drug conjugate, in patients with advanced breast and gastric or gastro-oesophageal tumours: a phase 1 dose-escalation study,” Lancet Oncol. 18(11), 1512–1522 (2017).
[Crossref]

Jorge, P. A. S.

F. Chiavaioli, C. A. J. Gouveia, P. A. S. Jorge, and F. Baldini, “Towards a uniform metrological assessment of grating-based optical fiber sensors: from refractometers to biosensors,” Biosensors 7(4), 23–29 (2017).
[Crossref]

Kamby, C.

D. L. Nielsen, M. Andersson, and C. Kamby, “HER2-targeted therapy in breast cancer. Monoclonal antibodies and tyrosine kinase inhibitors,” Cancer Treat. Rev. 35(2), 121–136 (2009).
[Crossref]

Kitano, A.

T. Doi, K. Shitara, Y. Naito, A. Shimomura, Y. Fujiwara, K. Yonemori, C. Shimizu, T. Shimoi, Y. Kuboki, N. Matsubara, A. Kitano, T. Jikoh, C. Lee, Y. Fujisaki, Y. Ogitani, A. Yver, and K. Tamura, “Safety, pharmacokinetics, and antitumour activity of trastuzumab deruxtecan (DS-8201), a HER2-targeting antibody–drug conjugate, in patients with advanced breast and gastric or gastro-oesophageal tumours: a phase 1 dose-escalation study,” Lancet Oncol. 18(11), 1512–1522 (2017).
[Crossref]

Kuboki, Y.

T. Doi, K. Shitara, Y. Naito, A. Shimomura, Y. Fujiwara, K. Yonemori, C. Shimizu, T. Shimoi, Y. Kuboki, N. Matsubara, A. Kitano, T. Jikoh, C. Lee, Y. Fujisaki, Y. Ogitani, A. Yver, and K. Tamura, “Safety, pharmacokinetics, and antitumour activity of trastuzumab deruxtecan (DS-8201), a HER2-targeting antibody–drug conjugate, in patients with advanced breast and gastric or gastro-oesophageal tumours: a phase 1 dose-escalation study,” Lancet Oncol. 18(11), 1512–1522 (2017).
[Crossref]

Laffont, G.

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
[Crossref]

Lahem, D.

M. Lobry, D. Lahem, M. Loyez, M. Debliquy, K. Chah, M. David, and C. Caucheteur, “Non-enzymatic D-glucose plasmonic optical fiber grating biosensor,” Biosens. Bioelectron. 142, 111506 (2019).
[Crossref]

Lambert, P.

C. Ribaut, M. Loyez, J. C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[Crossref]

Lammertyn, J.

J. H. Qu, A. Dillen, W. Saeys, J. Lammertyn, and D. Spasic, “Advancements in SPR biosensing technology: An overview of recent trends in smart layers design, multiplexing concepts, continuous monitoring and in vivo sensing,” Anal. Chim. Acta 1104, 10–27 (2020).
[Crossref]

Laronche, A.

Larrieu, J. C.

C. Ribaut, M. Loyez, J. C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[Crossref]

Lee, B.

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[Crossref]

Lee, C.

T. Doi, K. Shitara, Y. Naito, A. Shimomura, Y. Fujiwara, K. Yonemori, C. Shimizu, T. Shimoi, Y. Kuboki, N. Matsubara, A. Kitano, T. Jikoh, C. Lee, Y. Fujisaki, Y. Ogitani, A. Yver, and K. Tamura, “Safety, pharmacokinetics, and antitumour activity of trastuzumab deruxtecan (DS-8201), a HER2-targeting antibody–drug conjugate, in patients with advanced breast and gastric or gastro-oesophageal tumours: a phase 1 dose-escalation study,” Lancet Oncol. 18(11), 1512–1522 (2017).
[Crossref]

Leen, G.

S. Poeggel, D. Tosi, D. Duraibabu, G. Leen, D. McGrath, and E. Lewis, “Optical fibre pressure sensors in medical applications,” Sensors 15(7), 17115–17148 (2015).
[Crossref]

Lewis, E.

S. Poeggel, D. Tosi, D. Duraibabu, G. Leen, D. McGrath, and E. Lewis, “Optical fibre pressure sensors in medical applications,” Sensors 15(7), 17115–17148 (2015).
[Crossref]

Li, J.

Li, Z.

Z. Li, Z. Yu, Y. Shen, X. Ruan, and Y. Dai, “Graphene enhanced leaky mode resonance in tilted fiber Bragg grating: a new opportunity for highly sensitive fiber optic sensor,” IEEE Access 7, 26641–26651 (2019).
[Crossref]

Z. Li, J. Shen, Q. Ji, X. Ruan, Y. Zhang, Y. Dai, and Z. Cai, “Tuning the resonance of polarization-degenerate LP1,l cladding mode in excessively tilted long period fiber grating for highly sensitive refractive index sensing,” J. Opt. Soc. Am. A 35(3), 397–405 (2018).
[Crossref]

Lieberman, R. A.

J. P. Dakin, K. Hotate, R. A. Lieberman, and M. A. Marcus, “Optical fiber sensor,” in Handbook of Optoelectronics, J. P. Dakin and R. G. W. Brown, eds., 2nd ed. (CRC Press, 2017), pp. 1–84.

Linette, G. P.

J. S. Ross, J. A. Fletcher, G. P. Linette, J. Stec, E. Clark, M. Ayers, W. F. Symmans, L. Pusztai, and K. J. Bloom, “The HER-2/ neu gene and protein in breast cancer 2003: biomarker and target of therapy,” Oncologist 8(4), 307–325 (2003).
[Crossref]

Liu, F.

M. Loyez, E. M. Hassan, M. Lobry, F. Liu, and C. Caucheteur, “Rapid detection of circulating breast cancer cells using a multi-resonant optical fiber aptasensor with plasmonic amplification,” ACS Sens. 5(2), 454–463 (2020).
[Crossref]

T. Guo, F. Liu, B. O. Guan, and J. Albert, “Tilted fiber grating mechanical and biochemical sensors,” Opt. Laser Technol. 78, 19–33 (2016).
[Crossref]

Liu, H.

Liu, W.

Lobry, M.

M. Loyez, E. M. Hassan, M. Lobry, F. Liu, and C. Caucheteur, “Rapid detection of circulating breast cancer cells using a multi-resonant optical fiber aptasensor with plasmonic amplification,” ACS Sens. 5(2), 454–463 (2020).
[Crossref]

M. Loyez, M. Lobry, R. Wattiez, and C. Caucheteur, “Optical fiber gratings immunoassays,” Sensors 19(11), 2595 (2019).
[Crossref]

M. Lobry, D. Lahem, M. Loyez, M. Debliquy, K. Chah, M. David, and C. Caucheteur, “Non-enzymatic D-glucose plasmonic optical fiber grating biosensor,” Biosens. Bioelectron. 142, 111506 (2019).
[Crossref]

Loyez, M.

M. Loyez, E. M. Hassan, M. Lobry, F. Liu, and C. Caucheteur, “Rapid detection of circulating breast cancer cells using a multi-resonant optical fiber aptasensor with plasmonic amplification,” ACS Sens. 5(2), 454–463 (2020).
[Crossref]

M. Loyez, M. Lobry, R. Wattiez, and C. Caucheteur, “Optical fiber gratings immunoassays,” Sensors 19(11), 2595 (2019).
[Crossref]

M. Lobry, D. Lahem, M. Loyez, M. Debliquy, K. Chah, M. David, and C. Caucheteur, “Non-enzymatic D-glucose plasmonic optical fiber grating biosensor,” Biosens. Bioelectron. 142, 111506 (2019).
[Crossref]

M. Loyez, C. Ribaut, C. Caucheteur, and R. Wattiez, “Chemical Functionalized gold electroless-plated optical fiber gratings for reliable surface biosensing,” Sens. Actuators, B 280, 54–61 (2019).
[Crossref]

C. Ribaut, M. Loyez, J. C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[Crossref]

Luxen, A.

M. Gijs, G. Penner, G. B. Blackler, N. R. E. N. Impens, S. Baatout, A. Luxen, and A. M. Aerts, “Improved aptamers for the diagnosis and potential treatment of HER2-positive cancer,” Pharmaceuticals 9(2), 29 (2016).
[Crossref]

Ma, X.

Manuilovich, E. S.

K. A. Tomyshev, E. S. Manuilovich, D. K. Tazhetdinova, E. I. Dolzhenko, and O. V. Butov, “High-precision data analysis for TFBG-assisted refractometer,” Sens. Actuators, A 308, 112016 (2020).
[Crossref]

Manuylovich, E.

E. Manuylovich, K. Tomyshev, and O. V. Butov, “Method for determining the plasmon resonance wavelength in fiber sensors based on tilted fiber Bragg gratings,” Sensors 19(19), 4245 (2019).
[Crossref]

Marcus, M. A.

J. P. Dakin, K. Hotate, R. A. Lieberman, and M. A. Marcus, “Optical fiber sensor,” in Handbook of Optoelectronics, J. P. Dakin and R. G. W. Brown, eds., 2nd ed. (CRC Press, 2017), pp. 1–84.

Márquez-Cruz, V.

Martinelli, E.

V. Belli, N. Matrone, S. Napolitano, G. Migliardi, F. Cottino, A. Bertotti, L. Trusolino, E. Martinelli, F. Morgillo, D. Ciardiello, V. De Falco, E. F. Giunta, U. Bracale, F. Ciardiello, and T. Troiani, “Combined blockade of MEK and PI3KCA as an effective antitumor strategy in HER2 gene amplified human colorectal cancer models,” J. Exp. Clin. Cancer Res. 38(1), 236 (2019).
[Crossref]

Matrone, N.

V. Belli, N. Matrone, S. Napolitano, G. Migliardi, F. Cottino, A. Bertotti, L. Trusolino, E. Martinelli, F. Morgillo, D. Ciardiello, V. De Falco, E. F. Giunta, U. Bracale, F. Ciardiello, and T. Troiani, “Combined blockade of MEK and PI3KCA as an effective antitumor strategy in HER2 gene amplified human colorectal cancer models,” J. Exp. Clin. Cancer Res. 38(1), 236 (2019).
[Crossref]

Matsubara, N.

T. Doi, K. Shitara, Y. Naito, A. Shimomura, Y. Fujiwara, K. Yonemori, C. Shimizu, T. Shimoi, Y. Kuboki, N. Matsubara, A. Kitano, T. Jikoh, C. Lee, Y. Fujisaki, Y. Ogitani, A. Yver, and K. Tamura, “Safety, pharmacokinetics, and antitumour activity of trastuzumab deruxtecan (DS-8201), a HER2-targeting antibody–drug conjugate, in patients with advanced breast and gastric or gastro-oesophageal tumours: a phase 1 dose-escalation study,” Lancet Oncol. 18(11), 1512–1522 (2017).
[Crossref]

McGrath, D.

S. Poeggel, D. Tosi, D. Duraibabu, G. Leen, D. McGrath, and E. Lewis, “Optical fibre pressure sensors in medical applications,” Sensors 15(7), 17115–17148 (2015).
[Crossref]

Mckay, B. C.

E. M. Hassan, W. G. Willmore, B. C. Mckay, and M. C. DeRosa, “In vitro selections of mammaglobin A and mammaglobin B aptamers for the recognition of circulating breast tumor cells,” Sci. Rep. 7(1), 14487 (2017).
[Crossref]

Migliardi, G.

V. Belli, N. Matrone, S. Napolitano, G. Migliardi, F. Cottino, A. Bertotti, L. Trusolino, E. Martinelli, F. Morgillo, D. Ciardiello, V. De Falco, E. F. Giunta, U. Bracale, F. Ciardiello, and T. Troiani, “Combined blockade of MEK and PI3KCA as an effective antitumor strategy in HER2 gene amplified human colorectal cancer models,” J. Exp. Clin. Cancer Res. 38(1), 236 (2019).
[Crossref]

Miller, K. D.

R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics,” CA. Cancer J. Clin. 68(1), 7–30 (2018).
[Crossref]

Miyoshi, Y.

K. Araki and Y. Miyoshi, “Mechanism of resistance to endocrine therapy in breast cancer: the important role of PI3 K/Akt/mTOR in estrogen receptor-positive, HER2-negative breast cancer,” Breast Cancer 25(4), 392–401 (2018).
[Crossref]

Morgillo, F.

V. Belli, N. Matrone, S. Napolitano, G. Migliardi, F. Cottino, A. Bertotti, L. Trusolino, E. Martinelli, F. Morgillo, D. Ciardiello, V. De Falco, E. F. Giunta, U. Bracale, F. Ciardiello, and T. Troiani, “Combined blockade of MEK and PI3KCA as an effective antitumor strategy in HER2 gene amplified human colorectal cancer models,” J. Exp. Clin. Cancer Res. 38(1), 236 (2019).
[Crossref]

Naito, Y.

T. Doi, K. Shitara, Y. Naito, A. Shimomura, Y. Fujiwara, K. Yonemori, C. Shimizu, T. Shimoi, Y. Kuboki, N. Matsubara, A. Kitano, T. Jikoh, C. Lee, Y. Fujisaki, Y. Ogitani, A. Yver, and K. Tamura, “Safety, pharmacokinetics, and antitumour activity of trastuzumab deruxtecan (DS-8201), a HER2-targeting antibody–drug conjugate, in patients with advanced breast and gastric or gastro-oesophageal tumours: a phase 1 dose-escalation study,” Lancet Oncol. 18(11), 1512–1522 (2017).
[Crossref]

Nan, Y.

Napolitano, S.

V. Belli, N. Matrone, S. Napolitano, G. Migliardi, F. Cottino, A. Bertotti, L. Trusolino, E. Martinelli, F. Morgillo, D. Ciardiello, V. De Falco, E. F. Giunta, U. Bracale, F. Ciardiello, and T. Troiani, “Combined blockade of MEK and PI3KCA as an effective antitumor strategy in HER2 gene amplified human colorectal cancer models,” J. Exp. Clin. Cancer Res. 38(1), 236 (2019).
[Crossref]

Nielsen, D. L.

D. L. Nielsen, M. Andersson, and C. Kamby, “HER2-targeted therapy in breast cancer. Monoclonal antibodies and tyrosine kinase inhibitors,” Cancer Treat. Rev. 35(2), 121–136 (2009).
[Crossref]

Ning, Y. N.

K. T. V. Grattan and Y. N. Ning, “Optical current sensor technology,” in Optical Fiber Sensor Technology, K. T. V. Grattan and B. T. Meggitt, eds., 1st ed. (Springer, 1998), pp. 183–223.

Ogitani, Y.

T. Doi, K. Shitara, Y. Naito, A. Shimomura, Y. Fujiwara, K. Yonemori, C. Shimizu, T. Shimoi, Y. Kuboki, N. Matsubara, A. Kitano, T. Jikoh, C. Lee, Y. Fujisaki, Y. Ogitani, A. Yver, and K. Tamura, “Safety, pharmacokinetics, and antitumour activity of trastuzumab deruxtecan (DS-8201), a HER2-targeting antibody–drug conjugate, in patients with advanced breast and gastric or gastro-oesophageal tumours: a phase 1 dose-escalation study,” Lancet Oncol. 18(11), 1512–1522 (2017).
[Crossref]

Ojeda, C. B.

M. E. Bosch, A. J. R. Sánchez, F. S. Rojas, and C. B. Ojeda, “Recent development in optical fiber biosensors,” Sensors 7(6), 797–859 (2007).
[Crossref]

Ou, Z.

Ouellette, F.

Penner, G.

M. Gijs, G. Penner, G. B. Blackler, N. R. E. N. Impens, S. Baatout, A. Luxen, and A. M. Aerts, “Improved aptamers for the diagnosis and potential treatment of HER2-positive cancer,” Pharmaceuticals 9(2), 29 (2016).
[Crossref]

Poeggel, S.

S. Poeggel, D. Tosi, D. Duraibabu, G. Leen, D. McGrath, and E. Lewis, “Optical fibre pressure sensors in medical applications,” Sensors 15(7), 17115–17148 (2015).
[Crossref]

Pusztai, L.

J. S. Ross, J. A. Fletcher, G. P. Linette, J. Stec, E. Clark, M. Ayers, W. F. Symmans, L. Pusztai, and K. J. Bloom, “The HER-2/ neu gene and protein in breast cancer 2003: biomarker and target of therapy,” Oncologist 8(4), 307–325 (2003).
[Crossref]

Qu, J. H.

J. H. Qu, A. Dillen, W. Saeys, J. Lammertyn, and D. Spasic, “Advancements in SPR biosensing technology: An overview of recent trends in smart layers design, multiplexing concepts, continuous monitoring and in vivo sensing,” Anal. Chim. Acta 1104, 10–27 (2020).
[Crossref]

Ranganathan, V.

V. Ranganathan, S. Srinivasan, A. Singh, and M. C. DeRosa, “An aptamer-based colorimetric lateral flow assay for the detection of human epidermal growth factor receptor 2 (HER2),” Anal. Biochem. 588, 113471 (2020).
[Crossref]

Remmelink, M.

C. Ribaut, M. Loyez, J. C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[Crossref]

Ribaut, C.

M. Loyez, C. Ribaut, C. Caucheteur, and R. Wattiez, “Chemical Functionalized gold electroless-plated optical fiber gratings for reliable surface biosensing,” Sens. Actuators, B 280, 54–61 (2019).
[Crossref]

C. Ribaut, M. Loyez, J. C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[Crossref]

Rojas, F. S.

M. E. Bosch, A. J. R. Sánchez, F. S. Rojas, and C. B. Ojeda, “Recent development in optical fiber biosensors,” Sensors 7(6), 797–859 (2007).
[Crossref]

Ross, J. S.

J. S. Ross, J. A. Fletcher, G. P. Linette, J. Stec, E. Clark, M. Ayers, W. F. Symmans, L. Pusztai, and K. J. Bloom, “The HER-2/ neu gene and protein in breast cancer 2003: biomarker and target of therapy,” Oncologist 8(4), 307–325 (2003).
[Crossref]

Ruan, X.

Z. Li, Z. Yu, Y. Shen, X. Ruan, and Y. Dai, “Graphene enhanced leaky mode resonance in tilted fiber Bragg grating: a new opportunity for highly sensitive fiber optic sensor,” IEEE Access 7, 26641–26651 (2019).
[Crossref]

Z. Li, J. Shen, Q. Ji, X. Ruan, Y. Zhang, Y. Dai, and Z. Cai, “Tuning the resonance of polarization-degenerate LP1,l cladding mode in excessively tilted long period fiber grating for highly sensitive refractive index sensing,” J. Opt. Soc. Am. A 35(3), 397–405 (2018).
[Crossref]

Saeys, W.

J. H. Qu, A. Dillen, W. Saeys, J. Lammertyn, and D. Spasic, “Advancements in SPR biosensing technology: An overview of recent trends in smart layers design, multiplexing concepts, continuous monitoring and in vivo sensing,” Anal. Chim. Acta 1104, 10–27 (2020).
[Crossref]

Sai, V. V. R.

C. Christopher, A. Subrahmanyam, and V. V. R. Sai, “Gold sputtered U-bent plastic optical fiber probes as SPR- and LSPR-based compact plasmonic sensors,” Plasmonics 13(2), 493–502 (2018).
[Crossref]

Sánchez, A. J. R.

M. E. Bosch, A. J. R. Sánchez, F. S. Rojas, and C. B. Ojeda, “Recent development in optical fiber biosensors,” Sensors 7(6), 797–859 (2007).
[Crossref]

Schevchenko, Y.

Y. Schevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref]

Shao, L.

J. Albert, L. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

Shen, J.

Shen, Y.

Z. Li, Z. Yu, Y. Shen, X. Ruan, and Y. Dai, “Graphene enhanced leaky mode resonance in tilted fiber Bragg grating: a new opportunity for highly sensitive fiber optic sensor,” IEEE Access 7, 26641–26651 (2019).
[Crossref]

Shevtsov, I. A.

O. V. Butov, A. P. Bazakutsa, Y. K. Chamorovskiy, A. N. Fedorov, and I. A. Shevtsov, “All-fiber highly sensitive Bragg grating bend sensor,” Sensors 19(19), 4228 (2019).
[Crossref]

Shi, L.

Shimizu, C.

T. Doi, K. Shitara, Y. Naito, A. Shimomura, Y. Fujiwara, K. Yonemori, C. Shimizu, T. Shimoi, Y. Kuboki, N. Matsubara, A. Kitano, T. Jikoh, C. Lee, Y. Fujisaki, Y. Ogitani, A. Yver, and K. Tamura, “Safety, pharmacokinetics, and antitumour activity of trastuzumab deruxtecan (DS-8201), a HER2-targeting antibody–drug conjugate, in patients with advanced breast and gastric or gastro-oesophageal tumours: a phase 1 dose-escalation study,” Lancet Oncol. 18(11), 1512–1522 (2017).
[Crossref]

Shimoi, T.

T. Doi, K. Shitara, Y. Naito, A. Shimomura, Y. Fujiwara, K. Yonemori, C. Shimizu, T. Shimoi, Y. Kuboki, N. Matsubara, A. Kitano, T. Jikoh, C. Lee, Y. Fujisaki, Y. Ogitani, A. Yver, and K. Tamura, “Safety, pharmacokinetics, and antitumour activity of trastuzumab deruxtecan (DS-8201), a HER2-targeting antibody–drug conjugate, in patients with advanced breast and gastric or gastro-oesophageal tumours: a phase 1 dose-escalation study,” Lancet Oncol. 18(11), 1512–1522 (2017).
[Crossref]

Shimomura, A.

T. Doi, K. Shitara, Y. Naito, A. Shimomura, Y. Fujiwara, K. Yonemori, C. Shimizu, T. Shimoi, Y. Kuboki, N. Matsubara, A. Kitano, T. Jikoh, C. Lee, Y. Fujisaki, Y. Ogitani, A. Yver, and K. Tamura, “Safety, pharmacokinetics, and antitumour activity of trastuzumab deruxtecan (DS-8201), a HER2-targeting antibody–drug conjugate, in patients with advanced breast and gastric or gastro-oesophageal tumours: a phase 1 dose-escalation study,” Lancet Oncol. 18(11), 1512–1522 (2017).
[Crossref]

Shitara, K.

T. Doi, K. Shitara, Y. Naito, A. Shimomura, Y. Fujiwara, K. Yonemori, C. Shimizu, T. Shimoi, Y. Kuboki, N. Matsubara, A. Kitano, T. Jikoh, C. Lee, Y. Fujisaki, Y. Ogitani, A. Yver, and K. Tamura, “Safety, pharmacokinetics, and antitumour activity of trastuzumab deruxtecan (DS-8201), a HER2-targeting antibody–drug conjugate, in patients with advanced breast and gastric or gastro-oesophageal tumours: a phase 1 dose-escalation study,” Lancet Oncol. 18(11), 1512–1522 (2017).
[Crossref]

Siegel, R. L.

R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics,” CA. Cancer J. Clin. 68(1), 7–30 (2018).
[Crossref]

Singh, A.

V. Ranganathan, S. Srinivasan, A. Singh, and M. C. DeRosa, “An aptamer-based colorimetric lateral flow assay for the detection of human epidermal growth factor receptor 2 (HER2),” Anal. Biochem. 588, 113471 (2020).
[Crossref]

Sipe, J. E.

Spackova, B.

Spasic, D.

J. H. Qu, A. Dillen, W. Saeys, J. Lammertyn, and D. Spasic, “Advancements in SPR biosensing technology: An overview of recent trends in smart layers design, multiplexing concepts, continuous monitoring and in vivo sensing,” Anal. Chim. Acta 1104, 10–27 (2020).
[Crossref]

Srinivasan, S.

V. Ranganathan, S. Srinivasan, A. Singh, and M. C. DeRosa, “An aptamer-based colorimetric lateral flow assay for the detection of human epidermal growth factor receptor 2 (HER2),” Anal. Biochem. 588, 113471 (2020).
[Crossref]

Stec, J.

J. S. Ross, J. A. Fletcher, G. P. Linette, J. Stec, E. Clark, M. Ayers, W. F. Symmans, L. Pusztai, and K. J. Bloom, “The HER-2/ neu gene and protein in breast cancer 2003: biomarker and target of therapy,” Oncologist 8(4), 307–325 (2003).
[Crossref]

Subrahmanyam, A.

C. Christopher, A. Subrahmanyam, and V. V. R. Sai, “Gold sputtered U-bent plastic optical fiber probes as SPR- and LSPR-based compact plasmonic sensors,” Plasmonics 13(2), 493–502 (2018).
[Crossref]

Symmans, W. F.

J. S. Ross, J. A. Fletcher, G. P. Linette, J. Stec, E. Clark, M. Ayers, W. F. Symmans, L. Pusztai, and K. J. Bloom, “The HER-2/ neu gene and protein in breast cancer 2003: biomarker and target of therapy,” Oncologist 8(4), 307–325 (2003).
[Crossref]

Tamura, K.

T. Doi, K. Shitara, Y. Naito, A. Shimomura, Y. Fujiwara, K. Yonemori, C. Shimizu, T. Shimoi, Y. Kuboki, N. Matsubara, A. Kitano, T. Jikoh, C. Lee, Y. Fujisaki, Y. Ogitani, A. Yver, and K. Tamura, “Safety, pharmacokinetics, and antitumour activity of trastuzumab deruxtecan (DS-8201), a HER2-targeting antibody–drug conjugate, in patients with advanced breast and gastric or gastro-oesophageal tumours: a phase 1 dose-escalation study,” Lancet Oncol. 18(11), 1512–1522 (2017).
[Crossref]

Tazhetdinova, D. K.

K. A. Tomyshev, E. S. Manuilovich, D. K. Tazhetdinova, E. I. Dolzhenko, and O. V. Butov, “High-precision data analysis for TFBG-assisted refractometer,” Sens. Actuators, A 308, 112016 (2020).
[Crossref]

Thomson, D. J.

Tombelli, S.

F. Chiavaioli, F. Baldini, S. Tombelli, C. Trono, and A. Giannetti, “Biosensing with optical fiber gratings,” Nanophotonics 6(4), 663–679 (2017).
[Crossref]

Tomyshev, K.

E. Manuylovich, K. Tomyshev, and O. V. Butov, “Method for determining the plasmon resonance wavelength in fiber sensors based on tilted fiber Bragg gratings,” Sensors 19(19), 4245 (2019).
[Crossref]

Tomyshev, K. A.

K. A. Tomyshev, E. S. Manuilovich, D. K. Tazhetdinova, E. I. Dolzhenko, and O. V. Butov, “High-precision data analysis for TFBG-assisted refractometer,” Sens. Actuators, A 308, 112016 (2020).
[Crossref]

Tosi, D.

S. Poeggel, D. Tosi, D. Duraibabu, G. Leen, D. McGrath, and E. Lewis, “Optical fibre pressure sensors in medical applications,” Sensors 15(7), 17115–17148 (2015).
[Crossref]

Troiani, T.

V. Belli, N. Matrone, S. Napolitano, G. Migliardi, F. Cottino, A. Bertotti, L. Trusolino, E. Martinelli, F. Morgillo, D. Ciardiello, V. De Falco, E. F. Giunta, U. Bracale, F. Ciardiello, and T. Troiani, “Combined blockade of MEK and PI3KCA as an effective antitumor strategy in HER2 gene amplified human colorectal cancer models,” J. Exp. Clin. Cancer Res. 38(1), 236 (2019).
[Crossref]

Trono, C.

F. Chiavaioli, F. Baldini, S. Tombelli, C. Trono, and A. Giannetti, “Biosensing with optical fiber gratings,” Nanophotonics 6(4), 663–679 (2017).
[Crossref]

Trusolino, L.

V. Belli, N. Matrone, S. Napolitano, G. Migliardi, F. Cottino, A. Bertotti, L. Trusolino, E. Martinelli, F. Morgillo, D. Ciardiello, V. De Falco, E. F. Giunta, U. Bracale, F. Ciardiello, and T. Troiani, “Combined blockade of MEK and PI3KCA as an effective antitumor strategy in HER2 gene amplified human colorectal cancer models,” J. Exp. Clin. Cancer Res. 38(1), 236 (2019).
[Crossref]

Vengsarkar, A. M.

Voisin, V.

Walsh, R.

Y. Schevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref]

Wattiez, R.

M. Loyez, C. Ribaut, C. Caucheteur, and R. Wattiez, “Chemical Functionalized gold electroless-plated optical fiber gratings for reliable surface biosensing,” Sens. Actuators, B 280, 54–61 (2019).
[Crossref]

M. Loyez, M. Lobry, R. Wattiez, and C. Caucheteur, “Optical fiber gratings immunoassays,” Sensors 19(11), 2595 (2019).
[Crossref]

C. Ribaut, M. Loyez, J. C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[Crossref]

Willmore, W. G.

E. M. Hassan, W. G. Willmore, B. C. Mckay, and M. C. DeRosa, “In vitro selections of mammaglobin A and mammaglobin B aptamers for the recognition of circulating breast tumor cells,” Sci. Rep. 7(1), 14487 (2017).
[Crossref]

Yang, C.

M. jie Yin, B. Gu, Q. F. An, C. Yang, Y. L. Guan, and K. T. Yong, “Recent development of fiber-optic chemical sensors and biosensors: Mechanisms, materials, micro/nano-fabrications and applications,” Coord. Chem. Rev. 376, 348–392 (2018).
[Crossref]

Yonemori, K.

T. Doi, K. Shitara, Y. Naito, A. Shimomura, Y. Fujiwara, K. Yonemori, C. Shimizu, T. Shimoi, Y. Kuboki, N. Matsubara, A. Kitano, T. Jikoh, C. Lee, Y. Fujisaki, Y. Ogitani, A. Yver, and K. Tamura, “Safety, pharmacokinetics, and antitumour activity of trastuzumab deruxtecan (DS-8201), a HER2-targeting antibody–drug conjugate, in patients with advanced breast and gastric or gastro-oesophageal tumours: a phase 1 dose-escalation study,” Lancet Oncol. 18(11), 1512–1522 (2017).
[Crossref]

Yong, K. T.

M. jie Yin, B. Gu, Q. F. An, C. Yang, Y. L. Guan, and K. T. Yong, “Recent development of fiber-optic chemical sensors and biosensors: Mechanisms, materials, micro/nano-fabrications and applications,” Coord. Chem. Rev. 376, 348–392 (2018).
[Crossref]

Yu, Z.

Z. Li, Z. Yu, Y. Shen, X. Ruan, and Y. Dai, “Graphene enhanced leaky mode resonance in tilted fiber Bragg grating: a new opportunity for highly sensitive fiber optic sensor,” IEEE Access 7, 26641–26651 (2019).
[Crossref]

Yver, A.

T. Doi, K. Shitara, Y. Naito, A. Shimomura, Y. Fujiwara, K. Yonemori, C. Shimizu, T. Shimoi, Y. Kuboki, N. Matsubara, A. Kitano, T. Jikoh, C. Lee, Y. Fujisaki, Y. Ogitani, A. Yver, and K. Tamura, “Safety, pharmacokinetics, and antitumour activity of trastuzumab deruxtecan (DS-8201), a HER2-targeting antibody–drug conjugate, in patients with advanced breast and gastric or gastro-oesophageal tumours: a phase 1 dose-escalation study,” Lancet Oncol. 18(11), 1512–1522 (2017).
[Crossref]

Zhang, Y.

ACS Sens. (1)

M. Loyez, E. M. Hassan, M. Lobry, F. Liu, and C. Caucheteur, “Rapid detection of circulating breast cancer cells using a multi-resonant optical fiber aptasensor with plasmonic amplification,” ACS Sens. 5(2), 454–463 (2020).
[Crossref]

Anal. Bioanal. Chem. (1)

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref]

Anal. Biochem. (1)

V. Ranganathan, S. Srinivasan, A. Singh, and M. C. DeRosa, “An aptamer-based colorimetric lateral flow assay for the detection of human epidermal growth factor receptor 2 (HER2),” Anal. Biochem. 588, 113471 (2020).
[Crossref]

Anal. Chem. (1)

Y. Schevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref]

Anal. Chim. Acta (1)

J. H. Qu, A. Dillen, W. Saeys, J. Lammertyn, and D. Spasic, “Advancements in SPR biosensing technology: An overview of recent trends in smart layers design, multiplexing concepts, continuous monitoring and in vivo sensing,” Anal. Chim. Acta 1104, 10–27 (2020).
[Crossref]

Appl. Opt. (1)

Biosens. Bioelectron. (2)

C. Ribaut, M. Loyez, J. C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[Crossref]

M. Lobry, D. Lahem, M. Loyez, M. Debliquy, K. Chah, M. David, and C. Caucheteur, “Non-enzymatic D-glucose plasmonic optical fiber grating biosensor,” Biosens. Bioelectron. 142, 111506 (2019).
[Crossref]

Biosensors (1)

F. Chiavaioli, C. A. J. Gouveia, P. A. S. Jorge, and F. Baldini, “Towards a uniform metrological assessment of grating-based optical fiber sensors: from refractometers to biosensors,” Biosensors 7(4), 23–29 (2017).
[Crossref]

Breast Cancer (1)

K. Araki and Y. Miyoshi, “Mechanism of resistance to endocrine therapy in breast cancer: the important role of PI3 K/Akt/mTOR in estrogen receptor-positive, HER2-negative breast cancer,” Breast Cancer 25(4), 392–401 (2018).
[Crossref]

CA. Cancer J. Clin. (1)

R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics,” CA. Cancer J. Clin. 68(1), 7–30 (2018).
[Crossref]

Cancer Treat. Rev. (1)

D. L. Nielsen, M. Andersson, and C. Kamby, “HER2-targeted therapy in breast cancer. Monoclonal antibodies and tyrosine kinase inhibitors,” Cancer Treat. Rev. 35(2), 121–136 (2009).
[Crossref]

Coord. Chem. Rev. (1)

M. jie Yin, B. Gu, Q. F. An, C. Yang, Y. L. Guan, and K. T. Yong, “Recent development of fiber-optic chemical sensors and biosensors: Mechanisms, materials, micro/nano-fabrications and applications,” Coord. Chem. Rev. 376, 348–392 (2018).
[Crossref]

IEEE Access (1)

Z. Li, Z. Yu, Y. Shen, X. Ruan, and Y. Dai, “Graphene enhanced leaky mode resonance in tilted fiber Bragg grating: a new opportunity for highly sensitive fiber optic sensor,” IEEE Access 7, 26641–26651 (2019).
[Crossref]

IEEE Photonics Technol. Lett. (1)

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Refractive index sensor based on microstructured fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(6), 1250–1252 (2005).
[Crossref]

J. Exp. Clin. Cancer Res. (1)

V. Belli, N. Matrone, S. Napolitano, G. Migliardi, F. Cottino, A. Bertotti, L. Trusolino, E. Martinelli, F. Morgillo, D. Ciardiello, V. De Falco, E. F. Giunta, U. Bracale, F. Ciardiello, and T. Troiani, “Combined blockade of MEK and PI3KCA as an effective antitumor strategy in HER2 gene amplified human colorectal cancer models,” J. Exp. Clin. Cancer Res. 38(1), 236 (2019).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. A (2)

Lancet Oncol. (1)

T. Doi, K. Shitara, Y. Naito, A. Shimomura, Y. Fujiwara, K. Yonemori, C. Shimizu, T. Shimoi, Y. Kuboki, N. Matsubara, A. Kitano, T. Jikoh, C. Lee, Y. Fujisaki, Y. Ogitani, A. Yver, and K. Tamura, “Safety, pharmacokinetics, and antitumour activity of trastuzumab deruxtecan (DS-8201), a HER2-targeting antibody–drug conjugate, in patients with advanced breast and gastric or gastro-oesophageal tumours: a phase 1 dose-escalation study,” Lancet Oncol. 18(11), 1512–1522 (2017).
[Crossref]

Laser Photonics Rev. (1)

J. Albert, L. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

Meas. Sci. Technol. (1)

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
[Crossref]

Nanophotonics (1)

F. Chiavaioli, F. Baldini, S. Tombelli, C. Trono, and A. Giannetti, “Biosensing with optical fiber gratings,” Nanophotonics 6(4), 663–679 (2017).
[Crossref]

Oncologist (1)

J. S. Ross, J. A. Fletcher, G. P. Linette, J. Stec, E. Clark, M. Ayers, W. F. Symmans, L. Pusztai, and K. J. Bloom, “The HER-2/ neu gene and protein in breast cancer 2003: biomarker and target of therapy,” Oncologist 8(4), 307–325 (2003).
[Crossref]

Opt. Express (3)

Opt. Fiber Technol. (1)

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[Crossref]

Opt. Laser Technol. (1)

T. Guo, F. Liu, B. O. Guan, and J. Albert, “Tilted fiber grating mechanical and biochemical sensors,” Opt. Laser Technol. 78, 19–33 (2016).
[Crossref]

Opt. Lett. (1)

Pharmaceuticals (1)

M. Gijs, G. Penner, G. B. Blackler, N. R. E. N. Impens, S. Baatout, A. Luxen, and A. M. Aerts, “Improved aptamers for the diagnosis and potential treatment of HER2-positive cancer,” Pharmaceuticals 9(2), 29 (2016).
[Crossref]

Plasmonics (1)

C. Christopher, A. Subrahmanyam, and V. V. R. Sai, “Gold sputtered U-bent plastic optical fiber probes as SPR- and LSPR-based compact plasmonic sensors,” Plasmonics 13(2), 493–502 (2018).
[Crossref]

Sci. Rep. (1)

E. M. Hassan, W. G. Willmore, B. C. Mckay, and M. C. DeRosa, “In vitro selections of mammaglobin A and mammaglobin B aptamers for the recognition of circulating breast tumor cells,” Sci. Rep. 7(1), 14487 (2017).
[Crossref]

Sens. Actuators, A (1)

K. A. Tomyshev, E. S. Manuilovich, D. K. Tazhetdinova, E. I. Dolzhenko, and O. V. Butov, “High-precision data analysis for TFBG-assisted refractometer,” Sens. Actuators, A 308, 112016 (2020).
[Crossref]

Sens. Actuators, B (1)

M. Loyez, C. Ribaut, C. Caucheteur, and R. Wattiez, “Chemical Functionalized gold electroless-plated optical fiber gratings for reliable surface biosensing,” Sens. Actuators, B 280, 54–61 (2019).
[Crossref]

Sensors (5)

E. Manuylovich, K. Tomyshev, and O. V. Butov, “Method for determining the plasmon resonance wavelength in fiber sensors based on tilted fiber Bragg gratings,” Sensors 19(19), 4245 (2019).
[Crossref]

S. Poeggel, D. Tosi, D. Duraibabu, G. Leen, D. McGrath, and E. Lewis, “Optical fibre pressure sensors in medical applications,” Sensors 15(7), 17115–17148 (2015).
[Crossref]

O. V. Butov, A. P. Bazakutsa, Y. K. Chamorovskiy, A. N. Fedorov, and I. A. Shevtsov, “All-fiber highly sensitive Bragg grating bend sensor,” Sensors 19(19), 4228 (2019).
[Crossref]

M. E. Bosch, A. J. R. Sánchez, F. S. Rojas, and C. B. Ojeda, “Recent development in optical fiber biosensors,” Sensors 7(6), 797–859 (2007).
[Crossref]

M. Loyez, M. Lobry, R. Wattiez, and C. Caucheteur, “Optical fiber gratings immunoassays,” Sensors 19(11), 2595 (2019).
[Crossref]

Other (3)

A. Iadicicco, A. Cutolo, S. Campopiano, M. Giordano, and A. Cusano, “Advanced fiber optical refractometers based on partially etched fiber Bragg gratings,” 1218–1221 (2004).

J. P. Dakin, K. Hotate, R. A. Lieberman, and M. A. Marcus, “Optical fiber sensor,” in Handbook of Optoelectronics, J. P. Dakin and R. G. W. Brown, eds., 2nd ed. (CRC Press, 2017), pp. 1–84.

K. T. V. Grattan and Y. N. Ning, “Optical current sensor technology,” in Optical Fiber Sensor Technology, K. T. V. Grattan and B. T. Meggitt, eds., 1st ed. (Springer, 1998), pp. 183–223.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Sketch of specific HER2 biodetection based on an SPR-TFBG biofunctionalized using anti-HER2 aptamers.
Fig. 2.
Fig. 2. Scheme of the experimental setup used for biofunctionalization and biodetection experiments (300 µL samples are used).
Fig. 3.
Fig. 3. Response signal of the SPR-TFBG at the end of the aptamer immobilization and in PBS (before and after aptamer grafting) (a) with an enlargement on the spectral region of interest (b). The fit of the SPR signature using the envelope is also shown. Enlargement on the wavelength shift of the SPR envelope maximum around during the aptamer immobilization (c). Sensorgram showing the tracking of the wavelength shift in nm over time of the SPR envelope during the aptamer immobilization with immersion in PBS before and after grafting (d).
Fig. 4.
Fig. 4. Tracking of the SPR-TFBG response signal shift in wavelength during the 6-mercapto-1-hexanol blocking in PBS with an enlargement on the spectral region of interest (a). The sensorgram obtained by using the tracking of the maximum of the SPR envelope overtime is also plotted (b).
Fig. 5.
Fig. 5. Sketch of principle of HER2 biodetection at SPR TFBG aptasensor interface through anti-HER2 aptamers and signal amplification using anti-HER2 antibodies.
Fig. 6.
Fig. 6. Tracking of the SPR envelope in the spectral region of interest during the HER2 biodetection through anti-HER2 aptamers (a) and the anti-HER2 amplification (b). Tracking of the wavelength shift in nm over time of the maximum of the SPR envelope during the biodetection with measurements in PBS between each step (c).

Metrics