Abstract

We report herein the first visible light optical coherence tomography angiography (vis-OCTA) for human retinal imaging. Compared to the existing vis-OCT systems, we devised a spectrometer with a narrower bandwidth to increase the spectral power density for OCTA imaging, while retaining the major spectral contrast in the blood. We achieved a 100 kHz A-line rate, the fastest acquisition speed reported so far for human retinal vis-OCT. We rigorously optimized the imaging protocol such that a single acquisition took < 6 seconds with a field of view (FOV) of 3×7.8 mm2. The angiography enables accurate localization of microvasculature down to the capillary level and thus enables oximetry at vessels < 100 µm in diameter. We demonstrated microvascular hemoglobin oxygen saturation (sO2) at the feeding and draining vessels at the perifoveal region. The longitudinal repeatability was assessed by < 5% coefficient of variation (CV). The unique capabilities of our vis-OCTA system may allow studies on the role of microvascular oxygen in various retinal pathologies.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Shu, L. J. Beckmann, and H. F. Zhang, “Visible-light optical coherence tomography: a review,” J. Biomed. Opt. 22(12), 1 (2017).
    [Crossref]
  2. M. J. Ju, C. Huang, D. J. Wahl, Y. Jian, and M. V. Sarunic, “Visible light sensorless adaptive optics for retinal structure and fluorescence imaging,” Opt. Lett. 43(20), 5162–5165 (2018).
    [Crossref]
  3. S. Pi, A. Camino, X. Wei, J. Simonett, W. Cepurna, D. Huang, J. C. Morrison, and Y. Jia, “Rodent retinal circulation organization and oxygen metabolism revealed by visible-light optical coherence tomography,” Biomed. Opt. Express 9(11), 5851–5862 (2018).
    [Crossref]
  4. J. Yi, Q. Wei, W. Liu, V. Backman, and H. F. Zhang, “Visible-light optical coherence tomography for retinal oximetry,” Opt. Lett. 38(11), 1796–1798 (2013).
    [Crossref]
  5. C. W. Merkle, S. P. Chong, A. M. Kho, J. Zhu, A. Dubra, and V. J. Srinivasan, “Visible light optical coherence microscopy of the brain with isotropic femtoliter resolution in vivo,” Opt. Lett. 43(2), 198–201 (2018).
    [Crossref]
  6. F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
    [Crossref]
  7. W. Song, L. Zhou, S. Zhang, S. Ness, M. Desai, and J. Yi, “Fiber-based visible and near infrared optical coherence tomography (vnOCT) enables quantitative elastic light scattering spectroscopy in human retina,” Biomed. Opt. Express 9(7), 3464–3480 (2018).
    [Crossref]
  8. S. Coquoz, P. J. Marchand, A. Bouwens, L. Mouchiroud, V. Sorrentino, D. Szlag, J. Auwerx, and T. Lasser, “Label-free three-dimensional imaging of Caenorhabditis elegans with visible optical coherence microscopy,” PLoS One 12(7), e0181676 (2017).
    [Crossref]
  9. P. J. Marchand, D. Szlag, A. Bouwens, and T. Lasser, “In vivo high-resolution cortical imaging with extended-focus optical coherence microscopy in the visible-NIR wavelength range,” J. Biomed. Opt. 23(03), 1 (2018).
    [Crossref]
  10. A. Lichtenegger, D. J. Harper, M. Augustin, P. Eugui, M. Muck, J. Gesperger, C. K. Hitzenberger, A. Woehrer, and B. Baumann, “Spectroscopic imaging with spectral domain visible light optical coherence microscopy in Alzheimer’s disease brain samples,” Biomed. Opt. Express 8(9), 4007–4025 (2017).
    [Crossref]
  11. C. Veenstra, W. Petersen, I. M. Vellekoop, W. Steenbergen, and N. Bosschaart, “Spatially confined quantification of bilirubin concentrations by spectroscopic visible-light optical coherence tomography,” Biomed. Opt. Express 9(8), 3581–3589 (2018).
    [Crossref]
  12. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref]
  13. S. Chen, X. Shu, P. L. Nesper, W. Liu, A. A. Fawzi, and H. F. Zhang, “Retinal oximetry in humans using visible-light optical coherence tomography [Invited],” Biomed. Opt. Express 8(3), 1415–1429 (2017).
    [Crossref]
  14. S. P. Chong, C. W. Merkle, C. Leahy, and V. J. Srinivasan, “Cerebral metabolic rate of oxygen (CMRO2) assessed by combined Doppler and spectroscopic OCT,” Biomed. Opt. Express 6(10), 3941–3951 (2015).
    [Crossref]
  15. S. Pi, T. T. Hormel, X. Wei, W. Cepurna, A. Camino, Y. Guo, D. Huang, J. C. Morrison, and Y. Jia, “Monitoring retinal responses to acute intraocular pressure elevation in rats with visible light optical coherence tomography,” Neurophotonics 6(04), 1 (2019).
    [Crossref]
  16. R. Liu, J. A. Winkelmann, G. Spicer, Y. Zhu, A. Eid, G. A. Ameer, V. Backman, and J. Yi, “Single capillary oximetry and tissue ultrastructural sensing by dual-band dual-scan inverse spectroscopic optical coherence tomography,” Light: Sci. Appl. 7(1), 1–13 (2018).
    [Crossref]
  17. S. P. Chong, M. Bernucci, H. Radhakrishnan, and V. J. Srinivasan, “Structural and functional human retinal imaging with a fiber-based visible light OCT ophthalmoscope,” Biomed. Opt. Express 8(1), 323–337 (2017).
    [Crossref]
  18. R. Liu, S. Cheng, L. Tian, and J. Yi, “Deep spectral learning for label-free optical imaging oximetry with uncertainty quantification,” Light: Sci. Appl. 8(1), 1–13 (2019).
    [Crossref]
  19. C. Veenstra, S. Kruitwagen, D. Groener, W. Petersen, W. Steenbergen, and N. Bosschaart, “Quantification of total haemoglobin concentrations in human whole blood by spectroscopic visible-light optical coherence tomography,” Sci. Rep. 9(1), 15115–8 (2019).
    [Crossref]
  20. S. Pi, T. T. Hormel, X. Wei, W. Cepurna, B. Wang, J. C. Morrison, and Y. Jia, “Retinal capillary oximetry with visible light optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 117(21), 11658–11666 (2020).
    [Crossref]
  21. J. V. Kristjansdottir, S. H. Hardarson, and E. Stefansson, “Retinal Oximetry with a Scanning Laser Ophthalmoscope compared to a Fundus Camera Oximeter,” Invest. Ophthalmol. Visual Sci. 55(5), 3120–3204 (2014).
    [Crossref]
  22. O. Palsson, A. Geirsdottir, S. H. Hardarson, O. B. Olafsdottir, J. V. Kristjansdottir, and E. Stefánsson, “Retinal Oximetry Images Must Be Standardized: A Methodological Analysis,” Invest. Ophthalmol. Visual Sci. 53(4), 1729–1733 (2012).
    [Crossref]
  23. B. Povazay, A. A. Apolonski, A. Unterhuber, B. Hermann, K. K. Bizheva, H. Sattmann, P. S. J. Russell, F. Krausz, A. F. Fercher, and W. Drexler, “Visible light optical coherence tomography,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications VI (International Society for Optics and Photonics, 2002), Vol. 4619, pp. 90–94.
  24. X. Zhang, J. Hu, R. W. Knighton, X.-R. Huang, C. A. Puliafito, and S. Jiao, “Dual-band spectral-domain optical coherence tomography for in vivo imaging the spectral contrasts of the retinal nerve fiber layer,” Opt. Express 19(20), 19653–19659 (2011).
    [Crossref]
  25. J. Yi and X. Li, “Estimation of oxygen saturation from erythrocytes by high-resolution spectroscopic optical coherence tomography,” Opt. Lett. 35(12), 2094–2096 (2010).
    [Crossref]
  26. F. E. Robles, S. Chowdhury, and A. Wax, “Assessing hemoglobin concentration using spectroscopic optical coherence tomography for feasibility of tissue diagnostics,” Biomed. Opt. Express 1, 310–317 (2010).
    [Crossref]
  27. J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light: Sci. Appl. 4(9), e334 (2015).
    [Crossref]
  28. W. Song, S. Fu, S. Song, S. Zhang, L. Zhang, S. Ness, M. Desai, and J. Yi, “Longitudinal detection of retinal alterations by visible and near-infrared optical coherence tomography in a dexamethasone-induced ocular hypertension mouse model,” Neuphotonics 6, 041103 (2019).
    [Crossref]
  29. J. Yi, S. Chen, X. Shu, A. A. Fawzi, and H. F. Zhang, “Human retinal imaging using visible-light optical coherence tomography guided by scanning laser ophthalmoscopy,” Biomed. Opt. Express 6(10), 3701–3713 (2015).
    [Crossref]
  30. T. Zhang, A. M. Kho, and V. J. Srinivasan, “Improving visible light OCT of the human retina with rapid spectral shaping and axial tracking,” Biomed. Opt. Express 10(6), 2918–2931 (2019).
    [Crossref]
  31. W. Song, L. Zhou, K. L. Kot, H. Fan, J. Han, and J. Yi, “Measurement of flow-mediated dilation of mouse femoral artery in vivo by optical coherence tomography,” J. Biophotonics 11(11), e201800053 (2018).
    [Crossref]
  32. J. Yi, S. Chen, V. Backman, and H. F. Zhang, “In vivo functional microangiography by visible-light optical coherence tomography,” Biomed. Opt. Express 5(10), 3603–3612 (2014).
    [Crossref]
  33. Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
    [Crossref]
  34. C.-L. Chen and R. K. Wang, “Optical coherence tomography based angiography [Invited],” Biomed. Opt. Express 8(2), 1056–1082 (2017).
    [Crossref]
  35. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
    [Crossref]
  36. S. P. Chong, C. W. Merkle, C. Leahy, H. Radhakrishnan, and V. J. Srinivasan, “Quantitative microvascular hemoglobin mapping using visible light spectroscopic Optical Coherence Tomography,” Biomed. Opt. Express 6(4), 1429–1450 (2015).
    [Crossref]
  37. R. K. Wang, A. Zhang, W. J. Choi, Q. Zhang, C. Chen, A. Miller, G. Gregori, and P. J. Rosenfeld, “Wide-field optical coherence tomography angiography enabled by two repeated measurements of B-scans,” Opt. Lett. 41(10), 2330–2333 (2016).
    [Crossref]
  38. S. Pi, T. T. Hormel, X. Wei, W. Cepurna, J. C. Morrison, and Y. Jia, “Imaging retinal structures at cellular-level resolution by visible-light optical coherence tomography,” Opt. Lett. 45(7), 2107–2110 (2020).
    [Crossref]

2020 (2)

S. Pi, T. T. Hormel, X. Wei, W. Cepurna, B. Wang, J. C. Morrison, and Y. Jia, “Retinal capillary oximetry with visible light optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 117(21), 11658–11666 (2020).
[Crossref]

S. Pi, T. T. Hormel, X. Wei, W. Cepurna, J. C. Morrison, and Y. Jia, “Imaging retinal structures at cellular-level resolution by visible-light optical coherence tomography,” Opt. Lett. 45(7), 2107–2110 (2020).
[Crossref]

2019 (5)

W. Song, S. Fu, S. Song, S. Zhang, L. Zhang, S. Ness, M. Desai, and J. Yi, “Longitudinal detection of retinal alterations by visible and near-infrared optical coherence tomography in a dexamethasone-induced ocular hypertension mouse model,” Neuphotonics 6, 041103 (2019).
[Crossref]

T. Zhang, A. M. Kho, and V. J. Srinivasan, “Improving visible light OCT of the human retina with rapid spectral shaping and axial tracking,” Biomed. Opt. Express 10(6), 2918–2931 (2019).
[Crossref]

S. Pi, T. T. Hormel, X. Wei, W. Cepurna, A. Camino, Y. Guo, D. Huang, J. C. Morrison, and Y. Jia, “Monitoring retinal responses to acute intraocular pressure elevation in rats with visible light optical coherence tomography,” Neurophotonics 6(04), 1 (2019).
[Crossref]

R. Liu, S. Cheng, L. Tian, and J. Yi, “Deep spectral learning for label-free optical imaging oximetry with uncertainty quantification,” Light: Sci. Appl. 8(1), 1–13 (2019).
[Crossref]

C. Veenstra, S. Kruitwagen, D. Groener, W. Petersen, W. Steenbergen, and N. Bosschaart, “Quantification of total haemoglobin concentrations in human whole blood by spectroscopic visible-light optical coherence tomography,” Sci. Rep. 9(1), 15115–8 (2019).
[Crossref]

2018 (8)

R. Liu, J. A. Winkelmann, G. Spicer, Y. Zhu, A. Eid, G. A. Ameer, V. Backman, and J. Yi, “Single capillary oximetry and tissue ultrastructural sensing by dual-band dual-scan inverse spectroscopic optical coherence tomography,” Light: Sci. Appl. 7(1), 1–13 (2018).
[Crossref]

C. Veenstra, W. Petersen, I. M. Vellekoop, W. Steenbergen, and N. Bosschaart, “Spatially confined quantification of bilirubin concentrations by spectroscopic visible-light optical coherence tomography,” Biomed. Opt. Express 9(8), 3581–3589 (2018).
[Crossref]

M. J. Ju, C. Huang, D. J. Wahl, Y. Jian, and M. V. Sarunic, “Visible light sensorless adaptive optics for retinal structure and fluorescence imaging,” Opt. Lett. 43(20), 5162–5165 (2018).
[Crossref]

S. Pi, A. Camino, X. Wei, J. Simonett, W. Cepurna, D. Huang, J. C. Morrison, and Y. Jia, “Rodent retinal circulation organization and oxygen metabolism revealed by visible-light optical coherence tomography,” Biomed. Opt. Express 9(11), 5851–5862 (2018).
[Crossref]

C. W. Merkle, S. P. Chong, A. M. Kho, J. Zhu, A. Dubra, and V. J. Srinivasan, “Visible light optical coherence microscopy of the brain with isotropic femtoliter resolution in vivo,” Opt. Lett. 43(2), 198–201 (2018).
[Crossref]

W. Song, L. Zhou, S. Zhang, S. Ness, M. Desai, and J. Yi, “Fiber-based visible and near infrared optical coherence tomography (vnOCT) enables quantitative elastic light scattering spectroscopy in human retina,” Biomed. Opt. Express 9(7), 3464–3480 (2018).
[Crossref]

P. J. Marchand, D. Szlag, A. Bouwens, and T. Lasser, “In vivo high-resolution cortical imaging with extended-focus optical coherence microscopy in the visible-NIR wavelength range,” J. Biomed. Opt. 23(03), 1 (2018).
[Crossref]

W. Song, L. Zhou, K. L. Kot, H. Fan, J. Han, and J. Yi, “Measurement of flow-mediated dilation of mouse femoral artery in vivo by optical coherence tomography,” J. Biophotonics 11(11), e201800053 (2018).
[Crossref]

2017 (6)

2016 (1)

2015 (4)

2014 (2)

J. V. Kristjansdottir, S. H. Hardarson, and E. Stefansson, “Retinal Oximetry with a Scanning Laser Ophthalmoscope compared to a Fundus Camera Oximeter,” Invest. Ophthalmol. Visual Sci. 55(5), 3120–3204 (2014).
[Crossref]

J. Yi, S. Chen, V. Backman, and H. F. Zhang, “In vivo functional microangiography by visible-light optical coherence tomography,” Biomed. Opt. Express 5(10), 3603–3612 (2014).
[Crossref]

2013 (1)

2012 (2)

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref]

O. Palsson, A. Geirsdottir, S. H. Hardarson, O. B. Olafsdottir, J. V. Kristjansdottir, and E. Stefánsson, “Retinal Oximetry Images Must Be Standardized: A Methodological Analysis,” Invest. Ophthalmol. Visual Sci. 53(4), 1729–1733 (2012).
[Crossref]

2011 (2)

2010 (2)

2004 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Ameer, G. A.

R. Liu, J. A. Winkelmann, G. Spicer, Y. Zhu, A. Eid, G. A. Ameer, V. Backman, and J. Yi, “Single capillary oximetry and tissue ultrastructural sensing by dual-band dual-scan inverse spectroscopic optical coherence tomography,” Light: Sci. Appl. 7(1), 1–13 (2018).
[Crossref]

Apolonski, A. A.

B. Povazay, A. A. Apolonski, A. Unterhuber, B. Hermann, K. K. Bizheva, H. Sattmann, P. S. J. Russell, F. Krausz, A. F. Fercher, and W. Drexler, “Visible light optical coherence tomography,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications VI (International Society for Optics and Photonics, 2002), Vol. 4619, pp. 90–94.

Augustin, M.

Auwerx, J.

S. Coquoz, P. J. Marchand, A. Bouwens, L. Mouchiroud, V. Sorrentino, D. Szlag, J. Auwerx, and T. Lasser, “Label-free three-dimensional imaging of Caenorhabditis elegans with visible optical coherence microscopy,” PLoS One 12(7), e0181676 (2017).
[Crossref]

Backman, V.

R. Liu, J. A. Winkelmann, G. Spicer, Y. Zhu, A. Eid, G. A. Ameer, V. Backman, and J. Yi, “Single capillary oximetry and tissue ultrastructural sensing by dual-band dual-scan inverse spectroscopic optical coherence tomography,” Light: Sci. Appl. 7(1), 1–13 (2018).
[Crossref]

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light: Sci. Appl. 4(9), e334 (2015).
[Crossref]

J. Yi, S. Chen, V. Backman, and H. F. Zhang, “In vivo functional microangiography by visible-light optical coherence tomography,” Biomed. Opt. Express 5(10), 3603–3612 (2014).
[Crossref]

J. Yi, Q. Wei, W. Liu, V. Backman, and H. F. Zhang, “Visible-light optical coherence tomography for retinal oximetry,” Opt. Lett. 38(11), 1796–1798 (2013).
[Crossref]

Baumann, B.

Beckmann, L. J.

X. Shu, L. J. Beckmann, and H. F. Zhang, “Visible-light optical coherence tomography: a review,” J. Biomed. Opt. 22(12), 1 (2017).
[Crossref]

Bernucci, M.

Bizheva, K. K.

B. Povazay, A. A. Apolonski, A. Unterhuber, B. Hermann, K. K. Bizheva, H. Sattmann, P. S. J. Russell, F. Krausz, A. F. Fercher, and W. Drexler, “Visible light optical coherence tomography,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications VI (International Society for Optics and Photonics, 2002), Vol. 4619, pp. 90–94.

Bosschaart, N.

C. Veenstra, S. Kruitwagen, D. Groener, W. Petersen, W. Steenbergen, and N. Bosschaart, “Quantification of total haemoglobin concentrations in human whole blood by spectroscopic visible-light optical coherence tomography,” Sci. Rep. 9(1), 15115–8 (2019).
[Crossref]

C. Veenstra, W. Petersen, I. M. Vellekoop, W. Steenbergen, and N. Bosschaart, “Spatially confined quantification of bilirubin concentrations by spectroscopic visible-light optical coherence tomography,” Biomed. Opt. Express 9(8), 3581–3589 (2018).
[Crossref]

Bouwens, A.

P. J. Marchand, D. Szlag, A. Bouwens, and T. Lasser, “In vivo high-resolution cortical imaging with extended-focus optical coherence microscopy in the visible-NIR wavelength range,” J. Biomed. Opt. 23(03), 1 (2018).
[Crossref]

S. Coquoz, P. J. Marchand, A. Bouwens, L. Mouchiroud, V. Sorrentino, D. Szlag, J. Auwerx, and T. Lasser, “Label-free three-dimensional imaging of Caenorhabditis elegans with visible optical coherence microscopy,” PLoS One 12(7), e0181676 (2017).
[Crossref]

Camino, A.

S. Pi, T. T. Hormel, X. Wei, W. Cepurna, A. Camino, Y. Guo, D. Huang, J. C. Morrison, and Y. Jia, “Monitoring retinal responses to acute intraocular pressure elevation in rats with visible light optical coherence tomography,” Neurophotonics 6(04), 1 (2019).
[Crossref]

S. Pi, A. Camino, X. Wei, J. Simonett, W. Cepurna, D. Huang, J. C. Morrison, and Y. Jia, “Rodent retinal circulation organization and oxygen metabolism revealed by visible-light optical coherence tomography,” Biomed. Opt. Express 9(11), 5851–5862 (2018).
[Crossref]

Cepurna, W.

S. Pi, T. T. Hormel, X. Wei, W. Cepurna, B. Wang, J. C. Morrison, and Y. Jia, “Retinal capillary oximetry with visible light optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 117(21), 11658–11666 (2020).
[Crossref]

S. Pi, T. T. Hormel, X. Wei, W. Cepurna, J. C. Morrison, and Y. Jia, “Imaging retinal structures at cellular-level resolution by visible-light optical coherence tomography,” Opt. Lett. 45(7), 2107–2110 (2020).
[Crossref]

S. Pi, T. T. Hormel, X. Wei, W. Cepurna, A. Camino, Y. Guo, D. Huang, J. C. Morrison, and Y. Jia, “Monitoring retinal responses to acute intraocular pressure elevation in rats with visible light optical coherence tomography,” Neurophotonics 6(04), 1 (2019).
[Crossref]

S. Pi, A. Camino, X. Wei, J. Simonett, W. Cepurna, D. Huang, J. C. Morrison, and Y. Jia, “Rodent retinal circulation organization and oxygen metabolism revealed by visible-light optical coherence tomography,” Biomed. Opt. Express 9(11), 5851–5862 (2018).
[Crossref]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Chen, C.

Chen, C.-L.

Chen, S.

Cheng, S.

R. Liu, S. Cheng, L. Tian, and J. Yi, “Deep spectral learning for label-free optical imaging oximetry with uncertainty quantification,” Light: Sci. Appl. 8(1), 1–13 (2019).
[Crossref]

Choi, W. J.

Chong, S. P.

Chowdhury, S.

Coquoz, S.

S. Coquoz, P. J. Marchand, A. Bouwens, L. Mouchiroud, V. Sorrentino, D. Szlag, J. Auwerx, and T. Lasser, “Label-free three-dimensional imaging of Caenorhabditis elegans with visible optical coherence microscopy,” PLoS One 12(7), e0181676 (2017).
[Crossref]

Desai, M.

W. Song, S. Fu, S. Song, S. Zhang, L. Zhang, S. Ness, M. Desai, and J. Yi, “Longitudinal detection of retinal alterations by visible and near-infrared optical coherence tomography in a dexamethasone-induced ocular hypertension mouse model,” Neuphotonics 6, 041103 (2019).
[Crossref]

W. Song, L. Zhou, S. Zhang, S. Ness, M. Desai, and J. Yi, “Fiber-based visible and near infrared optical coherence tomography (vnOCT) enables quantitative elastic light scattering spectroscopy in human retina,” Biomed. Opt. Express 9(7), 3464–3480 (2018).
[Crossref]

Drexler, W.

B. Povazay, A. A. Apolonski, A. Unterhuber, B. Hermann, K. K. Bizheva, H. Sattmann, P. S. J. Russell, F. Krausz, A. F. Fercher, and W. Drexler, “Visible light optical coherence tomography,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications VI (International Society for Optics and Photonics, 2002), Vol. 4619, pp. 90–94.

Dubra, A.

Duker, J. S.

Eid, A.

R. Liu, J. A. Winkelmann, G. Spicer, Y. Zhu, A. Eid, G. A. Ameer, V. Backman, and J. Yi, “Single capillary oximetry and tissue ultrastructural sensing by dual-band dual-scan inverse spectroscopic optical coherence tomography,” Light: Sci. Appl. 7(1), 1–13 (2018).
[Crossref]

Eugui, P.

Fan, H.

W. Song, L. Zhou, K. L. Kot, H. Fan, J. Han, and J. Yi, “Measurement of flow-mediated dilation of mouse femoral artery in vivo by optical coherence tomography,” J. Biophotonics 11(11), e201800053 (2018).
[Crossref]

Fawzi, A. A.

Fercher, A. F.

B. Povazay, A. A. Apolonski, A. Unterhuber, B. Hermann, K. K. Bizheva, H. Sattmann, P. S. J. Russell, F. Krausz, A. F. Fercher, and W. Drexler, “Visible light optical coherence tomography,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications VI (International Society for Optics and Photonics, 2002), Vol. 4619, pp. 90–94.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Fu, S.

W. Song, S. Fu, S. Song, S. Zhang, L. Zhang, S. Ness, M. Desai, and J. Yi, “Longitudinal detection of retinal alterations by visible and near-infrared optical coherence tomography in a dexamethasone-induced ocular hypertension mouse model,” Neuphotonics 6, 041103 (2019).
[Crossref]

Fujimoto, J. G.

Geirsdottir, A.

O. Palsson, A. Geirsdottir, S. H. Hardarson, O. B. Olafsdottir, J. V. Kristjansdottir, and E. Stefánsson, “Retinal Oximetry Images Must Be Standardized: A Methodological Analysis,” Invest. Ophthalmol. Visual Sci. 53(4), 1729–1733 (2012).
[Crossref]

Gesperger, J.

Grant, G.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref]

Gregori, G.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Groener, D.

C. Veenstra, S. Kruitwagen, D. Groener, W. Petersen, W. Steenbergen, and N. Bosschaart, “Quantification of total haemoglobin concentrations in human whole blood by spectroscopic visible-light optical coherence tomography,” Sci. Rep. 9(1), 15115–8 (2019).
[Crossref]

Guo, Y.

S. Pi, T. T. Hormel, X. Wei, W. Cepurna, A. Camino, Y. Guo, D. Huang, J. C. Morrison, and Y. Jia, “Monitoring retinal responses to acute intraocular pressure elevation in rats with visible light optical coherence tomography,” Neurophotonics 6(04), 1 (2019).
[Crossref]

Han, J.

W. Song, L. Zhou, K. L. Kot, H. Fan, J. Han, and J. Yi, “Measurement of flow-mediated dilation of mouse femoral artery in vivo by optical coherence tomography,” J. Biophotonics 11(11), e201800053 (2018).
[Crossref]

Hardarson, S. H.

J. V. Kristjansdottir, S. H. Hardarson, and E. Stefansson, “Retinal Oximetry with a Scanning Laser Ophthalmoscope compared to a Fundus Camera Oximeter,” Invest. Ophthalmol. Visual Sci. 55(5), 3120–3204 (2014).
[Crossref]

O. Palsson, A. Geirsdottir, S. H. Hardarson, O. B. Olafsdottir, J. V. Kristjansdottir, and E. Stefánsson, “Retinal Oximetry Images Must Be Standardized: A Methodological Analysis,” Invest. Ophthalmol. Visual Sci. 53(4), 1729–1733 (2012).
[Crossref]

Harper, D. J.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Hermann, B.

B. Povazay, A. A. Apolonski, A. Unterhuber, B. Hermann, K. K. Bizheva, H. Sattmann, P. S. J. Russell, F. Krausz, A. F. Fercher, and W. Drexler, “Visible light optical coherence tomography,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications VI (International Society for Optics and Photonics, 2002), Vol. 4619, pp. 90–94.

Hitzenberger, C. K.

Hormel, T. T.

S. Pi, T. T. Hormel, X. Wei, W. Cepurna, B. Wang, J. C. Morrison, and Y. Jia, “Retinal capillary oximetry with visible light optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 117(21), 11658–11666 (2020).
[Crossref]

S. Pi, T. T. Hormel, X. Wei, W. Cepurna, J. C. Morrison, and Y. Jia, “Imaging retinal structures at cellular-level resolution by visible-light optical coherence tomography,” Opt. Lett. 45(7), 2107–2110 (2020).
[Crossref]

S. Pi, T. T. Hormel, X. Wei, W. Cepurna, A. Camino, Y. Guo, D. Huang, J. C. Morrison, and Y. Jia, “Monitoring retinal responses to acute intraocular pressure elevation in rats with visible light optical coherence tomography,” Neurophotonics 6(04), 1 (2019).
[Crossref]

Hornegger, J.

Hu, J.

Huang, C.

Huang, D.

S. Pi, T. T. Hormel, X. Wei, W. Cepurna, A. Camino, Y. Guo, D. Huang, J. C. Morrison, and Y. Jia, “Monitoring retinal responses to acute intraocular pressure elevation in rats with visible light optical coherence tomography,” Neurophotonics 6(04), 1 (2019).
[Crossref]

S. Pi, A. Camino, X. Wei, J. Simonett, W. Cepurna, D. Huang, J. C. Morrison, and Y. Jia, “Rodent retinal circulation organization and oxygen metabolism revealed by visible-light optical coherence tomography,” Biomed. Opt. Express 9(11), 5851–5862 (2018).
[Crossref]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Huang, X.-R.

Jia, Y.

Jian, Y.

Jiao, S.

Ju, M. J.

Kho, A. M.

Knighton, R. W.

Ko, T. H.

Kot, K. L.

W. Song, L. Zhou, K. L. Kot, H. Fan, J. Han, and J. Yi, “Measurement of flow-mediated dilation of mouse femoral artery in vivo by optical coherence tomography,” J. Biophotonics 11(11), e201800053 (2018).
[Crossref]

Kowalczyk, A.

Kraus, M. F.

Krausz, F.

B. Povazay, A. A. Apolonski, A. Unterhuber, B. Hermann, K. K. Bizheva, H. Sattmann, P. S. J. Russell, F. Krausz, A. F. Fercher, and W. Drexler, “Visible light optical coherence tomography,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications VI (International Society for Optics and Photonics, 2002), Vol. 4619, pp. 90–94.

Kristjansdottir, J. V.

J. V. Kristjansdottir, S. H. Hardarson, and E. Stefansson, “Retinal Oximetry with a Scanning Laser Ophthalmoscope compared to a Fundus Camera Oximeter,” Invest. Ophthalmol. Visual Sci. 55(5), 3120–3204 (2014).
[Crossref]

O. Palsson, A. Geirsdottir, S. H. Hardarson, O. B. Olafsdottir, J. V. Kristjansdottir, and E. Stefánsson, “Retinal Oximetry Images Must Be Standardized: A Methodological Analysis,” Invest. Ophthalmol. Visual Sci. 53(4), 1729–1733 (2012).
[Crossref]

Kruitwagen, S.

C. Veenstra, S. Kruitwagen, D. Groener, W. Petersen, W. Steenbergen, and N. Bosschaart, “Quantification of total haemoglobin concentrations in human whole blood by spectroscopic visible-light optical coherence tomography,” Sci. Rep. 9(1), 15115–8 (2019).
[Crossref]

Lasser, T.

P. J. Marchand, D. Szlag, A. Bouwens, and T. Lasser, “In vivo high-resolution cortical imaging with extended-focus optical coherence microscopy in the visible-NIR wavelength range,” J. Biomed. Opt. 23(03), 1 (2018).
[Crossref]

S. Coquoz, P. J. Marchand, A. Bouwens, L. Mouchiroud, V. Sorrentino, D. Szlag, J. Auwerx, and T. Lasser, “Label-free three-dimensional imaging of Caenorhabditis elegans with visible optical coherence microscopy,” PLoS One 12(7), e0181676 (2017).
[Crossref]

Leahy, C.

Li, X.

Lichtenegger, A.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Linsenmeier, R. A.

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light: Sci. Appl. 4(9), e334 (2015).
[Crossref]

Liu, J. J.

Liu, R.

R. Liu, S. Cheng, L. Tian, and J. Yi, “Deep spectral learning for label-free optical imaging oximetry with uncertainty quantification,” Light: Sci. Appl. 8(1), 1–13 (2019).
[Crossref]

R. Liu, J. A. Winkelmann, G. Spicer, Y. Zhu, A. Eid, G. A. Ameer, V. Backman, and J. Yi, “Single capillary oximetry and tissue ultrastructural sensing by dual-band dual-scan inverse spectroscopic optical coherence tomography,” Light: Sci. Appl. 7(1), 1–13 (2018).
[Crossref]

Liu, W.

S. Chen, X. Shu, P. L. Nesper, W. Liu, A. A. Fawzi, and H. F. Zhang, “Retinal oximetry in humans using visible-light optical coherence tomography [Invited],” Biomed. Opt. Express 8(3), 1415–1429 (2017).
[Crossref]

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light: Sci. Appl. 4(9), e334 (2015).
[Crossref]

J. Yi, Q. Wei, W. Liu, V. Backman, and H. F. Zhang, “Visible-light optical coherence tomography for retinal oximetry,” Opt. Lett. 38(11), 1796–1798 (2013).
[Crossref]

Marchand, P. J.

P. J. Marchand, D. Szlag, A. Bouwens, and T. Lasser, “In vivo high-resolution cortical imaging with extended-focus optical coherence microscopy in the visible-NIR wavelength range,” J. Biomed. Opt. 23(03), 1 (2018).
[Crossref]

S. Coquoz, P. J. Marchand, A. Bouwens, L. Mouchiroud, V. Sorrentino, D. Szlag, J. Auwerx, and T. Lasser, “Label-free three-dimensional imaging of Caenorhabditis elegans with visible optical coherence microscopy,” PLoS One 12(7), e0181676 (2017).
[Crossref]

Merkle, C. W.

Miller, A.

Morrison, J. C.

S. Pi, T. T. Hormel, X. Wei, W. Cepurna, J. C. Morrison, and Y. Jia, “Imaging retinal structures at cellular-level resolution by visible-light optical coherence tomography,” Opt. Lett. 45(7), 2107–2110 (2020).
[Crossref]

S. Pi, T. T. Hormel, X. Wei, W. Cepurna, B. Wang, J. C. Morrison, and Y. Jia, “Retinal capillary oximetry with visible light optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 117(21), 11658–11666 (2020).
[Crossref]

S. Pi, T. T. Hormel, X. Wei, W. Cepurna, A. Camino, Y. Guo, D. Huang, J. C. Morrison, and Y. Jia, “Monitoring retinal responses to acute intraocular pressure elevation in rats with visible light optical coherence tomography,” Neurophotonics 6(04), 1 (2019).
[Crossref]

S. Pi, A. Camino, X. Wei, J. Simonett, W. Cepurna, D. Huang, J. C. Morrison, and Y. Jia, “Rodent retinal circulation organization and oxygen metabolism revealed by visible-light optical coherence tomography,” Biomed. Opt. Express 9(11), 5851–5862 (2018).
[Crossref]

Mouchiroud, L.

S. Coquoz, P. J. Marchand, A. Bouwens, L. Mouchiroud, V. Sorrentino, D. Szlag, J. Auwerx, and T. Lasser, “Label-free three-dimensional imaging of Caenorhabditis elegans with visible optical coherence microscopy,” PLoS One 12(7), e0181676 (2017).
[Crossref]

Muck, M.

Nesper, P. L.

Ness, S.

W. Song, S. Fu, S. Song, S. Zhang, L. Zhang, S. Ness, M. Desai, and J. Yi, “Longitudinal detection of retinal alterations by visible and near-infrared optical coherence tomography in a dexamethasone-induced ocular hypertension mouse model,” Neuphotonics 6, 041103 (2019).
[Crossref]

W. Song, L. Zhou, S. Zhang, S. Ness, M. Desai, and J. Yi, “Fiber-based visible and near infrared optical coherence tomography (vnOCT) enables quantitative elastic light scattering spectroscopy in human retina,” Biomed. Opt. Express 9(7), 3464–3480 (2018).
[Crossref]

Olafsdottir, O. B.

O. Palsson, A. Geirsdottir, S. H. Hardarson, O. B. Olafsdottir, J. V. Kristjansdottir, and E. Stefánsson, “Retinal Oximetry Images Must Be Standardized: A Methodological Analysis,” Invest. Ophthalmol. Visual Sci. 53(4), 1729–1733 (2012).
[Crossref]

Palsson, O.

O. Palsson, A. Geirsdottir, S. H. Hardarson, O. B. Olafsdottir, J. V. Kristjansdottir, and E. Stefánsson, “Retinal Oximetry Images Must Be Standardized: A Methodological Analysis,” Invest. Ophthalmol. Visual Sci. 53(4), 1729–1733 (2012).
[Crossref]

Petersen, W.

C. Veenstra, S. Kruitwagen, D. Groener, W. Petersen, W. Steenbergen, and N. Bosschaart, “Quantification of total haemoglobin concentrations in human whole blood by spectroscopic visible-light optical coherence tomography,” Sci. Rep. 9(1), 15115–8 (2019).
[Crossref]

C. Veenstra, W. Petersen, I. M. Vellekoop, W. Steenbergen, and N. Bosschaart, “Spatially confined quantification of bilirubin concentrations by spectroscopic visible-light optical coherence tomography,” Biomed. Opt. Express 9(8), 3581–3589 (2018).
[Crossref]

Pi, S.

S. Pi, T. T. Hormel, X. Wei, W. Cepurna, B. Wang, J. C. Morrison, and Y. Jia, “Retinal capillary oximetry with visible light optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 117(21), 11658–11666 (2020).
[Crossref]

S. Pi, T. T. Hormel, X. Wei, W. Cepurna, J. C. Morrison, and Y. Jia, “Imaging retinal structures at cellular-level resolution by visible-light optical coherence tomography,” Opt. Lett. 45(7), 2107–2110 (2020).
[Crossref]

S. Pi, T. T. Hormel, X. Wei, W. Cepurna, A. Camino, Y. Guo, D. Huang, J. C. Morrison, and Y. Jia, “Monitoring retinal responses to acute intraocular pressure elevation in rats with visible light optical coherence tomography,” Neurophotonics 6(04), 1 (2019).
[Crossref]

S. Pi, A. Camino, X. Wei, J. Simonett, W. Cepurna, D. Huang, J. C. Morrison, and Y. Jia, “Rodent retinal circulation organization and oxygen metabolism revealed by visible-light optical coherence tomography,” Biomed. Opt. Express 9(11), 5851–5862 (2018).
[Crossref]

Potsaid, B.

Povazay, B.

B. Povazay, A. A. Apolonski, A. Unterhuber, B. Hermann, K. K. Bizheva, H. Sattmann, P. S. J. Russell, F. Krausz, A. F. Fercher, and W. Drexler, “Visible light optical coherence tomography,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications VI (International Society for Optics and Photonics, 2002), Vol. 4619, pp. 90–94.

Puliafito, C. A.

X. Zhang, J. Hu, R. W. Knighton, X.-R. Huang, C. A. Puliafito, and S. Jiao, “Dual-band spectral-domain optical coherence tomography for in vivo imaging the spectral contrasts of the retinal nerve fiber layer,” Opt. Express 19(20), 19653–19659 (2011).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Radhakrishnan, H.

Robles, F. E.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref]

F. E. Robles, S. Chowdhury, and A. Wax, “Assessing hemoglobin concentration using spectroscopic optical coherence tomography for feasibility of tissue diagnostics,” Biomed. Opt. Express 1, 310–317 (2010).
[Crossref]

Rosenfeld, P. J.

Russell, P. S. J.

B. Povazay, A. A. Apolonski, A. Unterhuber, B. Hermann, K. K. Bizheva, H. Sattmann, P. S. J. Russell, F. Krausz, A. F. Fercher, and W. Drexler, “Visible light optical coherence tomography,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications VI (International Society for Optics and Photonics, 2002), Vol. 4619, pp. 90–94.

Sarunic, M. V.

Sattmann, H.

B. Povazay, A. A. Apolonski, A. Unterhuber, B. Hermann, K. K. Bizheva, H. Sattmann, P. S. J. Russell, F. Krausz, A. F. Fercher, and W. Drexler, “Visible light optical coherence tomography,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications VI (International Society for Optics and Photonics, 2002), Vol. 4619, pp. 90–94.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Sheibani, N.

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light: Sci. Appl. 4(9), e334 (2015).
[Crossref]

Shu, X.

Simonett, J.

Song, S.

W. Song, S. Fu, S. Song, S. Zhang, L. Zhang, S. Ness, M. Desai, and J. Yi, “Longitudinal detection of retinal alterations by visible and near-infrared optical coherence tomography in a dexamethasone-induced ocular hypertension mouse model,” Neuphotonics 6, 041103 (2019).
[Crossref]

Song, W.

W. Song, S. Fu, S. Song, S. Zhang, L. Zhang, S. Ness, M. Desai, and J. Yi, “Longitudinal detection of retinal alterations by visible and near-infrared optical coherence tomography in a dexamethasone-induced ocular hypertension mouse model,” Neuphotonics 6, 041103 (2019).
[Crossref]

W. Song, L. Zhou, K. L. Kot, H. Fan, J. Han, and J. Yi, “Measurement of flow-mediated dilation of mouse femoral artery in vivo by optical coherence tomography,” J. Biophotonics 11(11), e201800053 (2018).
[Crossref]

W. Song, L. Zhou, S. Zhang, S. Ness, M. Desai, and J. Yi, “Fiber-based visible and near infrared optical coherence tomography (vnOCT) enables quantitative elastic light scattering spectroscopy in human retina,” Biomed. Opt. Express 9(7), 3464–3480 (2018).
[Crossref]

Sorenson, C. M.

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light: Sci. Appl. 4(9), e334 (2015).
[Crossref]

Sorrentino, V.

S. Coquoz, P. J. Marchand, A. Bouwens, L. Mouchiroud, V. Sorrentino, D. Szlag, J. Auwerx, and T. Lasser, “Label-free three-dimensional imaging of Caenorhabditis elegans with visible optical coherence microscopy,” PLoS One 12(7), e0181676 (2017).
[Crossref]

Spicer, G.

R. Liu, J. A. Winkelmann, G. Spicer, Y. Zhu, A. Eid, G. A. Ameer, V. Backman, and J. Yi, “Single capillary oximetry and tissue ultrastructural sensing by dual-band dual-scan inverse spectroscopic optical coherence tomography,” Light: Sci. Appl. 7(1), 1–13 (2018).
[Crossref]

Srinivasan, V. J.

Steenbergen, W.

C. Veenstra, S. Kruitwagen, D. Groener, W. Petersen, W. Steenbergen, and N. Bosschaart, “Quantification of total haemoglobin concentrations in human whole blood by spectroscopic visible-light optical coherence tomography,” Sci. Rep. 9(1), 15115–8 (2019).
[Crossref]

C. Veenstra, W. Petersen, I. M. Vellekoop, W. Steenbergen, and N. Bosschaart, “Spatially confined quantification of bilirubin concentrations by spectroscopic visible-light optical coherence tomography,” Biomed. Opt. Express 9(8), 3581–3589 (2018).
[Crossref]

Stefansson, E.

J. V. Kristjansdottir, S. H. Hardarson, and E. Stefansson, “Retinal Oximetry with a Scanning Laser Ophthalmoscope compared to a Fundus Camera Oximeter,” Invest. Ophthalmol. Visual Sci. 55(5), 3120–3204 (2014).
[Crossref]

Stefánsson, E.

O. Palsson, A. Geirsdottir, S. H. Hardarson, O. B. Olafsdottir, J. V. Kristjansdottir, and E. Stefánsson, “Retinal Oximetry Images Must Be Standardized: A Methodological Analysis,” Invest. Ophthalmol. Visual Sci. 53(4), 1729–1733 (2012).
[Crossref]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Subhash, H.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Szlag, D.

P. J. Marchand, D. Szlag, A. Bouwens, and T. Lasser, “In vivo high-resolution cortical imaging with extended-focus optical coherence microscopy in the visible-NIR wavelength range,” J. Biomed. Opt. 23(03), 1 (2018).
[Crossref]

S. Coquoz, P. J. Marchand, A. Bouwens, L. Mouchiroud, V. Sorrentino, D. Szlag, J. Auwerx, and T. Lasser, “Label-free three-dimensional imaging of Caenorhabditis elegans with visible optical coherence microscopy,” PLoS One 12(7), e0181676 (2017).
[Crossref]

Tan, O.

Tian, L.

R. Liu, S. Cheng, L. Tian, and J. Yi, “Deep spectral learning for label-free optical imaging oximetry with uncertainty quantification,” Light: Sci. Appl. 8(1), 1–13 (2019).
[Crossref]

Tokayer, J.

Unterhuber, A.

B. Povazay, A. A. Apolonski, A. Unterhuber, B. Hermann, K. K. Bizheva, H. Sattmann, P. S. J. Russell, F. Krausz, A. F. Fercher, and W. Drexler, “Visible light optical coherence tomography,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications VI (International Society for Optics and Photonics, 2002), Vol. 4619, pp. 90–94.

Veenstra, C.

C. Veenstra, S. Kruitwagen, D. Groener, W. Petersen, W. Steenbergen, and N. Bosschaart, “Quantification of total haemoglobin concentrations in human whole blood by spectroscopic visible-light optical coherence tomography,” Sci. Rep. 9(1), 15115–8 (2019).
[Crossref]

C. Veenstra, W. Petersen, I. M. Vellekoop, W. Steenbergen, and N. Bosschaart, “Spatially confined quantification of bilirubin concentrations by spectroscopic visible-light optical coherence tomography,” Biomed. Opt. Express 9(8), 3581–3589 (2018).
[Crossref]

Vellekoop, I. M.

Wahl, D. J.

Wang, B.

S. Pi, T. T. Hormel, X. Wei, W. Cepurna, B. Wang, J. C. Morrison, and Y. Jia, “Retinal capillary oximetry with visible light optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 117(21), 11658–11666 (2020).
[Crossref]

Wang, R. K.

Wang, Y.

Wax, A.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref]

F. E. Robles, S. Chowdhury, and A. Wax, “Assessing hemoglobin concentration using spectroscopic optical coherence tomography for feasibility of tissue diagnostics,” Biomed. Opt. Express 1, 310–317 (2010).
[Crossref]

Wei, Q.

Wei, X.

S. Pi, T. T. Hormel, X. Wei, W. Cepurna, B. Wang, J. C. Morrison, and Y. Jia, “Retinal capillary oximetry with visible light optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 117(21), 11658–11666 (2020).
[Crossref]

S. Pi, T. T. Hormel, X. Wei, W. Cepurna, J. C. Morrison, and Y. Jia, “Imaging retinal structures at cellular-level resolution by visible-light optical coherence tomography,” Opt. Lett. 45(7), 2107–2110 (2020).
[Crossref]

S. Pi, T. T. Hormel, X. Wei, W. Cepurna, A. Camino, Y. Guo, D. Huang, J. C. Morrison, and Y. Jia, “Monitoring retinal responses to acute intraocular pressure elevation in rats with visible light optical coherence tomography,” Neurophotonics 6(04), 1 (2019).
[Crossref]

S. Pi, A. Camino, X. Wei, J. Simonett, W. Cepurna, D. Huang, J. C. Morrison, and Y. Jia, “Rodent retinal circulation organization and oxygen metabolism revealed by visible-light optical coherence tomography,” Biomed. Opt. Express 9(11), 5851–5862 (2018).
[Crossref]

Wilson, C.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref]

Winkelmann, J. A.

R. Liu, J. A. Winkelmann, G. Spicer, Y. Zhu, A. Eid, G. A. Ameer, V. Backman, and J. Yi, “Single capillary oximetry and tissue ultrastructural sensing by dual-band dual-scan inverse spectroscopic optical coherence tomography,” Light: Sci. Appl. 7(1), 1–13 (2018).
[Crossref]

Woehrer, A.

Wojtkowski, M.

Yi, J.

W. Song, S. Fu, S. Song, S. Zhang, L. Zhang, S. Ness, M. Desai, and J. Yi, “Longitudinal detection of retinal alterations by visible and near-infrared optical coherence tomography in a dexamethasone-induced ocular hypertension mouse model,” Neuphotonics 6, 041103 (2019).
[Crossref]

R. Liu, S. Cheng, L. Tian, and J. Yi, “Deep spectral learning for label-free optical imaging oximetry with uncertainty quantification,” Light: Sci. Appl. 8(1), 1–13 (2019).
[Crossref]

R. Liu, J. A. Winkelmann, G. Spicer, Y. Zhu, A. Eid, G. A. Ameer, V. Backman, and J. Yi, “Single capillary oximetry and tissue ultrastructural sensing by dual-band dual-scan inverse spectroscopic optical coherence tomography,” Light: Sci. Appl. 7(1), 1–13 (2018).
[Crossref]

W. Song, L. Zhou, S. Zhang, S. Ness, M. Desai, and J. Yi, “Fiber-based visible and near infrared optical coherence tomography (vnOCT) enables quantitative elastic light scattering spectroscopy in human retina,” Biomed. Opt. Express 9(7), 3464–3480 (2018).
[Crossref]

W. Song, L. Zhou, K. L. Kot, H. Fan, J. Han, and J. Yi, “Measurement of flow-mediated dilation of mouse femoral artery in vivo by optical coherence tomography,” J. Biophotonics 11(11), e201800053 (2018).
[Crossref]

J. Yi, S. Chen, X. Shu, A. A. Fawzi, and H. F. Zhang, “Human retinal imaging using visible-light optical coherence tomography guided by scanning laser ophthalmoscopy,” Biomed. Opt. Express 6(10), 3701–3713 (2015).
[Crossref]

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light: Sci. Appl. 4(9), e334 (2015).
[Crossref]

J. Yi, S. Chen, V. Backman, and H. F. Zhang, “In vivo functional microangiography by visible-light optical coherence tomography,” Biomed. Opt. Express 5(10), 3603–3612 (2014).
[Crossref]

J. Yi, Q. Wei, W. Liu, V. Backman, and H. F. Zhang, “Visible-light optical coherence tomography for retinal oximetry,” Opt. Lett. 38(11), 1796–1798 (2013).
[Crossref]

J. Yi and X. Li, “Estimation of oxygen saturation from erythrocytes by high-resolution spectroscopic optical coherence tomography,” Opt. Lett. 35(12), 2094–2096 (2010).
[Crossref]

Zhang, A.

Zhang, H. F.

Zhang, L.

W. Song, S. Fu, S. Song, S. Zhang, L. Zhang, S. Ness, M. Desai, and J. Yi, “Longitudinal detection of retinal alterations by visible and near-infrared optical coherence tomography in a dexamethasone-induced ocular hypertension mouse model,” Neuphotonics 6, 041103 (2019).
[Crossref]

Zhang, Q.

Zhang, S.

W. Song, S. Fu, S. Song, S. Zhang, L. Zhang, S. Ness, M. Desai, and J. Yi, “Longitudinal detection of retinal alterations by visible and near-infrared optical coherence tomography in a dexamethasone-induced ocular hypertension mouse model,” Neuphotonics 6, 041103 (2019).
[Crossref]

W. Song, L. Zhou, S. Zhang, S. Ness, M. Desai, and J. Yi, “Fiber-based visible and near infrared optical coherence tomography (vnOCT) enables quantitative elastic light scattering spectroscopy in human retina,” Biomed. Opt. Express 9(7), 3464–3480 (2018).
[Crossref]

Zhang, T.

Zhang, X.

Zhou, L.

W. Song, L. Zhou, S. Zhang, S. Ness, M. Desai, and J. Yi, “Fiber-based visible and near infrared optical coherence tomography (vnOCT) enables quantitative elastic light scattering spectroscopy in human retina,” Biomed. Opt. Express 9(7), 3464–3480 (2018).
[Crossref]

W. Song, L. Zhou, K. L. Kot, H. Fan, J. Han, and J. Yi, “Measurement of flow-mediated dilation of mouse femoral artery in vivo by optical coherence tomography,” J. Biophotonics 11(11), e201800053 (2018).
[Crossref]

Zhu, J.

Zhu, Y.

R. Liu, J. A. Winkelmann, G. Spicer, Y. Zhu, A. Eid, G. A. Ameer, V. Backman, and J. Yi, “Single capillary oximetry and tissue ultrastructural sensing by dual-band dual-scan inverse spectroscopic optical coherence tomography,” Light: Sci. Appl. 7(1), 1–13 (2018).
[Crossref]

Biomed. Opt. Express (13)

F. E. Robles, S. Chowdhury, and A. Wax, “Assessing hemoglobin concentration using spectroscopic optical coherence tomography for feasibility of tissue diagnostics,” Biomed. Opt. Express 1, 310–317 (2010).
[Crossref]

J. Yi, S. Chen, V. Backman, and H. F. Zhang, “In vivo functional microangiography by visible-light optical coherence tomography,” Biomed. Opt. Express 5(10), 3603–3612 (2014).
[Crossref]

S. P. Chong, C. W. Merkle, C. Leahy, H. Radhakrishnan, and V. J. Srinivasan, “Quantitative microvascular hemoglobin mapping using visible light spectroscopic Optical Coherence Tomography,” Biomed. Opt. Express 6(4), 1429–1450 (2015).
[Crossref]

J. Yi, S. Chen, X. Shu, A. A. Fawzi, and H. F. Zhang, “Human retinal imaging using visible-light optical coherence tomography guided by scanning laser ophthalmoscopy,” Biomed. Opt. Express 6(10), 3701–3713 (2015).
[Crossref]

S. P. Chong, C. W. Merkle, C. Leahy, and V. J. Srinivasan, “Cerebral metabolic rate of oxygen (CMRO2) assessed by combined Doppler and spectroscopic OCT,” Biomed. Opt. Express 6(10), 3941–3951 (2015).
[Crossref]

S. P. Chong, M. Bernucci, H. Radhakrishnan, and V. J. Srinivasan, “Structural and functional human retinal imaging with a fiber-based visible light OCT ophthalmoscope,” Biomed. Opt. Express 8(1), 323–337 (2017).
[Crossref]

C.-L. Chen and R. K. Wang, “Optical coherence tomography based angiography [Invited],” Biomed. Opt. Express 8(2), 1056–1082 (2017).
[Crossref]

S. Chen, X. Shu, P. L. Nesper, W. Liu, A. A. Fawzi, and H. F. Zhang, “Retinal oximetry in humans using visible-light optical coherence tomography [Invited],” Biomed. Opt. Express 8(3), 1415–1429 (2017).
[Crossref]

A. Lichtenegger, D. J. Harper, M. Augustin, P. Eugui, M. Muck, J. Gesperger, C. K. Hitzenberger, A. Woehrer, and B. Baumann, “Spectroscopic imaging with spectral domain visible light optical coherence microscopy in Alzheimer’s disease brain samples,” Biomed. Opt. Express 8(9), 4007–4025 (2017).
[Crossref]

W. Song, L. Zhou, S. Zhang, S. Ness, M. Desai, and J. Yi, “Fiber-based visible and near infrared optical coherence tomography (vnOCT) enables quantitative elastic light scattering spectroscopy in human retina,” Biomed. Opt. Express 9(7), 3464–3480 (2018).
[Crossref]

C. Veenstra, W. Petersen, I. M. Vellekoop, W. Steenbergen, and N. Bosschaart, “Spatially confined quantification of bilirubin concentrations by spectroscopic visible-light optical coherence tomography,” Biomed. Opt. Express 9(8), 3581–3589 (2018).
[Crossref]

S. Pi, A. Camino, X. Wei, J. Simonett, W. Cepurna, D. Huang, J. C. Morrison, and Y. Jia, “Rodent retinal circulation organization and oxygen metabolism revealed by visible-light optical coherence tomography,” Biomed. Opt. Express 9(11), 5851–5862 (2018).
[Crossref]

T. Zhang, A. M. Kho, and V. J. Srinivasan, “Improving visible light OCT of the human retina with rapid spectral shaping and axial tracking,” Biomed. Opt. Express 10(6), 2918–2931 (2019).
[Crossref]

Invest. Ophthalmol. Visual Sci. (2)

J. V. Kristjansdottir, S. H. Hardarson, and E. Stefansson, “Retinal Oximetry with a Scanning Laser Ophthalmoscope compared to a Fundus Camera Oximeter,” Invest. Ophthalmol. Visual Sci. 55(5), 3120–3204 (2014).
[Crossref]

O. Palsson, A. Geirsdottir, S. H. Hardarson, O. B. Olafsdottir, J. V. Kristjansdottir, and E. Stefánsson, “Retinal Oximetry Images Must Be Standardized: A Methodological Analysis,” Invest. Ophthalmol. Visual Sci. 53(4), 1729–1733 (2012).
[Crossref]

J. Biomed. Opt. (2)

X. Shu, L. J. Beckmann, and H. F. Zhang, “Visible-light optical coherence tomography: a review,” J. Biomed. Opt. 22(12), 1 (2017).
[Crossref]

P. J. Marchand, D. Szlag, A. Bouwens, and T. Lasser, “In vivo high-resolution cortical imaging with extended-focus optical coherence microscopy in the visible-NIR wavelength range,” J. Biomed. Opt. 23(03), 1 (2018).
[Crossref]

J. Biophotonics (1)

W. Song, L. Zhou, K. L. Kot, H. Fan, J. Han, and J. Yi, “Measurement of flow-mediated dilation of mouse femoral artery in vivo by optical coherence tomography,” J. Biophotonics 11(11), e201800053 (2018).
[Crossref]

Light: Sci. Appl. (3)

R. Liu, S. Cheng, L. Tian, and J. Yi, “Deep spectral learning for label-free optical imaging oximetry with uncertainty quantification,” Light: Sci. Appl. 8(1), 1–13 (2019).
[Crossref]

R. Liu, J. A. Winkelmann, G. Spicer, Y. Zhu, A. Eid, G. A. Ameer, V. Backman, and J. Yi, “Single capillary oximetry and tissue ultrastructural sensing by dual-band dual-scan inverse spectroscopic optical coherence tomography,” Light: Sci. Appl. 7(1), 1–13 (2018).
[Crossref]

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light: Sci. Appl. 4(9), e334 (2015).
[Crossref]

Nat. Photonics (1)

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref]

Neuphotonics (1)

W. Song, S. Fu, S. Song, S. Zhang, L. Zhang, S. Ness, M. Desai, and J. Yi, “Longitudinal detection of retinal alterations by visible and near-infrared optical coherence tomography in a dexamethasone-induced ocular hypertension mouse model,” Neuphotonics 6, 041103 (2019).
[Crossref]

Neurophotonics (1)

S. Pi, T. T. Hormel, X. Wei, W. Cepurna, A. Camino, Y. Guo, D. Huang, J. C. Morrison, and Y. Jia, “Monitoring retinal responses to acute intraocular pressure elevation in rats with visible light optical coherence tomography,” Neurophotonics 6(04), 1 (2019).
[Crossref]

Opt. Express (3)

Opt. Lett. (6)

PLoS One (1)

S. Coquoz, P. J. Marchand, A. Bouwens, L. Mouchiroud, V. Sorrentino, D. Szlag, J. Auwerx, and T. Lasser, “Label-free three-dimensional imaging of Caenorhabditis elegans with visible optical coherence microscopy,” PLoS One 12(7), e0181676 (2017).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

S. Pi, T. T. Hormel, X. Wei, W. Cepurna, B. Wang, J. C. Morrison, and Y. Jia, “Retinal capillary oximetry with visible light optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 117(21), 11658–11666 (2020).
[Crossref]

Sci. Rep. (1)

C. Veenstra, S. Kruitwagen, D. Groener, W. Petersen, W. Steenbergen, and N. Bosschaart, “Quantification of total haemoglobin concentrations in human whole blood by spectroscopic visible-light optical coherence tomography,” Sci. Rep. 9(1), 15115–8 (2019).
[Crossref]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Other (1)

B. Povazay, A. A. Apolonski, A. Unterhuber, B. Hermann, K. K. Bizheva, H. Sattmann, P. S. J. Russell, F. Krausz, A. F. Fercher, and W. Drexler, “Visible light optical coherence tomography,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications VI (International Society for Optics and Photonics, 2002), Vol. 4619, pp. 90–94.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. The system characteristics. (a) Schematic of the vis-OCTA system. SC: supercontinuum source; DM: dichroic mirror; BD: beam dump; PBS: polarization beam splitter; EF: edge filter; M: mirror; PC: polarization controller; WDM: wavelength division and multiplexer; FC: fiber coupler; CL: collimating lens; TL: tunable lens; ND: neutral density filter; DC: dispersion controller. (b) The wavelength selection of the spectrometer. Simulated scattering signal from the oxygenated and deoxygenated blood. (c) The measured light source spectrum. (d) System roll-off characterization.
Fig. 2.
Fig. 2. Data processing flow for small vessel and capillary sO2 calculation. (a) Flow chart of the data processing. (b) Wavelength-dependent vis-OCT and vis-OCTA generated by a split spectra method. (c) Illustration of the vessel segmentation on the lateral projection image from vis-OCT, and vessel bottom selection on vis-OCTA for small vessels > 20 µm. (d) An example of the averaged spectrograph in terms of depth within a vessel, and the spectrum extracted from the vessel bottom for the spectral fitting (red). (e) Illustration of capillary segmentation from en face vis-OCTA projection and the depth locations. (f) An example of a spectrogram on capillaries, and the spectrum extracted from the spectral fitting.
Fig. 3.
Fig. 3. The effect of Nrep on human retina vis-OCTA. (a-e) En face maximum intensity projection of vis-OCTA in the inner retina at Nrep equal to 2-12 at each B-scan location. (f) Capillary vis-OCTA SNR versus Nrep.
Fig. 4.
Fig. 4. The effect of the B-scan interval time on human retina vis-OCTA. (a-d) En face maximum intensity projection of vis-OCTA in the inner retina at the interval time ΔT equal to 1-7 ms between two consecutive frames at each B-scan location, while the A-scan density were maintained constant. White arrows points to motion artefacts. (e) Capillary vis-OCTA SNR versus ΔT.
Fig. 5.
Fig. 5. The effect of the A-line scanning density within a B-scan on human retina vis-OCTA. (a-e) En face maximum intensity projection of vis-OCTA in the inner retina at the A-line scanning density ΣA-line equal to 0.85-0.09 µm within a B-scan, while Nrep and ΔT were maintained constant. (f) Capillary vis-OCTA SNR versus ΣA-line.
Fig. 6.
Fig. 6. Human retina vis-OCTA. (a) A mosaic wide-field vis-OCTA en face projection made of 10 acquisitions on a healthy volunteer aged 37. (b-c) The magnified details of the capillary networks at the optic nerve head and fovea.
Fig. 7.
Fig. 7. Human retinal oximetry on small vessels and capillaries by vis-OCTA. (a) Color-coded by sO2 on arterioles, venules and capillaries at the perifoveal region. (b-d) Representative spectrogram from an arteriole, a venule and the capillary network from panel (a). (e-f) The measured spectra from all arterioles and venules, and capillary network. The solid and light curves were the mean and individual spectra from all the vessels in panel (a). The capillary spectrum was averaged within the entire FOV as shown in panel (a). (h) sO2 calculations from three healthy eyes. Bar = Mean ± SEM. (i) The longitudinal repeatability from different vessels from the same healthy eye.
Fig. 8.
Fig. 8. (a) Human retinal capillaries at macula by vis-OCTA. (b-d) The superficial, intermediate, and deep capillary plexus isolated from (a).

Tables (2)

Tables Icon

Table 1. Summary of microvascular sO2 measurements at the perifoveal region from three healthy eyes

Tables Icon

Table 2. The repeatability of the microvascular sO2 (%)

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I v i s O C T A ( x , z , λ i ) = 1 N r e p 1 n = 1 N r e p 1 | C n + 1 ( x , z , λ i ) C n + 1 ( x , z , λ i ) | , i = 1 , 2 , , 11
I v i s O C T ( x , z , λ i ) = 1 N r e p n = 1 N r e p | C n ( x , z , λ i ) |
I ( sO 2 | λ ) = I 0 ( λ ) R 0 r ( λ ) e [ sO 2 × μ H b O 2 ( λ ) + ( 1 sO 2 ) × μ H b ( λ ) ] z
μ = μ a + W μ s
log [ I ( sO 2 | λ , z ) ( I 0 ( λ ) R 0 ) ] = [ 1 2 log ( A ) ] 1 2 α log ( λ ) [ sO 2 × μ H b O 2 ( λ ) z + ( 1 sO 2 ) × μ H b ( λ ) z ]
min x | | [ 1 log ( λ 1 ) μ H b O 2 ( λ 1 ) μ H b ( λ 1 ) 1 log ( λ n ) μ H b O 2 ( λ n ) μ H b ( λ n ) ] [ x 1 x 2 x 3 x 4 ] [ I ( λ 1 ) I ( λ n ) ] | | 2 ,
S N R = I v S D n v