Abstract

A femtosecond frequency-doubled erbium-doped fiber laser with an adjustable pulse repetition rate is developed and applied in two-photon excited fluorescence microscopy. The all-fiber laser system provides the fundamental pulse at 1560 nm wavelength with 22 fs duration for the second harmonic generation, resulting in 1.35 nJ, 60 fs pulses at 780 nm. The repetition rate is adjusted by a pulse picker unit built-in within the amplifier chain, directly providing transform-limited pulses for any chosen repetition rate between 1 and 12 MHz. We employed the laser source to drive a scanning two-photon excited fluorescence microscope for ex vivo rat skin and other samples’ imaging at various pulse repetition rates. Due to compactness, ease of operation, and suitable pulse characteristics, the laser source can be considered as an attractive alternative for Ti:Sapphire laser in biomedical imaging.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Hoover and J. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
    [Crossref]
  2. Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
    [Crossref]
  3. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [Crossref]
  4. G. Palczewska, P. Stremplewski, S. Suh, N. Alexander, D. Salom, Z. Dong, D. Ruminski, E. H. Choi, A. E. Sears, T. S. Kern, M. Wojtkowski, and K. Palczewski, “Two-photon imaging of the mammalian retina with ultrafast pulsing laser,” JCI Insight 3(17), e121555 (2018).
    [Crossref]
  5. A. Dvornikov, L. Malacrida, and E. Gratton, “The DIVER Microscope for Imaging in Scattering Media,” Methods Protoc. 2(2), 53 (2019).
    [Crossref]
  6. D. J. Wahl, M. J. Ju, Y. Jian, and M. V. Sarunic, “Non-invasive cellular-resolution retinal imaging with two-photon excited fluorescence,” Biomed. Opt. Express 10(9), 4859–4873 (2019).
    [Crossref]
  7. E. Sitiwin, M. C. Madigan, E. Gratton, S. Cherepanoff, R. M. Conway, R. Whan, and A. Macmillan, “Shedding light on melanins within in situ human eye melanocytes using 2-photon microscopy profiling techniques,” Sci. Rep. 9(1), 18585 (2019).
    [Crossref]
  8. B. R. Masters, P. T. C. So, C. Buehler, N. P. Barry, J. D. B. Sutin, W. W. Mantulin, and E. Gratton, “Mitigating thermal mechanical damage potential during two-photon dermal imaging,” J. Biomed. Opt. 9(6), 1265–1270 (2004).
    [Crossref]
  9. K. Teuchner, W. Freyer, D. Leupold, A. Volkmer, D. J. S. Birch, P. Altmeyer, M. Stucker, and K. Hoffmann, “Femtosecond Two-photon Excited Fluorescence of Melanin,” Photochem. Photobiol. 70(2), 146–151 (1999).
    [Crossref]
  10. P. G. Antal and R. Szipőcs, “Tunable, low-repetition-rate, cost-efficient femtosecond Ti:sapphire laser for nonlinear microscopy,” Appl. Phys. B 107(1), 17–22 (2012).
    [Crossref]
  11. K. Charan, B. Li, M. Wang, C. P. Lin, and C. Xu, “Fiber-based tunable repetition rate source for deep tissue two-photon fluorescence microscopy,” Biomed. Opt. Express 9(5), 2304–2311 (2018).
    [Crossref]
  12. G. Donnert, C. Eggeling, and S. W. Hell, “Major signal increase in fluorescence microscopy through dark-state relaxation,” Nat. Methods 4(1), 81–86 (2007).
    [Crossref]
  13. V. Sytsma and G. De Grauw, “Time-gated fluorescence lifetime imaging and microvolume spectroscopy using two-photon excitation,” J. Microsc. 191(1), 39–51 (2008).
    [Crossref]
  14. C. Hille, M. Lahn, H. G. Löhmannsröben, and C. Dosche, “Two-photon fluorescence lifetime imaging of intracellular chloride in cockroach salivary glands,” Photochem. Photobiol. Sci. 8(3), 319–327 (2009).
    [Crossref]
  15. C. J. de Grauw and H. C. Gerritsen, “Multiple Time-Gate Module for Fluorescence Lifetime Imaging,” Appl. Spectrosc. 55(6), 670–678 (2001).
    [Crossref]
  16. R. Herda and A. Zach, “Generation of 32-fs pulses at 780 nm by frequency doubling the solitonically-compressed output of an Erbium-doped fiber-laser system,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CTh1N.4.
  17. D. Y. Tang and L. M. Zhao, “Generation of 47-fs pulses directly from an erbium-doped fiber laser,” Opt. Lett. 32(1), 41–43 (2007).
    [Crossref]
  18. D. Deng, L. Zhan, Z. Gu, Y. Gu, and Y. Xia, “55-fs pulse generation without wave-breaking from an all-fiber Erbium-doped ring laser,” Opt. Express 17(6), 4284–4288 (2009).
    [Crossref]
  19. Z. Q. Wang, L. Zhan, X. Fang, C. X. Gao, and K. Qian, “Generation of sub-60 fs similaritons at 1.6 μm from an all-fiber er-doped laser,” J. Lightwave Technol. 34(17), 4128–4134 (2016).
    [Crossref]
  20. Y. Matsui, M. D. Pelusi, and A. Suzuki, “Generation of 20-fs optical pulses from a gain-switched laser diode by a four-stage soliton compression technique,” IEEE Photonics Technol. Lett. 11(10), 1217–1219 (1999).
    [Crossref]
  21. M. Tsuchiya, K. Igarashi, R. Yatsu, K. Taira, K. Y. Koay, and M. Kishi, “Sub-100 fs SDPF optical soliton compressor for diode laser pulses,” Opt. Quantum Electron. 33(7/10), 751–766 (2001).
    [Crossref]
  22. Y.-T. Lin and G.-R. Lin, “Dual-stage soliton compression of a selfstarted additive pulse mode-locked erbium-doped fiber laser for 48 fs pulse generation,” Opt. Lett. 31(10), 1382–1384 (2006).
    [Crossref]
  23. B. Kibler, C. Billet, P.-A. Lacourt, R. Ferriere, and J. Dudley, “All-fiber source of 20-fs pulses at 1550 nm using two-stage linear-nonlinear compression of parabolic similaritons,” IEEE Photonics Technol. Lett. 18(17), 1831–1833 (2006).
    [Crossref]
  24. N. Nishizawa, “Ultrashort pulse fiber lasers and their applications,” Jpn. J. Appl. Phys. 53(9), 090101 (2014).
    [Crossref]
  25. K. Kieu, R. J. Jones, and N. Peyghambarian, “Generation of few-cycle pulses from an amplified carbon nanotube mode-locked fiber laser system,” IEEE Photonics Technol. Lett. 22(20), 1521–1523 (2010).
    [Crossref]
  26. H. Luo, L. Zhan, L. Zhang, Z. Wang, C. Gao, and X. Fang, “”Generation of 22.7-fs 2.8-nJ Pulses from an Erbium-Doped All-Fiber Laser Via Single-Stage Soliton Compression,” J. Lightwave Technol. 35(17), 3780–3784 (2017).
    [Crossref]
  27. J. Sotor and G. Sobon, “24 fs and 3 nJ pulse generation from a simple, all polarization maintaining Er-doped fiber laser,” Laser Phys. Lett. 13(12), 125102 (2016).
    [Crossref]
  28. X. Peng, K. Kim, M. Mielke, S. Jennings, G. Masor, D. Stohl, A. Chavez-Pirson, D. T. Nguyen, D. Rhonehouse, J. Zong, D. Churin, and N. Peyghambarian, “Monolithic fiber chirped pulse amplification system for millijoule femtosecond pulse generation at 1.55 µm,” Opt. Express 22(3), 2459–2464 (2014).
    [Crossref]
  29. S. Han, H. Jang, S. Kim, Y.-J. Kim, and S.-W. Kim, “„MW peak power Er/Yb-doped fiber femtosecond laser amplifier at 1.5 µm center wavelength,” Laser Phys. Lett. 14(8), 080002 (2017).
    [Crossref]
  30. S. Pavlova, H. Rezaei, I. Pavlov, H. Kalaycıoğlu, and F. Ömer Ilday, “Generation of 2-μJ 410-fs pulses from a single-mode chirped-pulse fiber laser operating at 1550 nm,” Appl. Phys. B 124(10), 201 (2018).
    [Crossref]
  31. Z. Liu, W. Zong, Y. Liu, L. Zuo, C. Wen, T. Jiang, J. Zhang, Y. Ma, Z. Zhang, L. Chen, and A. Wang, “High Power 780 nm Femtosecond Fiber Laser,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper AM1J.6.
  32. W. Yang, D. Wu, G. Liu, B. Chen, L. Feng, Z. Zhang, and A. Wang, “256 MHz, 1 W 780 nm femtosecond fiber laser for two-photon microscopy,” in CLEO Pacific Rim Conference 2018, OSA Technical Digest (Optical Society of America, 2018), paper Th4A.2.
  33. S. Boivinet, P. Morin, J. P. Yehouessi, S. Vidal, G. Machinet, and J. Boullet, “3.5nJ femtosecond pulses at 792 nm generated by frequency doubling of an all-PM fiber high energy 48 fs laser,” Proc. SPIE 10897, 108971J (2019).
    [Crossref]
  34. L. Huang, X. Zhou, Q. Liu, C. E. MacAulay, and S. Tang, “Miniaturized multimodal multiphoton microscope for simultaneous two-photon and three-photon imaging with a dual-wavelength Er-doped fiber laser,” Biomed. Opt. Express 11(2), 624–635 (2020).
    [Crossref]
  35. A. Głuszek, G. Soboń, and J. Sotor, “Fast, universal, and fully automatic pulse-picker unit for femtosecond laser systems,” Proc. SPIE 10974, 1097407 (2018).
    [Crossref]
  36. R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
    [Crossref]
  37. M. D. Perry, T. Ditmire, and B. C. Stuart, “Self-phasemodulation in chirped-pulse amplification,” Opt. Lett. 19(24), 2149–2151 (1994).
    [Crossref]
  38. L. Kuznetsova, A. Chong, and F. W. Wise, “Interplay of nonlinearity and gain shaping in femtosecond fiber amplifiers,” Opt. Lett. 31(17), 2640–2642 (2006).
    [Crossref]
  39. T. Schreiber, D. Schimpf, D. Müller, F. Röser, J. Limpert, and A. Tünnermann, “Influence of pulse shape in self-phase-modulation-limited chirped pulse fiber amplifier systems,” J. Opt. Soc. Am. B 24(8), 1809–1814 (2007).
    [Crossref]
  40. B. Li, C. Wu, M. Wang, K. Charan, and C. Xu, “An adaptive excitation source for high-speed multiphoton microscopy,” Nat. Methods 17(2), 163–166 (2020).
    [Crossref]

2020 (2)

2019 (4)

S. Boivinet, P. Morin, J. P. Yehouessi, S. Vidal, G. Machinet, and J. Boullet, “3.5nJ femtosecond pulses at 792 nm generated by frequency doubling of an all-PM fiber high energy 48 fs laser,” Proc. SPIE 10897, 108971J (2019).
[Crossref]

A. Dvornikov, L. Malacrida, and E. Gratton, “The DIVER Microscope for Imaging in Scattering Media,” Methods Protoc. 2(2), 53 (2019).
[Crossref]

D. J. Wahl, M. J. Ju, Y. Jian, and M. V. Sarunic, “Non-invasive cellular-resolution retinal imaging with two-photon excited fluorescence,” Biomed. Opt. Express 10(9), 4859–4873 (2019).
[Crossref]

E. Sitiwin, M. C. Madigan, E. Gratton, S. Cherepanoff, R. M. Conway, R. Whan, and A. Macmillan, “Shedding light on melanins within in situ human eye melanocytes using 2-photon microscopy profiling techniques,” Sci. Rep. 9(1), 18585 (2019).
[Crossref]

2018 (4)

G. Palczewska, P. Stremplewski, S. Suh, N. Alexander, D. Salom, Z. Dong, D. Ruminski, E. H. Choi, A. E. Sears, T. S. Kern, M. Wojtkowski, and K. Palczewski, “Two-photon imaging of the mammalian retina with ultrafast pulsing laser,” JCI Insight 3(17), e121555 (2018).
[Crossref]

K. Charan, B. Li, M. Wang, C. P. Lin, and C. Xu, “Fiber-based tunable repetition rate source for deep tissue two-photon fluorescence microscopy,” Biomed. Opt. Express 9(5), 2304–2311 (2018).
[Crossref]

A. Głuszek, G. Soboń, and J. Sotor, “Fast, universal, and fully automatic pulse-picker unit for femtosecond laser systems,” Proc. SPIE 10974, 1097407 (2018).
[Crossref]

S. Pavlova, H. Rezaei, I. Pavlov, H. Kalaycıoğlu, and F. Ömer Ilday, “Generation of 2-μJ 410-fs pulses from a single-mode chirped-pulse fiber laser operating at 1550 nm,” Appl. Phys. B 124(10), 201 (2018).
[Crossref]

2017 (2)

S. Han, H. Jang, S. Kim, Y.-J. Kim, and S.-W. Kim, “„MW peak power Er/Yb-doped fiber femtosecond laser amplifier at 1.5 µm center wavelength,” Laser Phys. Lett. 14(8), 080002 (2017).
[Crossref]

H. Luo, L. Zhan, L. Zhang, Z. Wang, C. Gao, and X. Fang, “”Generation of 22.7-fs 2.8-nJ Pulses from an Erbium-Doped All-Fiber Laser Via Single-Stage Soliton Compression,” J. Lightwave Technol. 35(17), 3780–3784 (2017).
[Crossref]

2016 (2)

J. Sotor and G. Sobon, “24 fs and 3 nJ pulse generation from a simple, all polarization maintaining Er-doped fiber laser,” Laser Phys. Lett. 13(12), 125102 (2016).
[Crossref]

Z. Q. Wang, L. Zhan, X. Fang, C. X. Gao, and K. Qian, “Generation of sub-60 fs similaritons at 1.6 μm from an all-fiber er-doped laser,” J. Lightwave Technol. 34(17), 4128–4134 (2016).
[Crossref]

2014 (2)

2013 (1)

E. Hoover and J. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
[Crossref]

2012 (2)

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

P. G. Antal and R. Szipőcs, “Tunable, low-repetition-rate, cost-efficient femtosecond Ti:sapphire laser for nonlinear microscopy,” Appl. Phys. B 107(1), 17–22 (2012).
[Crossref]

2010 (1)

K. Kieu, R. J. Jones, and N. Peyghambarian, “Generation of few-cycle pulses from an amplified carbon nanotube mode-locked fiber laser system,” IEEE Photonics Technol. Lett. 22(20), 1521–1523 (2010).
[Crossref]

2009 (2)

D. Deng, L. Zhan, Z. Gu, Y. Gu, and Y. Xia, “55-fs pulse generation without wave-breaking from an all-fiber Erbium-doped ring laser,” Opt. Express 17(6), 4284–4288 (2009).
[Crossref]

C. Hille, M. Lahn, H. G. Löhmannsröben, and C. Dosche, “Two-photon fluorescence lifetime imaging of intracellular chloride in cockroach salivary glands,” Photochem. Photobiol. Sci. 8(3), 319–327 (2009).
[Crossref]

2008 (1)

V. Sytsma and G. De Grauw, “Time-gated fluorescence lifetime imaging and microvolume spectroscopy using two-photon excitation,” J. Microsc. 191(1), 39–51 (2008).
[Crossref]

2007 (3)

2006 (3)

2004 (1)

B. R. Masters, P. T. C. So, C. Buehler, N. P. Barry, J. D. B. Sutin, W. W. Mantulin, and E. Gratton, “Mitigating thermal mechanical damage potential during two-photon dermal imaging,” J. Biomed. Opt. 9(6), 1265–1270 (2004).
[Crossref]

2001 (2)

C. J. de Grauw and H. C. Gerritsen, “Multiple Time-Gate Module for Fluorescence Lifetime Imaging,” Appl. Spectrosc. 55(6), 670–678 (2001).
[Crossref]

M. Tsuchiya, K. Igarashi, R. Yatsu, K. Taira, K. Y. Koay, and M. Kishi, “Sub-100 fs SDPF optical soliton compressor for diode laser pulses,” Opt. Quantum Electron. 33(7/10), 751–766 (2001).
[Crossref]

1999 (2)

Y. Matsui, M. D. Pelusi, and A. Suzuki, “Generation of 20-fs optical pulses from a gain-switched laser diode by a four-stage soliton compression technique,” IEEE Photonics Technol. Lett. 11(10), 1217–1219 (1999).
[Crossref]

K. Teuchner, W. Freyer, D. Leupold, A. Volkmer, D. J. S. Birch, P. Altmeyer, M. Stucker, and K. Hoffmann, “Femtosecond Two-photon Excited Fluorescence of Melanin,” Photochem. Photobiol. 70(2), 146–151 (1999).
[Crossref]

1994 (1)

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref]

1978 (1)

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[Crossref]

Alexander, N.

G. Palczewska, P. Stremplewski, S. Suh, N. Alexander, D. Salom, Z. Dong, D. Ruminski, E. H. Choi, A. E. Sears, T. S. Kern, M. Wojtkowski, and K. Palczewski, “Two-photon imaging of the mammalian retina with ultrafast pulsing laser,” JCI Insight 3(17), e121555 (2018).
[Crossref]

Altmeyer, P.

K. Teuchner, W. Freyer, D. Leupold, A. Volkmer, D. J. S. Birch, P. Altmeyer, M. Stucker, and K. Hoffmann, “Femtosecond Two-photon Excited Fluorescence of Melanin,” Photochem. Photobiol. 70(2), 146–151 (1999).
[Crossref]

Antal, P. G.

P. G. Antal and R. Szipőcs, “Tunable, low-repetition-rate, cost-efficient femtosecond Ti:sapphire laser for nonlinear microscopy,” Appl. Phys. B 107(1), 17–22 (2012).
[Crossref]

Barry, N. P.

B. R. Masters, P. T. C. So, C. Buehler, N. P. Barry, J. D. B. Sutin, W. W. Mantulin, and E. Gratton, “Mitigating thermal mechanical damage potential during two-photon dermal imaging,” J. Biomed. Opt. 9(6), 1265–1270 (2004).
[Crossref]

Billet, C.

B. Kibler, C. Billet, P.-A. Lacourt, R. Ferriere, and J. Dudley, “All-fiber source of 20-fs pulses at 1550 nm using two-stage linear-nonlinear compression of parabolic similaritons,” IEEE Photonics Technol. Lett. 18(17), 1831–1833 (2006).
[Crossref]

Birch, D. J. S.

K. Teuchner, W. Freyer, D. Leupold, A. Volkmer, D. J. S. Birch, P. Altmeyer, M. Stucker, and K. Hoffmann, “Femtosecond Two-photon Excited Fluorescence of Melanin,” Photochem. Photobiol. 70(2), 146–151 (1999).
[Crossref]

Boivinet, S.

S. Boivinet, P. Morin, J. P. Yehouessi, S. Vidal, G. Machinet, and J. Boullet, “3.5nJ femtosecond pulses at 792 nm generated by frequency doubling of an all-PM fiber high energy 48 fs laser,” Proc. SPIE 10897, 108971J (2019).
[Crossref]

Boullet, J.

S. Boivinet, P. Morin, J. P. Yehouessi, S. Vidal, G. Machinet, and J. Boullet, “3.5nJ femtosecond pulses at 792 nm generated by frequency doubling of an all-PM fiber high energy 48 fs laser,” Proc. SPIE 10897, 108971J (2019).
[Crossref]

Buehler, C.

B. R. Masters, P. T. C. So, C. Buehler, N. P. Barry, J. D. B. Sutin, W. W. Mantulin, and E. Gratton, “Mitigating thermal mechanical damage potential during two-photon dermal imaging,” J. Biomed. Opt. 9(6), 1265–1270 (2004).
[Crossref]

Charan, K.

B. Li, C. Wu, M. Wang, K. Charan, and C. Xu, “An adaptive excitation source for high-speed multiphoton microscopy,” Nat. Methods 17(2), 163–166 (2020).
[Crossref]

K. Charan, B. Li, M. Wang, C. P. Lin, and C. Xu, “Fiber-based tunable repetition rate source for deep tissue two-photon fluorescence microscopy,” Biomed. Opt. Express 9(5), 2304–2311 (2018).
[Crossref]

Chavez-Pirson, A.

Chen, B.

W. Yang, D. Wu, G. Liu, B. Chen, L. Feng, Z. Zhang, and A. Wang, “256 MHz, 1 W 780 nm femtosecond fiber laser for two-photon microscopy,” in CLEO Pacific Rim Conference 2018, OSA Technical Digest (Optical Society of America, 2018), paper Th4A.2.

Chen, L.

Z. Liu, W. Zong, Y. Liu, L. Zuo, C. Wen, T. Jiang, J. Zhang, Y. Ma, Z. Zhang, L. Chen, and A. Wang, “High Power 780 nm Femtosecond Fiber Laser,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper AM1J.6.

Cherepanoff, S.

E. Sitiwin, M. C. Madigan, E. Gratton, S. Cherepanoff, R. M. Conway, R. Whan, and A. Macmillan, “Shedding light on melanins within in situ human eye melanocytes using 2-photon microscopy profiling techniques,” Sci. Rep. 9(1), 18585 (2019).
[Crossref]

Choi, E. H.

G. Palczewska, P. Stremplewski, S. Suh, N. Alexander, D. Salom, Z. Dong, D. Ruminski, E. H. Choi, A. E. Sears, T. S. Kern, M. Wojtkowski, and K. Palczewski, “Two-photon imaging of the mammalian retina with ultrafast pulsing laser,” JCI Insight 3(17), e121555 (2018).
[Crossref]

Chong, A.

Churin, D.

Conway, R. M.

E. Sitiwin, M. C. Madigan, E. Gratton, S. Cherepanoff, R. M. Conway, R. Whan, and A. Macmillan, “Shedding light on melanins within in situ human eye melanocytes using 2-photon microscopy profiling techniques,” Sci. Rep. 9(1), 18585 (2019).
[Crossref]

de Grauw, C. J.

De Grauw, G.

V. Sytsma and G. De Grauw, “Time-gated fluorescence lifetime imaging and microvolume spectroscopy using two-photon excitation,” J. Microsc. 191(1), 39–51 (2008).
[Crossref]

Deng, D.

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref]

Ditmire, T.

Dong, Z.

G. Palczewska, P. Stremplewski, S. Suh, N. Alexander, D. Salom, Z. Dong, D. Ruminski, E. H. Choi, A. E. Sears, T. S. Kern, M. Wojtkowski, and K. Palczewski, “Two-photon imaging of the mammalian retina with ultrafast pulsing laser,” JCI Insight 3(17), e121555 (2018).
[Crossref]

Donnert, G.

G. Donnert, C. Eggeling, and S. W. Hell, “Major signal increase in fluorescence microscopy through dark-state relaxation,” Nat. Methods 4(1), 81–86 (2007).
[Crossref]

Dosche, C.

C. Hille, M. Lahn, H. G. Löhmannsröben, and C. Dosche, “Two-photon fluorescence lifetime imaging of intracellular chloride in cockroach salivary glands,” Photochem. Photobiol. Sci. 8(3), 319–327 (2009).
[Crossref]

Dudley, J.

B. Kibler, C. Billet, P.-A. Lacourt, R. Ferriere, and J. Dudley, “All-fiber source of 20-fs pulses at 1550 nm using two-stage linear-nonlinear compression of parabolic similaritons,” IEEE Photonics Technol. Lett. 18(17), 1831–1833 (2006).
[Crossref]

Dvornikov, A.

A. Dvornikov, L. Malacrida, and E. Gratton, “The DIVER Microscope for Imaging in Scattering Media,” Methods Protoc. 2(2), 53 (2019).
[Crossref]

Eggeling, C.

G. Donnert, C. Eggeling, and S. W. Hell, “Major signal increase in fluorescence microscopy through dark-state relaxation,” Nat. Methods 4(1), 81–86 (2007).
[Crossref]

Fang, X.

Feng, L.

W. Yang, D. Wu, G. Liu, B. Chen, L. Feng, Z. Zhang, and A. Wang, “256 MHz, 1 W 780 nm femtosecond fiber laser for two-photon microscopy,” in CLEO Pacific Rim Conference 2018, OSA Technical Digest (Optical Society of America, 2018), paper Th4A.2.

Ferriere, R.

B. Kibler, C. Billet, P.-A. Lacourt, R. Ferriere, and J. Dudley, “All-fiber source of 20-fs pulses at 1550 nm using two-stage linear-nonlinear compression of parabolic similaritons,” IEEE Photonics Technol. Lett. 18(17), 1831–1833 (2006).
[Crossref]

Freyer, W.

K. Teuchner, W. Freyer, D. Leupold, A. Volkmer, D. J. S. Birch, P. Altmeyer, M. Stucker, and K. Hoffmann, “Femtosecond Two-photon Excited Fluorescence of Melanin,” Photochem. Photobiol. 70(2), 146–151 (1999).
[Crossref]

Fukui, K.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Gao, C.

Gao, C. X.

Gerritsen, H. C.

Gluszek, A.

A. Głuszek, G. Soboń, and J. Sotor, “Fast, universal, and fully automatic pulse-picker unit for femtosecond laser systems,” Proc. SPIE 10974, 1097407 (2018).
[Crossref]

Gratton, E.

E. Sitiwin, M. C. Madigan, E. Gratton, S. Cherepanoff, R. M. Conway, R. Whan, and A. Macmillan, “Shedding light on melanins within in situ human eye melanocytes using 2-photon microscopy profiling techniques,” Sci. Rep. 9(1), 18585 (2019).
[Crossref]

A. Dvornikov, L. Malacrida, and E. Gratton, “The DIVER Microscope for Imaging in Scattering Media,” Methods Protoc. 2(2), 53 (2019).
[Crossref]

B. R. Masters, P. T. C. So, C. Buehler, N. P. Barry, J. D. B. Sutin, W. W. Mantulin, and E. Gratton, “Mitigating thermal mechanical damage potential during two-photon dermal imaging,” J. Biomed. Opt. 9(6), 1265–1270 (2004).
[Crossref]

Gu, Y.

Gu, Z.

Han, S.

S. Han, H. Jang, S. Kim, Y.-J. Kim, and S.-W. Kim, “„MW peak power Er/Yb-doped fiber femtosecond laser amplifier at 1.5 µm center wavelength,” Laser Phys. Lett. 14(8), 080002 (2017).
[Crossref]

Hashimoto, H.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Hell, S. W.

G. Donnert, C. Eggeling, and S. W. Hell, “Major signal increase in fluorescence microscopy through dark-state relaxation,” Nat. Methods 4(1), 81–86 (2007).
[Crossref]

Herda, R.

R. Herda and A. Zach, “Generation of 32-fs pulses at 780 nm by frequency doubling the solitonically-compressed output of an Erbium-doped fiber-laser system,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CTh1N.4.

Hille, C.

C. Hille, M. Lahn, H. G. Löhmannsröben, and C. Dosche, “Two-photon fluorescence lifetime imaging of intracellular chloride in cockroach salivary glands,” Photochem. Photobiol. Sci. 8(3), 319–327 (2009).
[Crossref]

Hoffmann, K.

K. Teuchner, W. Freyer, D. Leupold, A. Volkmer, D. J. S. Birch, P. Altmeyer, M. Stucker, and K. Hoffmann, “Femtosecond Two-photon Excited Fluorescence of Melanin,” Photochem. Photobiol. 70(2), 146–151 (1999).
[Crossref]

Hoover, E.

E. Hoover and J. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
[Crossref]

Huang, L.

Igarashi, K.

M. Tsuchiya, K. Igarashi, R. Yatsu, K. Taira, K. Y. Koay, and M. Kishi, “Sub-100 fs SDPF optical soliton compressor for diode laser pulses,” Opt. Quantum Electron. 33(7/10), 751–766 (2001).
[Crossref]

Itoh, K.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Jang, H.

S. Han, H. Jang, S. Kim, Y.-J. Kim, and S.-W. Kim, “„MW peak power Er/Yb-doped fiber femtosecond laser amplifier at 1.5 µm center wavelength,” Laser Phys. Lett. 14(8), 080002 (2017).
[Crossref]

Jennings, S.

Jian, Y.

Jiang, T.

Z. Liu, W. Zong, Y. Liu, L. Zuo, C. Wen, T. Jiang, J. Zhang, Y. Ma, Z. Zhang, L. Chen, and A. Wang, “High Power 780 nm Femtosecond Fiber Laser,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper AM1J.6.

Jones, R. J.

K. Kieu, R. J. Jones, and N. Peyghambarian, “Generation of few-cycle pulses from an amplified carbon nanotube mode-locked fiber laser system,” IEEE Photonics Technol. Lett. 22(20), 1521–1523 (2010).
[Crossref]

Ju, M. J.

Kalaycioglu, H.

S. Pavlova, H. Rezaei, I. Pavlov, H. Kalaycıoğlu, and F. Ömer Ilday, “Generation of 2-μJ 410-fs pulses from a single-mode chirped-pulse fiber laser operating at 1550 nm,” Appl. Phys. B 124(10), 201 (2018).
[Crossref]

Kern, T. S.

G. Palczewska, P. Stremplewski, S. Suh, N. Alexander, D. Salom, Z. Dong, D. Ruminski, E. H. Choi, A. E. Sears, T. S. Kern, M. Wojtkowski, and K. Palczewski, “Two-photon imaging of the mammalian retina with ultrafast pulsing laser,” JCI Insight 3(17), e121555 (2018).
[Crossref]

Kibler, B.

B. Kibler, C. Billet, P.-A. Lacourt, R. Ferriere, and J. Dudley, “All-fiber source of 20-fs pulses at 1550 nm using two-stage linear-nonlinear compression of parabolic similaritons,” IEEE Photonics Technol. Lett. 18(17), 1831–1833 (2006).
[Crossref]

Kieu, K.

K. Kieu, R. J. Jones, and N. Peyghambarian, “Generation of few-cycle pulses from an amplified carbon nanotube mode-locked fiber laser system,” IEEE Photonics Technol. Lett. 22(20), 1521–1523 (2010).
[Crossref]

Kim, K.

Kim, S.

S. Han, H. Jang, S. Kim, Y.-J. Kim, and S.-W. Kim, “„MW peak power Er/Yb-doped fiber femtosecond laser amplifier at 1.5 µm center wavelength,” Laser Phys. Lett. 14(8), 080002 (2017).
[Crossref]

Kim, S.-W.

S. Han, H. Jang, S. Kim, Y.-J. Kim, and S.-W. Kim, “„MW peak power Er/Yb-doped fiber femtosecond laser amplifier at 1.5 µm center wavelength,” Laser Phys. Lett. 14(8), 080002 (2017).
[Crossref]

Kim, Y.-J.

S. Han, H. Jang, S. Kim, Y.-J. Kim, and S.-W. Kim, “„MW peak power Er/Yb-doped fiber femtosecond laser amplifier at 1.5 µm center wavelength,” Laser Phys. Lett. 14(8), 080002 (2017).
[Crossref]

Kishi, M.

M. Tsuchiya, K. Igarashi, R. Yatsu, K. Taira, K. Y. Koay, and M. Kishi, “Sub-100 fs SDPF optical soliton compressor for diode laser pulses,” Opt. Quantum Electron. 33(7/10), 751–766 (2001).
[Crossref]

Koay, K. Y.

M. Tsuchiya, K. Igarashi, R. Yatsu, K. Taira, K. Y. Koay, and M. Kishi, “Sub-100 fs SDPF optical soliton compressor for diode laser pulses,” Opt. Quantum Electron. 33(7/10), 751–766 (2001).
[Crossref]

Kuznetsova, L.

Lacourt, P.-A.

B. Kibler, C. Billet, P.-A. Lacourt, R. Ferriere, and J. Dudley, “All-fiber source of 20-fs pulses at 1550 nm using two-stage linear-nonlinear compression of parabolic similaritons,” IEEE Photonics Technol. Lett. 18(17), 1831–1833 (2006).
[Crossref]

Lahn, M.

C. Hille, M. Lahn, H. G. Löhmannsröben, and C. Dosche, “Two-photon fluorescence lifetime imaging of intracellular chloride in cockroach salivary glands,” Photochem. Photobiol. Sci. 8(3), 319–327 (2009).
[Crossref]

Leupold, D.

K. Teuchner, W. Freyer, D. Leupold, A. Volkmer, D. J. S. Birch, P. Altmeyer, M. Stucker, and K. Hoffmann, “Femtosecond Two-photon Excited Fluorescence of Melanin,” Photochem. Photobiol. 70(2), 146–151 (1999).
[Crossref]

Li, B.

B. Li, C. Wu, M. Wang, K. Charan, and C. Xu, “An adaptive excitation source for high-speed multiphoton microscopy,” Nat. Methods 17(2), 163–166 (2020).
[Crossref]

K. Charan, B. Li, M. Wang, C. P. Lin, and C. Xu, “Fiber-based tunable repetition rate source for deep tissue two-photon fluorescence microscopy,” Biomed. Opt. Express 9(5), 2304–2311 (2018).
[Crossref]

Limpert, J.

Lin, C.

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[Crossref]

Lin, C. P.

Lin, G.-R.

Lin, Y.-T.

Liu, G.

W. Yang, D. Wu, G. Liu, B. Chen, L. Feng, Z. Zhang, and A. Wang, “256 MHz, 1 W 780 nm femtosecond fiber laser for two-photon microscopy,” in CLEO Pacific Rim Conference 2018, OSA Technical Digest (Optical Society of America, 2018), paper Th4A.2.

Liu, Q.

Liu, Y.

Z. Liu, W. Zong, Y. Liu, L. Zuo, C. Wen, T. Jiang, J. Zhang, Y. Ma, Z. Zhang, L. Chen, and A. Wang, “High Power 780 nm Femtosecond Fiber Laser,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper AM1J.6.

Liu, Z.

Z. Liu, W. Zong, Y. Liu, L. Zuo, C. Wen, T. Jiang, J. Zhang, Y. Ma, Z. Zhang, L. Chen, and A. Wang, “High Power 780 nm Femtosecond Fiber Laser,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper AM1J.6.

Löhmannsröben, H. G.

C. Hille, M. Lahn, H. G. Löhmannsröben, and C. Dosche, “Two-photon fluorescence lifetime imaging of intracellular chloride in cockroach salivary glands,” Photochem. Photobiol. Sci. 8(3), 319–327 (2009).
[Crossref]

Luo, H.

Ma, Y.

Z. Liu, W. Zong, Y. Liu, L. Zuo, C. Wen, T. Jiang, J. Zhang, Y. Ma, Z. Zhang, L. Chen, and A. Wang, “High Power 780 nm Femtosecond Fiber Laser,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper AM1J.6.

MacAulay, C. E.

Machinet, G.

S. Boivinet, P. Morin, J. P. Yehouessi, S. Vidal, G. Machinet, and J. Boullet, “3.5nJ femtosecond pulses at 792 nm generated by frequency doubling of an all-PM fiber high energy 48 fs laser,” Proc. SPIE 10897, 108971J (2019).
[Crossref]

Macmillan, A.

E. Sitiwin, M. C. Madigan, E. Gratton, S. Cherepanoff, R. M. Conway, R. Whan, and A. Macmillan, “Shedding light on melanins within in situ human eye melanocytes using 2-photon microscopy profiling techniques,” Sci. Rep. 9(1), 18585 (2019).
[Crossref]

Madigan, M. C.

E. Sitiwin, M. C. Madigan, E. Gratton, S. Cherepanoff, R. M. Conway, R. Whan, and A. Macmillan, “Shedding light on melanins within in situ human eye melanocytes using 2-photon microscopy profiling techniques,” Sci. Rep. 9(1), 18585 (2019).
[Crossref]

Malacrida, L.

A. Dvornikov, L. Malacrida, and E. Gratton, “The DIVER Microscope for Imaging in Scattering Media,” Methods Protoc. 2(2), 53 (2019).
[Crossref]

Mantulin, W. W.

B. R. Masters, P. T. C. So, C. Buehler, N. P. Barry, J. D. B. Sutin, W. W. Mantulin, and E. Gratton, “Mitigating thermal mechanical damage potential during two-photon dermal imaging,” J. Biomed. Opt. 9(6), 1265–1270 (2004).
[Crossref]

Masor, G.

Masters, B. R.

B. R. Masters, P. T. C. So, C. Buehler, N. P. Barry, J. D. B. Sutin, W. W. Mantulin, and E. Gratton, “Mitigating thermal mechanical damage potential during two-photon dermal imaging,” J. Biomed. Opt. 9(6), 1265–1270 (2004).
[Crossref]

Matsui, Y.

Y. Matsui, M. D. Pelusi, and A. Suzuki, “Generation of 20-fs optical pulses from a gain-switched laser diode by a four-stage soliton compression technique,” IEEE Photonics Technol. Lett. 11(10), 1217–1219 (1999).
[Crossref]

Mielke, M.

Morin, P.

S. Boivinet, P. Morin, J. P. Yehouessi, S. Vidal, G. Machinet, and J. Boullet, “3.5nJ femtosecond pulses at 792 nm generated by frequency doubling of an all-PM fiber high energy 48 fs laser,” Proc. SPIE 10897, 108971J (2019).
[Crossref]

Müller, D.

Nguyen, D. T.

Nishizawa, N.

N. Nishizawa, “Ultrashort pulse fiber lasers and their applications,” Jpn. J. Appl. Phys. 53(9), 090101 (2014).
[Crossref]

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Ömer Ilday, F.

S. Pavlova, H. Rezaei, I. Pavlov, H. Kalaycıoğlu, and F. Ömer Ilday, “Generation of 2-μJ 410-fs pulses from a single-mode chirped-pulse fiber laser operating at 1550 nm,” Appl. Phys. B 124(10), 201 (2018).
[Crossref]

Otsuka, Y.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Ozeki, Y.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Palczewska, G.

G. Palczewska, P. Stremplewski, S. Suh, N. Alexander, D. Salom, Z. Dong, D. Ruminski, E. H. Choi, A. E. Sears, T. S. Kern, M. Wojtkowski, and K. Palczewski, “Two-photon imaging of the mammalian retina with ultrafast pulsing laser,” JCI Insight 3(17), e121555 (2018).
[Crossref]

Palczewski, K.

G. Palczewska, P. Stremplewski, S. Suh, N. Alexander, D. Salom, Z. Dong, D. Ruminski, E. H. Choi, A. E. Sears, T. S. Kern, M. Wojtkowski, and K. Palczewski, “Two-photon imaging of the mammalian retina with ultrafast pulsing laser,” JCI Insight 3(17), e121555 (2018).
[Crossref]

Pavlov, I.

S. Pavlova, H. Rezaei, I. Pavlov, H. Kalaycıoğlu, and F. Ömer Ilday, “Generation of 2-μJ 410-fs pulses from a single-mode chirped-pulse fiber laser operating at 1550 nm,” Appl. Phys. B 124(10), 201 (2018).
[Crossref]

Pavlova, S.

S. Pavlova, H. Rezaei, I. Pavlov, H. Kalaycıoğlu, and F. Ömer Ilday, “Generation of 2-μJ 410-fs pulses from a single-mode chirped-pulse fiber laser operating at 1550 nm,” Appl. Phys. B 124(10), 201 (2018).
[Crossref]

Pelusi, M. D.

Y. Matsui, M. D. Pelusi, and A. Suzuki, “Generation of 20-fs optical pulses from a gain-switched laser diode by a four-stage soliton compression technique,” IEEE Photonics Technol. Lett. 11(10), 1217–1219 (1999).
[Crossref]

Peng, X.

Perry, M. D.

Peyghambarian, N.

Qian, K.

Rezaei, H.

S. Pavlova, H. Rezaei, I. Pavlov, H. Kalaycıoğlu, and F. Ömer Ilday, “Generation of 2-μJ 410-fs pulses from a single-mode chirped-pulse fiber laser operating at 1550 nm,” Appl. Phys. B 124(10), 201 (2018).
[Crossref]

Rhonehouse, D.

Röser, F.

Ruminski, D.

G. Palczewska, P. Stremplewski, S. Suh, N. Alexander, D. Salom, Z. Dong, D. Ruminski, E. H. Choi, A. E. Sears, T. S. Kern, M. Wojtkowski, and K. Palczewski, “Two-photon imaging of the mammalian retina with ultrafast pulsing laser,” JCI Insight 3(17), e121555 (2018).
[Crossref]

Salom, D.

G. Palczewska, P. Stremplewski, S. Suh, N. Alexander, D. Salom, Z. Dong, D. Ruminski, E. H. Choi, A. E. Sears, T. S. Kern, M. Wojtkowski, and K. Palczewski, “Two-photon imaging of the mammalian retina with ultrafast pulsing laser,” JCI Insight 3(17), e121555 (2018).
[Crossref]

Sarunic, M. V.

Satoh, S.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Schimpf, D.

Schreiber, T.

Sears, A. E.

G. Palczewska, P. Stremplewski, S. Suh, N. Alexander, D. Salom, Z. Dong, D. Ruminski, E. H. Choi, A. E. Sears, T. S. Kern, M. Wojtkowski, and K. Palczewski, “Two-photon imaging of the mammalian retina with ultrafast pulsing laser,” JCI Insight 3(17), e121555 (2018).
[Crossref]

Sitiwin, E.

E. Sitiwin, M. C. Madigan, E. Gratton, S. Cherepanoff, R. M. Conway, R. Whan, and A. Macmillan, “Shedding light on melanins within in situ human eye melanocytes using 2-photon microscopy profiling techniques,” Sci. Rep. 9(1), 18585 (2019).
[Crossref]

So, P. T. C.

B. R. Masters, P. T. C. So, C. Buehler, N. P. Barry, J. D. B. Sutin, W. W. Mantulin, and E. Gratton, “Mitigating thermal mechanical damage potential during two-photon dermal imaging,” J. Biomed. Opt. 9(6), 1265–1270 (2004).
[Crossref]

Sobon, G.

A. Głuszek, G. Soboń, and J. Sotor, “Fast, universal, and fully automatic pulse-picker unit for femtosecond laser systems,” Proc. SPIE 10974, 1097407 (2018).
[Crossref]

J. Sotor and G. Sobon, “24 fs and 3 nJ pulse generation from a simple, all polarization maintaining Er-doped fiber laser,” Laser Phys. Lett. 13(12), 125102 (2016).
[Crossref]

Sotor, J.

A. Głuszek, G. Soboń, and J. Sotor, “Fast, universal, and fully automatic pulse-picker unit for femtosecond laser systems,” Proc. SPIE 10974, 1097407 (2018).
[Crossref]

J. Sotor and G. Sobon, “24 fs and 3 nJ pulse generation from a simple, all polarization maintaining Er-doped fiber laser,” Laser Phys. Lett. 13(12), 125102 (2016).
[Crossref]

Squier, J.

E. Hoover and J. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
[Crossref]

Stohl, D.

Stolen, R. H.

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[Crossref]

Stremplewski, P.

G. Palczewska, P. Stremplewski, S. Suh, N. Alexander, D. Salom, Z. Dong, D. Ruminski, E. H. Choi, A. E. Sears, T. S. Kern, M. Wojtkowski, and K. Palczewski, “Two-photon imaging of the mammalian retina with ultrafast pulsing laser,” JCI Insight 3(17), e121555 (2018).
[Crossref]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref]

Stuart, B. C.

Stucker, M.

K. Teuchner, W. Freyer, D. Leupold, A. Volkmer, D. J. S. Birch, P. Altmeyer, M. Stucker, and K. Hoffmann, “Femtosecond Two-photon Excited Fluorescence of Melanin,” Photochem. Photobiol. 70(2), 146–151 (1999).
[Crossref]

Suh, S.

G. Palczewska, P. Stremplewski, S. Suh, N. Alexander, D. Salom, Z. Dong, D. Ruminski, E. H. Choi, A. E. Sears, T. S. Kern, M. Wojtkowski, and K. Palczewski, “Two-photon imaging of the mammalian retina with ultrafast pulsing laser,” JCI Insight 3(17), e121555 (2018).
[Crossref]

Sumimura, K.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Sutin, J. D. B.

B. R. Masters, P. T. C. So, C. Buehler, N. P. Barry, J. D. B. Sutin, W. W. Mantulin, and E. Gratton, “Mitigating thermal mechanical damage potential during two-photon dermal imaging,” J. Biomed. Opt. 9(6), 1265–1270 (2004).
[Crossref]

Suzuki, A.

Y. Matsui, M. D. Pelusi, and A. Suzuki, “Generation of 20-fs optical pulses from a gain-switched laser diode by a four-stage soliton compression technique,” IEEE Photonics Technol. Lett. 11(10), 1217–1219 (1999).
[Crossref]

Sytsma, V.

V. Sytsma and G. De Grauw, “Time-gated fluorescence lifetime imaging and microvolume spectroscopy using two-photon excitation,” J. Microsc. 191(1), 39–51 (2008).
[Crossref]

Szipocs, R.

P. G. Antal and R. Szipőcs, “Tunable, low-repetition-rate, cost-efficient femtosecond Ti:sapphire laser for nonlinear microscopy,” Appl. Phys. B 107(1), 17–22 (2012).
[Crossref]

Taira, K.

M. Tsuchiya, K. Igarashi, R. Yatsu, K. Taira, K. Y. Koay, and M. Kishi, “Sub-100 fs SDPF optical soliton compressor for diode laser pulses,” Opt. Quantum Electron. 33(7/10), 751–766 (2001).
[Crossref]

Tang, D. Y.

Tang, S.

Teuchner, K.

K. Teuchner, W. Freyer, D. Leupold, A. Volkmer, D. J. S. Birch, P. Altmeyer, M. Stucker, and K. Hoffmann, “Femtosecond Two-photon Excited Fluorescence of Melanin,” Photochem. Photobiol. 70(2), 146–151 (1999).
[Crossref]

Tsuchiya, M.

M. Tsuchiya, K. Igarashi, R. Yatsu, K. Taira, K. Y. Koay, and M. Kishi, “Sub-100 fs SDPF optical soliton compressor for diode laser pulses,” Opt. Quantum Electron. 33(7/10), 751–766 (2001).
[Crossref]

Tünnermann, A.

Umemura, W.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Vidal, S.

S. Boivinet, P. Morin, J. P. Yehouessi, S. Vidal, G. Machinet, and J. Boullet, “3.5nJ femtosecond pulses at 792 nm generated by frequency doubling of an all-PM fiber high energy 48 fs laser,” Proc. SPIE 10897, 108971J (2019).
[Crossref]

Volkmer, A.

K. Teuchner, W. Freyer, D. Leupold, A. Volkmer, D. J. S. Birch, P. Altmeyer, M. Stucker, and K. Hoffmann, “Femtosecond Two-photon Excited Fluorescence of Melanin,” Photochem. Photobiol. 70(2), 146–151 (1999).
[Crossref]

Wahl, D. J.

Wang, A.

Z. Liu, W. Zong, Y. Liu, L. Zuo, C. Wen, T. Jiang, J. Zhang, Y. Ma, Z. Zhang, L. Chen, and A. Wang, “High Power 780 nm Femtosecond Fiber Laser,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper AM1J.6.

W. Yang, D. Wu, G. Liu, B. Chen, L. Feng, Z. Zhang, and A. Wang, “256 MHz, 1 W 780 nm femtosecond fiber laser for two-photon microscopy,” in CLEO Pacific Rim Conference 2018, OSA Technical Digest (Optical Society of America, 2018), paper Th4A.2.

Wang, M.

B. Li, C. Wu, M. Wang, K. Charan, and C. Xu, “An adaptive excitation source for high-speed multiphoton microscopy,” Nat. Methods 17(2), 163–166 (2020).
[Crossref]

K. Charan, B. Li, M. Wang, C. P. Lin, and C. Xu, “Fiber-based tunable repetition rate source for deep tissue two-photon fluorescence microscopy,” Biomed. Opt. Express 9(5), 2304–2311 (2018).
[Crossref]

Wang, Z.

Wang, Z. Q.

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref]

Wen, C.

Z. Liu, W. Zong, Y. Liu, L. Zuo, C. Wen, T. Jiang, J. Zhang, Y. Ma, Z. Zhang, L. Chen, and A. Wang, “High Power 780 nm Femtosecond Fiber Laser,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper AM1J.6.

Whan, R.

E. Sitiwin, M. C. Madigan, E. Gratton, S. Cherepanoff, R. M. Conway, R. Whan, and A. Macmillan, “Shedding light on melanins within in situ human eye melanocytes using 2-photon microscopy profiling techniques,” Sci. Rep. 9(1), 18585 (2019).
[Crossref]

Wise, F. W.

Wojtkowski, M.

G. Palczewska, P. Stremplewski, S. Suh, N. Alexander, D. Salom, Z. Dong, D. Ruminski, E. H. Choi, A. E. Sears, T. S. Kern, M. Wojtkowski, and K. Palczewski, “Two-photon imaging of the mammalian retina with ultrafast pulsing laser,” JCI Insight 3(17), e121555 (2018).
[Crossref]

Wu, C.

B. Li, C. Wu, M. Wang, K. Charan, and C. Xu, “An adaptive excitation source for high-speed multiphoton microscopy,” Nat. Methods 17(2), 163–166 (2020).
[Crossref]

Wu, D.

W. Yang, D. Wu, G. Liu, B. Chen, L. Feng, Z. Zhang, and A. Wang, “256 MHz, 1 W 780 nm femtosecond fiber laser for two-photon microscopy,” in CLEO Pacific Rim Conference 2018, OSA Technical Digest (Optical Society of America, 2018), paper Th4A.2.

Xia, Y.

Xu, C.

B. Li, C. Wu, M. Wang, K. Charan, and C. Xu, “An adaptive excitation source for high-speed multiphoton microscopy,” Nat. Methods 17(2), 163–166 (2020).
[Crossref]

K. Charan, B. Li, M. Wang, C. P. Lin, and C. Xu, “Fiber-based tunable repetition rate source for deep tissue two-photon fluorescence microscopy,” Biomed. Opt. Express 9(5), 2304–2311 (2018).
[Crossref]

Yang, W.

W. Yang, D. Wu, G. Liu, B. Chen, L. Feng, Z. Zhang, and A. Wang, “256 MHz, 1 W 780 nm femtosecond fiber laser for two-photon microscopy,” in CLEO Pacific Rim Conference 2018, OSA Technical Digest (Optical Society of America, 2018), paper Th4A.2.

Yatsu, R.

M. Tsuchiya, K. Igarashi, R. Yatsu, K. Taira, K. Y. Koay, and M. Kishi, “Sub-100 fs SDPF optical soliton compressor for diode laser pulses,” Opt. Quantum Electron. 33(7/10), 751–766 (2001).
[Crossref]

Yehouessi, J. P.

S. Boivinet, P. Morin, J. P. Yehouessi, S. Vidal, G. Machinet, and J. Boullet, “3.5nJ femtosecond pulses at 792 nm generated by frequency doubling of an all-PM fiber high energy 48 fs laser,” Proc. SPIE 10897, 108971J (2019).
[Crossref]

Zach, A.

R. Herda and A. Zach, “Generation of 32-fs pulses at 780 nm by frequency doubling the solitonically-compressed output of an Erbium-doped fiber-laser system,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CTh1N.4.

Zhan, L.

Zhang, J.

Z. Liu, W. Zong, Y. Liu, L. Zuo, C. Wen, T. Jiang, J. Zhang, Y. Ma, Z. Zhang, L. Chen, and A. Wang, “High Power 780 nm Femtosecond Fiber Laser,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper AM1J.6.

Zhang, L.

Zhang, Z.

Z. Liu, W. Zong, Y. Liu, L. Zuo, C. Wen, T. Jiang, J. Zhang, Y. Ma, Z. Zhang, L. Chen, and A. Wang, “High Power 780 nm Femtosecond Fiber Laser,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper AM1J.6.

W. Yang, D. Wu, G. Liu, B. Chen, L. Feng, Z. Zhang, and A. Wang, “256 MHz, 1 W 780 nm femtosecond fiber laser for two-photon microscopy,” in CLEO Pacific Rim Conference 2018, OSA Technical Digest (Optical Society of America, 2018), paper Th4A.2.

Zhao, L. M.

Zhou, X.

Zong, J.

Zong, W.

Z. Liu, W. Zong, Y. Liu, L. Zuo, C. Wen, T. Jiang, J. Zhang, Y. Ma, Z. Zhang, L. Chen, and A. Wang, “High Power 780 nm Femtosecond Fiber Laser,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper AM1J.6.

Zuo, L.

Z. Liu, W. Zong, Y. Liu, L. Zuo, C. Wen, T. Jiang, J. Zhang, Y. Ma, Z. Zhang, L. Chen, and A. Wang, “High Power 780 nm Femtosecond Fiber Laser,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper AM1J.6.

Appl. Phys. B (2)

P. G. Antal and R. Szipőcs, “Tunable, low-repetition-rate, cost-efficient femtosecond Ti:sapphire laser for nonlinear microscopy,” Appl. Phys. B 107(1), 17–22 (2012).
[Crossref]

S. Pavlova, H. Rezaei, I. Pavlov, H. Kalaycıoğlu, and F. Ömer Ilday, “Generation of 2-μJ 410-fs pulses from a single-mode chirped-pulse fiber laser operating at 1550 nm,” Appl. Phys. B 124(10), 201 (2018).
[Crossref]

Appl. Spectrosc. (1)

Biomed. Opt. Express (3)

IEEE Photonics Technol. Lett. (3)

Y. Matsui, M. D. Pelusi, and A. Suzuki, “Generation of 20-fs optical pulses from a gain-switched laser diode by a four-stage soliton compression technique,” IEEE Photonics Technol. Lett. 11(10), 1217–1219 (1999).
[Crossref]

B. Kibler, C. Billet, P.-A. Lacourt, R. Ferriere, and J. Dudley, “All-fiber source of 20-fs pulses at 1550 nm using two-stage linear-nonlinear compression of parabolic similaritons,” IEEE Photonics Technol. Lett. 18(17), 1831–1833 (2006).
[Crossref]

K. Kieu, R. J. Jones, and N. Peyghambarian, “Generation of few-cycle pulses from an amplified carbon nanotube mode-locked fiber laser system,” IEEE Photonics Technol. Lett. 22(20), 1521–1523 (2010).
[Crossref]

J. Biomed. Opt. (1)

B. R. Masters, P. T. C. So, C. Buehler, N. P. Barry, J. D. B. Sutin, W. W. Mantulin, and E. Gratton, “Mitigating thermal mechanical damage potential during two-photon dermal imaging,” J. Biomed. Opt. 9(6), 1265–1270 (2004).
[Crossref]

J. Lightwave Technol. (2)

J. Microsc. (1)

V. Sytsma and G. De Grauw, “Time-gated fluorescence lifetime imaging and microvolume spectroscopy using two-photon excitation,” J. Microsc. 191(1), 39–51 (2008).
[Crossref]

J. Opt. Soc. Am. B (1)

JCI Insight (1)

G. Palczewska, P. Stremplewski, S. Suh, N. Alexander, D. Salom, Z. Dong, D. Ruminski, E. H. Choi, A. E. Sears, T. S. Kern, M. Wojtkowski, and K. Palczewski, “Two-photon imaging of the mammalian retina with ultrafast pulsing laser,” JCI Insight 3(17), e121555 (2018).
[Crossref]

Jpn. J. Appl. Phys. (1)

N. Nishizawa, “Ultrashort pulse fiber lasers and their applications,” Jpn. J. Appl. Phys. 53(9), 090101 (2014).
[Crossref]

Laser Phys. Lett. (2)

J. Sotor and G. Sobon, “24 fs and 3 nJ pulse generation from a simple, all polarization maintaining Er-doped fiber laser,” Laser Phys. Lett. 13(12), 125102 (2016).
[Crossref]

S. Han, H. Jang, S. Kim, Y.-J. Kim, and S.-W. Kim, “„MW peak power Er/Yb-doped fiber femtosecond laser amplifier at 1.5 µm center wavelength,” Laser Phys. Lett. 14(8), 080002 (2017).
[Crossref]

Methods Protoc. (1)

A. Dvornikov, L. Malacrida, and E. Gratton, “The DIVER Microscope for Imaging in Scattering Media,” Methods Protoc. 2(2), 53 (2019).
[Crossref]

Nat. Methods (2)

G. Donnert, C. Eggeling, and S. W. Hell, “Major signal increase in fluorescence microscopy through dark-state relaxation,” Nat. Methods 4(1), 81–86 (2007).
[Crossref]

B. Li, C. Wu, M. Wang, K. Charan, and C. Xu, “An adaptive excitation source for high-speed multiphoton microscopy,” Nat. Methods 17(2), 163–166 (2020).
[Crossref]

Nat. Photonics (2)

E. Hoover and J. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
[Crossref]

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Opt. Quantum Electron. (1)

M. Tsuchiya, K. Igarashi, R. Yatsu, K. Taira, K. Y. Koay, and M. Kishi, “Sub-100 fs SDPF optical soliton compressor for diode laser pulses,” Opt. Quantum Electron. 33(7/10), 751–766 (2001).
[Crossref]

Photochem. Photobiol. (1)

K. Teuchner, W. Freyer, D. Leupold, A. Volkmer, D. J. S. Birch, P. Altmeyer, M. Stucker, and K. Hoffmann, “Femtosecond Two-photon Excited Fluorescence of Melanin,” Photochem. Photobiol. 70(2), 146–151 (1999).
[Crossref]

Photochem. Photobiol. Sci. (1)

C. Hille, M. Lahn, H. G. Löhmannsröben, and C. Dosche, “Two-photon fluorescence lifetime imaging of intracellular chloride in cockroach salivary glands,” Photochem. Photobiol. Sci. 8(3), 319–327 (2009).
[Crossref]

Phys. Rev. A (1)

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[Crossref]

Proc. SPIE (2)

S. Boivinet, P. Morin, J. P. Yehouessi, S. Vidal, G. Machinet, and J. Boullet, “3.5nJ femtosecond pulses at 792 nm generated by frequency doubling of an all-PM fiber high energy 48 fs laser,” Proc. SPIE 10897, 108971J (2019).
[Crossref]

A. Głuszek, G. Soboń, and J. Sotor, “Fast, universal, and fully automatic pulse-picker unit for femtosecond laser systems,” Proc. SPIE 10974, 1097407 (2018).
[Crossref]

Sci. Rep. (1)

E. Sitiwin, M. C. Madigan, E. Gratton, S. Cherepanoff, R. M. Conway, R. Whan, and A. Macmillan, “Shedding light on melanins within in situ human eye melanocytes using 2-photon microscopy profiling techniques,” Sci. Rep. 9(1), 18585 (2019).
[Crossref]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref]

Other (3)

Z. Liu, W. Zong, Y. Liu, L. Zuo, C. Wen, T. Jiang, J. Zhang, Y. Ma, Z. Zhang, L. Chen, and A. Wang, “High Power 780 nm Femtosecond Fiber Laser,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper AM1J.6.

W. Yang, D. Wu, G. Liu, B. Chen, L. Feng, Z. Zhang, and A. Wang, “256 MHz, 1 W 780 nm femtosecond fiber laser for two-photon microscopy,” in CLEO Pacific Rim Conference 2018, OSA Technical Digest (Optical Society of America, 2018), paper Th4A.2.

R. Herda and A. Zach, “Generation of 32-fs pulses at 780 nm by frequency doubling the solitonically-compressed output of an Erbium-doped fiber-laser system,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CTh1N.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Scheme of the frequency-doubled, fiber laser: EDF – Erbium-doped fiber; OC – 70/30% output coupler; WDM – 980/1550 nm wavelength division multiplexer; SESAM - semiconductor saturable absorber mirror; TC – 99/1% tap coupler; AOM – 200 MHz acousto-optic modulator; BPF – 10 nm band-pass filter.
Fig. 2.
Fig. 2. Evolution of the optical spectrum and pulse shape in the system: spectrum and autocorrelation traces recorded after the seed laser (a,b), preamplifier with the AOM (c,d), and the bandpass filter (e,f).
Fig. 3.
Fig. 3. (a) Optical spectrum after amplification at 1 MHz repetition rate and (b) FROG temporal intensity of the pulse (solid red line) together with the calculated transform-limited intensity (dotted green line) and temporal phase (solid blue line).
Fig. 4.
Fig. 4. (a) Generated second harmonic spectrum, (b) FROG temporal intensity of the 780 nm pulse (solid red line) together with the temporal phase (solid blue line), (c) measured and retrieved FROG spectrograms.
Fig. 5.
Fig. 5. (a) Measured average power and pulse duration of the 780 nm pulses as a function of the pulse repetition rate. (b) Long-term energy stability measurement over 6 hours, indicating the stability of 0.7% rms.
Fig. 6.
Fig. 6. (a) Experimental setup of a home-built TPEF microscope. VF – variable neutral density filter, DM – dichroic mirror, GS – galvanometer scanning unit, SL – scan lens, TL – tube lens, OBJ – objective lens, S – sample, F – cut-off filter, PC-PMT – photon-counting photomultiplier. (b) Fluorescence of test target in mean photon counts per pixel (mpc) as a function of average excitation power for 1, 3, and 9 MHz pulse repetition rates. Slopes of linear regression lines through the data points on the log-log plot indicate a two-photon process for all pulse repetition rates.
Fig. 7.
Fig. 7. Reducing the pulse repetition rate while maintaining the average excitation power allows increasing fluorescence intensity from ex vivo rat skin samples. (a)-(c) Imaging with 220 µW excitation power and 9, 3, and 1 MHz repetition rates. (d)-(f) Imaging with 440 µW excitation power and 9, 3, and 1 MHz repetition rates. (g) Fluorescence intensity of ex vivo rat skin in mean photon counts per pixel (mpc) as a function of average excitation power for 1, 3, and 9 MHz repetition rates; the last point in 1 MHz data series deviates from fit function due to saturation of photon counting electronics. (h) Fluorescence intensity of rat skin as a function of pulse repetition rate (excitation power) and maintained pulse peak power. (i) Image with a larger field of view obtained with 1 MHz repetition and 440 µW excitation power; selected ROI indicates sample region where (a)-(f) images were taken.
Fig. 8.
Fig. 8. Exemplary TPEF images of biological samples obtained with 1 MHz pulse repetition rate. (a) Ex vivo frog liver cross-section imaged with 380 µW excitation power. (b) Cross-section of Epipremnum scindapsus stalk stained with rhodamine B imaged with 750 µW excitation power. (c) Chamaedorea elegans leaf imaged with 115 µW excitation power. (d) Epipremnum scindapsus leaf imaged with 154 µW excitation power.

Tables (1)

Tables Icon

Table 1. Summary of the pulse parameters at different stages of the laser setup.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

N a 1 f r e p δ A 2 τ P a v r 2 ,