Abstract

Near infrared optical tomography (NIROT) is an emerging modality that enables imaging the oxygenation of tissue, which is a biomarker of tremendous clinical relevance. Measuring in reflectance is usually required when NIROT is applied in clinical scenarios. Single photon avalanche diode (SPAD) array technology provides a compact solution for time domain (TD) NIROT to gain huge temporal and spatial information. This makes it possible to image complex structures in tissue. The main aim of this paper is to validate the wavelength normalization method for our new TD NIROT experimentally by exposing it to a particularly difficult challenge: the recovery of two inclusions at different depths. The proposed reconstruction algorithm aims to tackle systematic errors and other artifacts with known wavelength-dependent relation. We validated the device and reconstruction method experimentally on a silicone phantom with two inclusions: one at depth of 10 mm and the other at 15 mm. Despite this tough challenge for reflectance NIROT, the system was able to localize both inclusions accurately.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, and S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Express 6(3), 49–57 (2000).
    [Crossref]
  2. V. Ntziachristos and B. Chance, “Probing physiology and molecular function using optical imaging: applications to breast cancer,” Breast Cancer Res. 3(1), 41–46 (2000).
    [Crossref]
  3. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Z. Quan, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18(6), 57–75 (2001).
    [Crossref]
  4. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
    [Crossref]
  5. A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
    [Crossref]
  6. E. Ferocino, A. Pifferi, S. Arridge, F. Martelli, P. Taroni, and A. Farina, “Multi simulation platform for time domain diffuse optical tomography: An application to a compact hand-held reflectance probe,” Appl. Sci. 9(14), 2849 (2019).
    [Crossref]
  7. A. D. Mora, D. Contini, S. Arridge, F. Martelli, A. Tosi, G. Boso, A. Farina, T. Durduran, E. Martinenghi, A. Torricelli, and A. Pifferi, “Towards next-generation time-domain diffuse optics for extreme depth penetration and sensitivity,” Biomed. Opt. Express 6(5), 1749–1760 (2015).
    [Crossref]
  8. E. M. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46(4), 1117–1130 (2001).
    [Crossref]
  9. S. Lindner, C. Zhang, I. M. Antolovic, A. Kalyanov, J. Jiang, L. Ahnen, A. di Costanzo, J. M. Pavia, S. S. Majos, E. Charbon, and M. Wolf, “A novel 32 × 32, 224 mevents/s time resolved spad image sensor for near-infrared optical tomography,” in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS), (Optical Society of America, 2018), p. JTh5A.6.
  10. A. Kalyanov, J. Jiang, S. Lindner, L. Ahnen, A. Di Costanzo, J. Mata Pavia, S. Sanchez Majos, and M. Wolf, “Time domain near-infrared optical tomography with time-of-flight spad camera: The new generation,” Biophotonics Congress: Biomedical Optics Congress 2018 (2018).
  11. J. Jiang, A. di Costanzo, S. Lindner, M. Wolf, and A. Kalyanov, “Tracking objects in a diffusive medium with time domain near infrared optical tomography,” in Biophotonics Congress: Biomedical Optics 2020 (Translational, Microscopy, OCT, OTS, BRAIN), (Optical Society of America, 2020), p. JTu3A.18.
  12. K. M. S. Uddin and Q. Zhu, “Reducing image artifact in diffuse optical tomography by iterative perturbation correction based on multiwavelength measurements,” J. Biomed. Opt. 24(5), 056005 (2019).
    [Crossref]
  13. J. Jiang, M. Wolf, and S. S. Majos, “Fast reconstruction of optical properties for complex segmentations in near infrared imaging,” J. Mod. Opt. 64(7), 732–742 (2017).
    [Crossref]
  14. M. A. Naser, M. S. Patterson, and J. W. Wong, “Self-calibrated algorithms for diffuse optical tomography and bioluminescence tomography using relative transmission images,” Biomed. Opt. Express 3(11), 2794–2808 (2012).
    [Crossref]
  15. S. Wojtkiewicz, A. Gerega, M. Zanoletti, A. Sudakou, D. Contini, A. Liebert, T. Durduran, and H. Dehghani, “Self-calibrating time-resolved near infrared spectroscopy,” Biomed. Opt. Express 10(5), 2657–2669 (2019).
    [Crossref]
  16. D. A. Boas and A. M. Dale, “Simulation study of magnetic resonance imaging-guided cortically constrained diffuse optical tomography of human brain function,” Appl. Opt. 44(10), 1957–1968 (2005).
    [Crossref]
  17. L. Ahnen, H. Stachel, S. Kleiser, C. Hagmann, J. Jiang, A. Kalyanov, S. Lindner, M. Wolf, and S. Sanchez, Development and Validation of a Sensor Prototype for Near-Infrared Imaging of the Newborn Brain (Springer International Publishing, 2017), pp. 163–168.
  18. C. Zhang, S. Lindner, I. M. Antolovic, M. Wolf, and E. Charbon, “A cmos spad imager with collision detection and 128 dynamically reallocating tdcs for single-photon counting and 3d time-of-flight imaging,” Sensors 18(11), 4016 (2018).
    [Crossref]
  19. S. R. Arridge and M. Schweiger, A General Framework for Iterative Reconstruction Algorithms in Optical Tomography, Using a Finite Element Method (Springer New York, 1999), pp. 45–70.
  20. H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using nirfast: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Engng. 25(6), 711–732 (2009).
    [Crossref]
  21. Q. Zhao, L. Ji, and T. Jiang, “Improving depth resolution of diffuse optical tomography with a layer-based sigmoid adjustment method,” Opt. Express 15(7), 4018–4029 (2007).
    [Crossref]
  22. B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38(13), 2950–2961 (1999).
    [Crossref]
  23. J. Jiang, L. Ahnen, A. Kalyanov, S. Lindner, M. Wolf, and S. S. Majos, “A new method based on graphics processing units for fast near-infrared optical tomography,” Adv. Exp. Med. Biol. 977, 191–197 (2017).

2019 (3)

E. Ferocino, A. Pifferi, S. Arridge, F. Martelli, P. Taroni, and A. Farina, “Multi simulation platform for time domain diffuse optical tomography: An application to a compact hand-held reflectance probe,” Appl. Sci. 9(14), 2849 (2019).
[Crossref]

K. M. S. Uddin and Q. Zhu, “Reducing image artifact in diffuse optical tomography by iterative perturbation correction based on multiwavelength measurements,” J. Biomed. Opt. 24(5), 056005 (2019).
[Crossref]

S. Wojtkiewicz, A. Gerega, M. Zanoletti, A. Sudakou, D. Contini, A. Liebert, T. Durduran, and H. Dehghani, “Self-calibrating time-resolved near infrared spectroscopy,” Biomed. Opt. Express 10(5), 2657–2669 (2019).
[Crossref]

2018 (1)

C. Zhang, S. Lindner, I. M. Antolovic, M. Wolf, and E. Charbon, “A cmos spad imager with collision detection and 128 dynamically reallocating tdcs for single-photon counting and 3d time-of-flight imaging,” Sensors 18(11), 4016 (2018).
[Crossref]

2017 (2)

J. Jiang, L. Ahnen, A. Kalyanov, S. Lindner, M. Wolf, and S. S. Majos, “A new method based on graphics processing units for fast near-infrared optical tomography,” Adv. Exp. Med. Biol. 977, 191–197 (2017).

J. Jiang, M. Wolf, and S. S. Majos, “Fast reconstruction of optical properties for complex segmentations in near infrared imaging,” J. Mod. Opt. 64(7), 732–742 (2017).
[Crossref]

2015 (1)

2014 (1)

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]

2012 (1)

2009 (1)

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using nirfast: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Engng. 25(6), 711–732 (2009).
[Crossref]

2007 (1)

2005 (1)

2001 (2)

E. M. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46(4), 1117–1130 (2001).
[Crossref]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Z. Quan, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18(6), 57–75 (2001).
[Crossref]

2000 (2)

M. A. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, and S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Express 6(3), 49–57 (2000).
[Crossref]

V. Ntziachristos and B. Chance, “Probing physiology and molecular function using optical imaging: applications to breast cancer,” Breast Cancer Res. 3(1), 41–46 (2000).
[Crossref]

1999 (2)

Ahnen, L.

J. Jiang, L. Ahnen, A. Kalyanov, S. Lindner, M. Wolf, and S. S. Majos, “A new method based on graphics processing units for fast near-infrared optical tomography,” Adv. Exp. Med. Biol. 977, 191–197 (2017).

S. Lindner, C. Zhang, I. M. Antolovic, A. Kalyanov, J. Jiang, L. Ahnen, A. di Costanzo, J. M. Pavia, S. S. Majos, E. Charbon, and M. Wolf, “A novel 32 × 32, 224 mevents/s time resolved spad image sensor for near-infrared optical tomography,” in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS), (Optical Society of America, 2018), p. JTh5A.6.

A. Kalyanov, J. Jiang, S. Lindner, L. Ahnen, A. Di Costanzo, J. Mata Pavia, S. Sanchez Majos, and M. Wolf, “Time domain near-infrared optical tomography with time-of-flight spad camera: The new generation,” Biophotonics Congress: Biomedical Optics Congress 2018 (2018).

L. Ahnen, H. Stachel, S. Kleiser, C. Hagmann, J. Jiang, A. Kalyanov, S. Lindner, M. Wolf, and S. Sanchez, Development and Validation of a Sensor Prototype for Near-Infrared Imaging of the Newborn Brain (Springer International Publishing, 2017), pp. 163–168.

Antolovic, I. M.

C. Zhang, S. Lindner, I. M. Antolovic, M. Wolf, and E. Charbon, “A cmos spad imager with collision detection and 128 dynamically reallocating tdcs for single-photon counting and 3d time-of-flight imaging,” Sensors 18(11), 4016 (2018).
[Crossref]

S. Lindner, C. Zhang, I. M. Antolovic, A. Kalyanov, J. Jiang, L. Ahnen, A. di Costanzo, J. M. Pavia, S. S. Majos, E. Charbon, and M. Wolf, “A novel 32 × 32, 224 mevents/s time resolved spad image sensor for near-infrared optical tomography,” in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS), (Optical Society of America, 2018), p. JTh5A.6.

Arridge, S.

E. Ferocino, A. Pifferi, S. Arridge, F. Martelli, P. Taroni, and A. Farina, “Multi simulation platform for time domain diffuse optical tomography: An application to a compact hand-held reflectance probe,” Appl. Sci. 9(14), 2849 (2019).
[Crossref]

A. D. Mora, D. Contini, S. Arridge, F. Martelli, A. Tosi, G. Boso, A. Farina, T. Durduran, E. Martinenghi, A. Torricelli, and A. Pifferi, “Towards next-generation time-domain diffuse optics for extreme depth penetration and sensitivity,” Biomed. Opt. Express 6(5), 1749–1760 (2015).
[Crossref]

Arridge, S. R.

E. M. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46(4), 1117–1130 (2001).
[Crossref]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
[Crossref]

S. R. Arridge and M. Schweiger, A General Framework for Iterative Reconstruction Algorithms in Optical Tomography, Using a Finite Element Method (Springer New York, 1999), pp. 45–70.

Boas, D. A.

D. A. Boas and A. M. Dale, “Simulation study of magnetic resonance imaging-guided cortically constrained diffuse optical tomography of human brain function,” Appl. Opt. 44(10), 1957–1968 (2005).
[Crossref]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Z. Quan, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18(6), 57–75 (2001).
[Crossref]

Boso, G.

Brooks, D. H.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Z. Quan, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18(6), 57–75 (2001).
[Crossref]

Carpenter, C. M.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using nirfast: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Engng. 25(6), 711–732 (2009).
[Crossref]

Chance, B.

V. Ntziachristos and B. Chance, “Probing physiology and molecular function using optical imaging: applications to breast cancer,” Breast Cancer Res. 3(1), 41–46 (2000).
[Crossref]

Charbon, E.

C. Zhang, S. Lindner, I. M. Antolovic, M. Wolf, and E. Charbon, “A cmos spad imager with collision detection and 128 dynamically reallocating tdcs for single-photon counting and 3d time-of-flight imaging,” Sensors 18(11), 4016 (2018).
[Crossref]

S. Lindner, C. Zhang, I. M. Antolovic, A. Kalyanov, J. Jiang, L. Ahnen, A. di Costanzo, J. M. Pavia, S. S. Majos, E. Charbon, and M. Wolf, “A novel 32 × 32, 224 mevents/s time resolved spad image sensor for near-infrared optical tomography,” in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS), (Optical Society of America, 2018), p. JTh5A.6.

Contini, D.

Culver, J. P.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]

Dale, A. M.

Davis, S. C.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using nirfast: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Engng. 25(6), 711–732 (2009).
[Crossref]

Dehghani, H.

S. Wojtkiewicz, A. Gerega, M. Zanoletti, A. Sudakou, D. Contini, A. Liebert, T. Durduran, and H. Dehghani, “Self-calibrating time-resolved near infrared spectroscopy,” Biomed. Opt. Express 10(5), 2657–2669 (2019).
[Crossref]

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using nirfast: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Engng. 25(6), 711–732 (2009).
[Crossref]

E. M. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46(4), 1117–1130 (2001).
[Crossref]

Delpy, D. T.

E. M. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46(4), 1117–1130 (2001).
[Crossref]

di Costanzo, A.

S. Lindner, C. Zhang, I. M. Antolovic, A. Kalyanov, J. Jiang, L. Ahnen, A. di Costanzo, J. M. Pavia, S. S. Majos, E. Charbon, and M. Wolf, “A novel 32 × 32, 224 mevents/s time resolved spad image sensor for near-infrared optical tomography,” in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS), (Optical Society of America, 2018), p. JTh5A.6.

A. Kalyanov, J. Jiang, S. Lindner, L. Ahnen, A. Di Costanzo, J. Mata Pavia, S. Sanchez Majos, and M. Wolf, “Time domain near-infrared optical tomography with time-of-flight spad camera: The new generation,” Biophotonics Congress: Biomedical Optics Congress 2018 (2018).

J. Jiang, A. di Costanzo, S. Lindner, M. Wolf, and A. Kalyanov, “Tracking objects in a diffusive medium with time domain near infrared optical tomography,” in Biophotonics Congress: Biomedical Optics 2020 (Translational, Microscopy, OCT, OTS, BRAIN), (Optical Society of America, 2020), p. JTu3A.18.

DiMarzio, C. A.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Z. Quan, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18(6), 57–75 (2001).
[Crossref]

Durduran, T.

Eames, M. E.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using nirfast: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Engng. 25(6), 711–732 (2009).
[Crossref]

Eggebrecht, A. T.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]

Fantini, S.

Farina, A.

E. Ferocino, A. Pifferi, S. Arridge, F. Martelli, P. Taroni, and A. Farina, “Multi simulation platform for time domain diffuse optical tomography: An application to a compact hand-held reflectance probe,” Appl. Sci. 9(14), 2849 (2019).
[Crossref]

A. D. Mora, D. Contini, S. Arridge, F. Martelli, A. Tosi, G. Boso, A. Farina, T. Durduran, E. Martinenghi, A. Torricelli, and A. Pifferi, “Towards next-generation time-domain diffuse optics for extreme depth penetration and sensitivity,” Biomed. Opt. Express 6(5), 1749–1760 (2015).
[Crossref]

Ferocino, E.

E. Ferocino, A. Pifferi, S. Arridge, F. Martelli, P. Taroni, and A. Farina, “Multi simulation platform for time domain diffuse optical tomography: An application to a compact hand-held reflectance probe,” Appl. Sci. 9(14), 2849 (2019).
[Crossref]

Ferradal, S. L.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]

Filiaci, M. E.

Franceschini, M. A.

Gaudette, R. J.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Z. Quan, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18(6), 57–75 (2001).
[Crossref]

Gerega, A.

Gratton, E.

Hagmann, C.

L. Ahnen, H. Stachel, S. Kleiser, C. Hagmann, J. Jiang, A. Kalyanov, S. Lindner, M. Wolf, and S. Sanchez, Development and Validation of a Sensor Prototype for Near-Infrared Imaging of the Newborn Brain (Springer International Publishing, 2017), pp. 163–168.

Hassanpour, M. S.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]

Hebden, J. C.

E. M. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46(4), 1117–1130 (2001).
[Crossref]

Hershey, T.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]

Hillman, E. M.

E. M. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46(4), 1117–1130 (2001).
[Crossref]

Ji, L.

Jiang, J.

J. Jiang, M. Wolf, and S. S. Majos, “Fast reconstruction of optical properties for complex segmentations in near infrared imaging,” J. Mod. Opt. 64(7), 732–742 (2017).
[Crossref]

J. Jiang, L. Ahnen, A. Kalyanov, S. Lindner, M. Wolf, and S. S. Majos, “A new method based on graphics processing units for fast near-infrared optical tomography,” Adv. Exp. Med. Biol. 977, 191–197 (2017).

J. Jiang, A. di Costanzo, S. Lindner, M. Wolf, and A. Kalyanov, “Tracking objects in a diffusive medium with time domain near infrared optical tomography,” in Biophotonics Congress: Biomedical Optics 2020 (Translational, Microscopy, OCT, OTS, BRAIN), (Optical Society of America, 2020), p. JTu3A.18.

L. Ahnen, H. Stachel, S. Kleiser, C. Hagmann, J. Jiang, A. Kalyanov, S. Lindner, M. Wolf, and S. Sanchez, Development and Validation of a Sensor Prototype for Near-Infrared Imaging of the Newborn Brain (Springer International Publishing, 2017), pp. 163–168.

A. Kalyanov, J. Jiang, S. Lindner, L. Ahnen, A. Di Costanzo, J. Mata Pavia, S. Sanchez Majos, and M. Wolf, “Time domain near-infrared optical tomography with time-of-flight spad camera: The new generation,” Biophotonics Congress: Biomedical Optics Congress 2018 (2018).

S. Lindner, C. Zhang, I. M. Antolovic, A. Kalyanov, J. Jiang, L. Ahnen, A. di Costanzo, J. M. Pavia, S. S. Majos, E. Charbon, and M. Wolf, “A novel 32 × 32, 224 mevents/s time resolved spad image sensor for near-infrared optical tomography,” in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS), (Optical Society of America, 2018), p. JTh5A.6.

Jiang, T.

Kalyanov, A.

J. Jiang, L. Ahnen, A. Kalyanov, S. Lindner, M. Wolf, and S. S. Majos, “A new method based on graphics processing units for fast near-infrared optical tomography,” Adv. Exp. Med. Biol. 977, 191–197 (2017).

S. Lindner, C. Zhang, I. M. Antolovic, A. Kalyanov, J. Jiang, L. Ahnen, A. di Costanzo, J. M. Pavia, S. S. Majos, E. Charbon, and M. Wolf, “A novel 32 × 32, 224 mevents/s time resolved spad image sensor for near-infrared optical tomography,” in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS), (Optical Society of America, 2018), p. JTh5A.6.

A. Kalyanov, J. Jiang, S. Lindner, L. Ahnen, A. Di Costanzo, J. Mata Pavia, S. Sanchez Majos, and M. Wolf, “Time domain near-infrared optical tomography with time-of-flight spad camera: The new generation,” Biophotonics Congress: Biomedical Optics Congress 2018 (2018).

J. Jiang, A. di Costanzo, S. Lindner, M. Wolf, and A. Kalyanov, “Tracking objects in a diffusive medium with time domain near infrared optical tomography,” in Biophotonics Congress: Biomedical Optics 2020 (Translational, Microscopy, OCT, OTS, BRAIN), (Optical Society of America, 2020), p. JTu3A.18.

L. Ahnen, H. Stachel, S. Kleiser, C. Hagmann, J. Jiang, A. Kalyanov, S. Lindner, M. Wolf, and S. Sanchez, Development and Validation of a Sensor Prototype for Near-Infrared Imaging of the Newborn Brain (Springer International Publishing, 2017), pp. 163–168.

Kilmer, M.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Z. Quan, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18(6), 57–75 (2001).
[Crossref]

Kleiser, S.

L. Ahnen, H. Stachel, S. Kleiser, C. Hagmann, J. Jiang, A. Kalyanov, S. Lindner, M. Wolf, and S. Sanchez, Development and Validation of a Sensor Prototype for Near-Infrared Imaging of the Newborn Brain (Springer International Publishing, 2017), pp. 163–168.

Liebert, A.

Lindner, S.

C. Zhang, S. Lindner, I. M. Antolovic, M. Wolf, and E. Charbon, “A cmos spad imager with collision detection and 128 dynamically reallocating tdcs for single-photon counting and 3d time-of-flight imaging,” Sensors 18(11), 4016 (2018).
[Crossref]

J. Jiang, L. Ahnen, A. Kalyanov, S. Lindner, M. Wolf, and S. S. Majos, “A new method based on graphics processing units for fast near-infrared optical tomography,” Adv. Exp. Med. Biol. 977, 191–197 (2017).

L. Ahnen, H. Stachel, S. Kleiser, C. Hagmann, J. Jiang, A. Kalyanov, S. Lindner, M. Wolf, and S. Sanchez, Development and Validation of a Sensor Prototype for Near-Infrared Imaging of the Newborn Brain (Springer International Publishing, 2017), pp. 163–168.

J. Jiang, A. di Costanzo, S. Lindner, M. Wolf, and A. Kalyanov, “Tracking objects in a diffusive medium with time domain near infrared optical tomography,” in Biophotonics Congress: Biomedical Optics 2020 (Translational, Microscopy, OCT, OTS, BRAIN), (Optical Society of America, 2020), p. JTu3A.18.

A. Kalyanov, J. Jiang, S. Lindner, L. Ahnen, A. Di Costanzo, J. Mata Pavia, S. Sanchez Majos, and M. Wolf, “Time domain near-infrared optical tomography with time-of-flight spad camera: The new generation,” Biophotonics Congress: Biomedical Optics Congress 2018 (2018).

S. Lindner, C. Zhang, I. M. Antolovic, A. Kalyanov, J. Jiang, L. Ahnen, A. di Costanzo, J. M. Pavia, S. S. Majos, E. Charbon, and M. Wolf, “A novel 32 × 32, 224 mevents/s time resolved spad image sensor for near-infrared optical tomography,” in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS), (Optical Society of America, 2018), p. JTh5A.6.

Majos, S. S.

J. Jiang, M. Wolf, and S. S. Majos, “Fast reconstruction of optical properties for complex segmentations in near infrared imaging,” J. Mod. Opt. 64(7), 732–742 (2017).
[Crossref]

J. Jiang, L. Ahnen, A. Kalyanov, S. Lindner, M. Wolf, and S. S. Majos, “A new method based on graphics processing units for fast near-infrared optical tomography,” Adv. Exp. Med. Biol. 977, 191–197 (2017).

S. Lindner, C. Zhang, I. M. Antolovic, A. Kalyanov, J. Jiang, L. Ahnen, A. di Costanzo, J. M. Pavia, S. S. Majos, E. Charbon, and M. Wolf, “A novel 32 × 32, 224 mevents/s time resolved spad image sensor for near-infrared optical tomography,” in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS), (Optical Society of America, 2018), p. JTh5A.6.

Martelli, F.

E. Ferocino, A. Pifferi, S. Arridge, F. Martelli, P. Taroni, and A. Farina, “Multi simulation platform for time domain diffuse optical tomography: An application to a compact hand-held reflectance probe,” Appl. Sci. 9(14), 2849 (2019).
[Crossref]

A. D. Mora, D. Contini, S. Arridge, F. Martelli, A. Tosi, G. Boso, A. Farina, T. Durduran, E. Martinenghi, A. Torricelli, and A. Pifferi, “Towards next-generation time-domain diffuse optics for extreme depth penetration and sensitivity,” Biomed. Opt. Express 6(5), 1749–1760 (2015).
[Crossref]

Martinenghi, E.

Mata Pavia, J.

A. Kalyanov, J. Jiang, S. Lindner, L. Ahnen, A. Di Costanzo, J. Mata Pavia, S. Sanchez Majos, and M. Wolf, “Time domain near-infrared optical tomography with time-of-flight spad camera: The new generation,” Biophotonics Congress: Biomedical Optics Congress 2018 (2018).

McBride, T. O.

Miller, E. L.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Z. Quan, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18(6), 57–75 (2001).
[Crossref]

Mora, A. D.

Naser, M. A.

Ntziachristos, V.

V. Ntziachristos and B. Chance, “Probing physiology and molecular function using optical imaging: applications to breast cancer,” Breast Cancer Res. 3(1), 41–46 (2000).
[Crossref]

Osterberg, U. L.

Patterson, M. S.

Paulsen, K. D.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using nirfast: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Engng. 25(6), 711–732 (2009).
[Crossref]

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38(13), 2950–2961 (1999).
[Crossref]

Pavia, J. M.

S. Lindner, C. Zhang, I. M. Antolovic, A. Kalyanov, J. Jiang, L. Ahnen, A. di Costanzo, J. M. Pavia, S. S. Majos, E. Charbon, and M. Wolf, “A novel 32 × 32, 224 mevents/s time resolved spad image sensor for near-infrared optical tomography,” in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS), (Optical Society of America, 2018), p. JTh5A.6.

Pifferi, A.

E. Ferocino, A. Pifferi, S. Arridge, F. Martelli, P. Taroni, and A. Farina, “Multi simulation platform for time domain diffuse optical tomography: An application to a compact hand-held reflectance probe,” Appl. Sci. 9(14), 2849 (2019).
[Crossref]

A. D. Mora, D. Contini, S. Arridge, F. Martelli, A. Tosi, G. Boso, A. Farina, T. Durduran, E. Martinenghi, A. Torricelli, and A. Pifferi, “Towards next-generation time-domain diffuse optics for extreme depth penetration and sensitivity,” Biomed. Opt. Express 6(5), 1749–1760 (2015).
[Crossref]

Pogue, B. W.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using nirfast: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Engng. 25(6), 711–732 (2009).
[Crossref]

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38(13), 2950–2961 (1999).
[Crossref]

Prewitt, J.

Quan, Z.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Z. Quan, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18(6), 57–75 (2001).
[Crossref]

Robichaux-Viehoever, A.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]

Sanchez, S.

L. Ahnen, H. Stachel, S. Kleiser, C. Hagmann, J. Jiang, A. Kalyanov, S. Lindner, M. Wolf, and S. Sanchez, Development and Validation of a Sensor Prototype for Near-Infrared Imaging of the Newborn Brain (Springer International Publishing, 2017), pp. 163–168.

Sanchez Majos, S.

A. Kalyanov, J. Jiang, S. Lindner, L. Ahnen, A. Di Costanzo, J. Mata Pavia, S. Sanchez Majos, and M. Wolf, “Time domain near-infrared optical tomography with time-of-flight spad camera: The new generation,” Biophotonics Congress: Biomedical Optics Congress 2018 (2018).

Schmidt, F. E.

E. M. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46(4), 1117–1130 (2001).
[Crossref]

Schweiger, M.

E. M. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46(4), 1117–1130 (2001).
[Crossref]

S. R. Arridge and M. Schweiger, A General Framework for Iterative Reconstruction Algorithms in Optical Tomography, Using a Finite Element Method (Springer New York, 1999), pp. 45–70.

Snyder, A. Z.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]

Srinivasan, S.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using nirfast: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Engng. 25(6), 711–732 (2009).
[Crossref]

Stachel, H.

L. Ahnen, H. Stachel, S. Kleiser, C. Hagmann, J. Jiang, A. Kalyanov, S. Lindner, M. Wolf, and S. Sanchez, Development and Validation of a Sensor Prototype for Near-Infrared Imaging of the Newborn Brain (Springer International Publishing, 2017), pp. 163–168.

Sudakou, A.

Taroni, P.

E. Ferocino, A. Pifferi, S. Arridge, F. Martelli, P. Taroni, and A. Farina, “Multi simulation platform for time domain diffuse optical tomography: An application to a compact hand-held reflectance probe,” Appl. Sci. 9(14), 2849 (2019).
[Crossref]

Toronov, V.

Torricelli, A.

Tosi, A.

Uddin, K. M. S.

K. M. S. Uddin and Q. Zhu, “Reducing image artifact in diffuse optical tomography by iterative perturbation correction based on multiwavelength measurements,” J. Biomed. Opt. 24(5), 056005 (2019).
[Crossref]

Wojtkiewicz, S.

Wolf, M.

C. Zhang, S. Lindner, I. M. Antolovic, M. Wolf, and E. Charbon, “A cmos spad imager with collision detection and 128 dynamically reallocating tdcs for single-photon counting and 3d time-of-flight imaging,” Sensors 18(11), 4016 (2018).
[Crossref]

J. Jiang, M. Wolf, and S. S. Majos, “Fast reconstruction of optical properties for complex segmentations in near infrared imaging,” J. Mod. Opt. 64(7), 732–742 (2017).
[Crossref]

J. Jiang, L. Ahnen, A. Kalyanov, S. Lindner, M. Wolf, and S. S. Majos, “A new method based on graphics processing units for fast near-infrared optical tomography,” Adv. Exp. Med. Biol. 977, 191–197 (2017).

L. Ahnen, H. Stachel, S. Kleiser, C. Hagmann, J. Jiang, A. Kalyanov, S. Lindner, M. Wolf, and S. Sanchez, Development and Validation of a Sensor Prototype for Near-Infrared Imaging of the Newborn Brain (Springer International Publishing, 2017), pp. 163–168.

J. Jiang, A. di Costanzo, S. Lindner, M. Wolf, and A. Kalyanov, “Tracking objects in a diffusive medium with time domain near infrared optical tomography,” in Biophotonics Congress: Biomedical Optics 2020 (Translational, Microscopy, OCT, OTS, BRAIN), (Optical Society of America, 2020), p. JTu3A.18.

A. Kalyanov, J. Jiang, S. Lindner, L. Ahnen, A. Di Costanzo, J. Mata Pavia, S. Sanchez Majos, and M. Wolf, “Time domain near-infrared optical tomography with time-of-flight spad camera: The new generation,” Biophotonics Congress: Biomedical Optics Congress 2018 (2018).

S. Lindner, C. Zhang, I. M. Antolovic, A. Kalyanov, J. Jiang, L. Ahnen, A. di Costanzo, J. M. Pavia, S. S. Majos, E. Charbon, and M. Wolf, “A novel 32 × 32, 224 mevents/s time resolved spad image sensor for near-infrared optical tomography,” in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS), (Optical Society of America, 2018), p. JTh5A.6.

Wong, J. W.

Yalavarthy, P. K.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using nirfast: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Engng. 25(6), 711–732 (2009).
[Crossref]

Zanoletti, M.

Zhang, C.

C. Zhang, S. Lindner, I. M. Antolovic, M. Wolf, and E. Charbon, “A cmos spad imager with collision detection and 128 dynamically reallocating tdcs for single-photon counting and 3d time-of-flight imaging,” Sensors 18(11), 4016 (2018).
[Crossref]

S. Lindner, C. Zhang, I. M. Antolovic, A. Kalyanov, J. Jiang, L. Ahnen, A. di Costanzo, J. M. Pavia, S. S. Majos, E. Charbon, and M. Wolf, “A novel 32 × 32, 224 mevents/s time resolved spad image sensor for near-infrared optical tomography,” in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS), (Optical Society of America, 2018), p. JTh5A.6.

Zhao, Q.

Zhu, Q.

K. M. S. Uddin and Q. Zhu, “Reducing image artifact in diffuse optical tomography by iterative perturbation correction based on multiwavelength measurements,” J. Biomed. Opt. 24(5), 056005 (2019).
[Crossref]

Adv. Exp. Med. Biol. (1)

J. Jiang, L. Ahnen, A. Kalyanov, S. Lindner, M. Wolf, and S. S. Majos, “A new method based on graphics processing units for fast near-infrared optical tomography,” Adv. Exp. Med. Biol. 977, 191–197 (2017).

Appl. Opt. (2)

Appl. Sci. (1)

E. Ferocino, A. Pifferi, S. Arridge, F. Martelli, P. Taroni, and A. Farina, “Multi simulation platform for time domain diffuse optical tomography: An application to a compact hand-held reflectance probe,” Appl. Sci. 9(14), 2849 (2019).
[Crossref]

Biomed. Opt. Express (3)

Breast Cancer Res. (1)

V. Ntziachristos and B. Chance, “Probing physiology and molecular function using optical imaging: applications to breast cancer,” Breast Cancer Res. 3(1), 41–46 (2000).
[Crossref]

Commun. Numer. Meth. Engng. (1)

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using nirfast: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Engng. 25(6), 711–732 (2009).
[Crossref]

IEEE Signal Process. Mag. (1)

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Z. Quan, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18(6), 57–75 (2001).
[Crossref]

Inverse Probl. (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
[Crossref]

J. Biomed. Opt. (1)

K. M. S. Uddin and Q. Zhu, “Reducing image artifact in diffuse optical tomography by iterative perturbation correction based on multiwavelength measurements,” J. Biomed. Opt. 24(5), 056005 (2019).
[Crossref]

J. Mod. Opt. (1)

J. Jiang, M. Wolf, and S. S. Majos, “Fast reconstruction of optical properties for complex segmentations in near infrared imaging,” J. Mod. Opt. 64(7), 732–742 (2017).
[Crossref]

Nat. Photonics (1)

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]

Opt. Express (2)

Phys. Med. Biol. (1)

E. M. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46(4), 1117–1130 (2001).
[Crossref]

Sensors (1)

C. Zhang, S. Lindner, I. M. Antolovic, M. Wolf, and E. Charbon, “A cmos spad imager with collision detection and 128 dynamically reallocating tdcs for single-photon counting and 3d time-of-flight imaging,” Sensors 18(11), 4016 (2018).
[Crossref]

Other (5)

S. R. Arridge and M. Schweiger, A General Framework for Iterative Reconstruction Algorithms in Optical Tomography, Using a Finite Element Method (Springer New York, 1999), pp. 45–70.

L. Ahnen, H. Stachel, S. Kleiser, C. Hagmann, J. Jiang, A. Kalyanov, S. Lindner, M. Wolf, and S. Sanchez, Development and Validation of a Sensor Prototype for Near-Infrared Imaging of the Newborn Brain (Springer International Publishing, 2017), pp. 163–168.

S. Lindner, C. Zhang, I. M. Antolovic, A. Kalyanov, J. Jiang, L. Ahnen, A. di Costanzo, J. M. Pavia, S. S. Majos, E. Charbon, and M. Wolf, “A novel 32 × 32, 224 mevents/s time resolved spad image sensor for near-infrared optical tomography,” in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS), (Optical Society of America, 2018), p. JTh5A.6.

A. Kalyanov, J. Jiang, S. Lindner, L. Ahnen, A. Di Costanzo, J. Mata Pavia, S. Sanchez Majos, and M. Wolf, “Time domain near-infrared optical tomography with time-of-flight spad camera: The new generation,” Biophotonics Congress: Biomedical Optics Congress 2018 (2018).

J. Jiang, A. di Costanzo, S. Lindner, M. Wolf, and A. Kalyanov, “Tracking objects in a diffusive medium with time domain near infrared optical tomography,” in Biophotonics Congress: Biomedical Optics 2020 (Translational, Microscopy, OCT, OTS, BRAIN), (Optical Society of America, 2020), p. JTu3A.18.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Schematics of Pioneer system; and (b) picture of the Pioneer probe placed on a cylindrical silicone phantom.
Fig. 2.
Fig. 2. Laser-SPAD response functions at four sample wavelengths measured in reflection mode where the laser light was pointed to a white paper and the reflected light was captured by the SPAD camera; Note that the wavelength dependent dispersion in time, and additional time delays caused by different fiber lengths were eliminated by numerically applying pre-measured fixed time shifts to the TD data. The functions are so similar that with wavelength ratios they can be calibrated out easily.
Fig. 3.
Fig. 3. (a) The cylindrical silicone phantom used in the experiment has a diameter of 114 mm and a height of 55 mm and both two small spheres have a radius of 5 mm. (b) The two inclusions were embedded at 10 mm and 15 mm, respectively and the lateral distance between them was 10 mm. (c) Mesh created in simulation for image reconstruction. Note that we made it smaller than the actual volume in (a): cylinder of diameter 60 mm and height 35 mm. 221 detectors were selected within a circle of diameter = $\sim$17.5 mm and all 11 sources were utilized.
Fig. 4.
Fig. 4. Reconstruction for the phantom of two inclusions at 689 nm and 725 nm. Crosssection of (a)(e)(i)(m) ground truth (GT) and (b)(g)(j)(n) reconstructed results for simulation (Sim), (c)(g)(k)(o) non-calibrated reconstruction and (d)(h)(l)(p) auto-calibrated reconstruction (MeasC) for the experimental TD data at two depths 10 mm and 15 mm; Note that the ground-truth images were generated with NIRFAST.
Fig. 5.
Fig. 5. ToF histograms from three pixels (locations shown in the inset) for the phantom measurement at 689 nm. The time bin size is 48.8 ps.
Fig. 6.
Fig. 6. One directional distribution of reconstructed $\mu _a$ (a) at depth of 10 mm and (b) 15 mm for 689 nm and (c) 10 mm and (d) 15 mm for 725 nm for the ground truth (GT), simulation (Sim), non-calibrated measurement (Meas) and auto-calibrated measurement (MeasC).
Fig. 7.
Fig. 7. Mean squared error (MSE) and contrast-to-noise ratio (CNR) for the reconstructed results at $689 nm$ and $725 nm$ for simulation (Sim), non-calibrated measurement (Meas) and auto-calibrated measurement (MeasC).

Tables (1)

Tables Icon

Table 1. Optical properties of the silicone phantom

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

[ κ ( r ) + μ a ( r ) + 1 c 0 ( r ) t ] ϕ ( r , t ) = q ( r , t ) ,
ϕ ( r , t ) + 2 ζ ( c 0 ) κ ( r ) ϕ ( r , t ) ν = 0 , r Ω ,
[ κ ( r ) + μ a ( r ) + i ω c 0 ( r ) ] Φ ( r , ω ) = Q ( r , ω ) ,
μ = a r g min μ { Φ S ( μ ) Φ M 2 2 + Γ ( μ ) } ,
F ~ ( ω ) = F [ α f ( t ) g ( t ) ] = α F ( ω ) G ( ω ) ,
R i ~ ( ω ) = F ~ ( ω ) λ i F ~ ( ω ) λ 0 = α F ( ω ) λ i G ( ω ) λ i α F ( ω ) λ 0 G ( ω ) λ 0 = F ( ω ) λ i F ( ω ) λ 0 = R i ( ω ) .
μ λ i , λ 0 = a r g min μ λ i , λ 0 { R i S ( μ λ i , λ 0 ) R i M 2 2 + Γ ( μ λ i , λ 0 ) } .
χ 2 = j = 1 N m ( ( R 1 S ) j ( R 1 M ) j ) 2 + β k = 1 N n ( ( μ λ 0 , λ 1 ) k ( μ λ 0 , λ 1 ) 0 ) 2 .
δ μ λ 0 , λ 1 = ( J R T J R + β I ) 1 J R T δ R 1 ,
( l n | R 1 | ) μ a λ 0 = ( l n I λ 1 l n I λ 0 ) μ a λ 0 = ( ln I λ 0 ) μ a λ 0 ,
( l n | R 1 | ) μ a λ 1 = ( l n I λ 1 l n I λ 0 ) μ a λ 1 = ( ln I λ 1 ) μ a λ 1 ,
θ ( R 1 ) μ a λ 0 = ( θ λ 1 θ λ 0 ) μ a λ 0 = ( θ λ 0 ) μ a λ 0 ,
θ ( R 1 ) μ a λ 1 = ( θ λ 1 θ λ 0 ) μ a λ 1 = ( θ λ 1 ) μ a λ 1 .
μ λ i , λ 0 = a r g min μ λ i , λ 0 { F 1 S ( μ λ i , λ 0 ) F 1 M 2 2 + Γ ( μ ) } .
M S E = 1 n i = 1 n ( μ a i μ ^ a i ) 2
C N R = 10 × log 10 { i = 1 n ( μ ^ a i ) 2 i = 1 n ( μ a i μ ^ a i ) 2 }