Abstract

Optical coherence tomographic angiography (OCTA) can image the retinal blood flow but visualization of the capillary caliber is limited by the low lateral resolution. Adaptive optics (AO) can be used to compensate ocular aberrations when using high numerical aperture (NA), and thus improve image resolution. However, previously reported AO-OCTA instruments were large and complex, and have a small sub-millimeter field of view (FOV) that hinders the extraction of biomarkers with clinical relevance. In this manuscript, we developed a sensorless AO-OCTA prototype with an intermediate numerical aperture to produce depth-resolved angiograms with high resolution and signal-to-noise ratio over a 2 × 2 mm FOV, with a focal spot diameter of 6 µm, which is about 3 times finer than typical commercial OCT systems. We believe these parameters may represent a better tradeoff between resolution and FOV compared to large-NA AO systems, since the spot size matches better that of capillaries. The prototype corrects defocus, astigmatism, and coma using a figure of merit based on the mean reflectance projection of a slab defined with real-time segmentation of retinal layers. AO correction with the ability to optimize focusing in arbitrary retinal depths – particularly the plexuses in the inner retina – could be achieved in 1.35 seconds. The AO-OCTA images showed greater flow signal, signal-to-noise ratio, and finer capillary caliber compared to commercial OCTA. Projection artifacts were also reduced in the intermediate and deep capillary plexuses. The instrument reported here improves OCTA image quality without excessive sacrifice in FOV and device complexity, and thus may have potential for clinical translation.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. 112(18), E2395–E2402 (2015).
    [Crossref]
  2. S. S. Gao, Y. Jia, M. Zhang, J. P. Su, G. Liu, T. S. Hwang, S. T. Bailey, and D. Huang, “Optical Coherence Tomography Angiography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT27–OCT36 (2016).
    [Crossref]
  3. C.-L. Chen and R. K. Wang, “Optical coherence tomography based angiography [Invited],” Biomed. Opt. Express 8(2), 1056–1082 (2017).
    [Crossref]
  4. R. F. Spaide, J. G. Fujimoto, N. K. Waheed, S. R. Sadda, and G. Staurenghi, “Optical coherence tomography angiography,” Prog. Retinal Eye Res. 64, 1–55 (2018).
    [Crossref]
  5. T. S. Hwang, M. Zhang, K. Bhavsar, X. Zhang, J. P. Campbell, P. Lin, S. T. Bailey, C. J. Flaxel, A. K. Lauer, D. J. Wilson, D. Huang, and Y. Jia, “Visualization of 3 distinct retinal plexuses by projection-resolved optical coherence tomography angiography in diabetic retinopathyvisualization of retinal plexuses in diabetic retinopathyvisualization of retinal plexuses in diabetic retinopathy,” JAMA Ophthalmol. 134(12), 1411–1419 (2016).
    [Crossref]
  6. J. Wang, M. Zhang, T. S. Hwang, S. T. Bailey, D. Huang, D. J. Wilson, and Y. Jia, “Reflectance-based projection-resolved optical coherence tomography angiography [Invited],” Biomed. Opt. Express 8(3), 1536–1548 (2017).
    [Crossref]
  7. M. Zhang, T. S. Hwang, J. P. Campbell, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Projection-resolved optical coherence tomographic angiography,” Biomed. Opt. Express 7(3), 816–828 (2016).
    [Crossref]
  8. Y. Guo, A. Camino, J. Wang, D. Huang, T. S. Hwang, and Y. Jia, “MEDnet, a neural network for automated detection of avascular area in OCT angiography,” Biomed. Opt. Express 9(11), 5147–5158 (2018).
    [Crossref]
  9. T. S. Hwang, Y. Jia, S. S. Gao, S. T. Bailey, A. K. Lauer, C. J. Flaxel, D. J. Wilson, and D. Huang, “Optical coherence tomography angiography features of diabetic retinopathy,” Retina 35(11), 2371–2376 (2015).
    [Crossref]
  10. Q. You, Y. Guo, J. Wang, X. Wei, A. Camino, P. Zang, C. J. Flaxel, S. T. Bailey, D. Huang, Y. Jia, and T. S. Hwang, “Detection of clinically missed retinal neovascularization with wide-field optical coherence tomography angiography,” Retina (2019).
  11. A. D. Treister, P. L. Nesper, A. E. Fayed, M. K. Gill, R. G. Mirza, and A. A. Fawzi, “Prevalence of Subclinical CNV and Choriocapillaris Nonperfusion in Fellow Eyes of Unilateral Exudative AMD on OCT AngiographyTreister et al,” Trans. Vis. Sci. Tech. 7(5), 19 (2018).
    [Crossref]
  12. M. Arya, C. B. Rebhun, E. D. Cole, A. S. Sabrosa, G. Arcos-Villegas, R. N. Louzada, E. A. Novais, M. Lane, S. Dang, M. Ávila, A. J. Witkin, C. R. Baumal, J. S. Duker, and N. K. Waheed, “Visualization of choroidal neovascularization using two commercially available spectral domain optical coherence tomography angiography devices,” Retina 39(9), 1682–1692 (2019).
    [Crossref]
  13. J. R. de Oliveira Dias, Q. Zhang, J. M. B. Garcia, F. Zheng, E. H. Motulsky, L. Roisman, A. Miller, C.-L. Chen, S. Kubach, L. de Sisternes, M. K. Durbin, W. Feuer, R. K. Wang, G. Gregori, and P. J. Rosenfeld, “Natural History of Subclinical Neovascularization in Nonexudative Age-Related Macular Degeneration Using Swept-Source OCT Angiography,” Ophthalmology 125(2), 255–266 (2018).
    [Crossref]
  14. L. Roisman, Q. Zhang, R. K. Wang, G. Gregori, A. Zhang, C.-L. Chen, M. K. Durbin, L. An, P. F. Stetson, G. Robbins, A. Miller, F. Zheng, and P. J. Rosenfeld, “Optical coherence tomography angiography of asymptomatic neovascularization in intermediate age-related macular degeneration,” Ophthalmology 123(6), 1309–1319 (2016).
    [Crossref]
  15. R. Told, S. Sacu, A. Hecht, M. Baratsits, K. Eibenberger, M. E. Kroh, S. Rezar-Dreindl, F. G. Schlanitz, G. Weigert, A. Pollreisz, and U. Schmidt-Erfurth, “Comparison of SD-optical coherence tomography angiography and indocyanine green angiography in type 1 and 2 neovascular age-related macular degeneration OCTA ICGA comparison in nAMD,” Invest. Ophthalmol. Visual Sci. 59(6), 2393–2400 (2018).
    [Crossref]
  16. M. Al-Sheikh, N. A. Iafe, N. Phasukkijwatana, S. R. Sadda, and D. Sarraf, “Biomarkers of neovascular activity in age-related macular degeneration using optical coherence tomography angiography,” Retina 38(2), 220–230 (2018).
    [Crossref]
  17. P. L. Nesper, P. K. Roberts, A. C. Onishi, H. Chai, L. Liu, L. M. Jampol, and A. A. Fawzi, “Quantifying microvascular abnormalities with increasing severity of diabetic retinopathy using optical coherence tomography angiography parameters correlate with DR Severity,” Invest. Ophthalmol. Visual Sci. 58(6), BIO307 (2017).
    [Crossref]
  18. J. Schottenhamml, E. M. Moult, S. Ploner, B. Lee, E. A. Novais, E. Cole, S. Dang, C. D. Lu, L. Husvogt, N. K. Waheed, J. S. Duker, J. Hornegger, and J. G. Fujimoto, “An automatic, intercapillary area-based algorithm for quantifying diabetes-related capillary dropout using optical coherence tomography angiography,” Retina 36(Suppl 1), S93–S101 (2016).
    [Crossref]
  19. B. D. Krawitz, E. Phillips, R. D. Bavier, S. Mo, J. Carroll, R. B. Rosen, and T. Y. P. Chui, “Parafoveal nonperfusion analysis in diabetic retinopathy using optical coherence tomography angiography,” Trans. Vis. Sci. Tech. 7(4), 4 (2018).
    [Crossref]
  20. L. Liu, B. Alonzo, H. Takusagawa, J. C. Morrison, B. Edmunds, S. Tehrani, Y. Jia, and D. Huang, “Optical coherence tomography angiography of peripapillary retina pre-and post-trabeculectomy,” Invest. Ophthalmol. Visual Sci. 59, 5057 (2018).
  21. B. D. Krawitz, S. Mo, L. S. Geyman, S. A. Agemy, N. K. Scripsema, P. M. Garcia, T. Y. P. Chui, and R. B. Rosen, “Acircularity index and axis ratio of the foveal avascular zone in diabetic eyes and healthy controls measured by optical coherence tomography angiography,” Vision Res. 139, 177–186 (2017).
    [Crossref]
  22. Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
    [Crossref]
  23. R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010).
    [Crossref]
  24. P. Zang, G. Liu, M. Zhang, J. Wang, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated three-dimensional registration and volume rebuilding for wide-field angiographic and structural optical coherence tomography,” J. Biomed. Opt. 22(2), 026001 (2017).
    [Crossref]
  25. A. Camino, M. Zhang, C. Dongye, A. D. Pechauer, T. S. Hwang, S. T. Bailey, B. Lujan, D. J. Wilson, D. Huang, and Y. Jia, “Automated registration and enhanced processing of clinical optical coherence tomography angiography,” Quant. Imaging Med. Surg. 6(4), 391–401 (2016).
    [Crossref]
  26. M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express 3(6), 1182–1199 (2012).
    [Crossref]
  27. X. Wei, A. Camino, S. Pi, T. T. Hormel, W. Cepurna, D. Huang, J. C. Morrison, and Y. Jia, “Real-time cross-sectional and en face OCT angiography guiding high-quality scan acquisition,” Opt. Lett. 44(6), 1431–1434 (2019).
    [Crossref]
  28. Y. Jian, K. Wong, and M. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. Biomed. Opt. 18(2), 026002 (2013).
    [Crossref]
  29. J. Xu, K. Wong, Y. Jian, and M. Sarunic, “Real-time acquisition and display of flow contrast using speckle variance optical coherence tomography in a graphics processing unit,” J. Biomed. Opt. 19(2), 026001 (2014).
    [Crossref]
  30. A. Camino, M. Zhang, S. S. Gao, T. S. Hwang, U. Sharma, D. J. Wilson, D. Huang, and Y. Jia, “Evaluation of artifact reduction in optical coherence tomography angiography with real-time tracking and motion correction technology,” Biomed. Opt. Express 7(10), 3905–3915 (2016).
    [Crossref]
  31. Y. Chen, Y.-J. Hong, S. Makita, and Y. Yasuno, “Eye-motion-corrected optical coherence tomography angiography using Lissajous scanning,” Biomed. Opt. Express 9(3), 1111–1129 (2018).
    [Crossref]
  32. M. J. Ju, M. Heisler, A. Athwal, M. V. Sarunic, and Y. Jian, “Effective bidirectional scanning pattern for optical coherence tomography angiography,” Biomed. Opt. Express 9(5), 2336–2350 (2018).
    [Crossref]
  33. X. Wei, T. T. Hormel, S. Pi, Y. Guo, Y. Jian, and Y. Jia, “High dynamic range optical coherence tomography angiography (HDR-OCTA),” Biomed. Opt. Express 10(7), 3560–3571 (2019).
    [Crossref]
  34. S. B. Ploner, E. M. Moult, W. Choi, N. K. Waheed, B. Lee, E. A. Novais, E. D. Cole, B. Potsaid, L. Husvogt, J. Schottenhamml, A. Maier, P. J. Rosenfeld, J. S. Duker, J. Hornegger, and J. G. Fujimoto, “Toward quantitative optical coherence tomography angiography: visualizing blood flow speeds in ocular pathology using variable interscan time analysis,” Retina 36(Suppl 1), S118–S126 (2016).
    [Crossref]
  35. K. Kurokawa, Z. Liu, and D. T. Miller, “Adaptive optics optical coherence tomography angiography for morphometric analysis of choriocapillaris [Invited],” Biomed. Opt. Express 8(3), 1803–1822 (2017).
    [Crossref]
  36. M. Salas, M. Augustin, L. Ginner, A. Kumar, B. Baumann, R. Leitgeb, W. Drexler, S. Prager, J. Hafner, U. Schmidt-Erfurth, and M. Pircher, “Visualization of micro-capillaries using optical coherence tomography angiography with and without adaptive optics,” Biomed. Opt. Express 8(1), 207–222 (2017).
    [Crossref]
  37. K. Kurokawa, K. Sasaki, S. Makita, Y.-J. Hong, and Y. Yasuno, “Three-dimensional retinal and choroidal capillary imaging by power Doppler optical coherence angiography with adaptive optics,” Opt. Express 20(20), 22796–22812 (2012).
    [Crossref]
  38. D. J. Wahl, R. Ng, M. J. Ju, Y. Jian, and M. V. Sarunic, “Sensorless adaptive optics multimodal en-face small animal retinal imaging,” Biomed. Opt. Express 10(1), 252–267 (2019).
    [Crossref]
  39. J. Polans, D. Cunefare, E. Cole, B. Keller, P. S. Mettu, S. W. Cousins, M. J. Allingham, J. A. Izatt, and S. Farsiu, “Enhanced visualization of peripheral retinal vasculature with wavefront sensorless adaptive optics optical coherence tomography angiography in diabetic patients,” Opt. Lett. 42(1), 17–20 (2017).
    [Crossref]
  40. R. S. Weinhaus, J. M. Burke, F. C. Delori, and D. M. Snodderly, “Comparison of fluorescein angiography with microvascular anatomy of macaque retinas,” Exp. Eye Res. 61(1), 1–16 (1995).
    [Crossref]
  41. D. M. Snodderly, R. S. Weinhaus, and J. C. Choi, “Neural-vascular relationships in central retina of macaque monkeys (Macaca fascicularis),” J. Neurosci. 12(4), 1169–1193 (1992).
    [Crossref]
  42. A. Camino, R. Ng, J. Huang, Y. Guo, S. Ni, Y. Jia, D. Huang, and Y. Jian, “Depth-resolved optimization of real-time sensorless adaptive optics optical coherence tomography,” Opt. Lett. 45(9), 2612–2615 (2020).
    [Crossref]
  43. M. J. Ju, M. Heisler, D. Wahl, Y. Jian, and M. Sarunic, “Multiscale sensorless adaptive optics OCT angiography system for in vivo human retinal imaging,” J. Biomed. Opt. 22(12), 1–12 (2017).
    [Crossref]
  44. S. S. Gao, G. Liu, D. Huang, and Y. Jia, “Optimization of the split-spectrum amplitude-decorrelation angiography algorithm on a spectral optical coherence tomography system,” Opt. Lett. 40(10), 2305–2308 (2015).
    [Crossref]
  45. J. P. Campbell, M. Zhang, T. S. Hwang, S. T. Bailey, D. J. Wilson, Y. Jia, and D. Huang, “Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography,” Sci. Rep. 7(1), 42201 (2017).
    [Crossref]
  46. W. Janpongsri, J. Huang, R. Ng, D. J. Wahl, M. V. Sarunic, and Y. Jian, “Pseudo-real-time retinal layer segmentation for high-resolution adaptive optics optical coherence tomography,” Arxiv preprint arXiv:2004.05264 (2020).
  47. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett. 33(2), 156–158 (2008).
    [Crossref]
  48. M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express 3(6), 1182–1199 (2012).
    [Crossref]
  49. P. Zang, G. Liu, M. Zhang, C. Dongye, J. Wang, A. D. Pechauer, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram,” Biomed. Opt. Express 7(7), 2823–2836 (2016).
    [Crossref]
  50. M. Heisler, S. Lee, Z. Mammo, Y. Jian, M. J. Ju, A. Merkur, E. Navajas, C. Balaratnasingam, M. F. Beg, and M. Sarunic, “Strip-based registration of serially acquired optical coherence tomography angiography,” J. Biomed. Opt. 22(3), 036007 (2017).
    [Crossref]
  51. A. Camino, M. Zhang, L. Liu, J. Wang, Y. Jia, and D. Huang, “Enhanced quantification of retinal perfusion by improved discrimination of blood flow from bulk motion signal in OCTA,” Trans. Vis. Sci. Tech. 7(6), 20 (2018).
    [Crossref]
  52. M. Reddikumar, A. Tanabe, N. Hashimoto, and B. Cense, “Optical coherence tomography with a 2.8-mm beam diameter and sensorless defocus and astigmatism correction,” J. Biomed. Opt. 22(2), 026005 (2017).
    [Crossref]
  53. Q. Bo, Q. Yan, M. Shen, M. Song, M. Sun, Y. Yu, P. J. Rosenfeld, F. Wang, and X. Sun, “Appearance of polypoidal lesions in patients with polypoidal choroidal vasculopathy using swept-source optical coherence tomographic angiography,” JAMA Ophthalmol. 137(6), 642–650 (2019).
    [Crossref]
  54. “Early treatment diabetic retinopathy study design and baseline patient characteristics: ETDRS Report Number 7,” Ophthalmology 98, 741–756 (1991).
  55. “Early photocoagulation for diabetic retinopathy: ETDRS Report Number 9,” Ophthalmology98(5), 766–785 (1991).
    [Crossref]
  56. S. M. McClintic, S. Gao, J. Wang, A. Hagag, A. K. Lauer, C. J. Flaxel, K. Bhavsar, T. S. Hwang, D. Huang, Y. Jia, and S. T. Bailey, “Quantitative evaluation of choroidal neovascularization under pro re nata anti-vascular endothelial growth factor therapy with OCT angiography,” Ophthalmol. Retina 2(9), 931–941 (2018).
    [Crossref]

2020 (1)

2019 (5)

D. J. Wahl, R. Ng, M. J. Ju, Y. Jian, and M. V. Sarunic, “Sensorless adaptive optics multimodal en-face small animal retinal imaging,” Biomed. Opt. Express 10(1), 252–267 (2019).
[Crossref]

Q. Bo, Q. Yan, M. Shen, M. Song, M. Sun, Y. Yu, P. J. Rosenfeld, F. Wang, and X. Sun, “Appearance of polypoidal lesions in patients with polypoidal choroidal vasculopathy using swept-source optical coherence tomographic angiography,” JAMA Ophthalmol. 137(6), 642–650 (2019).
[Crossref]

M. Arya, C. B. Rebhun, E. D. Cole, A. S. Sabrosa, G. Arcos-Villegas, R. N. Louzada, E. A. Novais, M. Lane, S. Dang, M. Ávila, A. J. Witkin, C. R. Baumal, J. S. Duker, and N. K. Waheed, “Visualization of choroidal neovascularization using two commercially available spectral domain optical coherence tomography angiography devices,” Retina 39(9), 1682–1692 (2019).
[Crossref]

X. Wei, A. Camino, S. Pi, T. T. Hormel, W. Cepurna, D. Huang, J. C. Morrison, and Y. Jia, “Real-time cross-sectional and en face OCT angiography guiding high-quality scan acquisition,” Opt. Lett. 44(6), 1431–1434 (2019).
[Crossref]

X. Wei, T. T. Hormel, S. Pi, Y. Guo, Y. Jian, and Y. Jia, “High dynamic range optical coherence tomography angiography (HDR-OCTA),” Biomed. Opt. Express 10(7), 3560–3571 (2019).
[Crossref]

2018 (12)

Y. Chen, Y.-J. Hong, S. Makita, and Y. Yasuno, “Eye-motion-corrected optical coherence tomography angiography using Lissajous scanning,” Biomed. Opt. Express 9(3), 1111–1129 (2018).
[Crossref]

M. J. Ju, M. Heisler, A. Athwal, M. V. Sarunic, and Y. Jian, “Effective bidirectional scanning pattern for optical coherence tomography angiography,” Biomed. Opt. Express 9(5), 2336–2350 (2018).
[Crossref]

B. D. Krawitz, E. Phillips, R. D. Bavier, S. Mo, J. Carroll, R. B. Rosen, and T. Y. P. Chui, “Parafoveal nonperfusion analysis in diabetic retinopathy using optical coherence tomography angiography,” Trans. Vis. Sci. Tech. 7(4), 4 (2018).
[Crossref]

L. Liu, B. Alonzo, H. Takusagawa, J. C. Morrison, B. Edmunds, S. Tehrani, Y. Jia, and D. Huang, “Optical coherence tomography angiography of peripapillary retina pre-and post-trabeculectomy,” Invest. Ophthalmol. Visual Sci. 59, 5057 (2018).

J. R. de Oliveira Dias, Q. Zhang, J. M. B. Garcia, F. Zheng, E. H. Motulsky, L. Roisman, A. Miller, C.-L. Chen, S. Kubach, L. de Sisternes, M. K. Durbin, W. Feuer, R. K. Wang, G. Gregori, and P. J. Rosenfeld, “Natural History of Subclinical Neovascularization in Nonexudative Age-Related Macular Degeneration Using Swept-Source OCT Angiography,” Ophthalmology 125(2), 255–266 (2018).
[Crossref]

A. D. Treister, P. L. Nesper, A. E. Fayed, M. K. Gill, R. G. Mirza, and A. A. Fawzi, “Prevalence of Subclinical CNV and Choriocapillaris Nonperfusion in Fellow Eyes of Unilateral Exudative AMD on OCT AngiographyTreister et al,” Trans. Vis. Sci. Tech. 7(5), 19 (2018).
[Crossref]

R. Told, S. Sacu, A. Hecht, M. Baratsits, K. Eibenberger, M. E. Kroh, S. Rezar-Dreindl, F. G. Schlanitz, G. Weigert, A. Pollreisz, and U. Schmidt-Erfurth, “Comparison of SD-optical coherence tomography angiography and indocyanine green angiography in type 1 and 2 neovascular age-related macular degeneration OCTA ICGA comparison in nAMD,” Invest. Ophthalmol. Visual Sci. 59(6), 2393–2400 (2018).
[Crossref]

M. Al-Sheikh, N. A. Iafe, N. Phasukkijwatana, S. R. Sadda, and D. Sarraf, “Biomarkers of neovascular activity in age-related macular degeneration using optical coherence tomography angiography,” Retina 38(2), 220–230 (2018).
[Crossref]

R. F. Spaide, J. G. Fujimoto, N. K. Waheed, S. R. Sadda, and G. Staurenghi, “Optical coherence tomography angiography,” Prog. Retinal Eye Res. 64, 1–55 (2018).
[Crossref]

Y. Guo, A. Camino, J. Wang, D. Huang, T. S. Hwang, and Y. Jia, “MEDnet, a neural network for automated detection of avascular area in OCT angiography,” Biomed. Opt. Express 9(11), 5147–5158 (2018).
[Crossref]

S. M. McClintic, S. Gao, J. Wang, A. Hagag, A. K. Lauer, C. J. Flaxel, K. Bhavsar, T. S. Hwang, D. Huang, Y. Jia, and S. T. Bailey, “Quantitative evaluation of choroidal neovascularization under pro re nata anti-vascular endothelial growth factor therapy with OCT angiography,” Ophthalmol. Retina 2(9), 931–941 (2018).
[Crossref]

A. Camino, M. Zhang, L. Liu, J. Wang, Y. Jia, and D. Huang, “Enhanced quantification of retinal perfusion by improved discrimination of blood flow from bulk motion signal in OCTA,” Trans. Vis. Sci. Tech. 7(6), 20 (2018).
[Crossref]

2017 (12)

M. Reddikumar, A. Tanabe, N. Hashimoto, and B. Cense, “Optical coherence tomography with a 2.8-mm beam diameter and sensorless defocus and astigmatism correction,” J. Biomed. Opt. 22(2), 026005 (2017).
[Crossref]

M. Heisler, S. Lee, Z. Mammo, Y. Jian, M. J. Ju, A. Merkur, E. Navajas, C. Balaratnasingam, M. F. Beg, and M. Sarunic, “Strip-based registration of serially acquired optical coherence tomography angiography,” J. Biomed. Opt. 22(3), 036007 (2017).
[Crossref]

J. Polans, D. Cunefare, E. Cole, B. Keller, P. S. Mettu, S. W. Cousins, M. J. Allingham, J. A. Izatt, and S. Farsiu, “Enhanced visualization of peripheral retinal vasculature with wavefront sensorless adaptive optics optical coherence tomography angiography in diabetic patients,” Opt. Lett. 42(1), 17–20 (2017).
[Crossref]

M. J. Ju, M. Heisler, D. Wahl, Y. Jian, and M. Sarunic, “Multiscale sensorless adaptive optics OCT angiography system for in vivo human retinal imaging,” J. Biomed. Opt. 22(12), 1–12 (2017).
[Crossref]

J. P. Campbell, M. Zhang, T. S. Hwang, S. T. Bailey, D. J. Wilson, Y. Jia, and D. Huang, “Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref]

J. Wang, M. Zhang, T. S. Hwang, S. T. Bailey, D. Huang, D. J. Wilson, and Y. Jia, “Reflectance-based projection-resolved optical coherence tomography angiography [Invited],” Biomed. Opt. Express 8(3), 1536–1548 (2017).
[Crossref]

P. L. Nesper, P. K. Roberts, A. C. Onishi, H. Chai, L. Liu, L. M. Jampol, and A. A. Fawzi, “Quantifying microvascular abnormalities with increasing severity of diabetic retinopathy using optical coherence tomography angiography parameters correlate with DR Severity,” Invest. Ophthalmol. Visual Sci. 58(6), BIO307 (2017).
[Crossref]

C.-L. Chen and R. K. Wang, “Optical coherence tomography based angiography [Invited],” Biomed. Opt. Express 8(2), 1056–1082 (2017).
[Crossref]

B. D. Krawitz, S. Mo, L. S. Geyman, S. A. Agemy, N. K. Scripsema, P. M. Garcia, T. Y. P. Chui, and R. B. Rosen, “Acircularity index and axis ratio of the foveal avascular zone in diabetic eyes and healthy controls measured by optical coherence tomography angiography,” Vision Res. 139, 177–186 (2017).
[Crossref]

P. Zang, G. Liu, M. Zhang, J. Wang, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated three-dimensional registration and volume rebuilding for wide-field angiographic and structural optical coherence tomography,” J. Biomed. Opt. 22(2), 026001 (2017).
[Crossref]

K. Kurokawa, Z. Liu, and D. T. Miller, “Adaptive optics optical coherence tomography angiography for morphometric analysis of choriocapillaris [Invited],” Biomed. Opt. Express 8(3), 1803–1822 (2017).
[Crossref]

M. Salas, M. Augustin, L. Ginner, A. Kumar, B. Baumann, R. Leitgeb, W. Drexler, S. Prager, J. Hafner, U. Schmidt-Erfurth, and M. Pircher, “Visualization of micro-capillaries using optical coherence tomography angiography with and without adaptive optics,” Biomed. Opt. Express 8(1), 207–222 (2017).
[Crossref]

2016 (9)

S. B. Ploner, E. M. Moult, W. Choi, N. K. Waheed, B. Lee, E. A. Novais, E. D. Cole, B. Potsaid, L. Husvogt, J. Schottenhamml, A. Maier, P. J. Rosenfeld, J. S. Duker, J. Hornegger, and J. G. Fujimoto, “Toward quantitative optical coherence tomography angiography: visualizing blood flow speeds in ocular pathology using variable interscan time analysis,” Retina 36(Suppl 1), S118–S126 (2016).
[Crossref]

A. Camino, M. Zhang, S. S. Gao, T. S. Hwang, U. Sharma, D. J. Wilson, D. Huang, and Y. Jia, “Evaluation of artifact reduction in optical coherence tomography angiography with real-time tracking and motion correction technology,” Biomed. Opt. Express 7(10), 3905–3915 (2016).
[Crossref]

A. Camino, M. Zhang, C. Dongye, A. D. Pechauer, T. S. Hwang, S. T. Bailey, B. Lujan, D. J. Wilson, D. Huang, and Y. Jia, “Automated registration and enhanced processing of clinical optical coherence tomography angiography,” Quant. Imaging Med. Surg. 6(4), 391–401 (2016).
[Crossref]

L. Roisman, Q. Zhang, R. K. Wang, G. Gregori, A. Zhang, C.-L. Chen, M. K. Durbin, L. An, P. F. Stetson, G. Robbins, A. Miller, F. Zheng, and P. J. Rosenfeld, “Optical coherence tomography angiography of asymptomatic neovascularization in intermediate age-related macular degeneration,” Ophthalmology 123(6), 1309–1319 (2016).
[Crossref]

J. Schottenhamml, E. M. Moult, S. Ploner, B. Lee, E. A. Novais, E. Cole, S. Dang, C. D. Lu, L. Husvogt, N. K. Waheed, J. S. Duker, J. Hornegger, and J. G. Fujimoto, “An automatic, intercapillary area-based algorithm for quantifying diabetes-related capillary dropout using optical coherence tomography angiography,” Retina 36(Suppl 1), S93–S101 (2016).
[Crossref]

M. Zhang, T. S. Hwang, J. P. Campbell, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Projection-resolved optical coherence tomographic angiography,” Biomed. Opt. Express 7(3), 816–828 (2016).
[Crossref]

T. S. Hwang, M. Zhang, K. Bhavsar, X. Zhang, J. P. Campbell, P. Lin, S. T. Bailey, C. J. Flaxel, A. K. Lauer, D. J. Wilson, D. Huang, and Y. Jia, “Visualization of 3 distinct retinal plexuses by projection-resolved optical coherence tomography angiography in diabetic retinopathyvisualization of retinal plexuses in diabetic retinopathyvisualization of retinal plexuses in diabetic retinopathy,” JAMA Ophthalmol. 134(12), 1411–1419 (2016).
[Crossref]

S. S. Gao, Y. Jia, M. Zhang, J. P. Su, G. Liu, T. S. Hwang, S. T. Bailey, and D. Huang, “Optical Coherence Tomography Angiography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT27–OCT36 (2016).
[Crossref]

P. Zang, G. Liu, M. Zhang, C. Dongye, J. Wang, A. D. Pechauer, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram,” Biomed. Opt. Express 7(7), 2823–2836 (2016).
[Crossref]

2015 (3)

S. S. Gao, G. Liu, D. Huang, and Y. Jia, “Optimization of the split-spectrum amplitude-decorrelation angiography algorithm on a spectral optical coherence tomography system,” Opt. Lett. 40(10), 2305–2308 (2015).
[Crossref]

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. 112(18), E2395–E2402 (2015).
[Crossref]

T. S. Hwang, Y. Jia, S. S. Gao, S. T. Bailey, A. K. Lauer, C. J. Flaxel, D. J. Wilson, and D. Huang, “Optical coherence tomography angiography features of diabetic retinopathy,” Retina 35(11), 2371–2376 (2015).
[Crossref]

2014 (1)

J. Xu, K. Wong, Y. Jian, and M. Sarunic, “Real-time acquisition and display of flow contrast using speckle variance optical coherence tomography in a graphics processing unit,” J. Biomed. Opt. 19(2), 026001 (2014).
[Crossref]

2013 (1)

Y. Jian, K. Wong, and M. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. Biomed. Opt. 18(2), 026002 (2013).
[Crossref]

2012 (4)

2010 (1)

2008 (1)

1995 (1)

R. S. Weinhaus, J. M. Burke, F. C. Delori, and D. M. Snodderly, “Comparison of fluorescein angiography with microvascular anatomy of macaque retinas,” Exp. Eye Res. 61(1), 1–16 (1995).
[Crossref]

1992 (1)

D. M. Snodderly, R. S. Weinhaus, and J. C. Choi, “Neural-vascular relationships in central retina of macaque monkeys (Macaca fascicularis),” J. Neurosci. 12(4), 1169–1193 (1992).
[Crossref]

Agemy, S. A.

B. D. Krawitz, S. Mo, L. S. Geyman, S. A. Agemy, N. K. Scripsema, P. M. Garcia, T. Y. P. Chui, and R. B. Rosen, “Acircularity index and axis ratio of the foveal avascular zone in diabetic eyes and healthy controls measured by optical coherence tomography angiography,” Vision Res. 139, 177–186 (2017).
[Crossref]

Allingham, M. J.

Alonzo, B.

L. Liu, B. Alonzo, H. Takusagawa, J. C. Morrison, B. Edmunds, S. Tehrani, Y. Jia, and D. Huang, “Optical coherence tomography angiography of peripapillary retina pre-and post-trabeculectomy,” Invest. Ophthalmol. Visual Sci. 59, 5057 (2018).

Al-Sheikh, M.

M. Al-Sheikh, N. A. Iafe, N. Phasukkijwatana, S. R. Sadda, and D. Sarraf, “Biomarkers of neovascular activity in age-related macular degeneration using optical coherence tomography angiography,” Retina 38(2), 220–230 (2018).
[Crossref]

An, L.

L. Roisman, Q. Zhang, R. K. Wang, G. Gregori, A. Zhang, C.-L. Chen, M. K. Durbin, L. An, P. F. Stetson, G. Robbins, A. Miller, F. Zheng, and P. J. Rosenfeld, “Optical coherence tomography angiography of asymptomatic neovascularization in intermediate age-related macular degeneration,” Ophthalmology 123(6), 1309–1319 (2016).
[Crossref]

R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010).
[Crossref]

Arcos-Villegas, G.

M. Arya, C. B. Rebhun, E. D. Cole, A. S. Sabrosa, G. Arcos-Villegas, R. N. Louzada, E. A. Novais, M. Lane, S. Dang, M. Ávila, A. J. Witkin, C. R. Baumal, J. S. Duker, and N. K. Waheed, “Visualization of choroidal neovascularization using two commercially available spectral domain optical coherence tomography angiography devices,” Retina 39(9), 1682–1692 (2019).
[Crossref]

Arya, M.

M. Arya, C. B. Rebhun, E. D. Cole, A. S. Sabrosa, G. Arcos-Villegas, R. N. Louzada, E. A. Novais, M. Lane, S. Dang, M. Ávila, A. J. Witkin, C. R. Baumal, J. S. Duker, and N. K. Waheed, “Visualization of choroidal neovascularization using two commercially available spectral domain optical coherence tomography angiography devices,” Retina 39(9), 1682–1692 (2019).
[Crossref]

Athwal, A.

Augustin, M.

Ávila, M.

M. Arya, C. B. Rebhun, E. D. Cole, A. S. Sabrosa, G. Arcos-Villegas, R. N. Louzada, E. A. Novais, M. Lane, S. Dang, M. Ávila, A. J. Witkin, C. R. Baumal, J. S. Duker, and N. K. Waheed, “Visualization of choroidal neovascularization using two commercially available spectral domain optical coherence tomography angiography devices,” Retina 39(9), 1682–1692 (2019).
[Crossref]

Bailey, S. T.

S. M. McClintic, S. Gao, J. Wang, A. Hagag, A. K. Lauer, C. J. Flaxel, K. Bhavsar, T. S. Hwang, D. Huang, Y. Jia, and S. T. Bailey, “Quantitative evaluation of choroidal neovascularization under pro re nata anti-vascular endothelial growth factor therapy with OCT angiography,” Ophthalmol. Retina 2(9), 931–941 (2018).
[Crossref]

J. P. Campbell, M. Zhang, T. S. Hwang, S. T. Bailey, D. J. Wilson, Y. Jia, and D. Huang, “Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref]

J. Wang, M. Zhang, T. S. Hwang, S. T. Bailey, D. Huang, D. J. Wilson, and Y. Jia, “Reflectance-based projection-resolved optical coherence tomography angiography [Invited],” Biomed. Opt. Express 8(3), 1536–1548 (2017).
[Crossref]

M. Zhang, T. S. Hwang, J. P. Campbell, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Projection-resolved optical coherence tomographic angiography,” Biomed. Opt. Express 7(3), 816–828 (2016).
[Crossref]

S. S. Gao, Y. Jia, M. Zhang, J. P. Su, G. Liu, T. S. Hwang, S. T. Bailey, and D. Huang, “Optical Coherence Tomography Angiography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT27–OCT36 (2016).
[Crossref]

T. S. Hwang, M. Zhang, K. Bhavsar, X. Zhang, J. P. Campbell, P. Lin, S. T. Bailey, C. J. Flaxel, A. K. Lauer, D. J. Wilson, D. Huang, and Y. Jia, “Visualization of 3 distinct retinal plexuses by projection-resolved optical coherence tomography angiography in diabetic retinopathyvisualization of retinal plexuses in diabetic retinopathyvisualization of retinal plexuses in diabetic retinopathy,” JAMA Ophthalmol. 134(12), 1411–1419 (2016).
[Crossref]

A. Camino, M. Zhang, C. Dongye, A. D. Pechauer, T. S. Hwang, S. T. Bailey, B. Lujan, D. J. Wilson, D. Huang, and Y. Jia, “Automated registration and enhanced processing of clinical optical coherence tomography angiography,” Quant. Imaging Med. Surg. 6(4), 391–401 (2016).
[Crossref]

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. 112(18), E2395–E2402 (2015).
[Crossref]

T. S. Hwang, Y. Jia, S. S. Gao, S. T. Bailey, A. K. Lauer, C. J. Flaxel, D. J. Wilson, and D. Huang, “Optical coherence tomography angiography features of diabetic retinopathy,” Retina 35(11), 2371–2376 (2015).
[Crossref]

Q. You, Y. Guo, J. Wang, X. Wei, A. Camino, P. Zang, C. J. Flaxel, S. T. Bailey, D. Huang, Y. Jia, and T. S. Hwang, “Detection of clinically missed retinal neovascularization with wide-field optical coherence tomography angiography,” Retina (2019).

Balaratnasingam, C.

M. Heisler, S. Lee, Z. Mammo, Y. Jian, M. J. Ju, A. Merkur, E. Navajas, C. Balaratnasingam, M. F. Beg, and M. Sarunic, “Strip-based registration of serially acquired optical coherence tomography angiography,” J. Biomed. Opt. 22(3), 036007 (2017).
[Crossref]

Baratsits, M.

R. Told, S. Sacu, A. Hecht, M. Baratsits, K. Eibenberger, M. E. Kroh, S. Rezar-Dreindl, F. G. Schlanitz, G. Weigert, A. Pollreisz, and U. Schmidt-Erfurth, “Comparison of SD-optical coherence tomography angiography and indocyanine green angiography in type 1 and 2 neovascular age-related macular degeneration OCTA ICGA comparison in nAMD,” Invest. Ophthalmol. Visual Sci. 59(6), 2393–2400 (2018).
[Crossref]

Baumal, C. R.

M. Arya, C. B. Rebhun, E. D. Cole, A. S. Sabrosa, G. Arcos-Villegas, R. N. Louzada, E. A. Novais, M. Lane, S. Dang, M. Ávila, A. J. Witkin, C. R. Baumal, J. S. Duker, and N. K. Waheed, “Visualization of choroidal neovascularization using two commercially available spectral domain optical coherence tomography angiography devices,” Retina 39(9), 1682–1692 (2019).
[Crossref]

Baumann, B.

Bavier, R. D.

B. D. Krawitz, E. Phillips, R. D. Bavier, S. Mo, J. Carroll, R. B. Rosen, and T. Y. P. Chui, “Parafoveal nonperfusion analysis in diabetic retinopathy using optical coherence tomography angiography,” Trans. Vis. Sci. Tech. 7(4), 4 (2018).
[Crossref]

Beg, M. F.

M. Heisler, S. Lee, Z. Mammo, Y. Jian, M. J. Ju, A. Merkur, E. Navajas, C. Balaratnasingam, M. F. Beg, and M. Sarunic, “Strip-based registration of serially acquired optical coherence tomography angiography,” J. Biomed. Opt. 22(3), 036007 (2017).
[Crossref]

Bhavsar, K.

S. M. McClintic, S. Gao, J. Wang, A. Hagag, A. K. Lauer, C. J. Flaxel, K. Bhavsar, T. S. Hwang, D. Huang, Y. Jia, and S. T. Bailey, “Quantitative evaluation of choroidal neovascularization under pro re nata anti-vascular endothelial growth factor therapy with OCT angiography,” Ophthalmol. Retina 2(9), 931–941 (2018).
[Crossref]

T. S. Hwang, M. Zhang, K. Bhavsar, X. Zhang, J. P. Campbell, P. Lin, S. T. Bailey, C. J. Flaxel, A. K. Lauer, D. J. Wilson, D. Huang, and Y. Jia, “Visualization of 3 distinct retinal plexuses by projection-resolved optical coherence tomography angiography in diabetic retinopathyvisualization of retinal plexuses in diabetic retinopathyvisualization of retinal plexuses in diabetic retinopathy,” JAMA Ophthalmol. 134(12), 1411–1419 (2016).
[Crossref]

Bo, Q.

Q. Bo, Q. Yan, M. Shen, M. Song, M. Sun, Y. Yu, P. J. Rosenfeld, F. Wang, and X. Sun, “Appearance of polypoidal lesions in patients with polypoidal choroidal vasculopathy using swept-source optical coherence tomographic angiography,” JAMA Ophthalmol. 137(6), 642–650 (2019).
[Crossref]

Bock, R.

Burke, J. M.

R. S. Weinhaus, J. M. Burke, F. C. Delori, and D. M. Snodderly, “Comparison of fluorescein angiography with microvascular anatomy of macaque retinas,” Exp. Eye Res. 61(1), 1–16 (1995).
[Crossref]

Camino, A.

A. Camino, R. Ng, J. Huang, Y. Guo, S. Ni, Y. Jia, D. Huang, and Y. Jian, “Depth-resolved optimization of real-time sensorless adaptive optics optical coherence tomography,” Opt. Lett. 45(9), 2612–2615 (2020).
[Crossref]

X. Wei, A. Camino, S. Pi, T. T. Hormel, W. Cepurna, D. Huang, J. C. Morrison, and Y. Jia, “Real-time cross-sectional and en face OCT angiography guiding high-quality scan acquisition,” Opt. Lett. 44(6), 1431–1434 (2019).
[Crossref]

Y. Guo, A. Camino, J. Wang, D. Huang, T. S. Hwang, and Y. Jia, “MEDnet, a neural network for automated detection of avascular area in OCT angiography,” Biomed. Opt. Express 9(11), 5147–5158 (2018).
[Crossref]

A. Camino, M. Zhang, L. Liu, J. Wang, Y. Jia, and D. Huang, “Enhanced quantification of retinal perfusion by improved discrimination of blood flow from bulk motion signal in OCTA,” Trans. Vis. Sci. Tech. 7(6), 20 (2018).
[Crossref]

A. Camino, M. Zhang, S. S. Gao, T. S. Hwang, U. Sharma, D. J. Wilson, D. Huang, and Y. Jia, “Evaluation of artifact reduction in optical coherence tomography angiography with real-time tracking and motion correction technology,” Biomed. Opt. Express 7(10), 3905–3915 (2016).
[Crossref]

A. Camino, M. Zhang, C. Dongye, A. D. Pechauer, T. S. Hwang, S. T. Bailey, B. Lujan, D. J. Wilson, D. Huang, and Y. Jia, “Automated registration and enhanced processing of clinical optical coherence tomography angiography,” Quant. Imaging Med. Surg. 6(4), 391–401 (2016).
[Crossref]

Q. You, Y. Guo, J. Wang, X. Wei, A. Camino, P. Zang, C. J. Flaxel, S. T. Bailey, D. Huang, Y. Jia, and T. S. Hwang, “Detection of clinically missed retinal neovascularization with wide-field optical coherence tomography angiography,” Retina (2019).

Campbell, J. P.

J. P. Campbell, M. Zhang, T. S. Hwang, S. T. Bailey, D. J. Wilson, Y. Jia, and D. Huang, “Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref]

M. Zhang, T. S. Hwang, J. P. Campbell, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Projection-resolved optical coherence tomographic angiography,” Biomed. Opt. Express 7(3), 816–828 (2016).
[Crossref]

T. S. Hwang, M. Zhang, K. Bhavsar, X. Zhang, J. P. Campbell, P. Lin, S. T. Bailey, C. J. Flaxel, A. K. Lauer, D. J. Wilson, D. Huang, and Y. Jia, “Visualization of 3 distinct retinal plexuses by projection-resolved optical coherence tomography angiography in diabetic retinopathyvisualization of retinal plexuses in diabetic retinopathyvisualization of retinal plexuses in diabetic retinopathy,” JAMA Ophthalmol. 134(12), 1411–1419 (2016).
[Crossref]

Carroll, J.

B. D. Krawitz, E. Phillips, R. D. Bavier, S. Mo, J. Carroll, R. B. Rosen, and T. Y. P. Chui, “Parafoveal nonperfusion analysis in diabetic retinopathy using optical coherence tomography angiography,” Trans. Vis. Sci. Tech. 7(4), 4 (2018).
[Crossref]

Cense, B.

M. Reddikumar, A. Tanabe, N. Hashimoto, and B. Cense, “Optical coherence tomography with a 2.8-mm beam diameter and sensorless defocus and astigmatism correction,” J. Biomed. Opt. 22(2), 026005 (2017).
[Crossref]

Cepurna, W.

Chai, H.

P. L. Nesper, P. K. Roberts, A. C. Onishi, H. Chai, L. Liu, L. M. Jampol, and A. A. Fawzi, “Quantifying microvascular abnormalities with increasing severity of diabetic retinopathy using optical coherence tomography angiography parameters correlate with DR Severity,” Invest. Ophthalmol. Visual Sci. 58(6), BIO307 (2017).
[Crossref]

Chen, C.-L.

J. R. de Oliveira Dias, Q. Zhang, J. M. B. Garcia, F. Zheng, E. H. Motulsky, L. Roisman, A. Miller, C.-L. Chen, S. Kubach, L. de Sisternes, M. K. Durbin, W. Feuer, R. K. Wang, G. Gregori, and P. J. Rosenfeld, “Natural History of Subclinical Neovascularization in Nonexudative Age-Related Macular Degeneration Using Swept-Source OCT Angiography,” Ophthalmology 125(2), 255–266 (2018).
[Crossref]

C.-L. Chen and R. K. Wang, “Optical coherence tomography based angiography [Invited],” Biomed. Opt. Express 8(2), 1056–1082 (2017).
[Crossref]

L. Roisman, Q. Zhang, R. K. Wang, G. Gregori, A. Zhang, C.-L. Chen, M. K. Durbin, L. An, P. F. Stetson, G. Robbins, A. Miller, F. Zheng, and P. J. Rosenfeld, “Optical coherence tomography angiography of asymptomatic neovascularization in intermediate age-related macular degeneration,” Ophthalmology 123(6), 1309–1319 (2016).
[Crossref]

Chen, Y.

Choi, J. C.

D. M. Snodderly, R. S. Weinhaus, and J. C. Choi, “Neural-vascular relationships in central retina of macaque monkeys (Macaca fascicularis),” J. Neurosci. 12(4), 1169–1193 (1992).
[Crossref]

Choi, W.

S. B. Ploner, E. M. Moult, W. Choi, N. K. Waheed, B. Lee, E. A. Novais, E. D. Cole, B. Potsaid, L. Husvogt, J. Schottenhamml, A. Maier, P. J. Rosenfeld, J. S. Duker, J. Hornegger, and J. G. Fujimoto, “Toward quantitative optical coherence tomography angiography: visualizing blood flow speeds in ocular pathology using variable interscan time analysis,” Retina 36(Suppl 1), S118–S126 (2016).
[Crossref]

Chui, T. Y. P.

B. D. Krawitz, E. Phillips, R. D. Bavier, S. Mo, J. Carroll, R. B. Rosen, and T. Y. P. Chui, “Parafoveal nonperfusion analysis in diabetic retinopathy using optical coherence tomography angiography,” Trans. Vis. Sci. Tech. 7(4), 4 (2018).
[Crossref]

B. D. Krawitz, S. Mo, L. S. Geyman, S. A. Agemy, N. K. Scripsema, P. M. Garcia, T. Y. P. Chui, and R. B. Rosen, “Acircularity index and axis ratio of the foveal avascular zone in diabetic eyes and healthy controls measured by optical coherence tomography angiography,” Vision Res. 139, 177–186 (2017).
[Crossref]

Cole, E.

J. Polans, D. Cunefare, E. Cole, B. Keller, P. S. Mettu, S. W. Cousins, M. J. Allingham, J. A. Izatt, and S. Farsiu, “Enhanced visualization of peripheral retinal vasculature with wavefront sensorless adaptive optics optical coherence tomography angiography in diabetic patients,” Opt. Lett. 42(1), 17–20 (2017).
[Crossref]

J. Schottenhamml, E. M. Moult, S. Ploner, B. Lee, E. A. Novais, E. Cole, S. Dang, C. D. Lu, L. Husvogt, N. K. Waheed, J. S. Duker, J. Hornegger, and J. G. Fujimoto, “An automatic, intercapillary area-based algorithm for quantifying diabetes-related capillary dropout using optical coherence tomography angiography,” Retina 36(Suppl 1), S93–S101 (2016).
[Crossref]

Cole, E. D.

M. Arya, C. B. Rebhun, E. D. Cole, A. S. Sabrosa, G. Arcos-Villegas, R. N. Louzada, E. A. Novais, M. Lane, S. Dang, M. Ávila, A. J. Witkin, C. R. Baumal, J. S. Duker, and N. K. Waheed, “Visualization of choroidal neovascularization using two commercially available spectral domain optical coherence tomography angiography devices,” Retina 39(9), 1682–1692 (2019).
[Crossref]

S. B. Ploner, E. M. Moult, W. Choi, N. K. Waheed, B. Lee, E. A. Novais, E. D. Cole, B. Potsaid, L. Husvogt, J. Schottenhamml, A. Maier, P. J. Rosenfeld, J. S. Duker, J. Hornegger, and J. G. Fujimoto, “Toward quantitative optical coherence tomography angiography: visualizing blood flow speeds in ocular pathology using variable interscan time analysis,” Retina 36(Suppl 1), S118–S126 (2016).
[Crossref]

Cousins, S. W.

Cunefare, D.

Dang, S.

M. Arya, C. B. Rebhun, E. D. Cole, A. S. Sabrosa, G. Arcos-Villegas, R. N. Louzada, E. A. Novais, M. Lane, S. Dang, M. Ávila, A. J. Witkin, C. R. Baumal, J. S. Duker, and N. K. Waheed, “Visualization of choroidal neovascularization using two commercially available spectral domain optical coherence tomography angiography devices,” Retina 39(9), 1682–1692 (2019).
[Crossref]

J. Schottenhamml, E. M. Moult, S. Ploner, B. Lee, E. A. Novais, E. Cole, S. Dang, C. D. Lu, L. Husvogt, N. K. Waheed, J. S. Duker, J. Hornegger, and J. G. Fujimoto, “An automatic, intercapillary area-based algorithm for quantifying diabetes-related capillary dropout using optical coherence tomography angiography,” Retina 36(Suppl 1), S93–S101 (2016).
[Crossref]

de Oliveira Dias, J. R.

J. R. de Oliveira Dias, Q. Zhang, J. M. B. Garcia, F. Zheng, E. H. Motulsky, L. Roisman, A. Miller, C.-L. Chen, S. Kubach, L. de Sisternes, M. K. Durbin, W. Feuer, R. K. Wang, G. Gregori, and P. J. Rosenfeld, “Natural History of Subclinical Neovascularization in Nonexudative Age-Related Macular Degeneration Using Swept-Source OCT Angiography,” Ophthalmology 125(2), 255–266 (2018).
[Crossref]

de Sisternes, L.

J. R. de Oliveira Dias, Q. Zhang, J. M. B. Garcia, F. Zheng, E. H. Motulsky, L. Roisman, A. Miller, C.-L. Chen, S. Kubach, L. de Sisternes, M. K. Durbin, W. Feuer, R. K. Wang, G. Gregori, and P. J. Rosenfeld, “Natural History of Subclinical Neovascularization in Nonexudative Age-Related Macular Degeneration Using Swept-Source OCT Angiography,” Ophthalmology 125(2), 255–266 (2018).
[Crossref]

Delori, F. C.

R. S. Weinhaus, J. M. Burke, F. C. Delori, and D. M. Snodderly, “Comparison of fluorescein angiography with microvascular anatomy of macaque retinas,” Exp. Eye Res. 61(1), 1–16 (1995).
[Crossref]

Dongye, C.

P. Zang, G. Liu, M. Zhang, C. Dongye, J. Wang, A. D. Pechauer, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram,” Biomed. Opt. Express 7(7), 2823–2836 (2016).
[Crossref]

A. Camino, M. Zhang, C. Dongye, A. D. Pechauer, T. S. Hwang, S. T. Bailey, B. Lujan, D. J. Wilson, D. Huang, and Y. Jia, “Automated registration and enhanced processing of clinical optical coherence tomography angiography,” Quant. Imaging Med. Surg. 6(4), 391–401 (2016).
[Crossref]

Drexler, W.

Duker, J. S.

M. Arya, C. B. Rebhun, E. D. Cole, A. S. Sabrosa, G. Arcos-Villegas, R. N. Louzada, E. A. Novais, M. Lane, S. Dang, M. Ávila, A. J. Witkin, C. R. Baumal, J. S. Duker, and N. K. Waheed, “Visualization of choroidal neovascularization using two commercially available spectral domain optical coherence tomography angiography devices,” Retina 39(9), 1682–1692 (2019).
[Crossref]

J. Schottenhamml, E. M. Moult, S. Ploner, B. Lee, E. A. Novais, E. Cole, S. Dang, C. D. Lu, L. Husvogt, N. K. Waheed, J. S. Duker, J. Hornegger, and J. G. Fujimoto, “An automatic, intercapillary area-based algorithm for quantifying diabetes-related capillary dropout using optical coherence tomography angiography,” Retina 36(Suppl 1), S93–S101 (2016).
[Crossref]

S. B. Ploner, E. M. Moult, W. Choi, N. K. Waheed, B. Lee, E. A. Novais, E. D. Cole, B. Potsaid, L. Husvogt, J. Schottenhamml, A. Maier, P. J. Rosenfeld, J. S. Duker, J. Hornegger, and J. G. Fujimoto, “Toward quantitative optical coherence tomography angiography: visualizing blood flow speeds in ocular pathology using variable interscan time analysis,” Retina 36(Suppl 1), S118–S126 (2016).
[Crossref]

Durbin, M. K.

J. R. de Oliveira Dias, Q. Zhang, J. M. B. Garcia, F. Zheng, E. H. Motulsky, L. Roisman, A. Miller, C.-L. Chen, S. Kubach, L. de Sisternes, M. K. Durbin, W. Feuer, R. K. Wang, G. Gregori, and P. J. Rosenfeld, “Natural History of Subclinical Neovascularization in Nonexudative Age-Related Macular Degeneration Using Swept-Source OCT Angiography,” Ophthalmology 125(2), 255–266 (2018).
[Crossref]

L. Roisman, Q. Zhang, R. K. Wang, G. Gregori, A. Zhang, C.-L. Chen, M. K. Durbin, L. An, P. F. Stetson, G. Robbins, A. Miller, F. Zheng, and P. J. Rosenfeld, “Optical coherence tomography angiography of asymptomatic neovascularization in intermediate age-related macular degeneration,” Ophthalmology 123(6), 1309–1319 (2016).
[Crossref]

Edmunds, B.

L. Liu, B. Alonzo, H. Takusagawa, J. C. Morrison, B. Edmunds, S. Tehrani, Y. Jia, and D. Huang, “Optical coherence tomography angiography of peripapillary retina pre-and post-trabeculectomy,” Invest. Ophthalmol. Visual Sci. 59, 5057 (2018).

Eibenberger, K.

R. Told, S. Sacu, A. Hecht, M. Baratsits, K. Eibenberger, M. E. Kroh, S. Rezar-Dreindl, F. G. Schlanitz, G. Weigert, A. Pollreisz, and U. Schmidt-Erfurth, “Comparison of SD-optical coherence tomography angiography and indocyanine green angiography in type 1 and 2 neovascular age-related macular degeneration OCTA ICGA comparison in nAMD,” Invest. Ophthalmol. Visual Sci. 59(6), 2393–2400 (2018).
[Crossref]

Farsiu, S.

Fawzi, A. A.

A. D. Treister, P. L. Nesper, A. E. Fayed, M. K. Gill, R. G. Mirza, and A. A. Fawzi, “Prevalence of Subclinical CNV and Choriocapillaris Nonperfusion in Fellow Eyes of Unilateral Exudative AMD on OCT AngiographyTreister et al,” Trans. Vis. Sci. Tech. 7(5), 19 (2018).
[Crossref]

P. L. Nesper, P. K. Roberts, A. C. Onishi, H. Chai, L. Liu, L. M. Jampol, and A. A. Fawzi, “Quantifying microvascular abnormalities with increasing severity of diabetic retinopathy using optical coherence tomography angiography parameters correlate with DR Severity,” Invest. Ophthalmol. Visual Sci. 58(6), BIO307 (2017).
[Crossref]

Fayed, A. E.

A. D. Treister, P. L. Nesper, A. E. Fayed, M. K. Gill, R. G. Mirza, and A. A. Fawzi, “Prevalence of Subclinical CNV and Choriocapillaris Nonperfusion in Fellow Eyes of Unilateral Exudative AMD on OCT AngiographyTreister et al,” Trans. Vis. Sci. Tech. 7(5), 19 (2018).
[Crossref]

Feuer, W.

J. R. de Oliveira Dias, Q. Zhang, J. M. B. Garcia, F. Zheng, E. H. Motulsky, L. Roisman, A. Miller, C.-L. Chen, S. Kubach, L. de Sisternes, M. K. Durbin, W. Feuer, R. K. Wang, G. Gregori, and P. J. Rosenfeld, “Natural History of Subclinical Neovascularization in Nonexudative Age-Related Macular Degeneration Using Swept-Source OCT Angiography,” Ophthalmology 125(2), 255–266 (2018).
[Crossref]

Fienup, J. R.

Flaxel, C. J.

S. M. McClintic, S. Gao, J. Wang, A. Hagag, A. K. Lauer, C. J. Flaxel, K. Bhavsar, T. S. Hwang, D. Huang, Y. Jia, and S. T. Bailey, “Quantitative evaluation of choroidal neovascularization under pro re nata anti-vascular endothelial growth factor therapy with OCT angiography,” Ophthalmol. Retina 2(9), 931–941 (2018).
[Crossref]

T. S. Hwang, M. Zhang, K. Bhavsar, X. Zhang, J. P. Campbell, P. Lin, S. T. Bailey, C. J. Flaxel, A. K. Lauer, D. J. Wilson, D. Huang, and Y. Jia, “Visualization of 3 distinct retinal plexuses by projection-resolved optical coherence tomography angiography in diabetic retinopathyvisualization of retinal plexuses in diabetic retinopathyvisualization of retinal plexuses in diabetic retinopathy,” JAMA Ophthalmol. 134(12), 1411–1419 (2016).
[Crossref]

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. 112(18), E2395–E2402 (2015).
[Crossref]

T. S. Hwang, Y. Jia, S. S. Gao, S. T. Bailey, A. K. Lauer, C. J. Flaxel, D. J. Wilson, and D. Huang, “Optical coherence tomography angiography features of diabetic retinopathy,” Retina 35(11), 2371–2376 (2015).
[Crossref]

Q. You, Y. Guo, J. Wang, X. Wei, A. Camino, P. Zang, C. J. Flaxel, S. T. Bailey, D. Huang, Y. Jia, and T. S. Hwang, “Detection of clinically missed retinal neovascularization with wide-field optical coherence tomography angiography,” Retina (2019).

Francis, P.

Fujimoto, J. G.

R. F. Spaide, J. G. Fujimoto, N. K. Waheed, S. R. Sadda, and G. Staurenghi, “Optical coherence tomography angiography,” Prog. Retinal Eye Res. 64, 1–55 (2018).
[Crossref]

J. Schottenhamml, E. M. Moult, S. Ploner, B. Lee, E. A. Novais, E. Cole, S. Dang, C. D. Lu, L. Husvogt, N. K. Waheed, J. S. Duker, J. Hornegger, and J. G. Fujimoto, “An automatic, intercapillary area-based algorithm for quantifying diabetes-related capillary dropout using optical coherence tomography angiography,” Retina 36(Suppl 1), S93–S101 (2016).
[Crossref]

S. B. Ploner, E. M. Moult, W. Choi, N. K. Waheed, B. Lee, E. A. Novais, E. D. Cole, B. Potsaid, L. Husvogt, J. Schottenhamml, A. Maier, P. J. Rosenfeld, J. S. Duker, J. Hornegger, and J. G. Fujimoto, “Toward quantitative optical coherence tomography angiography: visualizing blood flow speeds in ocular pathology using variable interscan time analysis,” Retina 36(Suppl 1), S118–S126 (2016).
[Crossref]

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. 112(18), E2395–E2402 (2015).
[Crossref]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref]

M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express 3(6), 1182–1199 (2012).
[Crossref]

M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express 3(6), 1182–1199 (2012).
[Crossref]

Gao, S.

S. M. McClintic, S. Gao, J. Wang, A. Hagag, A. K. Lauer, C. J. Flaxel, K. Bhavsar, T. S. Hwang, D. Huang, Y. Jia, and S. T. Bailey, “Quantitative evaluation of choroidal neovascularization under pro re nata anti-vascular endothelial growth factor therapy with OCT angiography,” Ophthalmol. Retina 2(9), 931–941 (2018).
[Crossref]

Gao, S. S.

A. Camino, M. Zhang, S. S. Gao, T. S. Hwang, U. Sharma, D. J. Wilson, D. Huang, and Y. Jia, “Evaluation of artifact reduction in optical coherence tomography angiography with real-time tracking and motion correction technology,” Biomed. Opt. Express 7(10), 3905–3915 (2016).
[Crossref]

S. S. Gao, Y. Jia, M. Zhang, J. P. Su, G. Liu, T. S. Hwang, S. T. Bailey, and D. Huang, “Optical Coherence Tomography Angiography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT27–OCT36 (2016).
[Crossref]

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. 112(18), E2395–E2402 (2015).
[Crossref]

T. S. Hwang, Y. Jia, S. S. Gao, S. T. Bailey, A. K. Lauer, C. J. Flaxel, D. J. Wilson, and D. Huang, “Optical coherence tomography angiography features of diabetic retinopathy,” Retina 35(11), 2371–2376 (2015).
[Crossref]

S. S. Gao, G. Liu, D. Huang, and Y. Jia, “Optimization of the split-spectrum amplitude-decorrelation angiography algorithm on a spectral optical coherence tomography system,” Opt. Lett. 40(10), 2305–2308 (2015).
[Crossref]

Garcia, J. M. B.

J. R. de Oliveira Dias, Q. Zhang, J. M. B. Garcia, F. Zheng, E. H. Motulsky, L. Roisman, A. Miller, C.-L. Chen, S. Kubach, L. de Sisternes, M. K. Durbin, W. Feuer, R. K. Wang, G. Gregori, and P. J. Rosenfeld, “Natural History of Subclinical Neovascularization in Nonexudative Age-Related Macular Degeneration Using Swept-Source OCT Angiography,” Ophthalmology 125(2), 255–266 (2018).
[Crossref]

Garcia, P. M.

B. D. Krawitz, S. Mo, L. S. Geyman, S. A. Agemy, N. K. Scripsema, P. M. Garcia, T. Y. P. Chui, and R. B. Rosen, “Acircularity index and axis ratio of the foveal avascular zone in diabetic eyes and healthy controls measured by optical coherence tomography angiography,” Vision Res. 139, 177–186 (2017).
[Crossref]

Geyman, L. S.

B. D. Krawitz, S. Mo, L. S. Geyman, S. A. Agemy, N. K. Scripsema, P. M. Garcia, T. Y. P. Chui, and R. B. Rosen, “Acircularity index and axis ratio of the foveal avascular zone in diabetic eyes and healthy controls measured by optical coherence tomography angiography,” Vision Res. 139, 177–186 (2017).
[Crossref]

Gill, M. K.

A. D. Treister, P. L. Nesper, A. E. Fayed, M. K. Gill, R. G. Mirza, and A. A. Fawzi, “Prevalence of Subclinical CNV and Choriocapillaris Nonperfusion in Fellow Eyes of Unilateral Exudative AMD on OCT AngiographyTreister et al,” Trans. Vis. Sci. Tech. 7(5), 19 (2018).
[Crossref]

Ginner, L.

Gregori, G.

J. R. de Oliveira Dias, Q. Zhang, J. M. B. Garcia, F. Zheng, E. H. Motulsky, L. Roisman, A. Miller, C.-L. Chen, S. Kubach, L. de Sisternes, M. K. Durbin, W. Feuer, R. K. Wang, G. Gregori, and P. J. Rosenfeld, “Natural History of Subclinical Neovascularization in Nonexudative Age-Related Macular Degeneration Using Swept-Source OCT Angiography,” Ophthalmology 125(2), 255–266 (2018).
[Crossref]

L. Roisman, Q. Zhang, R. K. Wang, G. Gregori, A. Zhang, C.-L. Chen, M. K. Durbin, L. An, P. F. Stetson, G. Robbins, A. Miller, F. Zheng, and P. J. Rosenfeld, “Optical coherence tomography angiography of asymptomatic neovascularization in intermediate age-related macular degeneration,” Ophthalmology 123(6), 1309–1319 (2016).
[Crossref]

Guizar-Sicairos, M.

Guo, Y.

Hafner, J.

Hagag, A.

S. M. McClintic, S. Gao, J. Wang, A. Hagag, A. K. Lauer, C. J. Flaxel, K. Bhavsar, T. S. Hwang, D. Huang, Y. Jia, and S. T. Bailey, “Quantitative evaluation of choroidal neovascularization under pro re nata anti-vascular endothelial growth factor therapy with OCT angiography,” Ophthalmol. Retina 2(9), 931–941 (2018).
[Crossref]

Hashimoto, N.

M. Reddikumar, A. Tanabe, N. Hashimoto, and B. Cense, “Optical coherence tomography with a 2.8-mm beam diameter and sensorless defocus and astigmatism correction,” J. Biomed. Opt. 22(2), 026005 (2017).
[Crossref]

Hecht, A.

R. Told, S. Sacu, A. Hecht, M. Baratsits, K. Eibenberger, M. E. Kroh, S. Rezar-Dreindl, F. G. Schlanitz, G. Weigert, A. Pollreisz, and U. Schmidt-Erfurth, “Comparison of SD-optical coherence tomography angiography and indocyanine green angiography in type 1 and 2 neovascular age-related macular degeneration OCTA ICGA comparison in nAMD,” Invest. Ophthalmol. Visual Sci. 59(6), 2393–2400 (2018).
[Crossref]

Heisler, M.

M. J. Ju, M. Heisler, A. Athwal, M. V. Sarunic, and Y. Jian, “Effective bidirectional scanning pattern for optical coherence tomography angiography,” Biomed. Opt. Express 9(5), 2336–2350 (2018).
[Crossref]

M. Heisler, S. Lee, Z. Mammo, Y. Jian, M. J. Ju, A. Merkur, E. Navajas, C. Balaratnasingam, M. F. Beg, and M. Sarunic, “Strip-based registration of serially acquired optical coherence tomography angiography,” J. Biomed. Opt. 22(3), 036007 (2017).
[Crossref]

M. J. Ju, M. Heisler, D. Wahl, Y. Jian, and M. Sarunic, “Multiscale sensorless adaptive optics OCT angiography system for in vivo human retinal imaging,” J. Biomed. Opt. 22(12), 1–12 (2017).
[Crossref]

Hong, Y.-J.

Hormel, T. T.

Hornegger, J.

J. Schottenhamml, E. M. Moult, S. Ploner, B. Lee, E. A. Novais, E. Cole, S. Dang, C. D. Lu, L. Husvogt, N. K. Waheed, J. S. Duker, J. Hornegger, and J. G. Fujimoto, “An automatic, intercapillary area-based algorithm for quantifying diabetes-related capillary dropout using optical coherence tomography angiography,” Retina 36(Suppl 1), S93–S101 (2016).
[Crossref]

S. B. Ploner, E. M. Moult, W. Choi, N. K. Waheed, B. Lee, E. A. Novais, E. D. Cole, B. Potsaid, L. Husvogt, J. Schottenhamml, A. Maier, P. J. Rosenfeld, J. S. Duker, J. Hornegger, and J. G. Fujimoto, “Toward quantitative optical coherence tomography angiography: visualizing blood flow speeds in ocular pathology using variable interscan time analysis,” Retina 36(Suppl 1), S118–S126 (2016).
[Crossref]

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. 112(18), E2395–E2402 (2015).
[Crossref]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref]

M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express 3(6), 1182–1199 (2012).
[Crossref]

M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express 3(6), 1182–1199 (2012).
[Crossref]

Huang, D.

A. Camino, R. Ng, J. Huang, Y. Guo, S. Ni, Y. Jia, D. Huang, and Y. Jian, “Depth-resolved optimization of real-time sensorless adaptive optics optical coherence tomography,” Opt. Lett. 45(9), 2612–2615 (2020).
[Crossref]

X. Wei, A. Camino, S. Pi, T. T. Hormel, W. Cepurna, D. Huang, J. C. Morrison, and Y. Jia, “Real-time cross-sectional and en face OCT angiography guiding high-quality scan acquisition,” Opt. Lett. 44(6), 1431–1434 (2019).
[Crossref]

L. Liu, B. Alonzo, H. Takusagawa, J. C. Morrison, B. Edmunds, S. Tehrani, Y. Jia, and D. Huang, “Optical coherence tomography angiography of peripapillary retina pre-and post-trabeculectomy,” Invest. Ophthalmol. Visual Sci. 59, 5057 (2018).

Y. Guo, A. Camino, J. Wang, D. Huang, T. S. Hwang, and Y. Jia, “MEDnet, a neural network for automated detection of avascular area in OCT angiography,” Biomed. Opt. Express 9(11), 5147–5158 (2018).
[Crossref]

A. Camino, M. Zhang, L. Liu, J. Wang, Y. Jia, and D. Huang, “Enhanced quantification of retinal perfusion by improved discrimination of blood flow from bulk motion signal in OCTA,” Trans. Vis. Sci. Tech. 7(6), 20 (2018).
[Crossref]

S. M. McClintic, S. Gao, J. Wang, A. Hagag, A. K. Lauer, C. J. Flaxel, K. Bhavsar, T. S. Hwang, D. Huang, Y. Jia, and S. T. Bailey, “Quantitative evaluation of choroidal neovascularization under pro re nata anti-vascular endothelial growth factor therapy with OCT angiography,” Ophthalmol. Retina 2(9), 931–941 (2018).
[Crossref]

J. P. Campbell, M. Zhang, T. S. Hwang, S. T. Bailey, D. J. Wilson, Y. Jia, and D. Huang, “Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref]

J. Wang, M. Zhang, T. S. Hwang, S. T. Bailey, D. Huang, D. J. Wilson, and Y. Jia, “Reflectance-based projection-resolved optical coherence tomography angiography [Invited],” Biomed. Opt. Express 8(3), 1536–1548 (2017).
[Crossref]

P. Zang, G. Liu, M. Zhang, J. Wang, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated three-dimensional registration and volume rebuilding for wide-field angiographic and structural optical coherence tomography,” J. Biomed. Opt. 22(2), 026001 (2017).
[Crossref]

A. Camino, M. Zhang, C. Dongye, A. D. Pechauer, T. S. Hwang, S. T. Bailey, B. Lujan, D. J. Wilson, D. Huang, and Y. Jia, “Automated registration and enhanced processing of clinical optical coherence tomography angiography,” Quant. Imaging Med. Surg. 6(4), 391–401 (2016).
[Crossref]

A. Camino, M. Zhang, S. S. Gao, T. S. Hwang, U. Sharma, D. J. Wilson, D. Huang, and Y. Jia, “Evaluation of artifact reduction in optical coherence tomography angiography with real-time tracking and motion correction technology,” Biomed. Opt. Express 7(10), 3905–3915 (2016).
[Crossref]

T. S. Hwang, M. Zhang, K. Bhavsar, X. Zhang, J. P. Campbell, P. Lin, S. T. Bailey, C. J. Flaxel, A. K. Lauer, D. J. Wilson, D. Huang, and Y. Jia, “Visualization of 3 distinct retinal plexuses by projection-resolved optical coherence tomography angiography in diabetic retinopathyvisualization of retinal plexuses in diabetic retinopathyvisualization of retinal plexuses in diabetic retinopathy,” JAMA Ophthalmol. 134(12), 1411–1419 (2016).
[Crossref]

M. Zhang, T. S. Hwang, J. P. Campbell, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Projection-resolved optical coherence tomographic angiography,” Biomed. Opt. Express 7(3), 816–828 (2016).
[Crossref]

S. S. Gao, Y. Jia, M. Zhang, J. P. Su, G. Liu, T. S. Hwang, S. T. Bailey, and D. Huang, “Optical Coherence Tomography Angiography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT27–OCT36 (2016).
[Crossref]

P. Zang, G. Liu, M. Zhang, C. Dongye, J. Wang, A. D. Pechauer, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram,” Biomed. Opt. Express 7(7), 2823–2836 (2016).
[Crossref]

S. S. Gao, G. Liu, D. Huang, and Y. Jia, “Optimization of the split-spectrum amplitude-decorrelation angiography algorithm on a spectral optical coherence tomography system,” Opt. Lett. 40(10), 2305–2308 (2015).
[Crossref]

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. 112(18), E2395–E2402 (2015).
[Crossref]

T. S. Hwang, Y. Jia, S. S. Gao, S. T. Bailey, A. K. Lauer, C. J. Flaxel, D. J. Wilson, and D. Huang, “Optical coherence tomography angiography features of diabetic retinopathy,” Retina 35(11), 2371–2376 (2015).
[Crossref]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref]

Q. You, Y. Guo, J. Wang, X. Wei, A. Camino, P. Zang, C. J. Flaxel, S. T. Bailey, D. Huang, Y. Jia, and T. S. Hwang, “Detection of clinically missed retinal neovascularization with wide-field optical coherence tomography angiography,” Retina (2019).

Huang, J.

A. Camino, R. Ng, J. Huang, Y. Guo, S. Ni, Y. Jia, D. Huang, and Y. Jian, “Depth-resolved optimization of real-time sensorless adaptive optics optical coherence tomography,” Opt. Lett. 45(9), 2612–2615 (2020).
[Crossref]

W. Janpongsri, J. Huang, R. Ng, D. J. Wahl, M. V. Sarunic, and Y. Jian, “Pseudo-real-time retinal layer segmentation for high-resolution adaptive optics optical coherence tomography,” Arxiv preprint arXiv:2004.05264 (2020).

Husvogt, L.

J. Schottenhamml, E. M. Moult, S. Ploner, B. Lee, E. A. Novais, E. Cole, S. Dang, C. D. Lu, L. Husvogt, N. K. Waheed, J. S. Duker, J. Hornegger, and J. G. Fujimoto, “An automatic, intercapillary area-based algorithm for quantifying diabetes-related capillary dropout using optical coherence tomography angiography,” Retina 36(Suppl 1), S93–S101 (2016).
[Crossref]

S. B. Ploner, E. M. Moult, W. Choi, N. K. Waheed, B. Lee, E. A. Novais, E. D. Cole, B. Potsaid, L. Husvogt, J. Schottenhamml, A. Maier, P. J. Rosenfeld, J. S. Duker, J. Hornegger, and J. G. Fujimoto, “Toward quantitative optical coherence tomography angiography: visualizing blood flow speeds in ocular pathology using variable interscan time analysis,” Retina 36(Suppl 1), S118–S126 (2016).
[Crossref]

Hwang, T. S.

Y. Guo, A. Camino, J. Wang, D. Huang, T. S. Hwang, and Y. Jia, “MEDnet, a neural network for automated detection of avascular area in OCT angiography,” Biomed. Opt. Express 9(11), 5147–5158 (2018).
[Crossref]

S. M. McClintic, S. Gao, J. Wang, A. Hagag, A. K. Lauer, C. J. Flaxel, K. Bhavsar, T. S. Hwang, D. Huang, Y. Jia, and S. T. Bailey, “Quantitative evaluation of choroidal neovascularization under pro re nata anti-vascular endothelial growth factor therapy with OCT angiography,” Ophthalmol. Retina 2(9), 931–941 (2018).
[Crossref]

J. P. Campbell, M. Zhang, T. S. Hwang, S. T. Bailey, D. J. Wilson, Y. Jia, and D. Huang, “Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref]

J. Wang, M. Zhang, T. S. Hwang, S. T. Bailey, D. Huang, D. J. Wilson, and Y. Jia, “Reflectance-based projection-resolved optical coherence tomography angiography [Invited],” Biomed. Opt. Express 8(3), 1536–1548 (2017).
[Crossref]

P. Zang, G. Liu, M. Zhang, J. Wang, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated three-dimensional registration and volume rebuilding for wide-field angiographic and structural optical coherence tomography,” J. Biomed. Opt. 22(2), 026001 (2017).
[Crossref]

A. Camino, M. Zhang, S. S. Gao, T. S. Hwang, U. Sharma, D. J. Wilson, D. Huang, and Y. Jia, “Evaluation of artifact reduction in optical coherence tomography angiography with real-time tracking and motion correction technology,” Biomed. Opt. Express 7(10), 3905–3915 (2016).
[Crossref]

A. Camino, M. Zhang, C. Dongye, A. D. Pechauer, T. S. Hwang, S. T. Bailey, B. Lujan, D. J. Wilson, D. Huang, and Y. Jia, “Automated registration and enhanced processing of clinical optical coherence tomography angiography,” Quant. Imaging Med. Surg. 6(4), 391–401 (2016).
[Crossref]

M. Zhang, T. S. Hwang, J. P. Campbell, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Projection-resolved optical coherence tomographic angiography,” Biomed. Opt. Express 7(3), 816–828 (2016).
[Crossref]

S. S. Gao, Y. Jia, M. Zhang, J. P. Su, G. Liu, T. S. Hwang, S. T. Bailey, and D. Huang, “Optical Coherence Tomography Angiography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT27–OCT36 (2016).
[Crossref]

T. S. Hwang, M. Zhang, K. Bhavsar, X. Zhang, J. P. Campbell, P. Lin, S. T. Bailey, C. J. Flaxel, A. K. Lauer, D. J. Wilson, D. Huang, and Y. Jia, “Visualization of 3 distinct retinal plexuses by projection-resolved optical coherence tomography angiography in diabetic retinopathyvisualization of retinal plexuses in diabetic retinopathyvisualization of retinal plexuses in diabetic retinopathy,” JAMA Ophthalmol. 134(12), 1411–1419 (2016).
[Crossref]

P. Zang, G. Liu, M. Zhang, C. Dongye, J. Wang, A. D. Pechauer, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram,” Biomed. Opt. Express 7(7), 2823–2836 (2016).
[Crossref]

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. 112(18), E2395–E2402 (2015).
[Crossref]

T. S. Hwang, Y. Jia, S. S. Gao, S. T. Bailey, A. K. Lauer, C. J. Flaxel, D. J. Wilson, and D. Huang, “Optical coherence tomography angiography features of diabetic retinopathy,” Retina 35(11), 2371–2376 (2015).
[Crossref]

Q. You, Y. Guo, J. Wang, X. Wei, A. Camino, P. Zang, C. J. Flaxel, S. T. Bailey, D. Huang, Y. Jia, and T. S. Hwang, “Detection of clinically missed retinal neovascularization with wide-field optical coherence tomography angiography,” Retina (2019).

Iafe, N. A.

M. Al-Sheikh, N. A. Iafe, N. Phasukkijwatana, S. R. Sadda, and D. Sarraf, “Biomarkers of neovascular activity in age-related macular degeneration using optical coherence tomography angiography,” Retina 38(2), 220–230 (2018).
[Crossref]

Izatt, J. A.

Jampol, L. M.

P. L. Nesper, P. K. Roberts, A. C. Onishi, H. Chai, L. Liu, L. M. Jampol, and A. A. Fawzi, “Quantifying microvascular abnormalities with increasing severity of diabetic retinopathy using optical coherence tomography angiography parameters correlate with DR Severity,” Invest. Ophthalmol. Visual Sci. 58(6), BIO307 (2017).
[Crossref]

Janpongsri, W.

W. Janpongsri, J. Huang, R. Ng, D. J. Wahl, M. V. Sarunic, and Y. Jian, “Pseudo-real-time retinal layer segmentation for high-resolution adaptive optics optical coherence tomography,” Arxiv preprint arXiv:2004.05264 (2020).

Jia, Y.

A. Camino, R. Ng, J. Huang, Y. Guo, S. Ni, Y. Jia, D. Huang, and Y. Jian, “Depth-resolved optimization of real-time sensorless adaptive optics optical coherence tomography,” Opt. Lett. 45(9), 2612–2615 (2020).
[Crossref]

X. Wei, A. Camino, S. Pi, T. T. Hormel, W. Cepurna, D. Huang, J. C. Morrison, and Y. Jia, “Real-time cross-sectional and en face OCT angiography guiding high-quality scan acquisition,” Opt. Lett. 44(6), 1431–1434 (2019).
[Crossref]

X. Wei, T. T. Hormel, S. Pi, Y. Guo, Y. Jian, and Y. Jia, “High dynamic range optical coherence tomography angiography (HDR-OCTA),” Biomed. Opt. Express 10(7), 3560–3571 (2019).
[Crossref]

L. Liu, B. Alonzo, H. Takusagawa, J. C. Morrison, B. Edmunds, S. Tehrani, Y. Jia, and D. Huang, “Optical coherence tomography angiography of peripapillary retina pre-and post-trabeculectomy,” Invest. Ophthalmol. Visual Sci. 59, 5057 (2018).

Y. Guo, A. Camino, J. Wang, D. Huang, T. S. Hwang, and Y. Jia, “MEDnet, a neural network for automated detection of avascular area in OCT angiography,” Biomed. Opt. Express 9(11), 5147–5158 (2018).
[Crossref]

S. M. McClintic, S. Gao, J. Wang, A. Hagag, A. K. Lauer, C. J. Flaxel, K. Bhavsar, T. S. Hwang, D. Huang, Y. Jia, and S. T. Bailey, “Quantitative evaluation of choroidal neovascularization under pro re nata anti-vascular endothelial growth factor therapy with OCT angiography,” Ophthalmol. Retina 2(9), 931–941 (2018).
[Crossref]

A. Camino, M. Zhang, L. Liu, J. Wang, Y. Jia, and D. Huang, “Enhanced quantification of retinal perfusion by improved discrimination of blood flow from bulk motion signal in OCTA,” Trans. Vis. Sci. Tech. 7(6), 20 (2018).
[Crossref]

J. P. Campbell, M. Zhang, T. S. Hwang, S. T. Bailey, D. J. Wilson, Y. Jia, and D. Huang, “Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref]

J. Wang, M. Zhang, T. S. Hwang, S. T. Bailey, D. Huang, D. J. Wilson, and Y. Jia, “Reflectance-based projection-resolved optical coherence tomography angiography [Invited],” Biomed. Opt. Express 8(3), 1536–1548 (2017).
[Crossref]

P. Zang, G. Liu, M. Zhang, J. Wang, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated three-dimensional registration and volume rebuilding for wide-field angiographic and structural optical coherence tomography,” J. Biomed. Opt. 22(2), 026001 (2017).
[Crossref]

A. Camino, M. Zhang, S. S. Gao, T. S. Hwang, U. Sharma, D. J. Wilson, D. Huang, and Y. Jia, “Evaluation of artifact reduction in optical coherence tomography angiography with real-time tracking and motion correction technology,” Biomed. Opt. Express 7(10), 3905–3915 (2016).
[Crossref]

A. Camino, M. Zhang, C. Dongye, A. D. Pechauer, T. S. Hwang, S. T. Bailey, B. Lujan, D. J. Wilson, D. Huang, and Y. Jia, “Automated registration and enhanced processing of clinical optical coherence tomography angiography,” Quant. Imaging Med. Surg. 6(4), 391–401 (2016).
[Crossref]

M. Zhang, T. S. Hwang, J. P. Campbell, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Projection-resolved optical coherence tomographic angiography,” Biomed. Opt. Express 7(3), 816–828 (2016).
[Crossref]

T. S. Hwang, M. Zhang, K. Bhavsar, X. Zhang, J. P. Campbell, P. Lin, S. T. Bailey, C. J. Flaxel, A. K. Lauer, D. J. Wilson, D. Huang, and Y. Jia, “Visualization of 3 distinct retinal plexuses by projection-resolved optical coherence tomography angiography in diabetic retinopathyvisualization of retinal plexuses in diabetic retinopathyvisualization of retinal plexuses in diabetic retinopathy,” JAMA Ophthalmol. 134(12), 1411–1419 (2016).
[Crossref]

S. S. Gao, Y. Jia, M. Zhang, J. P. Su, G. Liu, T. S. Hwang, S. T. Bailey, and D. Huang, “Optical Coherence Tomography Angiography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT27–OCT36 (2016).
[Crossref]

P. Zang, G. Liu, M. Zhang, C. Dongye, J. Wang, A. D. Pechauer, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram,” Biomed. Opt. Express 7(7), 2823–2836 (2016).
[Crossref]

S. S. Gao, G. Liu, D. Huang, and Y. Jia, “Optimization of the split-spectrum amplitude-decorrelation angiography algorithm on a spectral optical coherence tomography system,” Opt. Lett. 40(10), 2305–2308 (2015).
[Crossref]

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. 112(18), E2395–E2402 (2015).
[Crossref]

T. S. Hwang, Y. Jia, S. S. Gao, S. T. Bailey, A. K. Lauer, C. J. Flaxel, D. J. Wilson, and D. Huang, “Optical coherence tomography angiography features of diabetic retinopathy,” Retina 35(11), 2371–2376 (2015).
[Crossref]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref]

Q. You, Y. Guo, J. Wang, X. Wei, A. Camino, P. Zang, C. J. Flaxel, S. T. Bailey, D. Huang, Y. Jia, and T. S. Hwang, “Detection of clinically missed retinal neovascularization with wide-field optical coherence tomography angiography,” Retina (2019).

Jian, Y.

A. Camino, R. Ng, J. Huang, Y. Guo, S. Ni, Y. Jia, D. Huang, and Y. Jian, “Depth-resolved optimization of real-time sensorless adaptive optics optical coherence tomography,” Opt. Lett. 45(9), 2612–2615 (2020).
[Crossref]

D. J. Wahl, R. Ng, M. J. Ju, Y. Jian, and M. V. Sarunic, “Sensorless adaptive optics multimodal en-face small animal retinal imaging,” Biomed. Opt. Express 10(1), 252–267 (2019).
[Crossref]

X. Wei, T. T. Hormel, S. Pi, Y. Guo, Y. Jian, and Y. Jia, “High dynamic range optical coherence tomography angiography (HDR-OCTA),” Biomed. Opt. Express 10(7), 3560–3571 (2019).
[Crossref]

M. J. Ju, M. Heisler, A. Athwal, M. V. Sarunic, and Y. Jian, “Effective bidirectional scanning pattern for optical coherence tomography angiography,” Biomed. Opt. Express 9(5), 2336–2350 (2018).
[Crossref]

M. J. Ju, M. Heisler, D. Wahl, Y. Jian, and M. Sarunic, “Multiscale sensorless adaptive optics OCT angiography system for in vivo human retinal imaging,” J. Biomed. Opt. 22(12), 1–12 (2017).
[Crossref]

M. Heisler, S. Lee, Z. Mammo, Y. Jian, M. J. Ju, A. Merkur, E. Navajas, C. Balaratnasingam, M. F. Beg, and M. Sarunic, “Strip-based registration of serially acquired optical coherence tomography angiography,” J. Biomed. Opt. 22(3), 036007 (2017).
[Crossref]

J. Xu, K. Wong, Y. Jian, and M. Sarunic, “Real-time acquisition and display of flow contrast using speckle variance optical coherence tomography in a graphics processing unit,” J. Biomed. Opt. 19(2), 026001 (2014).
[Crossref]

Y. Jian, K. Wong, and M. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. Biomed. Opt. 18(2), 026002 (2013).
[Crossref]

W. Janpongsri, J. Huang, R. Ng, D. J. Wahl, M. V. Sarunic, and Y. Jian, “Pseudo-real-time retinal layer segmentation for high-resolution adaptive optics optical coherence tomography,” Arxiv preprint arXiv:2004.05264 (2020).

Ju, M. J.

D. J. Wahl, R. Ng, M. J. Ju, Y. Jian, and M. V. Sarunic, “Sensorless adaptive optics multimodal en-face small animal retinal imaging,” Biomed. Opt. Express 10(1), 252–267 (2019).
[Crossref]

M. J. Ju, M. Heisler, A. Athwal, M. V. Sarunic, and Y. Jian, “Effective bidirectional scanning pattern for optical coherence tomography angiography,” Biomed. Opt. Express 9(5), 2336–2350 (2018).
[Crossref]

M. J. Ju, M. Heisler, D. Wahl, Y. Jian, and M. Sarunic, “Multiscale sensorless adaptive optics OCT angiography system for in vivo human retinal imaging,” J. Biomed. Opt. 22(12), 1–12 (2017).
[Crossref]

M. Heisler, S. Lee, Z. Mammo, Y. Jian, M. J. Ju, A. Merkur, E. Navajas, C. Balaratnasingam, M. F. Beg, and M. Sarunic, “Strip-based registration of serially acquired optical coherence tomography angiography,” J. Biomed. Opt. 22(3), 036007 (2017).
[Crossref]

Keller, B.

Kraus, M. F.

Krawitz, B. D.

B. D. Krawitz, E. Phillips, R. D. Bavier, S. Mo, J. Carroll, R. B. Rosen, and T. Y. P. Chui, “Parafoveal nonperfusion analysis in diabetic retinopathy using optical coherence tomography angiography,” Trans. Vis. Sci. Tech. 7(4), 4 (2018).
[Crossref]

B. D. Krawitz, S. Mo, L. S. Geyman, S. A. Agemy, N. K. Scripsema, P. M. Garcia, T. Y. P. Chui, and R. B. Rosen, “Acircularity index and axis ratio of the foveal avascular zone in diabetic eyes and healthy controls measured by optical coherence tomography angiography,” Vision Res. 139, 177–186 (2017).
[Crossref]

Kroh, M. E.

R. Told, S. Sacu, A. Hecht, M. Baratsits, K. Eibenberger, M. E. Kroh, S. Rezar-Dreindl, F. G. Schlanitz, G. Weigert, A. Pollreisz, and U. Schmidt-Erfurth, “Comparison of SD-optical coherence tomography angiography and indocyanine green angiography in type 1 and 2 neovascular age-related macular degeneration OCTA ICGA comparison in nAMD,” Invest. Ophthalmol. Visual Sci. 59(6), 2393–2400 (2018).
[Crossref]

Kubach, S.

J. R. de Oliveira Dias, Q. Zhang, J. M. B. Garcia, F. Zheng, E. H. Motulsky, L. Roisman, A. Miller, C.-L. Chen, S. Kubach, L. de Sisternes, M. K. Durbin, W. Feuer, R. K. Wang, G. Gregori, and P. J. Rosenfeld, “Natural History of Subclinical Neovascularization in Nonexudative Age-Related Macular Degeneration Using Swept-Source OCT Angiography,” Ophthalmology 125(2), 255–266 (2018).
[Crossref]

Kumar, A.

Kurokawa, K.

Lane, M.

M. Arya, C. B. Rebhun, E. D. Cole, A. S. Sabrosa, G. Arcos-Villegas, R. N. Louzada, E. A. Novais, M. Lane, S. Dang, M. Ávila, A. J. Witkin, C. R. Baumal, J. S. Duker, and N. K. Waheed, “Visualization of choroidal neovascularization using two commercially available spectral domain optical coherence tomography angiography devices,” Retina 39(9), 1682–1692 (2019).
[Crossref]

Lauer, A. K.

S. M. McClintic, S. Gao, J. Wang, A. Hagag, A. K. Lauer, C. J. Flaxel, K. Bhavsar, T. S. Hwang, D. Huang, Y. Jia, and S. T. Bailey, “Quantitative evaluation of choroidal neovascularization under pro re nata anti-vascular endothelial growth factor therapy with OCT angiography,” Ophthalmol. Retina 2(9), 931–941 (2018).
[Crossref]

T. S. Hwang, M. Zhang, K. Bhavsar, X. Zhang, J. P. Campbell, P. Lin, S. T. Bailey, C. J. Flaxel, A. K. Lauer, D. J. Wilson, D. Huang, and Y. Jia, “Visualization of 3 distinct retinal plexuses by projection-resolved optical coherence tomography angiography in diabetic retinopathyvisualization of retinal plexuses in diabetic retinopathyvisualization of retinal plexuses in diabetic retinopathy,” JAMA Ophthalmol. 134(12), 1411–1419 (2016).
[Crossref]

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. 112(18), E2395–E2402 (2015).
[Crossref]

T. S. Hwang, Y. Jia, S. S. Gao, S. T. Bailey, A. K. Lauer, C. J. Flaxel, D. J. Wilson, and D. Huang, “Optical coherence tomography angiography features of diabetic retinopathy,” Retina 35(11), 2371–2376 (2015).
[Crossref]

Lee, B.

J. Schottenhamml, E. M. Moult, S. Ploner, B. Lee, E. A. Novais, E. Cole, S. Dang, C. D. Lu, L. Husvogt, N. K. Waheed, J. S. Duker, J. Hornegger, and J. G. Fujimoto, “An automatic, intercapillary area-based algorithm for quantifying diabetes-related capillary dropout using optical coherence tomography angiography,” Retina 36(Suppl 1), S93–S101 (2016).
[Crossref]

S. B. Ploner, E. M. Moult, W. Choi, N. K. Waheed, B. Lee, E. A. Novais, E. D. Cole, B. Potsaid, L. Husvogt, J. Schottenhamml, A. Maier, P. J. Rosenfeld, J. S. Duker, J. Hornegger, and J. G. Fujimoto, “Toward quantitative optical coherence tomography angiography: visualizing blood flow speeds in ocular pathology using variable interscan time analysis,” Retina 36(Suppl 1), S118–S126 (2016).
[Crossref]

Lee, S.

M. Heisler, S. Lee, Z. Mammo, Y. Jian, M. J. Ju, A. Merkur, E. Navajas, C. Balaratnasingam, M. F. Beg, and M. Sarunic, “Strip-based registration of serially acquired optical coherence tomography angiography,” J. Biomed. Opt. 22(3), 036007 (2017).
[Crossref]

Leitgeb, R.

Li, D.

P. Zang, G. Liu, M. Zhang, J. Wang, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated three-dimensional registration and volume rebuilding for wide-field angiographic and structural optical coherence tomography,” J. Biomed. Opt. 22(2), 026001 (2017).
[Crossref]

P. Zang, G. Liu, M. Zhang, C. Dongye, J. Wang, A. D. Pechauer, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram,” Biomed. Opt. Express 7(7), 2823–2836 (2016).
[Crossref]

Lin, P.

T. S. Hwang, M. Zhang, K. Bhavsar, X. Zhang, J. P. Campbell, P. Lin, S. T. Bailey, C. J. Flaxel, A. K. Lauer, D. J. Wilson, D. Huang, and Y. Jia, “Visualization of 3 distinct retinal plexuses by projection-resolved optical coherence tomography angiography in diabetic retinopathyvisualization of retinal plexuses in diabetic retinopathyvisualization of retinal plexuses in diabetic retinopathy,” JAMA Ophthalmol. 134(12), 1411–1419 (2016).
[Crossref]

Liu, G.

P. Zang, G. Liu, M. Zhang, J. Wang, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated three-dimensional registration and volume rebuilding for wide-field angiographic and structural optical coherence tomography,” J. Biomed. Opt. 22(2), 026001 (2017).
[Crossref]

S. S. Gao, Y. Jia, M. Zhang, J. P. Su, G. Liu, T. S. Hwang, S. T. Bailey, and D. Huang, “Optical Coherence Tomography Angiography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT27–OCT36 (2016).
[Crossref]

P. Zang, G. Liu, M. Zhang, C. Dongye, J. Wang, A. D. Pechauer, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram,” Biomed. Opt. Express 7(7), 2823–2836 (2016).
[Crossref]

S. S. Gao, G. Liu, D. Huang, and Y. Jia, “Optimization of the split-spectrum amplitude-decorrelation angiography algorithm on a spectral optical coherence tomography system,” Opt. Lett. 40(10), 2305–2308 (2015).
[Crossref]

Liu, J. J.

Liu, L.

L. Liu, B. Alonzo, H. Takusagawa, J. C. Morrison, B. Edmunds, S. Tehrani, Y. Jia, and D. Huang, “Optical coherence tomography angiography of peripapillary retina pre-and post-trabeculectomy,” Invest. Ophthalmol. Visual Sci. 59, 5057 (2018).

A. Camino, M. Zhang, L. Liu, J. Wang, Y. Jia, and D. Huang, “Enhanced quantification of retinal perfusion by improved discrimination of blood flow from bulk motion signal in OCTA,” Trans. Vis. Sci. Tech. 7(6), 20 (2018).
[Crossref]

P. L. Nesper, P. K. Roberts, A. C. Onishi, H. Chai, L. Liu, L. M. Jampol, and A. A. Fawzi, “Quantifying microvascular abnormalities with increasing severity of diabetic retinopathy using optical coherence tomography angiography parameters correlate with DR Severity,” Invest. Ophthalmol. Visual Sci. 58(6), BIO307 (2017).
[Crossref]

Liu, Z.

Louzada, R. N.

M. Arya, C. B. Rebhun, E. D. Cole, A. S. Sabrosa, G. Arcos-Villegas, R. N. Louzada, E. A. Novais, M. Lane, S. Dang, M. Ávila, A. J. Witkin, C. R. Baumal, J. S. Duker, and N. K. Waheed, “Visualization of choroidal neovascularization using two commercially available spectral domain optical coherence tomography angiography devices,” Retina 39(9), 1682–1692 (2019).
[Crossref]

Lu, C. D.

J. Schottenhamml, E. M. Moult, S. Ploner, B. Lee, E. A. Novais, E. Cole, S. Dang, C. D. Lu, L. Husvogt, N. K. Waheed, J. S. Duker, J. Hornegger, and J. G. Fujimoto, “An automatic, intercapillary area-based algorithm for quantifying diabetes-related capillary dropout using optical coherence tomography angiography,” Retina 36(Suppl 1), S93–S101 (2016).
[Crossref]

Lujan, B.

A. Camino, M. Zhang, C. Dongye, A. D. Pechauer, T. S. Hwang, S. T. Bailey, B. Lujan, D. J. Wilson, D. Huang, and Y. Jia, “Automated registration and enhanced processing of clinical optical coherence tomography angiography,” Quant. Imaging Med. Surg. 6(4), 391–401 (2016).
[Crossref]

Maier, A.

S. B. Ploner, E. M. Moult, W. Choi, N. K. Waheed, B. Lee, E. A. Novais, E. D. Cole, B. Potsaid, L. Husvogt, J. Schottenhamml, A. Maier, P. J. Rosenfeld, J. S. Duker, J. Hornegger, and J. G. Fujimoto, “Toward quantitative optical coherence tomography angiography: visualizing blood flow speeds in ocular pathology using variable interscan time analysis,” Retina 36(Suppl 1), S118–S126 (2016).
[Crossref]

Makita, S.

Mammo, Z.

M. Heisler, S. Lee, Z. Mammo, Y. Jian, M. J. Ju, A. Merkur, E. Navajas, C. Balaratnasingam, M. F. Beg, and M. Sarunic, “Strip-based registration of serially acquired optical coherence tomography angiography,” J. Biomed. Opt. 22(3), 036007 (2017).
[Crossref]

Mayer, M. A.

McClintic, S. M.

S. M. McClintic, S. Gao, J. Wang, A. Hagag, A. K. Lauer, C. J. Flaxel, K. Bhavsar, T. S. Hwang, D. Huang, Y. Jia, and S. T. Bailey, “Quantitative evaluation of choroidal neovascularization under pro re nata anti-vascular endothelial growth factor therapy with OCT angiography,” Ophthalmol. Retina 2(9), 931–941 (2018).
[Crossref]

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. 112(18), E2395–E2402 (2015).
[Crossref]

Merkur, A.

M. Heisler, S. Lee, Z. Mammo, Y. Jian, M. J. Ju, A. Merkur, E. Navajas, C. Balaratnasingam, M. F. Beg, and M. Sarunic, “Strip-based registration of serially acquired optical coherence tomography angiography,” J. Biomed. Opt. 22(3), 036007 (2017).
[Crossref]

Mettu, P. S.

Miller, A.

J. R. de Oliveira Dias, Q. Zhang, J. M. B. Garcia, F. Zheng, E. H. Motulsky, L. Roisman, A. Miller, C.-L. Chen, S. Kubach, L. de Sisternes, M. K. Durbin, W. Feuer, R. K. Wang, G. Gregori, and P. J. Rosenfeld, “Natural History of Subclinical Neovascularization in Nonexudative Age-Related Macular Degeneration Using Swept-Source OCT Angiography,” Ophthalmology 125(2), 255–266 (2018).
[Crossref]

L. Roisman, Q. Zhang, R. K. Wang, G. Gregori, A. Zhang, C.-L. Chen, M. K. Durbin, L. An, P. F. Stetson, G. Robbins, A. Miller, F. Zheng, and P. J. Rosenfeld, “Optical coherence tomography angiography of asymptomatic neovascularization in intermediate age-related macular degeneration,” Ophthalmology 123(6), 1309–1319 (2016).
[Crossref]

Miller, D. T.

Mirza, R. G.

A. D. Treister, P. L. Nesper, A. E. Fayed, M. K. Gill, R. G. Mirza, and A. A. Fawzi, “Prevalence of Subclinical CNV and Choriocapillaris Nonperfusion in Fellow Eyes of Unilateral Exudative AMD on OCT AngiographyTreister et al,” Trans. Vis. Sci. Tech. 7(5), 19 (2018).
[Crossref]

Mo, S.

B. D. Krawitz, E. Phillips, R. D. Bavier, S. Mo, J. Carroll, R. B. Rosen, and T. Y. P. Chui, “Parafoveal nonperfusion analysis in diabetic retinopathy using optical coherence tomography angiography,” Trans. Vis. Sci. Tech. 7(4), 4 (2018).
[Crossref]

B. D. Krawitz, S. Mo, L. S. Geyman, S. A. Agemy, N. K. Scripsema, P. M. Garcia, T. Y. P. Chui, and R. B. Rosen, “Acircularity index and axis ratio of the foveal avascular zone in diabetic eyes and healthy controls measured by optical coherence tomography angiography,” Vision Res. 139, 177–186 (2017).
[Crossref]

Morrison, J. C.

X. Wei, A. Camino, S. Pi, T. T. Hormel, W. Cepurna, D. Huang, J. C. Morrison, and Y. Jia, “Real-time cross-sectional and en face OCT angiography guiding high-quality scan acquisition,” Opt. Lett. 44(6), 1431–1434 (2019).
[Crossref]

L. Liu, B. Alonzo, H. Takusagawa, J. C. Morrison, B. Edmunds, S. Tehrani, Y. Jia, and D. Huang, “Optical coherence tomography angiography of peripapillary retina pre-and post-trabeculectomy,” Invest. Ophthalmol. Visual Sci. 59, 5057 (2018).

Motulsky, E. H.

J. R. de Oliveira Dias, Q. Zhang, J. M. B. Garcia, F. Zheng, E. H. Motulsky, L. Roisman, A. Miller, C.-L. Chen, S. Kubach, L. de Sisternes, M. K. Durbin, W. Feuer, R. K. Wang, G. Gregori, and P. J. Rosenfeld, “Natural History of Subclinical Neovascularization in Nonexudative Age-Related Macular Degeneration Using Swept-Source OCT Angiography,” Ophthalmology 125(2), 255–266 (2018).
[Crossref]

Moult, E. M.

J. Schottenhamml, E. M. Moult, S. Ploner, B. Lee, E. A. Novais, E. Cole, S. Dang, C. D. Lu, L. Husvogt, N. K. Waheed, J. S. Duker, J. Hornegger, and J. G. Fujimoto, “An automatic, intercapillary area-based algorithm for quantifying diabetes-related capillary dropout using optical coherence tomography angiography,” Retina 36(Suppl 1), S93–S101 (2016).
[Crossref]

S. B. Ploner, E. M. Moult, W. Choi, N. K. Waheed, B. Lee, E. A. Novais, E. D. Cole, B. Potsaid, L. Husvogt, J. Schottenhamml, A. Maier, P. J. Rosenfeld, J. S. Duker, J. Hornegger, and J. G. Fujimoto, “Toward quantitative optical coherence tomography angiography: visualizing blood flow speeds in ocular pathology using variable interscan time analysis,” Retina 36(Suppl 1), S118–S126 (2016).
[Crossref]

Navajas, E.

M. Heisler, S. Lee, Z. Mammo, Y. Jian, M. J. Ju, A. Merkur, E. Navajas, C. Balaratnasingam, M. F. Beg, and M. Sarunic, “Strip-based registration of serially acquired optical coherence tomography angiography,” J. Biomed. Opt. 22(3), 036007 (2017).
[Crossref]

Nesper, P. L.

A. D. Treister, P. L. Nesper, A. E. Fayed, M. K. Gill, R. G. Mirza, and A. A. Fawzi, “Prevalence of Subclinical CNV and Choriocapillaris Nonperfusion in Fellow Eyes of Unilateral Exudative AMD on OCT AngiographyTreister et al,” Trans. Vis. Sci. Tech. 7(5), 19 (2018).
[Crossref]

P. L. Nesper, P. K. Roberts, A. C. Onishi, H. Chai, L. Liu, L. M. Jampol, and A. A. Fawzi, “Quantifying microvascular abnormalities with increasing severity of diabetic retinopathy using optical coherence tomography angiography parameters correlate with DR Severity,” Invest. Ophthalmol. Visual Sci. 58(6), BIO307 (2017).
[Crossref]

Ng, R.

Ni, S.

Novais, E. A.

M. Arya, C. B. Rebhun, E. D. Cole, A. S. Sabrosa, G. Arcos-Villegas, R. N. Louzada, E. A. Novais, M. Lane, S. Dang, M. Ávila, A. J. Witkin, C. R. Baumal, J. S. Duker, and N. K. Waheed, “Visualization of choroidal neovascularization using two commercially available spectral domain optical coherence tomography angiography devices,” Retina 39(9), 1682–1692 (2019).
[Crossref]

J. Schottenhamml, E. M. Moult, S. Ploner, B. Lee, E. A. Novais, E. Cole, S. Dang, C. D. Lu, L. Husvogt, N. K. Waheed, J. S. Duker, J. Hornegger, and J. G. Fujimoto, “An automatic, intercapillary area-based algorithm for quantifying diabetes-related capillary dropout using optical coherence tomography angiography,” Retina 36(Suppl 1), S93–S101 (2016).
[Crossref]

S. B. Ploner, E. M. Moult, W. Choi, N. K. Waheed, B. Lee, E. A. Novais, E. D. Cole, B. Potsaid, L. Husvogt, J. Schottenhamml, A. Maier, P. J. Rosenfeld, J. S. Duker, J. Hornegger, and J. G. Fujimoto, “Toward quantitative optical coherence tomography angiography: visualizing blood flow speeds in ocular pathology using variable interscan time analysis,” Retina 36(Suppl 1), S118–S126 (2016).
[Crossref]

Onishi, A. C.

P. L. Nesper, P. K. Roberts, A. C. Onishi, H. Chai, L. Liu, L. M. Jampol, and A. A. Fawzi, “Quantifying microvascular abnormalities with increasing severity of diabetic retinopathy using optical coherence tomography angiography parameters correlate with DR Severity,” Invest. Ophthalmol. Visual Sci. 58(6), BIO307 (2017).
[Crossref]

Pechauer, A. D.

A. Camino, M. Zhang, C. Dongye, A. D. Pechauer, T. S. Hwang, S. T. Bailey, B. Lujan, D. J. Wilson, D. Huang, and Y. Jia, “Automated registration and enhanced processing of clinical optical coherence tomography angiography,” Quant. Imaging Med. Surg. 6(4), 391–401 (2016).
[Crossref]

P. Zang, G. Liu, M. Zhang, C. Dongye, J. Wang, A. D. Pechauer, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram,” Biomed. Opt. Express 7(7), 2823–2836 (2016).
[Crossref]

Pennesi, M. E.

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. 112(18), E2395–E2402 (2015).
[Crossref]

Phasukkijwatana, N.

M. Al-Sheikh, N. A. Iafe, N. Phasukkijwatana, S. R. Sadda, and D. Sarraf, “Biomarkers of neovascular activity in age-related macular degeneration using optical coherence tomography angiography,” Retina 38(2), 220–230 (2018).
[Crossref]

Phillips, E.

B. D. Krawitz, E. Phillips, R. D. Bavier, S. Mo, J. Carroll, R. B. Rosen, and T. Y. P. Chui, “Parafoveal nonperfusion analysis in diabetic retinopathy using optical coherence tomography angiography,” Trans. Vis. Sci. Tech. 7(4), 4 (2018).
[Crossref]

Pi, S.

Pircher, M.

Ploner, S.

J. Schottenhamml, E. M. Moult, S. Ploner, B. Lee, E. A. Novais, E. Cole, S. Dang, C. D. Lu, L. Husvogt, N. K. Waheed, J. S. Duker, J. Hornegger, and J. G. Fujimoto, “An automatic, intercapillary area-based algorithm for quantifying diabetes-related capillary dropout using optical coherence tomography angiography,” Retina 36(Suppl 1), S93–S101 (2016).
[Crossref]

Ploner, S. B.

S. B. Ploner, E. M. Moult, W. Choi, N. K. Waheed, B. Lee, E. A. Novais, E. D. Cole, B. Potsaid, L. Husvogt, J. Schottenhamml, A. Maier, P. J. Rosenfeld, J. S. Duker, J. Hornegger, and J. G. Fujimoto, “Toward quantitative optical coherence tomography angiography: visualizing blood flow speeds in ocular pathology using variable interscan time analysis,” Retina 36(Suppl 1), S118–S126 (2016).
[Crossref]

Polans, J.

Pollreisz, A.

R. Told, S. Sacu, A. Hecht, M. Baratsits, K. Eibenberger, M. E. Kroh, S. Rezar-Dreindl, F. G. Schlanitz, G. Weigert, A. Pollreisz, and U. Schmidt-Erfurth, “Comparison of SD-optical coherence tomography angiography and indocyanine green angiography in type 1 and 2 neovascular age-related macular degeneration OCTA ICGA comparison in nAMD,” Invest. Ophthalmol. Visual Sci. 59(6), 2393–2400 (2018).
[Crossref]

Potsaid, B.

Prager, S.

Rebhun, C. B.

M. Arya, C. B. Rebhun, E. D. Cole, A. S. Sabrosa, G. Arcos-Villegas, R. N. Louzada, E. A. Novais, M. Lane, S. Dang, M. Ávila, A. J. Witkin, C. R. Baumal, J. S. Duker, and N. K. Waheed, “Visualization of choroidal neovascularization using two commercially available spectral domain optical coherence tomography angiography devices,” Retina 39(9), 1682–1692 (2019).
[Crossref]

Reddikumar, M.

M. Reddikumar, A. Tanabe, N. Hashimoto, and B. Cense, “Optical coherence tomography with a 2.8-mm beam diameter and sensorless defocus and astigmatism correction,” J. Biomed. Opt. 22(2), 026005 (2017).
[Crossref]

Rezar-Dreindl, S.

R. Told, S. Sacu, A. Hecht, M. Baratsits, K. Eibenberger, M. E. Kroh, S. Rezar-Dreindl, F. G. Schlanitz, G. Weigert, A. Pollreisz, and U. Schmidt-Erfurth, “Comparison of SD-optical coherence tomography angiography and indocyanine green angiography in type 1 and 2 neovascular age-related macular degeneration OCTA ICGA comparison in nAMD,” Invest. Ophthalmol. Visual Sci. 59(6), 2393–2400 (2018).
[Crossref]

Robbins, G.

L. Roisman, Q. Zhang, R. K. Wang, G. Gregori, A. Zhang, C.-L. Chen, M. K. Durbin, L. An, P. F. Stetson, G. Robbins, A. Miller, F. Zheng, and P. J. Rosenfeld, “Optical coherence tomography angiography of asymptomatic neovascularization in intermediate age-related macular degeneration,” Ophthalmology 123(6), 1309–1319 (2016).
[Crossref]

Roberts, P. K.

P. L. Nesper, P. K. Roberts, A. C. Onishi, H. Chai, L. Liu, L. M. Jampol, and A. A. Fawzi, “Quantifying microvascular abnormalities with increasing severity of diabetic retinopathy using optical coherence tomography angiography parameters correlate with DR Severity,” Invest. Ophthalmol. Visual Sci. 58(6), BIO307 (2017).
[Crossref]

Roisman, L.

J. R. de Oliveira Dias, Q. Zhang, J. M. B. Garcia, F. Zheng, E. H. Motulsky, L. Roisman, A. Miller, C.-L. Chen, S. Kubach, L. de Sisternes, M. K. Durbin, W. Feuer, R. K. Wang, G. Gregori, and P. J. Rosenfeld, “Natural History of Subclinical Neovascularization in Nonexudative Age-Related Macular Degeneration Using Swept-Source OCT Angiography,” Ophthalmology 125(2), 255–266 (2018).
[Crossref]

L. Roisman, Q. Zhang, R. K. Wang, G. Gregori, A. Zhang, C.-L. Chen, M. K. Durbin, L. An, P. F. Stetson, G. Robbins, A. Miller, F. Zheng, and P. J. Rosenfeld, “Optical coherence tomography angiography of asymptomatic neovascularization in intermediate age-related macular degeneration,” Ophthalmology 123(6), 1309–1319 (2016).
[Crossref]

Rosen, R. B.

B. D. Krawitz, E. Phillips, R. D. Bavier, S. Mo, J. Carroll, R. B. Rosen, and T. Y. P. Chui, “Parafoveal nonperfusion analysis in diabetic retinopathy using optical coherence tomography angiography,” Trans. Vis. Sci. Tech. 7(4), 4 (2018).
[Crossref]

B. D. Krawitz, S. Mo, L. S. Geyman, S. A. Agemy, N. K. Scripsema, P. M. Garcia, T. Y. P. Chui, and R. B. Rosen, “Acircularity index and axis ratio of the foveal avascular zone in diabetic eyes and healthy controls measured by optical coherence tomography angiography,” Vision Res. 139, 177–186 (2017).
[Crossref]

Rosenfeld, P. J.

Q. Bo, Q. Yan, M. Shen, M. Song, M. Sun, Y. Yu, P. J. Rosenfeld, F. Wang, and X. Sun, “Appearance of polypoidal lesions in patients with polypoidal choroidal vasculopathy using swept-source optical coherence tomographic angiography,” JAMA Ophthalmol. 137(6), 642–650 (2019).
[Crossref]

J. R. de Oliveira Dias, Q. Zhang, J. M. B. Garcia, F. Zheng, E. H. Motulsky, L. Roisman, A. Miller, C.-L. Chen, S. Kubach, L. de Sisternes, M. K. Durbin, W. Feuer, R. K. Wang, G. Gregori, and P. J. Rosenfeld, “Natural History of Subclinical Neovascularization in Nonexudative Age-Related Macular Degeneration Using Swept-Source OCT Angiography,” Ophthalmology 125(2), 255–266 (2018).
[Crossref]

L. Roisman, Q. Zhang, R. K. Wang, G. Gregori, A. Zhang, C.-L. Chen, M. K. Durbin, L. An, P. F. Stetson, G. Robbins, A. Miller, F. Zheng, and P. J. Rosenfeld, “Optical coherence tomography angiography of asymptomatic neovascularization in intermediate age-related macular degeneration,” Ophthalmology 123(6), 1309–1319 (2016).
[Crossref]

S. B. Ploner, E. M. Moult, W. Choi, N. K. Waheed, B. Lee, E. A. Novais, E. D. Cole, B. Potsaid, L. Husvogt, J. Schottenhamml, A. Maier, P. J. Rosenfeld, J. S. Duker, J. Hornegger, and J. G. Fujimoto, “Toward quantitative optical coherence tomography angiography: visualizing blood flow speeds in ocular pathology using variable interscan time analysis,” Retina 36(Suppl 1), S118–S126 (2016).
[Crossref]

Sabrosa, A. S.

M. Arya, C. B. Rebhun, E. D. Cole, A. S. Sabrosa, G. Arcos-Villegas, R. N. Louzada, E. A. Novais, M. Lane, S. Dang, M. Ávila, A. J. Witkin, C. R. Baumal, J. S. Duker, and N. K. Waheed, “Visualization of choroidal neovascularization using two commercially available spectral domain optical coherence tomography angiography devices,” Retina 39(9), 1682–1692 (2019).
[Crossref]

Sacu, S.

R. Told, S. Sacu, A. Hecht, M. Baratsits, K. Eibenberger, M. E. Kroh, S. Rezar-Dreindl, F. G. Schlanitz, G. Weigert, A. Pollreisz, and U. Schmidt-Erfurth, “Comparison of SD-optical coherence tomography angiography and indocyanine green angiography in type 1 and 2 neovascular age-related macular degeneration OCTA ICGA comparison in nAMD,” Invest. Ophthalmol. Visual Sci. 59(6), 2393–2400 (2018).
[Crossref]

Sadda, S. R.

M. Al-Sheikh, N. A. Iafe, N. Phasukkijwatana, S. R. Sadda, and D. Sarraf, “Biomarkers of neovascular activity in age-related macular degeneration using optical coherence tomography angiography,” Retina 38(2), 220–230 (2018).
[Crossref]

R. F. Spaide, J. G. Fujimoto, N. K. Waheed, S. R. Sadda, and G. Staurenghi, “Optical coherence tomography angiography,” Prog. Retinal Eye Res. 64, 1–55 (2018).
[Crossref]

Salas, M.

Sarraf, D.

M. Al-Sheikh, N. A. Iafe, N. Phasukkijwatana, S. R. Sadda, and D. Sarraf, “Biomarkers of neovascular activity in age-related macular degeneration using optical coherence tomography angiography,” Retina 38(2), 220–230 (2018).
[Crossref]

Sarunic, M.

M. J. Ju, M. Heisler, D. Wahl, Y. Jian, and M. Sarunic, “Multiscale sensorless adaptive optics OCT angiography system for in vivo human retinal imaging,” J. Biomed. Opt. 22(12), 1–12 (2017).
[Crossref]

M. Heisler, S. Lee, Z. Mammo, Y. Jian, M. J. Ju, A. Merkur, E. Navajas, C. Balaratnasingam, M. F. Beg, and M. Sarunic, “Strip-based registration of serially acquired optical coherence tomography angiography,” J. Biomed. Opt. 22(3), 036007 (2017).
[Crossref]

J. Xu, K. Wong, Y. Jian, and M. Sarunic, “Real-time acquisition and display of flow contrast using speckle variance optical coherence tomography in a graphics processing unit,” J. Biomed. Opt. 19(2), 026001 (2014).
[Crossref]

Y. Jian, K. Wong, and M. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. Biomed. Opt. 18(2), 026002 (2013).
[Crossref]

Sarunic, M. V.

Sasaki, K.

Schlanitz, F. G.

R. Told, S. Sacu, A. Hecht, M. Baratsits, K. Eibenberger, M. E. Kroh, S. Rezar-Dreindl, F. G. Schlanitz, G. Weigert, A. Pollreisz, and U. Schmidt-Erfurth, “Comparison of SD-optical coherence tomography angiography and indocyanine green angiography in type 1 and 2 neovascular age-related macular degeneration OCTA ICGA comparison in nAMD,” Invest. Ophthalmol. Visual Sci. 59(6), 2393–2400 (2018).
[Crossref]

Schmidt-Erfurth, U.

R. Told, S. Sacu, A. Hecht, M. Baratsits, K. Eibenberger, M. E. Kroh, S. Rezar-Dreindl, F. G. Schlanitz, G. Weigert, A. Pollreisz, and U. Schmidt-Erfurth, “Comparison of SD-optical coherence tomography angiography and indocyanine green angiography in type 1 and 2 neovascular age-related macular degeneration OCTA ICGA comparison in nAMD,” Invest. Ophthalmol. Visual Sci. 59(6), 2393–2400 (2018).
[Crossref]

M. Salas, M. Augustin, L. Ginner, A. Kumar, B. Baumann, R. Leitgeb, W. Drexler, S. Prager, J. Hafner, U. Schmidt-Erfurth, and M. Pircher, “Visualization of micro-capillaries using optical coherence tomography angiography with and without adaptive optics,” Biomed. Opt. Express 8(1), 207–222 (2017).
[Crossref]

Schottenhamml, J.

S. B. Ploner, E. M. Moult, W. Choi, N. K. Waheed, B. Lee, E. A. Novais, E. D. Cole, B. Potsaid, L. Husvogt, J. Schottenhamml, A. Maier, P. J. Rosenfeld, J. S. Duker, J. Hornegger, and J. G. Fujimoto, “Toward quantitative optical coherence tomography angiography: visualizing blood flow speeds in ocular pathology using variable interscan time analysis,” Retina 36(Suppl 1), S118–S126 (2016).
[Crossref]

J. Schottenhamml, E. M. Moult, S. Ploner, B. Lee, E. A. Novais, E. Cole, S. Dang, C. D. Lu, L. Husvogt, N. K. Waheed, J. S. Duker, J. Hornegger, and J. G. Fujimoto, “An automatic, intercapillary area-based algorithm for quantifying diabetes-related capillary dropout using optical coherence tomography angiography,” Retina 36(Suppl 1), S93–S101 (2016).
[Crossref]

Scripsema, N. K.

B. D. Krawitz, S. Mo, L. S. Geyman, S. A. Agemy, N. K. Scripsema, P. M. Garcia, T. Y. P. Chui, and R. B. Rosen, “Acircularity index and axis ratio of the foveal avascular zone in diabetic eyes and healthy controls measured by optical coherence tomography angiography,” Vision Res. 139, 177–186 (2017).
[Crossref]

Sharma, U.

Shen, M.

Q. Bo, Q. Yan, M. Shen, M. Song, M. Sun, Y. Yu, P. J. Rosenfeld, F. Wang, and X. Sun, “Appearance of polypoidal lesions in patients with polypoidal choroidal vasculopathy using swept-source optical coherence tomographic angiography,” JAMA Ophthalmol. 137(6), 642–650 (2019).
[Crossref]

Snodderly, D. M.

R. S. Weinhaus, J. M. Burke, F. C. Delori, and D. M. Snodderly, “Comparison of fluorescein angiography with microvascular anatomy of macaque retinas,” Exp. Eye Res. 61(1), 1–16 (1995).
[Crossref]

D. M. Snodderly, R. S. Weinhaus, and J. C. Choi, “Neural-vascular relationships in central retina of macaque monkeys (Macaca fascicularis),” J. Neurosci. 12(4), 1169–1193 (1992).
[Crossref]

Song, M.

Q. Bo, Q. Yan, M. Shen, M. Song, M. Sun, Y. Yu, P. J. Rosenfeld, F. Wang, and X. Sun, “Appearance of polypoidal lesions in patients with polypoidal choroidal vasculopathy using swept-source optical coherence tomographic angiography,” JAMA Ophthalmol. 137(6), 642–650 (2019).
[Crossref]

Spaide, R. F.

R. F. Spaide, J. G. Fujimoto, N. K. Waheed, S. R. Sadda, and G. Staurenghi, “Optical coherence tomography angiography,” Prog. Retinal Eye Res. 64, 1–55 (2018).
[Crossref]

Staurenghi, G.

R. F. Spaide, J. G. Fujimoto, N. K. Waheed, S. R. Sadda, and G. Staurenghi, “Optical coherence tomography angiography,” Prog. Retinal Eye Res. 64, 1–55 (2018).
[Crossref]

Stetson, P. F.

L. Roisman, Q. Zhang, R. K. Wang, G. Gregori, A. Zhang, C.-L. Chen, M. K. Durbin, L. An, P. F. Stetson, G. Robbins, A. Miller, F. Zheng, and P. J. Rosenfeld, “Optical coherence tomography angiography of asymptomatic neovascularization in intermediate age-related macular degeneration,” Ophthalmology 123(6), 1309–1319 (2016).
[Crossref]

Su, J. P.

S. S. Gao, Y. Jia, M. Zhang, J. P. Su, G. Liu, T. S. Hwang, S. T. Bailey, and D. Huang, “Optical Coherence Tomography Angiography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT27–OCT36 (2016).
[Crossref]

Subhash, H.

Sun, M.

Q. Bo, Q. Yan, M. Shen, M. Song, M. Sun, Y. Yu, P. J. Rosenfeld, F. Wang, and X. Sun, “Appearance of polypoidal lesions in patients with polypoidal choroidal vasculopathy using swept-source optical coherence tomographic angiography,” JAMA Ophthalmol. 137(6), 642–650 (2019).
[Crossref]

Sun, X.

Q. Bo, Q. Yan, M. Shen, M. Song, M. Sun, Y. Yu, P. J. Rosenfeld, F. Wang, and X. Sun, “Appearance of polypoidal lesions in patients with polypoidal choroidal vasculopathy using swept-source optical coherence tomographic angiography,” JAMA Ophthalmol. 137(6), 642–650 (2019).
[Crossref]

Takusagawa, H.

L. Liu, B. Alonzo, H. Takusagawa, J. C. Morrison, B. Edmunds, S. Tehrani, Y. Jia, and D. Huang, “Optical coherence tomography angiography of peripapillary retina pre-and post-trabeculectomy,” Invest. Ophthalmol. Visual Sci. 59, 5057 (2018).

Tan, O.

Tanabe, A.

M. Reddikumar, A. Tanabe, N. Hashimoto, and B. Cense, “Optical coherence tomography with a 2.8-mm beam diameter and sensorless defocus and astigmatism correction,” J. Biomed. Opt. 22(2), 026005 (2017).
[Crossref]

Tehrani, S.

L. Liu, B. Alonzo, H. Takusagawa, J. C. Morrison, B. Edmunds, S. Tehrani, Y. Jia, and D. Huang, “Optical coherence tomography angiography of peripapillary retina pre-and post-trabeculectomy,” Invest. Ophthalmol. Visual Sci. 59, 5057 (2018).

Thurman, S. T.

Tokayer, J.

Told, R.

R. Told, S. Sacu, A. Hecht, M. Baratsits, K. Eibenberger, M. E. Kroh, S. Rezar-Dreindl, F. G. Schlanitz, G. Weigert, A. Pollreisz, and U. Schmidt-Erfurth, “Comparison of SD-optical coherence tomography angiography and indocyanine green angiography in type 1 and 2 neovascular age-related macular degeneration OCTA ICGA comparison in nAMD,” Invest. Ophthalmol. Visual Sci. 59(6), 2393–2400 (2018).
[Crossref]

Treister, A. D.

A. D. Treister, P. L. Nesper, A. E. Fayed, M. K. Gill, R. G. Mirza, and A. A. Fawzi, “Prevalence of Subclinical CNV and Choriocapillaris Nonperfusion in Fellow Eyes of Unilateral Exudative AMD on OCT AngiographyTreister et al,” Trans. Vis. Sci. Tech. 7(5), 19 (2018).
[Crossref]

Waheed, N. K.

M. Arya, C. B. Rebhun, E. D. Cole, A. S. Sabrosa, G. Arcos-Villegas, R. N. Louzada, E. A. Novais, M. Lane, S. Dang, M. Ávila, A. J. Witkin, C. R. Baumal, J. S. Duker, and N. K. Waheed, “Visualization of choroidal neovascularization using two commercially available spectral domain optical coherence tomography angiography devices,” Retina 39(9), 1682–1692 (2019).
[Crossref]

R. F. Spaide, J. G. Fujimoto, N. K. Waheed, S. R. Sadda, and G. Staurenghi, “Optical coherence tomography angiography,” Prog. Retinal Eye Res. 64, 1–55 (2018).
[Crossref]

J. Schottenhamml, E. M. Moult, S. Ploner, B. Lee, E. A. Novais, E. Cole, S. Dang, C. D. Lu, L. Husvogt, N. K. Waheed, J. S. Duker, J. Hornegger, and J. G. Fujimoto, “An automatic, intercapillary area-based algorithm for quantifying diabetes-related capillary dropout using optical coherence tomography angiography,” Retina 36(Suppl 1), S93–S101 (2016).
[Crossref]

S. B. Ploner, E. M. Moult, W. Choi, N. K. Waheed, B. Lee, E. A. Novais, E. D. Cole, B. Potsaid, L. Husvogt, J. Schottenhamml, A. Maier, P. J. Rosenfeld, J. S. Duker, J. Hornegger, and J. G. Fujimoto, “Toward quantitative optical coherence tomography angiography: visualizing blood flow speeds in ocular pathology using variable interscan time analysis,” Retina 36(Suppl 1), S118–S126 (2016).
[Crossref]

Wahl, D.

M. J. Ju, M. Heisler, D. Wahl, Y. Jian, and M. Sarunic, “Multiscale sensorless adaptive optics OCT angiography system for in vivo human retinal imaging,” J. Biomed. Opt. 22(12), 1–12 (2017).
[Crossref]

Wahl, D. J.

D. J. Wahl, R. Ng, M. J. Ju, Y. Jian, and M. V. Sarunic, “Sensorless adaptive optics multimodal en-face small animal retinal imaging,” Biomed. Opt. Express 10(1), 252–267 (2019).
[Crossref]

W. Janpongsri, J. Huang, R. Ng, D. J. Wahl, M. V. Sarunic, and Y. Jian, “Pseudo-real-time retinal layer segmentation for high-resolution adaptive optics optical coherence tomography,” Arxiv preprint arXiv:2004.05264 (2020).

Wang, F.

Q. Bo, Q. Yan, M. Shen, M. Song, M. Sun, Y. Yu, P. J. Rosenfeld, F. Wang, and X. Sun, “Appearance of polypoidal lesions in patients with polypoidal choroidal vasculopathy using swept-source optical coherence tomographic angiography,” JAMA Ophthalmol. 137(6), 642–650 (2019).
[Crossref]

Wang, J.

S. M. McClintic, S. Gao, J. Wang, A. Hagag, A. K. Lauer, C. J. Flaxel, K. Bhavsar, T. S. Hwang, D. Huang, Y. Jia, and S. T. Bailey, “Quantitative evaluation of choroidal neovascularization under pro re nata anti-vascular endothelial growth factor therapy with OCT angiography,” Ophthalmol. Retina 2(9), 931–941 (2018).
[Crossref]

A. Camino, M. Zhang, L. Liu, J. Wang, Y. Jia, and D. Huang, “Enhanced quantification of retinal perfusion by improved discrimination of blood flow from bulk motion signal in OCTA,” Trans. Vis. Sci. Tech. 7(6), 20 (2018).
[Crossref]

Y. Guo, A. Camino, J. Wang, D. Huang, T. S. Hwang, and Y. Jia, “MEDnet, a neural network for automated detection of avascular area in OCT angiography,” Biomed. Opt. Express 9(11), 5147–5158 (2018).
[Crossref]

J. Wang, M. Zhang, T. S. Hwang, S. T. Bailey, D. Huang, D. J. Wilson, and Y. Jia, “Reflectance-based projection-resolved optical coherence tomography angiography [Invited],” Biomed. Opt. Express 8(3), 1536–1548 (2017).
[Crossref]

P. Zang, G. Liu, M. Zhang, J. Wang, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated three-dimensional registration and volume rebuilding for wide-field angiographic and structural optical coherence tomography,” J. Biomed. Opt. 22(2), 026001 (2017).
[Crossref]

P. Zang, G. Liu, M. Zhang, C. Dongye, J. Wang, A. D. Pechauer, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram,” Biomed. Opt. Express 7(7), 2823–2836 (2016).
[Crossref]

Q. You, Y. Guo, J. Wang, X. Wei, A. Camino, P. Zang, C. J. Flaxel, S. T. Bailey, D. Huang, Y. Jia, and T. S. Hwang, “Detection of clinically missed retinal neovascularization with wide-field optical coherence tomography angiography,” Retina (2019).

Wang, R. K.

J. R. de Oliveira Dias, Q. Zhang, J. M. B. Garcia, F. Zheng, E. H. Motulsky, L. Roisman, A. Miller, C.-L. Chen, S. Kubach, L. de Sisternes, M. K. Durbin, W. Feuer, R. K. Wang, G. Gregori, and P. J. Rosenfeld, “Natural History of Subclinical Neovascularization in Nonexudative Age-Related Macular Degeneration Using Swept-Source OCT Angiography,” Ophthalmology 125(2), 255–266 (2018).
[Crossref]

C.-L. Chen and R. K. Wang, “Optical coherence tomography based angiography [Invited],” Biomed. Opt. Express 8(2), 1056–1082 (2017).
[Crossref]

L. Roisman, Q. Zhang, R. K. Wang, G. Gregori, A. Zhang, C.-L. Chen, M. K. Durbin, L. An, P. F. Stetson, G. Robbins, A. Miller, F. Zheng, and P. J. Rosenfeld, “Optical coherence tomography angiography of asymptomatic neovascularization in intermediate age-related macular degeneration,” Ophthalmology 123(6), 1309–1319 (2016).
[Crossref]

R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010).
[Crossref]

Wang, Y.

Wei, X.

Weigert, G.

R. Told, S. Sacu, A. Hecht, M. Baratsits, K. Eibenberger, M. E. Kroh, S. Rezar-Dreindl, F. G. Schlanitz, G. Weigert, A. Pollreisz, and U. Schmidt-Erfurth, “Comparison of SD-optical coherence tomography angiography and indocyanine green angiography in type 1 and 2 neovascular age-related macular degeneration OCTA ICGA comparison in nAMD,” Invest. Ophthalmol. Visual Sci. 59(6), 2393–2400 (2018).
[Crossref]

Weinhaus, R. S.

R. S. Weinhaus, J. M. Burke, F. C. Delori, and D. M. Snodderly, “Comparison of fluorescein angiography with microvascular anatomy of macaque retinas,” Exp. Eye Res. 61(1), 1–16 (1995).
[Crossref]

D. M. Snodderly, R. S. Weinhaus, and J. C. Choi, “Neural-vascular relationships in central retina of macaque monkeys (Macaca fascicularis),” J. Neurosci. 12(4), 1169–1193 (1992).
[Crossref]

Wilson, D. J.

J. P. Campbell, M. Zhang, T. S. Hwang, S. T. Bailey, D. J. Wilson, Y. Jia, and D. Huang, “Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref]

J. Wang, M. Zhang, T. S. Hwang, S. T. Bailey, D. Huang, D. J. Wilson, and Y. Jia, “Reflectance-based projection-resolved optical coherence tomography angiography [Invited],” Biomed. Opt. Express 8(3), 1536–1548 (2017).
[Crossref]

P. Zang, G. Liu, M. Zhang, J. Wang, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated three-dimensional registration and volume rebuilding for wide-field angiographic and structural optical coherence tomography,” J. Biomed. Opt. 22(2), 026001 (2017).
[Crossref]

A. Camino, M. Zhang, C. Dongye, A. D. Pechauer, T. S. Hwang, S. T. Bailey, B. Lujan, D. J. Wilson, D. Huang, and Y. Jia, “Automated registration and enhanced processing of clinical optical coherence tomography angiography,” Quant. Imaging Med. Surg. 6(4), 391–401 (2016).
[Crossref]

A. Camino, M. Zhang, S. S. Gao, T. S. Hwang, U. Sharma, D. J. Wilson, D. Huang, and Y. Jia, “Evaluation of artifact reduction in optical coherence tomography angiography with real-time tracking and motion correction technology,” Biomed. Opt. Express 7(10), 3905–3915 (2016).
[Crossref]

M. Zhang, T. S. Hwang, J. P. Campbell, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Projection-resolved optical coherence tomographic angiography,” Biomed. Opt. Express 7(3), 816–828 (2016).
[Crossref]

T. S. Hwang, M. Zhang, K. Bhavsar, X. Zhang, J. P. Campbell, P. Lin, S. T. Bailey, C. J. Flaxel, A. K. Lauer, D. J. Wilson, D. Huang, and Y. Jia, “Visualization of 3 distinct retinal plexuses by projection-resolved optical coherence tomography angiography in diabetic retinopathyvisualization of retinal plexuses in diabetic retinopathyvisualization of retinal plexuses in diabetic retinopathy,” JAMA Ophthalmol. 134(12), 1411–1419 (2016).
[Crossref]

P. Zang, G. Liu, M. Zhang, C. Dongye, J. Wang, A. D. Pechauer, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram,” Biomed. Opt. Express 7(7), 2823–2836 (2016).
[Crossref]

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. 112(18), E2395–E2402 (2015).
[Crossref]

T. S. Hwang, Y. Jia, S. S. Gao, S. T. Bailey, A. K. Lauer, C. J. Flaxel, D. J. Wilson, and D. Huang, “Optical coherence tomography angiography features of diabetic retinopathy,” Retina 35(11), 2371–2376 (2015).
[Crossref]

R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010).
[Crossref]

Witkin, A. J.

M. Arya, C. B. Rebhun, E. D. Cole, A. S. Sabrosa, G. Arcos-Villegas, R. N. Louzada, E. A. Novais, M. Lane, S. Dang, M. Ávila, A. J. Witkin, C. R. Baumal, J. S. Duker, and N. K. Waheed, “Visualization of choroidal neovascularization using two commercially available spectral domain optical coherence tomography angiography devices,” Retina 39(9), 1682–1692 (2019).
[Crossref]

Wong, K.

J. Xu, K. Wong, Y. Jian, and M. Sarunic, “Real-time acquisition and display of flow contrast using speckle variance optical coherence tomography in a graphics processing unit,” J. Biomed. Opt. 19(2), 026001 (2014).
[Crossref]

Y. Jian, K. Wong, and M. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. Biomed. Opt. 18(2), 026002 (2013).
[Crossref]

Xu, J.

J. Xu, K. Wong, Y. Jian, and M. Sarunic, “Real-time acquisition and display of flow contrast using speckle variance optical coherence tomography in a graphics processing unit,” J. Biomed. Opt. 19(2), 026001 (2014).
[Crossref]

Yan, Q.

Q. Bo, Q. Yan, M. Shen, M. Song, M. Sun, Y. Yu, P. J. Rosenfeld, F. Wang, and X. Sun, “Appearance of polypoidal lesions in patients with polypoidal choroidal vasculopathy using swept-source optical coherence tomographic angiography,” JAMA Ophthalmol. 137(6), 642–650 (2019).
[Crossref]

Yasuno, Y.

You, Q.

Q. You, Y. Guo, J. Wang, X. Wei, A. Camino, P. Zang, C. J. Flaxel, S. T. Bailey, D. Huang, Y. Jia, and T. S. Hwang, “Detection of clinically missed retinal neovascularization with wide-field optical coherence tomography angiography,” Retina (2019).

Yu, Y.

Q. Bo, Q. Yan, M. Shen, M. Song, M. Sun, Y. Yu, P. J. Rosenfeld, F. Wang, and X. Sun, “Appearance of polypoidal lesions in patients with polypoidal choroidal vasculopathy using swept-source optical coherence tomographic angiography,” JAMA Ophthalmol. 137(6), 642–650 (2019).
[Crossref]

Zang, P.

P. Zang, G. Liu, M. Zhang, J. Wang, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated three-dimensional registration and volume rebuilding for wide-field angiographic and structural optical coherence tomography,” J. Biomed. Opt. 22(2), 026001 (2017).
[Crossref]

P. Zang, G. Liu, M. Zhang, C. Dongye, J. Wang, A. D. Pechauer, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram,” Biomed. Opt. Express 7(7), 2823–2836 (2016).
[Crossref]

Q. You, Y. Guo, J. Wang, X. Wei, A. Camino, P. Zang, C. J. Flaxel, S. T. Bailey, D. Huang, Y. Jia, and T. S. Hwang, “Detection of clinically missed retinal neovascularization with wide-field optical coherence tomography angiography,” Retina (2019).

Zhang, A.

L. Roisman, Q. Zhang, R. K. Wang, G. Gregori, A. Zhang, C.-L. Chen, M. K. Durbin, L. An, P. F. Stetson, G. Robbins, A. Miller, F. Zheng, and P. J. Rosenfeld, “Optical coherence tomography angiography of asymptomatic neovascularization in intermediate age-related macular degeneration,” Ophthalmology 123(6), 1309–1319 (2016).
[Crossref]

Zhang, M.

A. Camino, M. Zhang, L. Liu, J. Wang, Y. Jia, and D. Huang, “Enhanced quantification of retinal perfusion by improved discrimination of blood flow from bulk motion signal in OCTA,” Trans. Vis. Sci. Tech. 7(6), 20 (2018).
[Crossref]

J. P. Campbell, M. Zhang, T. S. Hwang, S. T. Bailey, D. J. Wilson, Y. Jia, and D. Huang, “Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref]

J. Wang, M. Zhang, T. S. Hwang, S. T. Bailey, D. Huang, D. J. Wilson, and Y. Jia, “Reflectance-based projection-resolved optical coherence tomography angiography [Invited],” Biomed. Opt. Express 8(3), 1536–1548 (2017).
[Crossref]

P. Zang, G. Liu, M. Zhang, J. Wang, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated three-dimensional registration and volume rebuilding for wide-field angiographic and structural optical coherence tomography,” J. Biomed. Opt. 22(2), 026001 (2017).
[Crossref]

A. Camino, M. Zhang, S. S. Gao, T. S. Hwang, U. Sharma, D. J. Wilson, D. Huang, and Y. Jia, “Evaluation of artifact reduction in optical coherence tomography angiography with real-time tracking and motion correction technology,” Biomed. Opt. Express 7(10), 3905–3915 (2016).
[Crossref]

A. Camino, M. Zhang, C. Dongye, A. D. Pechauer, T. S. Hwang, S. T. Bailey, B. Lujan, D. J. Wilson, D. Huang, and Y. Jia, “Automated registration and enhanced processing of clinical optical coherence tomography angiography,” Quant. Imaging Med. Surg. 6(4), 391–401 (2016).
[Crossref]

M. Zhang, T. S. Hwang, J. P. Campbell, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Projection-resolved optical coherence tomographic angiography,” Biomed. Opt. Express 7(3), 816–828 (2016).
[Crossref]

S. S. Gao, Y. Jia, M. Zhang, J. P. Su, G. Liu, T. S. Hwang, S. T. Bailey, and D. Huang, “Optical Coherence Tomography Angiography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT27–OCT36 (2016).
[Crossref]

T. S. Hwang, M. Zhang, K. Bhavsar, X. Zhang, J. P. Campbell, P. Lin, S. T. Bailey, C. J. Flaxel, A. K. Lauer, D. J. Wilson, D. Huang, and Y. Jia, “Visualization of 3 distinct retinal plexuses by projection-resolved optical coherence tomography angiography in diabetic retinopathyvisualization of retinal plexuses in diabetic retinopathyvisualization of retinal plexuses in diabetic retinopathy,” JAMA Ophthalmol. 134(12), 1411–1419 (2016).
[Crossref]

P. Zang, G. Liu, M. Zhang, C. Dongye, J. Wang, A. D. Pechauer, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram,” Biomed. Opt. Express 7(7), 2823–2836 (2016).
[Crossref]

Zhang, Q.

J. R. de Oliveira Dias, Q. Zhang, J. M. B. Garcia, F. Zheng, E. H. Motulsky, L. Roisman, A. Miller, C.-L. Chen, S. Kubach, L. de Sisternes, M. K. Durbin, W. Feuer, R. K. Wang, G. Gregori, and P. J. Rosenfeld, “Natural History of Subclinical Neovascularization in Nonexudative Age-Related Macular Degeneration Using Swept-Source OCT Angiography,” Ophthalmology 125(2), 255–266 (2018).
[Crossref]

L. Roisman, Q. Zhang, R. K. Wang, G. Gregori, A. Zhang, C.-L. Chen, M. K. Durbin, L. An, P. F. Stetson, G. Robbins, A. Miller, F. Zheng, and P. J. Rosenfeld, “Optical coherence tomography angiography of asymptomatic neovascularization in intermediate age-related macular degeneration,” Ophthalmology 123(6), 1309–1319 (2016).
[Crossref]

Zhang, X.

T. S. Hwang, M. Zhang, K. Bhavsar, X. Zhang, J. P. Campbell, P. Lin, S. T. Bailey, C. J. Flaxel, A. K. Lauer, D. J. Wilson, D. Huang, and Y. Jia, “Visualization of 3 distinct retinal plexuses by projection-resolved optical coherence tomography angiography in diabetic retinopathyvisualization of retinal plexuses in diabetic retinopathyvisualization of retinal plexuses in diabetic retinopathy,” JAMA Ophthalmol. 134(12), 1411–1419 (2016).
[Crossref]

Zheng, F.

J. R. de Oliveira Dias, Q. Zhang, J. M. B. Garcia, F. Zheng, E. H. Motulsky, L. Roisman, A. Miller, C.-L. Chen, S. Kubach, L. de Sisternes, M. K. Durbin, W. Feuer, R. K. Wang, G. Gregori, and P. J. Rosenfeld, “Natural History of Subclinical Neovascularization in Nonexudative Age-Related Macular Degeneration Using Swept-Source OCT Angiography,” Ophthalmology 125(2), 255–266 (2018).
[Crossref]

L. Roisman, Q. Zhang, R. K. Wang, G. Gregori, A. Zhang, C.-L. Chen, M. K. Durbin, L. An, P. F. Stetson, G. Robbins, A. Miller, F. Zheng, and P. J. Rosenfeld, “Optical coherence tomography angiography of asymptomatic neovascularization in intermediate age-related macular degeneration,” Ophthalmology 123(6), 1309–1319 (2016).
[Crossref]

Biomed. Opt. Express (14)

M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express 3(6), 1182–1199 (2012).
[Crossref]

M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express 3(6), 1182–1199 (2012).
[Crossref]

M. Zhang, T. S. Hwang, J. P. Campbell, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Projection-resolved optical coherence tomographic angiography,” Biomed. Opt. Express 7(3), 816–828 (2016).
[Crossref]

P. Zang, G. Liu, M. Zhang, C. Dongye, J. Wang, A. D. Pechauer, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram,” Biomed. Opt. Express 7(7), 2823–2836 (2016).
[Crossref]

A. Camino, M. Zhang, S. S. Gao, T. S. Hwang, U. Sharma, D. J. Wilson, D. Huang, and Y. Jia, “Evaluation of artifact reduction in optical coherence tomography angiography with real-time tracking and motion correction technology,” Biomed. Opt. Express 7(10), 3905–3915 (2016).
[Crossref]

M. Salas, M. Augustin, L. Ginner, A. Kumar, B. Baumann, R. Leitgeb, W. Drexler, S. Prager, J. Hafner, U. Schmidt-Erfurth, and M. Pircher, “Visualization of micro-capillaries using optical coherence tomography angiography with and without adaptive optics,” Biomed. Opt. Express 8(1), 207–222 (2017).
[Crossref]

C.-L. Chen and R. K. Wang, “Optical coherence tomography based angiography [Invited],” Biomed. Opt. Express 8(2), 1056–1082 (2017).
[Crossref]

J. Wang, M. Zhang, T. S. Hwang, S. T. Bailey, D. Huang, D. J. Wilson, and Y. Jia, “Reflectance-based projection-resolved optical coherence tomography angiography [Invited],” Biomed. Opt. Express 8(3), 1536–1548 (2017).
[Crossref]

K. Kurokawa, Z. Liu, and D. T. Miller, “Adaptive optics optical coherence tomography angiography for morphometric analysis of choriocapillaris [Invited],” Biomed. Opt. Express 8(3), 1803–1822 (2017).
[Crossref]

Y. Chen, Y.-J. Hong, S. Makita, and Y. Yasuno, “Eye-motion-corrected optical coherence tomography angiography using Lissajous scanning,” Biomed. Opt. Express 9(3), 1111–1129 (2018).
[Crossref]

M. J. Ju, M. Heisler, A. Athwal, M. V. Sarunic, and Y. Jian, “Effective bidirectional scanning pattern for optical coherence tomography angiography,” Biomed. Opt. Express 9(5), 2336–2350 (2018).
[Crossref]

Y. Guo, A. Camino, J. Wang, D. Huang, T. S. Hwang, and Y. Jia, “MEDnet, a neural network for automated detection of avascular area in OCT angiography,” Biomed. Opt. Express 9(11), 5147–5158 (2018).
[Crossref]

D. J. Wahl, R. Ng, M. J. Ju, Y. Jian, and M. V. Sarunic, “Sensorless adaptive optics multimodal en-face small animal retinal imaging,” Biomed. Opt. Express 10(1), 252–267 (2019).
[Crossref]

X. Wei, T. T. Hormel, S. Pi, Y. Guo, Y. Jian, and Y. Jia, “High dynamic range optical coherence tomography angiography (HDR-OCTA),” Biomed. Opt. Express 10(7), 3560–3571 (2019).
[Crossref]

Exp. Eye Res. (1)

R. S. Weinhaus, J. M. Burke, F. C. Delori, and D. M. Snodderly, “Comparison of fluorescein angiography with microvascular anatomy of macaque retinas,” Exp. Eye Res. 61(1), 1–16 (1995).
[Crossref]

Invest. Ophthalmol. Visual Sci. (4)

R. Told, S. Sacu, A. Hecht, M. Baratsits, K. Eibenberger, M. E. Kroh, S. Rezar-Dreindl, F. G. Schlanitz, G. Weigert, A. Pollreisz, and U. Schmidt-Erfurth, “Comparison of SD-optical coherence tomography angiography and indocyanine green angiography in type 1 and 2 neovascular age-related macular degeneration OCTA ICGA comparison in nAMD,” Invest. Ophthalmol. Visual Sci. 59(6), 2393–2400 (2018).
[Crossref]

P. L. Nesper, P. K. Roberts, A. C. Onishi, H. Chai, L. Liu, L. M. Jampol, and A. A. Fawzi, “Quantifying microvascular abnormalities with increasing severity of diabetic retinopathy using optical coherence tomography angiography parameters correlate with DR Severity,” Invest. Ophthalmol. Visual Sci. 58(6), BIO307 (2017).
[Crossref]

L. Liu, B. Alonzo, H. Takusagawa, J. C. Morrison, B. Edmunds, S. Tehrani, Y. Jia, and D. Huang, “Optical coherence tomography angiography of peripapillary retina pre-and post-trabeculectomy,” Invest. Ophthalmol. Visual Sci. 59, 5057 (2018).

S. S. Gao, Y. Jia, M. Zhang, J. P. Su, G. Liu, T. S. Hwang, S. T. Bailey, and D. Huang, “Optical Coherence Tomography Angiography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT27–OCT36 (2016).
[Crossref]

J. Biomed. Opt. (6)

M. J. Ju, M. Heisler, D. Wahl, Y. Jian, and M. Sarunic, “Multiscale sensorless adaptive optics OCT angiography system for in vivo human retinal imaging,” J. Biomed. Opt. 22(12), 1–12 (2017).
[Crossref]

P. Zang, G. Liu, M. Zhang, J. Wang, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated three-dimensional registration and volume rebuilding for wide-field angiographic and structural optical coherence tomography,” J. Biomed. Opt. 22(2), 026001 (2017).
[Crossref]

Y. Jian, K. Wong, and M. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. Biomed. Opt. 18(2), 026002 (2013).
[Crossref]

J. Xu, K. Wong, Y. Jian, and M. Sarunic, “Real-time acquisition and display of flow contrast using speckle variance optical coherence tomography in a graphics processing unit,” J. Biomed. Opt. 19(2), 026001 (2014).
[Crossref]

M. Reddikumar, A. Tanabe, N. Hashimoto, and B. Cense, “Optical coherence tomography with a 2.8-mm beam diameter and sensorless defocus and astigmatism correction,” J. Biomed. Opt. 22(2), 026005 (2017).
[Crossref]

M. Heisler, S. Lee, Z. Mammo, Y. Jian, M. J. Ju, A. Merkur, E. Navajas, C. Balaratnasingam, M. F. Beg, and M. Sarunic, “Strip-based registration of serially acquired optical coherence tomography angiography,” J. Biomed. Opt. 22(3), 036007 (2017).
[Crossref]

J. Neurosci. (1)

D. M. Snodderly, R. S. Weinhaus, and J. C. Choi, “Neural-vascular relationships in central retina of macaque monkeys (Macaca fascicularis),” J. Neurosci. 12(4), 1169–1193 (1992).
[Crossref]

JAMA Ophthalmol. (2)

Q. Bo, Q. Yan, M. Shen, M. Song, M. Sun, Y. Yu, P. J. Rosenfeld, F. Wang, and X. Sun, “Appearance of polypoidal lesions in patients with polypoidal choroidal vasculopathy using swept-source optical coherence tomographic angiography,” JAMA Ophthalmol. 137(6), 642–650 (2019).
[Crossref]

T. S. Hwang, M. Zhang, K. Bhavsar, X. Zhang, J. P. Campbell, P. Lin, S. T. Bailey, C. J. Flaxel, A. K. Lauer, D. J. Wilson, D. Huang, and Y. Jia, “Visualization of 3 distinct retinal plexuses by projection-resolved optical coherence tomography angiography in diabetic retinopathyvisualization of retinal plexuses in diabetic retinopathyvisualization of retinal plexuses in diabetic retinopathy,” JAMA Ophthalmol. 134(12), 1411–1419 (2016).
[Crossref]

Ophthalmol. Retina (1)

S. M. McClintic, S. Gao, J. Wang, A. Hagag, A. K. Lauer, C. J. Flaxel, K. Bhavsar, T. S. Hwang, D. Huang, Y. Jia, and S. T. Bailey, “Quantitative evaluation of choroidal neovascularization under pro re nata anti-vascular endothelial growth factor therapy with OCT angiography,” Ophthalmol. Retina 2(9), 931–941 (2018).
[Crossref]

Ophthalmology (2)

J. R. de Oliveira Dias, Q. Zhang, J. M. B. Garcia, F. Zheng, E. H. Motulsky, L. Roisman, A. Miller, C.-L. Chen, S. Kubach, L. de Sisternes, M. K. Durbin, W. Feuer, R. K. Wang, G. Gregori, and P. J. Rosenfeld, “Natural History of Subclinical Neovascularization in Nonexudative Age-Related Macular Degeneration Using Swept-Source OCT Angiography,” Ophthalmology 125(2), 255–266 (2018).
[Crossref]

L. Roisman, Q. Zhang, R. K. Wang, G. Gregori, A. Zhang, C.-L. Chen, M. K. Durbin, L. An, P. F. Stetson, G. Robbins, A. Miller, F. Zheng, and P. J. Rosenfeld, “Optical coherence tomography angiography of asymptomatic neovascularization in intermediate age-related macular degeneration,” Ophthalmology 123(6), 1309–1319 (2016).
[Crossref]

Opt. Express (2)

Opt. Lett. (6)

Proc. Natl. Acad. Sci. (1)

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. 112(18), E2395–E2402 (2015).
[Crossref]

Prog. Retinal Eye Res. (1)

R. F. Spaide, J. G. Fujimoto, N. K. Waheed, S. R. Sadda, and G. Staurenghi, “Optical coherence tomography angiography,” Prog. Retinal Eye Res. 64, 1–55 (2018).
[Crossref]

Quant. Imaging Med. Surg. (1)

A. Camino, M. Zhang, C. Dongye, A. D. Pechauer, T. S. Hwang, S. T. Bailey, B. Lujan, D. J. Wilson, D. Huang, and Y. Jia, “Automated registration and enhanced processing of clinical optical coherence tomography angiography,” Quant. Imaging Med. Surg. 6(4), 391–401 (2016).
[Crossref]

Retina (5)

S. B. Ploner, E. M. Moult, W. Choi, N. K. Waheed, B. Lee, E. A. Novais, E. D. Cole, B. Potsaid, L. Husvogt, J. Schottenhamml, A. Maier, P. J. Rosenfeld, J. S. Duker, J. Hornegger, and J. G. Fujimoto, “Toward quantitative optical coherence tomography angiography: visualizing blood flow speeds in ocular pathology using variable interscan time analysis,” Retina 36(Suppl 1), S118–S126 (2016).
[Crossref]

J. Schottenhamml, E. M. Moult, S. Ploner, B. Lee, E. A. Novais, E. Cole, S. Dang, C. D. Lu, L. Husvogt, N. K. Waheed, J. S. Duker, J. Hornegger, and J. G. Fujimoto, “An automatic, intercapillary area-based algorithm for quantifying diabetes-related capillary dropout using optical coherence tomography angiography,” Retina 36(Suppl 1), S93–S101 (2016).
[Crossref]

M. Al-Sheikh, N. A. Iafe, N. Phasukkijwatana, S. R. Sadda, and D. Sarraf, “Biomarkers of neovascular activity in age-related macular degeneration using optical coherence tomography angiography,” Retina 38(2), 220–230 (2018).
[Crossref]

T. S. Hwang, Y. Jia, S. S. Gao, S. T. Bailey, A. K. Lauer, C. J. Flaxel, D. J. Wilson, and D. Huang, “Optical coherence tomography angiography features of diabetic retinopathy,” Retina 35(11), 2371–2376 (2015).
[Crossref]

M. Arya, C. B. Rebhun, E. D. Cole, A. S. Sabrosa, G. Arcos-Villegas, R. N. Louzada, E. A. Novais, M. Lane, S. Dang, M. Ávila, A. J. Witkin, C. R. Baumal, J. S. Duker, and N. K. Waheed, “Visualization of choroidal neovascularization using two commercially available spectral domain optical coherence tomography angiography devices,” Retina 39(9), 1682–1692 (2019).
[Crossref]

Sci. Rep. (1)

J. P. Campbell, M. Zhang, T. S. Hwang, S. T. Bailey, D. J. Wilson, Y. Jia, and D. Huang, “Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref]

Trans. Vis. Sci. Tech. (3)

A. Camino, M. Zhang, L. Liu, J. Wang, Y. Jia, and D. Huang, “Enhanced quantification of retinal perfusion by improved discrimination of blood flow from bulk motion signal in OCTA,” Trans. Vis. Sci. Tech. 7(6), 20 (2018).
[Crossref]

A. D. Treister, P. L. Nesper, A. E. Fayed, M. K. Gill, R. G. Mirza, and A. A. Fawzi, “Prevalence of Subclinical CNV and Choriocapillaris Nonperfusion in Fellow Eyes of Unilateral Exudative AMD on OCT AngiographyTreister et al,” Trans. Vis. Sci. Tech. 7(5), 19 (2018).
[Crossref]

B. D. Krawitz, E. Phillips, R. D. Bavier, S. Mo, J. Carroll, R. B. Rosen, and T. Y. P. Chui, “Parafoveal nonperfusion analysis in diabetic retinopathy using optical coherence tomography angiography,” Trans. Vis. Sci. Tech. 7(4), 4 (2018).
[Crossref]

Vision Res. (1)

B. D. Krawitz, S. Mo, L. S. Geyman, S. A. Agemy, N. K. Scripsema, P. M. Garcia, T. Y. P. Chui, and R. B. Rosen, “Acircularity index and axis ratio of the foveal avascular zone in diabetic eyes and healthy controls measured by optical coherence tomography angiography,” Vision Res. 139, 177–186 (2017).
[Crossref]

Other (4)

Q. You, Y. Guo, J. Wang, X. Wei, A. Camino, P. Zang, C. J. Flaxel, S. T. Bailey, D. Huang, Y. Jia, and T. S. Hwang, “Detection of clinically missed retinal neovascularization with wide-field optical coherence tomography angiography,” Retina (2019).

“Early treatment diabetic retinopathy study design and baseline patient characteristics: ETDRS Report Number 7,” Ophthalmology 98, 741–756 (1991).

“Early photocoagulation for diabetic retinopathy: ETDRS Report Number 9,” Ophthalmology98(5), 766–785 (1991).
[Crossref]

W. Janpongsri, J. Huang, R. Ng, D. J. Wahl, M. V. Sarunic, and Y. Jian, “Pseudo-real-time retinal layer segmentation for high-resolution adaptive optics optical coherence tomography,” Arxiv preprint arXiv:2004.05264 (2020).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Setup of the sample arm of AO-OCTA system. (A) shows the CAD design done in SolidWorks and (B) a picture of the sample arm on a 12′′×12′′breadboard. A fiber coupler (90%-10%, Gould Fiber Optics) directs the light from the superluminescent diode (M-D-840-HP, Superlum) through a reflective collimator into the sample arm shown in (A). C – Reflective collimator (Thorlabs, Inc.) M1-M4 – Mirrors. L1-L4 – Lenses with focal length of 150 mm, 60 mm, 100 mm and 75 mm respectively. GS – Galvo scanner (Cambridge Technologies). DM – Deformable mirror (DM69, ALPAO, Inc.). Dic M – Dichroic mirror redirecting visible light to an upper level with the fixation target. A spectrometer (Cobra-S 800, Wasatch photonics) with a 2048-pixel camera (Octoplus, Teledyne e2v) was used to read the OCT interferograms. Optical fiber patches were added to the sample and reference arms to compensate delay and dispersion. A dummy mirror was placed at the position of the deformable mirror in the picture for alignment purposes. Spacers were 3D printed. The sample arm efficiency was 75%.
Fig. 2.
Fig. 2. Simulation of the system’s optical performance in OpticStudio (Zemax). (A) Ray trace simulation. (B) Simulation of the beam size (≈ 6 µm) over a field of view of 4.5 mm centered at the fovea of an emmetropic eye model.
Fig. 3.
Fig. 3. Increasing the number of spectral splits with respect to previous SSADA implementations [1,22] allowed increasing the flow signal-to-noise ratio (SNR) while maintaining the sharpness of capillaries in en face angiogram visualizations. The superficial vascular complex is demonstrated. Flow SNR increases from 5.6 for the 11 spectral splits (A, bandwidth of 27 nm, separated by 6.6 nm) to 9.5 for 18 spectral splits (B, bandwidth of 20 nm, separated by 4.3 nm) and 11.2 for 23 spectral splits (C, bandwidth of 18 nm, separated by 3.5 nm). Greater number of spectral splits did not yield further SNR improvement on en face OCTA projections.
Fig. 4.
Fig. 4. Removal of motion artifacts by parallel-strip registration of two redundant scans of the same FOV acquired with the AO-OCTA prototype. Black arrows indicate the position of motion artifacts in the original scans.
Fig. 5.
Fig. 5. Comparison of the figure of merit evolution normalized to its maximum value, during the optimization of ocular aberrations prior to OCTA acquisition for an astigmatic and a non-astigmatic subject. Each point represents the mean value of the reflectance OCT projection of the slab/layer of interest from a volume acquired in high-speed mode at a rate of 33 volumes per second. The non-astigmatic subject reached its optimal correction after the first mode (defocus, first nine steps) whereas the astigmatic subject reached its optimal correction after oblique and vertical astigmatism had been optimized (first 27 steps). The entire process (45 figures of merit computed, 9 per mode) was completed within 1.35 seconds.
Fig. 6.
Fig. 6. Layer-specific optimization of focusing using sensor-less AO with real-time image processing segmentation of retinal layers. (A) Focusing with a figure of merit based on the inner retina layers produces a cross-sectional OCT image with bright inner layers. (B) A figure of merit based on the entire B-frame bring the focus to the outer retina with its highly backscattering ellipsoid zone – retinal pigment epithelium complex. (C) Focusing on the inner retina optimizes the sharpness of retinal OCTA. (D) Focusing on the outer retina blurs the retinal OCTA. Field of view is 3.3×3.3 mm.
Fig. 7.
Fig. 7. Superficial vascular complex (SVC), intermediate capillary plexus (ICP) and deep capillary plexus (DCP) show better contrast in the images acquired by the AO-OCTA prototype compared to the images acquired by the commercial instrument. Upper-left corners were enlarged to better visualize the difference in contrast. Projection artifacts were visibly reduced (e.g. the locations marked by blue arrows) by AO-OCTA without using any projection removal post-processing algorithm. FOV is 2×2 mm for both instruments.
Fig. 8.
Fig. 8. OCTA of FOV of 0.75×0.75 mm at 5 degrees superior to the fovea, 1.5×1.5 mm at 5 degrees nasal to the fovea and 3.3×3.3 mm of the peripapillary area, acquired from an eye with −0.5 diopters of defocus and 0.25 diopters of astigmatism. High capillary contrast is observed for the superficial vascular complex (SVC), intermediate capillary plexus (ICP) and deep capillary plexus (DCP). The low prevalence of OCTA projection artifacts is visualized on ICP and DCP images.
Fig. 9.
Fig. 9. Parallel-strip registration of retinal angiograms of the superficial vascular complex (SVC), intermediate capillary plexus (ICP) and deep capillary plexus (DCP) acquired with the AO-OCTA prototype resulting in high contrast and removal of projection and vignetting artifacts observed with random prevalence in single scans. The top row shows inner retinal flow is represented in single scans in an RGB color scheme (red – SVC flow, green – ICP, blue – DCP).

Tables (2)

Tables Icon

Table 1. Comparison of signal-to-noise ratio and vessel density between AO-OCTA and commercial OCTA.a

Tables Icon

Table 2. Comparison of capillary caliber observed in the retinal plexuses with AO-OCTA and commercial OCTA.a

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S N R = D ¯ D F A Z ¯ σ D F A Z 2