Abstract

Since the discovery of photodynamic therapy, scientists have constantly been searching for more effective and ideal photosensitizers (PSs). As part of our ongoing interest in the development of more potent photosensitizers, quinoline-8-yloxy-substituted zinc(II) phthalocyanine (ZnPc-Q1) has been identified as a promising photosensitizers in tumor cells. This study aims to explore the photodynamic mechanism and in vivo photodynamic efficacy of ZnPc-Q1, and further evaluate its potential in clinical photodynamic therapy application. The single crystal structure of ZnPc-Q1 enables the easy control of clinical quality standards. In comparison with Photofrin, ZnPc-Q1 exhibits considerably higher in vitro anticancer activity by dual dose-related mechanisms (antiproliferative and apoptosis). In addition, the in vivo results demonstrate that ZnPc-Q1 exhibits significant tumor regression with less skin photosensitivity by both direct killing and apoptosis anticancer mechanisms. In conclusion, ZnPc-Q1 can be considered to be a promising ideal PS for clinical application owing to its defined chemical structure without phthalocyanine isomerization, good absorption of tissue-penetrating red light, improved photodynamic therapy efficacy, and reduced skin phototoxicity.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. M. Sharman, C. M. Allen, and J. E. van Lier, “Photodynamic therapeutics: basic principles and clinical applications,” Drug Discovery Today 4(11), 507–517 (1999).
    [Crossref]
  2. D. E. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer 3(5), 380–387 (2003).
    [Crossref]
  3. A. P. Castano, P. Mroz, and M. R. Hamblin, “Photodynamic therapy and anti-tumour immunity,” Nat. Rev. Cancer 6(7), 535–545 (2006).
    [Crossref]
  4. J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and Photodynamic Therapy: Mechanisms, Monitoring, and Optimization,” Chem. Rev. 110(5), 2795–2838 (2010).
    [Crossref]
  5. Z. J. Zhou, J. B. Song, L. M. Nie, and X. Y. Chen, “Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy,” Chem. Soc. Rev. 45(23), 6597–6626 (2016).
    [Crossref]
  6. X. Li, N. Kwon, T. Guo, Z. Liu, and J. Yoon, “Innovative Strategies for Hypoxic-Tumor Photodynamic Therapy,” Angew. Chem., Int. Ed. 57(36), 11522–11531 (2018).
    [Crossref]
  7. J. F. Lovell, T. W. B. Liu, J. Chen, and G. Zheng, “Activatable Photosensitizers for Imaging and Therapy,” Chem. Rev. 110(5), 2839–2857 (2010).
    [Crossref]
  8. M. Yang, T. Yang, and C. Mao, “Enhancement of Photodynamic Cancer Therapy by Physical and Chemical Factors,” Photodiagn. Photodyn. Ther. 58(40), 14066–14080 (2019).
    [Crossref]
  9. T. S. Mang, “Lasers and light sources for PDT: past, present and future,” Photodiagnosis Photodyn. Ther. 1(1), 43–48 (2004).
    [Crossref]
  10. X. Li, S. Lee, and J. Yoon, “Supramolecular photosensitizers rejuvenate photodynamic therapy,” Chem. Soc. Rev. 47(4), 1174–1188 (2018).
    [Crossref]
  11. X. Li, B. D. Zheng, X. H. Peng, S. Z. Li, J. W. Ying, Y. Y. Zhao, J. D. Huang, and J. Yoon, “Phthalocyanines as medicinal photosensitizers: Developments in the last five years,” Coord. Chem. Rev. 379, 147–160 (2019).
    [Crossref]
  12. B. M. Luby, C. D. Walsh, and G. Zheng, “Advanced Photosensitizer Activation Strategies for Smarter Photodynamic Therapy Beacons,” Photodiagn. Photodyn. Ther. 58(9), 2558–2569 (2019).
    [Crossref]
  13. T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng, “Photodynamic Therapy,” J. Natl. Cancer Inst. 90(12), 889–905 (1998).
    [Crossref]
  14. D. A. Bellnier, W. R. Greco, G. M. Loewen, H. Nava, A. R. Oseroff, and T. J. Dougherty, “Clinical Pharmacokinetics of the PDT Photosensitizers Porfimer Sodium (Photofrin), 2-[1-Hexyloxyethyl]-2-Devinyl Pyropheophorbide-a (Photochlor) and 5-ALA-Induced Protoporphyrin IX,” Lasers Surg. Med. 38(5), 439–444 (2006).
    [Crossref]
  15. A. E. O’Connor, W. M. Gallagher, and A. T. Byrne, “Porphyrin and Nonporphyrin Photosensitizers in Oncology: Preclinical and Clinical Advances in Photodynamic Therapy,” Photochem. Photobiol. 85(5), 1053–1074 (2009).
    [Crossref]
  16. M. Ethirajan, Y. Chen, P. Joshi, and R. K. Pandey, “The role of porphyrin chemistry in tumor imaging and photodynamic therapy,” Chem. Soc. Rev. 40(1), 340–362 (2011).
    [Crossref]
  17. D. Van Straten, V. Mashayekhi, H. S. De Bruijn, S. Oliveira, and D. J. Robinson, “Oncologic Photodynamic Therapy: Basic Principles, Current Clinical Status and Future Directions,” Cancers 9(12), 19–72 (2017).
    [Crossref]
  18. Y. Zhang and J. F. Lovell, “Porphyrins as Theranostic Agents from Prehistoric to Modern Times,” Theranostics 2(9), 905–915 (2012).
    [Crossref]
  19. J. Zhang, C. Jiang, J. P. Figueiró Longo, R. B. Azevedo, H. Zhang, and L. A. Muehlmann, “An updated overview on the development of new photosensitizers for anticancer photodynamic therapy,” Acta Pharm. Sin. B 8(2), 137–146 (2018).
    [Crossref]
  20. T. Patrice, N. Rousset, L. Bourré, and S. Thibaud, Sensitizers in Photodynamic Therapy (The Royal Society of Chemistry, 2003), Vol. 2, pp. 59–66.
  21. N. Brasseur, Sensitizers for Photodynamic Therapy: Phthalocyanines (The Royal Society of Chemistry, 2003), Vol. 2, pp. 105–118.
    [Crossref]
  22. I. Gurol, M. Durmus, V. Ahsen, and T. Nyokong, “Synthesis, photophysical and photochemical properties of substituted zinc phthalocyanines,” Dalton Trans. 34, 3782–3791 (2007).
    [Crossref]
  23. N. Sekkat, H. v. d. Bergh, T. Nyokong, and N. Lange, “Like a Bolt from the Blue: Phthalocyanines in Biomedical Optics,” Molecules 17(1), 98–144 (2011).
    [Crossref]
  24. S. Singh, A. Aggarwal, N. V. S. D. K. Bhupathiraju, G. Arianna, K. Tiwari, and C. M. Drain, “Glycosylated Porphyrins, Phthalocyanines, and Other Porphyrinoids for Diagnostics and Therapeutics,” Chem. Rev. 115(18), 10261–10306 (2015).
    [Crossref]
  25. X. Jia, F.-F. Yang, J. Li, J.-Y. Liu, and J.-P. Xue, “Synthesis and in Vitro Photodynamic Activity of Oligomeric Ethylene Glycol–Quinoline Substituted Zinc(II) Phthalocyanine Derivatives,” J. Med. Chem. 56(14), 5797–5805 (2013).
    [Crossref]
  26. F.-L. Zhang, Q. Huang, K. Zheng, J. Li, J.-Y. Liu, and J.-P. Xue, “A novel strategy for targeting photodynamic therapy. Molecular combo of photodynamic agent zinc(ii) phthalocyanine and small molecule target-based anticancer drug erlotinib,” Chem. Commun. 49(83), 9570–9572 (2013).
    [Crossref]
  27. F.-L. Zhang, Q. Huang, J.-Y. Liu, M.-D. Huang, and J.-P. Xue, “Molecular-target-based anticancer photosensitizer: synthesis and in vitro photodynamic activity of erlotinib–zinc(II) phthalocyanine conjugates,” ChemMedChem 10(2), 312–320 (2015).
    [Crossref]
  28. J. Chen, H. Ye, M. Zhang, J. Li, J. Liu, and J. Xue, “Erlotinib analogue-substituted zinc(II) phthalocyanines for small molecular target-based photodynamic cancer therapy,” Chin. J. Chem. 34(10), 983–988 (2016).
    [Crossref]
  29. F.-L. Zhang, M.-R. Song, G.-K. Yuan, H.-N. Ye, Y. Tian, M.-D. Huang, J.-P. Xue, Z.-H. Zhang, and J.-Y. Liu, “A Molecular Combination of Zinc(II) Phthalocyanine and Tamoxifen Derivative for Dual Targeting Photodynamic Therapy and Hormone Therapy,” J. Med. Chem. 60(15), 6693–6703 (2017).
    [Crossref]
  30. J. Chen, Y. Fang, H. Liu, N. Chen, S. Chen, and J. Xue, “Quinolin-8-yloxy-substituted zinc(II) phthalocyanines for enhanced in vitro photodynamic therapy,” J. Porphyrins Phthalocyanines 22(09n10), 807–813 (2018).
    [Crossref]
  31. X. Zhao, Y. Huang, G. Yuan, K. Zuo, Y. Huang, J. Chen, J. Li, and J. Xue, “A novel tumor and mitochondria dual-targeted photosensitizer showing ultra-efficient photodynamic anticancer activities,” Chem. Commun. 55(6), 866–869 (2019).
    [Crossref]
  32. X. Zhao, H. Ma, J. Chen, F. Zhang, X. Jia, and J. Xue, “An epidermal growth factor receptor-targeted and endoplasmic reticulum-localized organic photosensitizer toward photodynamic anticancer therapy,” Eur. J. Med. Chem. 182, 111625 (2019).
    [Crossref]
  33. K. Berg, S. Nordstrand, P. K. Selbo, D. T. T. Tran, E. Angell-Petersen, and A. Høgset, “Disulfonated tetraphenyl chlorin (TPCS2a), a novel photosensitizer developed for clinical utilization of photochemical internalization,” Photochem. Photobiol. Sci. 10(10), 1637–1651 (2011).
    [Crossref]
  34. M. Hanack, G. Schmid, and M. Sommerauer, “Chromatographic Separation of the Four Possible Structural Isomers of a Tetrasubstituted Phthalocyanine: Tetrakis(2-ethylhexyloxy)phthalocyaninatonickel(II),” Photodiagn. Photodyn. Ther. 32(10), 1422–1424 (1993).
    [Crossref]
  35. A. Kamkaew, S. H. Lim, H. B. Lee, L. V. Kiew, L. Y. Chung, and K. Burgess, “BODIPY dyes in photodynamic therapy,” Chem. Soc. Rev. 42(1), 77–88 (2013).
    [Crossref]
  36. W. Gregory Roberts, K. M. Smith, J. L. Mcculiough, and M. W. Berns, “Skin photosensitivity and photodestruction of several potential photodynamic sensitizers,” Photochem. Photobiol. 49(4), 431–438 (1989).
    [Crossref]
  37. K. Haedicke, S. Graefe, U. Teichgraeber, and I. Hilger, “Lowering photosensitizer doses and increasing fluences induce apoptosis in tumor bearing mice,” Biomed. Opt. Express 7(7), 2641–2649 (2016).
    [Crossref]
  38. Z. Dong, L. Feng, Y. Hao, M. Chen, M. Gao, Y. Chao, H. Zhao, W. Zhu, J. Liu, C. Liang, Q. Zhang, and Z. Liu, “Synthesis of Hollow Biomineralized CaCO3–Polydopamine Nanoparticles for Multimodal Imaging-Guided Cancer Photodynamic Therapy with Reduced Skin Photosensitivity,” J. Am. Chem. Soc. 140(6), 2165–2178 (2018).
    [Crossref]
  39. A. J. Hutt and S. C. Tan, “Drug chirality and its clinical significance,” Drugs 52 Supplement 5, 1–12 (1996).
    [Crossref]
  40. H. Y. Yeung, P. C. Lo, D. K. Ng, and W. P. Fong, “Anti-tumor immunity of BAM-SiPc-mediated vascular photodynamic therapy in a BALB/c mouse model,” Cell. Mol. Immunol. 14(2), 223–234 (2017).
    [Crossref]

2019 (5)

M. Yang, T. Yang, and C. Mao, “Enhancement of Photodynamic Cancer Therapy by Physical and Chemical Factors,” Photodiagn. Photodyn. Ther. 58(40), 14066–14080 (2019).
[Crossref]

X. Li, B. D. Zheng, X. H. Peng, S. Z. Li, J. W. Ying, Y. Y. Zhao, J. D. Huang, and J. Yoon, “Phthalocyanines as medicinal photosensitizers: Developments in the last five years,” Coord. Chem. Rev. 379, 147–160 (2019).
[Crossref]

B. M. Luby, C. D. Walsh, and G. Zheng, “Advanced Photosensitizer Activation Strategies for Smarter Photodynamic Therapy Beacons,” Photodiagn. Photodyn. Ther. 58(9), 2558–2569 (2019).
[Crossref]

X. Zhao, Y. Huang, G. Yuan, K. Zuo, Y. Huang, J. Chen, J. Li, and J. Xue, “A novel tumor and mitochondria dual-targeted photosensitizer showing ultra-efficient photodynamic anticancer activities,” Chem. Commun. 55(6), 866–869 (2019).
[Crossref]

X. Zhao, H. Ma, J. Chen, F. Zhang, X. Jia, and J. Xue, “An epidermal growth factor receptor-targeted and endoplasmic reticulum-localized organic photosensitizer toward photodynamic anticancer therapy,” Eur. J. Med. Chem. 182, 111625 (2019).
[Crossref]

2018 (5)

J. Chen, Y. Fang, H. Liu, N. Chen, S. Chen, and J. Xue, “Quinolin-8-yloxy-substituted zinc(II) phthalocyanines for enhanced in vitro photodynamic therapy,” J. Porphyrins Phthalocyanines 22(09n10), 807–813 (2018).
[Crossref]

J. Zhang, C. Jiang, J. P. Figueiró Longo, R. B. Azevedo, H. Zhang, and L. A. Muehlmann, “An updated overview on the development of new photosensitizers for anticancer photodynamic therapy,” Acta Pharm. Sin. B 8(2), 137–146 (2018).
[Crossref]

X. Li, S. Lee, and J. Yoon, “Supramolecular photosensitizers rejuvenate photodynamic therapy,” Chem. Soc. Rev. 47(4), 1174–1188 (2018).
[Crossref]

X. Li, N. Kwon, T. Guo, Z. Liu, and J. Yoon, “Innovative Strategies for Hypoxic-Tumor Photodynamic Therapy,” Angew. Chem., Int. Ed. 57(36), 11522–11531 (2018).
[Crossref]

Z. Dong, L. Feng, Y. Hao, M. Chen, M. Gao, Y. Chao, H. Zhao, W. Zhu, J. Liu, C. Liang, Q. Zhang, and Z. Liu, “Synthesis of Hollow Biomineralized CaCO3–Polydopamine Nanoparticles for Multimodal Imaging-Guided Cancer Photodynamic Therapy with Reduced Skin Photosensitivity,” J. Am. Chem. Soc. 140(6), 2165–2178 (2018).
[Crossref]

2017 (3)

H. Y. Yeung, P. C. Lo, D. K. Ng, and W. P. Fong, “Anti-tumor immunity of BAM-SiPc-mediated vascular photodynamic therapy in a BALB/c mouse model,” Cell. Mol. Immunol. 14(2), 223–234 (2017).
[Crossref]

D. Van Straten, V. Mashayekhi, H. S. De Bruijn, S. Oliveira, and D. J. Robinson, “Oncologic Photodynamic Therapy: Basic Principles, Current Clinical Status and Future Directions,” Cancers 9(12), 19–72 (2017).
[Crossref]

F.-L. Zhang, M.-R. Song, G.-K. Yuan, H.-N. Ye, Y. Tian, M.-D. Huang, J.-P. Xue, Z.-H. Zhang, and J.-Y. Liu, “A Molecular Combination of Zinc(II) Phthalocyanine and Tamoxifen Derivative for Dual Targeting Photodynamic Therapy and Hormone Therapy,” J. Med. Chem. 60(15), 6693–6703 (2017).
[Crossref]

2016 (3)

J. Chen, H. Ye, M. Zhang, J. Li, J. Liu, and J. Xue, “Erlotinib analogue-substituted zinc(II) phthalocyanines for small molecular target-based photodynamic cancer therapy,” Chin. J. Chem. 34(10), 983–988 (2016).
[Crossref]

Z. J. Zhou, J. B. Song, L. M. Nie, and X. Y. Chen, “Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy,” Chem. Soc. Rev. 45(23), 6597–6626 (2016).
[Crossref]

K. Haedicke, S. Graefe, U. Teichgraeber, and I. Hilger, “Lowering photosensitizer doses and increasing fluences induce apoptosis in tumor bearing mice,” Biomed. Opt. Express 7(7), 2641–2649 (2016).
[Crossref]

2015 (2)

F.-L. Zhang, Q. Huang, J.-Y. Liu, M.-D. Huang, and J.-P. Xue, “Molecular-target-based anticancer photosensitizer: synthesis and in vitro photodynamic activity of erlotinib–zinc(II) phthalocyanine conjugates,” ChemMedChem 10(2), 312–320 (2015).
[Crossref]

S. Singh, A. Aggarwal, N. V. S. D. K. Bhupathiraju, G. Arianna, K. Tiwari, and C. M. Drain, “Glycosylated Porphyrins, Phthalocyanines, and Other Porphyrinoids for Diagnostics and Therapeutics,” Chem. Rev. 115(18), 10261–10306 (2015).
[Crossref]

2013 (3)

X. Jia, F.-F. Yang, J. Li, J.-Y. Liu, and J.-P. Xue, “Synthesis and in Vitro Photodynamic Activity of Oligomeric Ethylene Glycol–Quinoline Substituted Zinc(II) Phthalocyanine Derivatives,” J. Med. Chem. 56(14), 5797–5805 (2013).
[Crossref]

F.-L. Zhang, Q. Huang, K. Zheng, J. Li, J.-Y. Liu, and J.-P. Xue, “A novel strategy for targeting photodynamic therapy. Molecular combo of photodynamic agent zinc(ii) phthalocyanine and small molecule target-based anticancer drug erlotinib,” Chem. Commun. 49(83), 9570–9572 (2013).
[Crossref]

A. Kamkaew, S. H. Lim, H. B. Lee, L. V. Kiew, L. Y. Chung, and K. Burgess, “BODIPY dyes in photodynamic therapy,” Chem. Soc. Rev. 42(1), 77–88 (2013).
[Crossref]

2012 (1)

Y. Zhang and J. F. Lovell, “Porphyrins as Theranostic Agents from Prehistoric to Modern Times,” Theranostics 2(9), 905–915 (2012).
[Crossref]

2011 (3)

K. Berg, S. Nordstrand, P. K. Selbo, D. T. T. Tran, E. Angell-Petersen, and A. Høgset, “Disulfonated tetraphenyl chlorin (TPCS2a), a novel photosensitizer developed for clinical utilization of photochemical internalization,” Photochem. Photobiol. Sci. 10(10), 1637–1651 (2011).
[Crossref]

M. Ethirajan, Y. Chen, P. Joshi, and R. K. Pandey, “The role of porphyrin chemistry in tumor imaging and photodynamic therapy,” Chem. Soc. Rev. 40(1), 340–362 (2011).
[Crossref]

N. Sekkat, H. v. d. Bergh, T. Nyokong, and N. Lange, “Like a Bolt from the Blue: Phthalocyanines in Biomedical Optics,” Molecules 17(1), 98–144 (2011).
[Crossref]

2010 (2)

J. F. Lovell, T. W. B. Liu, J. Chen, and G. Zheng, “Activatable Photosensitizers for Imaging and Therapy,” Chem. Rev. 110(5), 2839–2857 (2010).
[Crossref]

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and Photodynamic Therapy: Mechanisms, Monitoring, and Optimization,” Chem. Rev. 110(5), 2795–2838 (2010).
[Crossref]

2009 (1)

A. E. O’Connor, W. M. Gallagher, and A. T. Byrne, “Porphyrin and Nonporphyrin Photosensitizers in Oncology: Preclinical and Clinical Advances in Photodynamic Therapy,” Photochem. Photobiol. 85(5), 1053–1074 (2009).
[Crossref]

2007 (1)

I. Gurol, M. Durmus, V. Ahsen, and T. Nyokong, “Synthesis, photophysical and photochemical properties of substituted zinc phthalocyanines,” Dalton Trans. 34, 3782–3791 (2007).
[Crossref]

2006 (2)

D. A. Bellnier, W. R. Greco, G. M. Loewen, H. Nava, A. R. Oseroff, and T. J. Dougherty, “Clinical Pharmacokinetics of the PDT Photosensitizers Porfimer Sodium (Photofrin), 2-[1-Hexyloxyethyl]-2-Devinyl Pyropheophorbide-a (Photochlor) and 5-ALA-Induced Protoporphyrin IX,” Lasers Surg. Med. 38(5), 439–444 (2006).
[Crossref]

A. P. Castano, P. Mroz, and M. R. Hamblin, “Photodynamic therapy and anti-tumour immunity,” Nat. Rev. Cancer 6(7), 535–545 (2006).
[Crossref]

2004 (1)

T. S. Mang, “Lasers and light sources for PDT: past, present and future,” Photodiagnosis Photodyn. Ther. 1(1), 43–48 (2004).
[Crossref]

2003 (1)

D. E. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer 3(5), 380–387 (2003).
[Crossref]

1999 (1)

W. M. Sharman, C. M. Allen, and J. E. van Lier, “Photodynamic therapeutics: basic principles and clinical applications,” Drug Discovery Today 4(11), 507–517 (1999).
[Crossref]

1998 (1)

T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng, “Photodynamic Therapy,” J. Natl. Cancer Inst. 90(12), 889–905 (1998).
[Crossref]

1996 (1)

A. J. Hutt and S. C. Tan, “Drug chirality and its clinical significance,” Drugs 52 Supplement 5, 1–12 (1996).
[Crossref]

1993 (1)

M. Hanack, G. Schmid, and M. Sommerauer, “Chromatographic Separation of the Four Possible Structural Isomers of a Tetrasubstituted Phthalocyanine: Tetrakis(2-ethylhexyloxy)phthalocyaninatonickel(II),” Photodiagn. Photodyn. Ther. 32(10), 1422–1424 (1993).
[Crossref]

1989 (1)

W. Gregory Roberts, K. M. Smith, J. L. Mcculiough, and M. W. Berns, “Skin photosensitivity and photodestruction of several potential photodynamic sensitizers,” Photochem. Photobiol. 49(4), 431–438 (1989).
[Crossref]

Aggarwal, A.

S. Singh, A. Aggarwal, N. V. S. D. K. Bhupathiraju, G. Arianna, K. Tiwari, and C. M. Drain, “Glycosylated Porphyrins, Phthalocyanines, and Other Porphyrinoids for Diagnostics and Therapeutics,” Chem. Rev. 115(18), 10261–10306 (2015).
[Crossref]

Ahsen, V.

I. Gurol, M. Durmus, V. Ahsen, and T. Nyokong, “Synthesis, photophysical and photochemical properties of substituted zinc phthalocyanines,” Dalton Trans. 34, 3782–3791 (2007).
[Crossref]

Allen, C. M.

W. M. Sharman, C. M. Allen, and J. E. van Lier, “Photodynamic therapeutics: basic principles and clinical applications,” Drug Discovery Today 4(11), 507–517 (1999).
[Crossref]

Angell-Petersen, E.

K. Berg, S. Nordstrand, P. K. Selbo, D. T. T. Tran, E. Angell-Petersen, and A. Høgset, “Disulfonated tetraphenyl chlorin (TPCS2a), a novel photosensitizer developed for clinical utilization of photochemical internalization,” Photochem. Photobiol. Sci. 10(10), 1637–1651 (2011).
[Crossref]

Arianna, G.

S. Singh, A. Aggarwal, N. V. S. D. K. Bhupathiraju, G. Arianna, K. Tiwari, and C. M. Drain, “Glycosylated Porphyrins, Phthalocyanines, and Other Porphyrinoids for Diagnostics and Therapeutics,” Chem. Rev. 115(18), 10261–10306 (2015).
[Crossref]

Azevedo, R. B.

J. Zhang, C. Jiang, J. P. Figueiró Longo, R. B. Azevedo, H. Zhang, and L. A. Muehlmann, “An updated overview on the development of new photosensitizers for anticancer photodynamic therapy,” Acta Pharm. Sin. B 8(2), 137–146 (2018).
[Crossref]

Bellnier, D. A.

D. A. Bellnier, W. R. Greco, G. M. Loewen, H. Nava, A. R. Oseroff, and T. J. Dougherty, “Clinical Pharmacokinetics of the PDT Photosensitizers Porfimer Sodium (Photofrin), 2-[1-Hexyloxyethyl]-2-Devinyl Pyropheophorbide-a (Photochlor) and 5-ALA-Induced Protoporphyrin IX,” Lasers Surg. Med. 38(5), 439–444 (2006).
[Crossref]

Berg, K.

K. Berg, S. Nordstrand, P. K. Selbo, D. T. T. Tran, E. Angell-Petersen, and A. Høgset, “Disulfonated tetraphenyl chlorin (TPCS2a), a novel photosensitizer developed for clinical utilization of photochemical internalization,” Photochem. Photobiol. Sci. 10(10), 1637–1651 (2011).
[Crossref]

Bergh, H. v. d.

N. Sekkat, H. v. d. Bergh, T. Nyokong, and N. Lange, “Like a Bolt from the Blue: Phthalocyanines in Biomedical Optics,” Molecules 17(1), 98–144 (2011).
[Crossref]

Berns, M. W.

W. Gregory Roberts, K. M. Smith, J. L. Mcculiough, and M. W. Berns, “Skin photosensitivity and photodestruction of several potential photodynamic sensitizers,” Photochem. Photobiol. 49(4), 431–438 (1989).
[Crossref]

Bhupathiraju, N. V. S. D. K.

S. Singh, A. Aggarwal, N. V. S. D. K. Bhupathiraju, G. Arianna, K. Tiwari, and C. M. Drain, “Glycosylated Porphyrins, Phthalocyanines, and Other Porphyrinoids for Diagnostics and Therapeutics,” Chem. Rev. 115(18), 10261–10306 (2015).
[Crossref]

Bourré, L.

T. Patrice, N. Rousset, L. Bourré, and S. Thibaud, Sensitizers in Photodynamic Therapy (The Royal Society of Chemistry, 2003), Vol. 2, pp. 59–66.

Brasseur, N.

N. Brasseur, Sensitizers for Photodynamic Therapy: Phthalocyanines (The Royal Society of Chemistry, 2003), Vol. 2, pp. 105–118.
[Crossref]

Burgess, K.

A. Kamkaew, S. H. Lim, H. B. Lee, L. V. Kiew, L. Y. Chung, and K. Burgess, “BODIPY dyes in photodynamic therapy,” Chem. Soc. Rev. 42(1), 77–88 (2013).
[Crossref]

Byrne, A. T.

A. E. O’Connor, W. M. Gallagher, and A. T. Byrne, “Porphyrin and Nonporphyrin Photosensitizers in Oncology: Preclinical and Clinical Advances in Photodynamic Therapy,” Photochem. Photobiol. 85(5), 1053–1074 (2009).
[Crossref]

Castano, A. P.

A. P. Castano, P. Mroz, and M. R. Hamblin, “Photodynamic therapy and anti-tumour immunity,” Nat. Rev. Cancer 6(7), 535–545 (2006).
[Crossref]

Celli, J. P.

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and Photodynamic Therapy: Mechanisms, Monitoring, and Optimization,” Chem. Rev. 110(5), 2795–2838 (2010).
[Crossref]

Chao, Y.

Z. Dong, L. Feng, Y. Hao, M. Chen, M. Gao, Y. Chao, H. Zhao, W. Zhu, J. Liu, C. Liang, Q. Zhang, and Z. Liu, “Synthesis of Hollow Biomineralized CaCO3–Polydopamine Nanoparticles for Multimodal Imaging-Guided Cancer Photodynamic Therapy with Reduced Skin Photosensitivity,” J. Am. Chem. Soc. 140(6), 2165–2178 (2018).
[Crossref]

Chen, J.

X. Zhao, Y. Huang, G. Yuan, K. Zuo, Y. Huang, J. Chen, J. Li, and J. Xue, “A novel tumor and mitochondria dual-targeted photosensitizer showing ultra-efficient photodynamic anticancer activities,” Chem. Commun. 55(6), 866–869 (2019).
[Crossref]

X. Zhao, H. Ma, J. Chen, F. Zhang, X. Jia, and J. Xue, “An epidermal growth factor receptor-targeted and endoplasmic reticulum-localized organic photosensitizer toward photodynamic anticancer therapy,” Eur. J. Med. Chem. 182, 111625 (2019).
[Crossref]

J. Chen, Y. Fang, H. Liu, N. Chen, S. Chen, and J. Xue, “Quinolin-8-yloxy-substituted zinc(II) phthalocyanines for enhanced in vitro photodynamic therapy,” J. Porphyrins Phthalocyanines 22(09n10), 807–813 (2018).
[Crossref]

J. Chen, H. Ye, M. Zhang, J. Li, J. Liu, and J. Xue, “Erlotinib analogue-substituted zinc(II) phthalocyanines for small molecular target-based photodynamic cancer therapy,” Chin. J. Chem. 34(10), 983–988 (2016).
[Crossref]

J. F. Lovell, T. W. B. Liu, J. Chen, and G. Zheng, “Activatable Photosensitizers for Imaging and Therapy,” Chem. Rev. 110(5), 2839–2857 (2010).
[Crossref]

Chen, M.

Z. Dong, L. Feng, Y. Hao, M. Chen, M. Gao, Y. Chao, H. Zhao, W. Zhu, J. Liu, C. Liang, Q. Zhang, and Z. Liu, “Synthesis of Hollow Biomineralized CaCO3–Polydopamine Nanoparticles for Multimodal Imaging-Guided Cancer Photodynamic Therapy with Reduced Skin Photosensitivity,” J. Am. Chem. Soc. 140(6), 2165–2178 (2018).
[Crossref]

Chen, N.

J. Chen, Y. Fang, H. Liu, N. Chen, S. Chen, and J. Xue, “Quinolin-8-yloxy-substituted zinc(II) phthalocyanines for enhanced in vitro photodynamic therapy,” J. Porphyrins Phthalocyanines 22(09n10), 807–813 (2018).
[Crossref]

Chen, S.

J. Chen, Y. Fang, H. Liu, N. Chen, S. Chen, and J. Xue, “Quinolin-8-yloxy-substituted zinc(II) phthalocyanines for enhanced in vitro photodynamic therapy,” J. Porphyrins Phthalocyanines 22(09n10), 807–813 (2018).
[Crossref]

Chen, X. Y.

Z. J. Zhou, J. B. Song, L. M. Nie, and X. Y. Chen, “Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy,” Chem. Soc. Rev. 45(23), 6597–6626 (2016).
[Crossref]

Chen, Y.

M. Ethirajan, Y. Chen, P. Joshi, and R. K. Pandey, “The role of porphyrin chemistry in tumor imaging and photodynamic therapy,” Chem. Soc. Rev. 40(1), 340–362 (2011).
[Crossref]

Chung, L. Y.

A. Kamkaew, S. H. Lim, H. B. Lee, L. V. Kiew, L. Y. Chung, and K. Burgess, “BODIPY dyes in photodynamic therapy,” Chem. Soc. Rev. 42(1), 77–88 (2013).
[Crossref]

De Bruijn, H. S.

D. Van Straten, V. Mashayekhi, H. S. De Bruijn, S. Oliveira, and D. J. Robinson, “Oncologic Photodynamic Therapy: Basic Principles, Current Clinical Status and Future Directions,” Cancers 9(12), 19–72 (2017).
[Crossref]

Dolmans, D. E.

D. E. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer 3(5), 380–387 (2003).
[Crossref]

Dong, Z.

Z. Dong, L. Feng, Y. Hao, M. Chen, M. Gao, Y. Chao, H. Zhao, W. Zhu, J. Liu, C. Liang, Q. Zhang, and Z. Liu, “Synthesis of Hollow Biomineralized CaCO3–Polydopamine Nanoparticles for Multimodal Imaging-Guided Cancer Photodynamic Therapy with Reduced Skin Photosensitivity,” J. Am. Chem. Soc. 140(6), 2165–2178 (2018).
[Crossref]

Dougherty, T. J.

D. A. Bellnier, W. R. Greco, G. M. Loewen, H. Nava, A. R. Oseroff, and T. J. Dougherty, “Clinical Pharmacokinetics of the PDT Photosensitizers Porfimer Sodium (Photofrin), 2-[1-Hexyloxyethyl]-2-Devinyl Pyropheophorbide-a (Photochlor) and 5-ALA-Induced Protoporphyrin IX,” Lasers Surg. Med. 38(5), 439–444 (2006).
[Crossref]

T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng, “Photodynamic Therapy,” J. Natl. Cancer Inst. 90(12), 889–905 (1998).
[Crossref]

Drain, C. M.

S. Singh, A. Aggarwal, N. V. S. D. K. Bhupathiraju, G. Arianna, K. Tiwari, and C. M. Drain, “Glycosylated Porphyrins, Phthalocyanines, and Other Porphyrinoids for Diagnostics and Therapeutics,” Chem. Rev. 115(18), 10261–10306 (2015).
[Crossref]

Durmus, M.

I. Gurol, M. Durmus, V. Ahsen, and T. Nyokong, “Synthesis, photophysical and photochemical properties of substituted zinc phthalocyanines,” Dalton Trans. 34, 3782–3791 (2007).
[Crossref]

Ethirajan, M.

M. Ethirajan, Y. Chen, P. Joshi, and R. K. Pandey, “The role of porphyrin chemistry in tumor imaging and photodynamic therapy,” Chem. Soc. Rev. 40(1), 340–362 (2011).
[Crossref]

Evans, C. L.

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and Photodynamic Therapy: Mechanisms, Monitoring, and Optimization,” Chem. Rev. 110(5), 2795–2838 (2010).
[Crossref]

Fang, Y.

J. Chen, Y. Fang, H. Liu, N. Chen, S. Chen, and J. Xue, “Quinolin-8-yloxy-substituted zinc(II) phthalocyanines for enhanced in vitro photodynamic therapy,” J. Porphyrins Phthalocyanines 22(09n10), 807–813 (2018).
[Crossref]

Feng, L.

Z. Dong, L. Feng, Y. Hao, M. Chen, M. Gao, Y. Chao, H. Zhao, W. Zhu, J. Liu, C. Liang, Q. Zhang, and Z. Liu, “Synthesis of Hollow Biomineralized CaCO3–Polydopamine Nanoparticles for Multimodal Imaging-Guided Cancer Photodynamic Therapy with Reduced Skin Photosensitivity,” J. Am. Chem. Soc. 140(6), 2165–2178 (2018).
[Crossref]

Figueiró Longo, J. P.

J. Zhang, C. Jiang, J. P. Figueiró Longo, R. B. Azevedo, H. Zhang, and L. A. Muehlmann, “An updated overview on the development of new photosensitizers for anticancer photodynamic therapy,” Acta Pharm. Sin. B 8(2), 137–146 (2018).
[Crossref]

Fong, W. P.

H. Y. Yeung, P. C. Lo, D. K. Ng, and W. P. Fong, “Anti-tumor immunity of BAM-SiPc-mediated vascular photodynamic therapy in a BALB/c mouse model,” Cell. Mol. Immunol. 14(2), 223–234 (2017).
[Crossref]

Fukumura, D.

D. E. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer 3(5), 380–387 (2003).
[Crossref]

Gallagher, W. M.

A. E. O’Connor, W. M. Gallagher, and A. T. Byrne, “Porphyrin and Nonporphyrin Photosensitizers in Oncology: Preclinical and Clinical Advances in Photodynamic Therapy,” Photochem. Photobiol. 85(5), 1053–1074 (2009).
[Crossref]

Gao, M.

Z. Dong, L. Feng, Y. Hao, M. Chen, M. Gao, Y. Chao, H. Zhao, W. Zhu, J. Liu, C. Liang, Q. Zhang, and Z. Liu, “Synthesis of Hollow Biomineralized CaCO3–Polydopamine Nanoparticles for Multimodal Imaging-Guided Cancer Photodynamic Therapy with Reduced Skin Photosensitivity,” J. Am. Chem. Soc. 140(6), 2165–2178 (2018).
[Crossref]

Gomer, C. J.

T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng, “Photodynamic Therapy,” J. Natl. Cancer Inst. 90(12), 889–905 (1998).
[Crossref]

Graefe, S.

Greco, W. R.

D. A. Bellnier, W. R. Greco, G. M. Loewen, H. Nava, A. R. Oseroff, and T. J. Dougherty, “Clinical Pharmacokinetics of the PDT Photosensitizers Porfimer Sodium (Photofrin), 2-[1-Hexyloxyethyl]-2-Devinyl Pyropheophorbide-a (Photochlor) and 5-ALA-Induced Protoporphyrin IX,” Lasers Surg. Med. 38(5), 439–444 (2006).
[Crossref]

Gregory Roberts, W.

W. Gregory Roberts, K. M. Smith, J. L. Mcculiough, and M. W. Berns, “Skin photosensitivity and photodestruction of several potential photodynamic sensitizers,” Photochem. Photobiol. 49(4), 431–438 (1989).
[Crossref]

Guo, T.

X. Li, N. Kwon, T. Guo, Z. Liu, and J. Yoon, “Innovative Strategies for Hypoxic-Tumor Photodynamic Therapy,” Angew. Chem., Int. Ed. 57(36), 11522–11531 (2018).
[Crossref]

Gurol, I.

I. Gurol, M. Durmus, V. Ahsen, and T. Nyokong, “Synthesis, photophysical and photochemical properties of substituted zinc phthalocyanines,” Dalton Trans. 34, 3782–3791 (2007).
[Crossref]

Haedicke, K.

Hamblin, M. R.

A. P. Castano, P. Mroz, and M. R. Hamblin, “Photodynamic therapy and anti-tumour immunity,” Nat. Rev. Cancer 6(7), 535–545 (2006).
[Crossref]

Hanack, M.

M. Hanack, G. Schmid, and M. Sommerauer, “Chromatographic Separation of the Four Possible Structural Isomers of a Tetrasubstituted Phthalocyanine: Tetrakis(2-ethylhexyloxy)phthalocyaninatonickel(II),” Photodiagn. Photodyn. Ther. 32(10), 1422–1424 (1993).
[Crossref]

Hao, Y.

Z. Dong, L. Feng, Y. Hao, M. Chen, M. Gao, Y. Chao, H. Zhao, W. Zhu, J. Liu, C. Liang, Q. Zhang, and Z. Liu, “Synthesis of Hollow Biomineralized CaCO3–Polydopamine Nanoparticles for Multimodal Imaging-Guided Cancer Photodynamic Therapy with Reduced Skin Photosensitivity,” J. Am. Chem. Soc. 140(6), 2165–2178 (2018).
[Crossref]

Hasan, T.

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and Photodynamic Therapy: Mechanisms, Monitoring, and Optimization,” Chem. Rev. 110(5), 2795–2838 (2010).
[Crossref]

Henderson, B. W.

T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng, “Photodynamic Therapy,” J. Natl. Cancer Inst. 90(12), 889–905 (1998).
[Crossref]

Hilger, I.

Høgset, A.

K. Berg, S. Nordstrand, P. K. Selbo, D. T. T. Tran, E. Angell-Petersen, and A. Høgset, “Disulfonated tetraphenyl chlorin (TPCS2a), a novel photosensitizer developed for clinical utilization of photochemical internalization,” Photochem. Photobiol. Sci. 10(10), 1637–1651 (2011).
[Crossref]

Huang, J. D.

X. Li, B. D. Zheng, X. H. Peng, S. Z. Li, J. W. Ying, Y. Y. Zhao, J. D. Huang, and J. Yoon, “Phthalocyanines as medicinal photosensitizers: Developments in the last five years,” Coord. Chem. Rev. 379, 147–160 (2019).
[Crossref]

Huang, M.-D.

F.-L. Zhang, M.-R. Song, G.-K. Yuan, H.-N. Ye, Y. Tian, M.-D. Huang, J.-P. Xue, Z.-H. Zhang, and J.-Y. Liu, “A Molecular Combination of Zinc(II) Phthalocyanine and Tamoxifen Derivative for Dual Targeting Photodynamic Therapy and Hormone Therapy,” J. Med. Chem. 60(15), 6693–6703 (2017).
[Crossref]

F.-L. Zhang, Q. Huang, J.-Y. Liu, M.-D. Huang, and J.-P. Xue, “Molecular-target-based anticancer photosensitizer: synthesis and in vitro photodynamic activity of erlotinib–zinc(II) phthalocyanine conjugates,” ChemMedChem 10(2), 312–320 (2015).
[Crossref]

Huang, Q.

F.-L. Zhang, Q. Huang, J.-Y. Liu, M.-D. Huang, and J.-P. Xue, “Molecular-target-based anticancer photosensitizer: synthesis and in vitro photodynamic activity of erlotinib–zinc(II) phthalocyanine conjugates,” ChemMedChem 10(2), 312–320 (2015).
[Crossref]

F.-L. Zhang, Q. Huang, K. Zheng, J. Li, J.-Y. Liu, and J.-P. Xue, “A novel strategy for targeting photodynamic therapy. Molecular combo of photodynamic agent zinc(ii) phthalocyanine and small molecule target-based anticancer drug erlotinib,” Chem. Commun. 49(83), 9570–9572 (2013).
[Crossref]

Huang, Y.

X. Zhao, Y. Huang, G. Yuan, K. Zuo, Y. Huang, J. Chen, J. Li, and J. Xue, “A novel tumor and mitochondria dual-targeted photosensitizer showing ultra-efficient photodynamic anticancer activities,” Chem. Commun. 55(6), 866–869 (2019).
[Crossref]

X. Zhao, Y. Huang, G. Yuan, K. Zuo, Y. Huang, J. Chen, J. Li, and J. Xue, “A novel tumor and mitochondria dual-targeted photosensitizer showing ultra-efficient photodynamic anticancer activities,” Chem. Commun. 55(6), 866–869 (2019).
[Crossref]

Hutt, A. J.

A. J. Hutt and S. C. Tan, “Drug chirality and its clinical significance,” Drugs 52 Supplement 5, 1–12 (1996).
[Crossref]

Jain, R. K.

D. E. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer 3(5), 380–387 (2003).
[Crossref]

Jia, X.

X. Zhao, H. Ma, J. Chen, F. Zhang, X. Jia, and J. Xue, “An epidermal growth factor receptor-targeted and endoplasmic reticulum-localized organic photosensitizer toward photodynamic anticancer therapy,” Eur. J. Med. Chem. 182, 111625 (2019).
[Crossref]

X. Jia, F.-F. Yang, J. Li, J.-Y. Liu, and J.-P. Xue, “Synthesis and in Vitro Photodynamic Activity of Oligomeric Ethylene Glycol–Quinoline Substituted Zinc(II) Phthalocyanine Derivatives,” J. Med. Chem. 56(14), 5797–5805 (2013).
[Crossref]

Jiang, C.

J. Zhang, C. Jiang, J. P. Figueiró Longo, R. B. Azevedo, H. Zhang, and L. A. Muehlmann, “An updated overview on the development of new photosensitizers for anticancer photodynamic therapy,” Acta Pharm. Sin. B 8(2), 137–146 (2018).
[Crossref]

Jori, G.

T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng, “Photodynamic Therapy,” J. Natl. Cancer Inst. 90(12), 889–905 (1998).
[Crossref]

Joshi, P.

M. Ethirajan, Y. Chen, P. Joshi, and R. K. Pandey, “The role of porphyrin chemistry in tumor imaging and photodynamic therapy,” Chem. Soc. Rev. 40(1), 340–362 (2011).
[Crossref]

Kamkaew, A.

A. Kamkaew, S. H. Lim, H. B. Lee, L. V. Kiew, L. Y. Chung, and K. Burgess, “BODIPY dyes in photodynamic therapy,” Chem. Soc. Rev. 42(1), 77–88 (2013).
[Crossref]

Kessel, D.

T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng, “Photodynamic Therapy,” J. Natl. Cancer Inst. 90(12), 889–905 (1998).
[Crossref]

Kiew, L. V.

A. Kamkaew, S. H. Lim, H. B. Lee, L. V. Kiew, L. Y. Chung, and K. Burgess, “BODIPY dyes in photodynamic therapy,” Chem. Soc. Rev. 42(1), 77–88 (2013).
[Crossref]

Korbelik, M.

T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng, “Photodynamic Therapy,” J. Natl. Cancer Inst. 90(12), 889–905 (1998).
[Crossref]

Kwon, N.

X. Li, N. Kwon, T. Guo, Z. Liu, and J. Yoon, “Innovative Strategies for Hypoxic-Tumor Photodynamic Therapy,” Angew. Chem., Int. Ed. 57(36), 11522–11531 (2018).
[Crossref]

Lange, N.

N. Sekkat, H. v. d. Bergh, T. Nyokong, and N. Lange, “Like a Bolt from the Blue: Phthalocyanines in Biomedical Optics,” Molecules 17(1), 98–144 (2011).
[Crossref]

Lee, H. B.

A. Kamkaew, S. H. Lim, H. B. Lee, L. V. Kiew, L. Y. Chung, and K. Burgess, “BODIPY dyes in photodynamic therapy,” Chem. Soc. Rev. 42(1), 77–88 (2013).
[Crossref]

Lee, S.

X. Li, S. Lee, and J. Yoon, “Supramolecular photosensitizers rejuvenate photodynamic therapy,” Chem. Soc. Rev. 47(4), 1174–1188 (2018).
[Crossref]

Li, J.

X. Zhao, Y. Huang, G. Yuan, K. Zuo, Y. Huang, J. Chen, J. Li, and J. Xue, “A novel tumor and mitochondria dual-targeted photosensitizer showing ultra-efficient photodynamic anticancer activities,” Chem. Commun. 55(6), 866–869 (2019).
[Crossref]

J. Chen, H. Ye, M. Zhang, J. Li, J. Liu, and J. Xue, “Erlotinib analogue-substituted zinc(II) phthalocyanines for small molecular target-based photodynamic cancer therapy,” Chin. J. Chem. 34(10), 983–988 (2016).
[Crossref]

F.-L. Zhang, Q. Huang, K. Zheng, J. Li, J.-Y. Liu, and J.-P. Xue, “A novel strategy for targeting photodynamic therapy. Molecular combo of photodynamic agent zinc(ii) phthalocyanine and small molecule target-based anticancer drug erlotinib,” Chem. Commun. 49(83), 9570–9572 (2013).
[Crossref]

X. Jia, F.-F. Yang, J. Li, J.-Y. Liu, and J.-P. Xue, “Synthesis and in Vitro Photodynamic Activity of Oligomeric Ethylene Glycol–Quinoline Substituted Zinc(II) Phthalocyanine Derivatives,” J. Med. Chem. 56(14), 5797–5805 (2013).
[Crossref]

Li, S. Z.

X. Li, B. D. Zheng, X. H. Peng, S. Z. Li, J. W. Ying, Y. Y. Zhao, J. D. Huang, and J. Yoon, “Phthalocyanines as medicinal photosensitizers: Developments in the last five years,” Coord. Chem. Rev. 379, 147–160 (2019).
[Crossref]

Li, X.

X. Li, B. D. Zheng, X. H. Peng, S. Z. Li, J. W. Ying, Y. Y. Zhao, J. D. Huang, and J. Yoon, “Phthalocyanines as medicinal photosensitizers: Developments in the last five years,” Coord. Chem. Rev. 379, 147–160 (2019).
[Crossref]

X. Li, N. Kwon, T. Guo, Z. Liu, and J. Yoon, “Innovative Strategies for Hypoxic-Tumor Photodynamic Therapy,” Angew. Chem., Int. Ed. 57(36), 11522–11531 (2018).
[Crossref]

X. Li, S. Lee, and J. Yoon, “Supramolecular photosensitizers rejuvenate photodynamic therapy,” Chem. Soc. Rev. 47(4), 1174–1188 (2018).
[Crossref]

Liang, C.

Z. Dong, L. Feng, Y. Hao, M. Chen, M. Gao, Y. Chao, H. Zhao, W. Zhu, J. Liu, C. Liang, Q. Zhang, and Z. Liu, “Synthesis of Hollow Biomineralized CaCO3–Polydopamine Nanoparticles for Multimodal Imaging-Guided Cancer Photodynamic Therapy with Reduced Skin Photosensitivity,” J. Am. Chem. Soc. 140(6), 2165–2178 (2018).
[Crossref]

Lim, S. H.

A. Kamkaew, S. H. Lim, H. B. Lee, L. V. Kiew, L. Y. Chung, and K. Burgess, “BODIPY dyes in photodynamic therapy,” Chem. Soc. Rev. 42(1), 77–88 (2013).
[Crossref]

Liu, H.

J. Chen, Y. Fang, H. Liu, N. Chen, S. Chen, and J. Xue, “Quinolin-8-yloxy-substituted zinc(II) phthalocyanines for enhanced in vitro photodynamic therapy,” J. Porphyrins Phthalocyanines 22(09n10), 807–813 (2018).
[Crossref]

Liu, J.

Z. Dong, L. Feng, Y. Hao, M. Chen, M. Gao, Y. Chao, H. Zhao, W. Zhu, J. Liu, C. Liang, Q. Zhang, and Z. Liu, “Synthesis of Hollow Biomineralized CaCO3–Polydopamine Nanoparticles for Multimodal Imaging-Guided Cancer Photodynamic Therapy with Reduced Skin Photosensitivity,” J. Am. Chem. Soc. 140(6), 2165–2178 (2018).
[Crossref]

J. Chen, H. Ye, M. Zhang, J. Li, J. Liu, and J. Xue, “Erlotinib analogue-substituted zinc(II) phthalocyanines for small molecular target-based photodynamic cancer therapy,” Chin. J. Chem. 34(10), 983–988 (2016).
[Crossref]

Liu, J.-Y.

F.-L. Zhang, M.-R. Song, G.-K. Yuan, H.-N. Ye, Y. Tian, M.-D. Huang, J.-P. Xue, Z.-H. Zhang, and J.-Y. Liu, “A Molecular Combination of Zinc(II) Phthalocyanine and Tamoxifen Derivative for Dual Targeting Photodynamic Therapy and Hormone Therapy,” J. Med. Chem. 60(15), 6693–6703 (2017).
[Crossref]

F.-L. Zhang, Q. Huang, J.-Y. Liu, M.-D. Huang, and J.-P. Xue, “Molecular-target-based anticancer photosensitizer: synthesis and in vitro photodynamic activity of erlotinib–zinc(II) phthalocyanine conjugates,” ChemMedChem 10(2), 312–320 (2015).
[Crossref]

F.-L. Zhang, Q. Huang, K. Zheng, J. Li, J.-Y. Liu, and J.-P. Xue, “A novel strategy for targeting photodynamic therapy. Molecular combo of photodynamic agent zinc(ii) phthalocyanine and small molecule target-based anticancer drug erlotinib,” Chem. Commun. 49(83), 9570–9572 (2013).
[Crossref]

X. Jia, F.-F. Yang, J. Li, J.-Y. Liu, and J.-P. Xue, “Synthesis and in Vitro Photodynamic Activity of Oligomeric Ethylene Glycol–Quinoline Substituted Zinc(II) Phthalocyanine Derivatives,” J. Med. Chem. 56(14), 5797–5805 (2013).
[Crossref]

Liu, T. W. B.

J. F. Lovell, T. W. B. Liu, J. Chen, and G. Zheng, “Activatable Photosensitizers for Imaging and Therapy,” Chem. Rev. 110(5), 2839–2857 (2010).
[Crossref]

Liu, Z.

X. Li, N. Kwon, T. Guo, Z. Liu, and J. Yoon, “Innovative Strategies for Hypoxic-Tumor Photodynamic Therapy,” Angew. Chem., Int. Ed. 57(36), 11522–11531 (2018).
[Crossref]

Z. Dong, L. Feng, Y. Hao, M. Chen, M. Gao, Y. Chao, H. Zhao, W. Zhu, J. Liu, C. Liang, Q. Zhang, and Z. Liu, “Synthesis of Hollow Biomineralized CaCO3–Polydopamine Nanoparticles for Multimodal Imaging-Guided Cancer Photodynamic Therapy with Reduced Skin Photosensitivity,” J. Am. Chem. Soc. 140(6), 2165–2178 (2018).
[Crossref]

Lo, P. C.

H. Y. Yeung, P. C. Lo, D. K. Ng, and W. P. Fong, “Anti-tumor immunity of BAM-SiPc-mediated vascular photodynamic therapy in a BALB/c mouse model,” Cell. Mol. Immunol. 14(2), 223–234 (2017).
[Crossref]

Loewen, G. M.

D. A. Bellnier, W. R. Greco, G. M. Loewen, H. Nava, A. R. Oseroff, and T. J. Dougherty, “Clinical Pharmacokinetics of the PDT Photosensitizers Porfimer Sodium (Photofrin), 2-[1-Hexyloxyethyl]-2-Devinyl Pyropheophorbide-a (Photochlor) and 5-ALA-Induced Protoporphyrin IX,” Lasers Surg. Med. 38(5), 439–444 (2006).
[Crossref]

Lovell, J. F.

Y. Zhang and J. F. Lovell, “Porphyrins as Theranostic Agents from Prehistoric to Modern Times,” Theranostics 2(9), 905–915 (2012).
[Crossref]

J. F. Lovell, T. W. B. Liu, J. Chen, and G. Zheng, “Activatable Photosensitizers for Imaging and Therapy,” Chem. Rev. 110(5), 2839–2857 (2010).
[Crossref]

Luby, B. M.

B. M. Luby, C. D. Walsh, and G. Zheng, “Advanced Photosensitizer Activation Strategies for Smarter Photodynamic Therapy Beacons,” Photodiagn. Photodyn. Ther. 58(9), 2558–2569 (2019).
[Crossref]

Ma, H.

X. Zhao, H. Ma, J. Chen, F. Zhang, X. Jia, and J. Xue, “An epidermal growth factor receptor-targeted and endoplasmic reticulum-localized organic photosensitizer toward photodynamic anticancer therapy,” Eur. J. Med. Chem. 182, 111625 (2019).
[Crossref]

Mang, T. S.

T. S. Mang, “Lasers and light sources for PDT: past, present and future,” Photodiagnosis Photodyn. Ther. 1(1), 43–48 (2004).
[Crossref]

Mao, C.

M. Yang, T. Yang, and C. Mao, “Enhancement of Photodynamic Cancer Therapy by Physical and Chemical Factors,” Photodiagn. Photodyn. Ther. 58(40), 14066–14080 (2019).
[Crossref]

Mashayekhi, V.

D. Van Straten, V. Mashayekhi, H. S. De Bruijn, S. Oliveira, and D. J. Robinson, “Oncologic Photodynamic Therapy: Basic Principles, Current Clinical Status and Future Directions,” Cancers 9(12), 19–72 (2017).
[Crossref]

Mcculiough, J. L.

W. Gregory Roberts, K. M. Smith, J. L. Mcculiough, and M. W. Berns, “Skin photosensitivity and photodestruction of several potential photodynamic sensitizers,” Photochem. Photobiol. 49(4), 431–438 (1989).
[Crossref]

Moan, J.

T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng, “Photodynamic Therapy,” J. Natl. Cancer Inst. 90(12), 889–905 (1998).
[Crossref]

Mroz, P.

A. P. Castano, P. Mroz, and M. R. Hamblin, “Photodynamic therapy and anti-tumour immunity,” Nat. Rev. Cancer 6(7), 535–545 (2006).
[Crossref]

Muehlmann, L. A.

J. Zhang, C. Jiang, J. P. Figueiró Longo, R. B. Azevedo, H. Zhang, and L. A. Muehlmann, “An updated overview on the development of new photosensitizers for anticancer photodynamic therapy,” Acta Pharm. Sin. B 8(2), 137–146 (2018).
[Crossref]

Nava, H.

D. A. Bellnier, W. R. Greco, G. M. Loewen, H. Nava, A. R. Oseroff, and T. J. Dougherty, “Clinical Pharmacokinetics of the PDT Photosensitizers Porfimer Sodium (Photofrin), 2-[1-Hexyloxyethyl]-2-Devinyl Pyropheophorbide-a (Photochlor) and 5-ALA-Induced Protoporphyrin IX,” Lasers Surg. Med. 38(5), 439–444 (2006).
[Crossref]

Ng, D. K.

H. Y. Yeung, P. C. Lo, D. K. Ng, and W. P. Fong, “Anti-tumor immunity of BAM-SiPc-mediated vascular photodynamic therapy in a BALB/c mouse model,” Cell. Mol. Immunol. 14(2), 223–234 (2017).
[Crossref]

Nie, L. M.

Z. J. Zhou, J. B. Song, L. M. Nie, and X. Y. Chen, “Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy,” Chem. Soc. Rev. 45(23), 6597–6626 (2016).
[Crossref]

Nordstrand, S.

K. Berg, S. Nordstrand, P. K. Selbo, D. T. T. Tran, E. Angell-Petersen, and A. Høgset, “Disulfonated tetraphenyl chlorin (TPCS2a), a novel photosensitizer developed for clinical utilization of photochemical internalization,” Photochem. Photobiol. Sci. 10(10), 1637–1651 (2011).
[Crossref]

Nyokong, T.

N. Sekkat, H. v. d. Bergh, T. Nyokong, and N. Lange, “Like a Bolt from the Blue: Phthalocyanines in Biomedical Optics,” Molecules 17(1), 98–144 (2011).
[Crossref]

I. Gurol, M. Durmus, V. Ahsen, and T. Nyokong, “Synthesis, photophysical and photochemical properties of substituted zinc phthalocyanines,” Dalton Trans. 34, 3782–3791 (2007).
[Crossref]

O’Connor, A. E.

A. E. O’Connor, W. M. Gallagher, and A. T. Byrne, “Porphyrin and Nonporphyrin Photosensitizers in Oncology: Preclinical and Clinical Advances in Photodynamic Therapy,” Photochem. Photobiol. 85(5), 1053–1074 (2009).
[Crossref]

Oliveira, S.

D. Van Straten, V. Mashayekhi, H. S. De Bruijn, S. Oliveira, and D. J. Robinson, “Oncologic Photodynamic Therapy: Basic Principles, Current Clinical Status and Future Directions,” Cancers 9(12), 19–72 (2017).
[Crossref]

Oseroff, A. R.

D. A. Bellnier, W. R. Greco, G. M. Loewen, H. Nava, A. R. Oseroff, and T. J. Dougherty, “Clinical Pharmacokinetics of the PDT Photosensitizers Porfimer Sodium (Photofrin), 2-[1-Hexyloxyethyl]-2-Devinyl Pyropheophorbide-a (Photochlor) and 5-ALA-Induced Protoporphyrin IX,” Lasers Surg. Med. 38(5), 439–444 (2006).
[Crossref]

Pandey, R. K.

M. Ethirajan, Y. Chen, P. Joshi, and R. K. Pandey, “The role of porphyrin chemistry in tumor imaging and photodynamic therapy,” Chem. Soc. Rev. 40(1), 340–362 (2011).
[Crossref]

Patrice, T.

T. Patrice, N. Rousset, L. Bourré, and S. Thibaud, Sensitizers in Photodynamic Therapy (The Royal Society of Chemistry, 2003), Vol. 2, pp. 59–66.

Peng, Q.

T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng, “Photodynamic Therapy,” J. Natl. Cancer Inst. 90(12), 889–905 (1998).
[Crossref]

Peng, X. H.

X. Li, B. D. Zheng, X. H. Peng, S. Z. Li, J. W. Ying, Y. Y. Zhao, J. D. Huang, and J. Yoon, “Phthalocyanines as medicinal photosensitizers: Developments in the last five years,” Coord. Chem. Rev. 379, 147–160 (2019).
[Crossref]

Pogue, B. W.

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and Photodynamic Therapy: Mechanisms, Monitoring, and Optimization,” Chem. Rev. 110(5), 2795–2838 (2010).
[Crossref]

Rizvi, I.

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and Photodynamic Therapy: Mechanisms, Monitoring, and Optimization,” Chem. Rev. 110(5), 2795–2838 (2010).
[Crossref]

Robinson, D. J.

D. Van Straten, V. Mashayekhi, H. S. De Bruijn, S. Oliveira, and D. J. Robinson, “Oncologic Photodynamic Therapy: Basic Principles, Current Clinical Status and Future Directions,” Cancers 9(12), 19–72 (2017).
[Crossref]

Rousset, N.

T. Patrice, N. Rousset, L. Bourré, and S. Thibaud, Sensitizers in Photodynamic Therapy (The Royal Society of Chemistry, 2003), Vol. 2, pp. 59–66.

Samkoe, K. S.

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and Photodynamic Therapy: Mechanisms, Monitoring, and Optimization,” Chem. Rev. 110(5), 2795–2838 (2010).
[Crossref]

Schmid, G.

M. Hanack, G. Schmid, and M. Sommerauer, “Chromatographic Separation of the Four Possible Structural Isomers of a Tetrasubstituted Phthalocyanine: Tetrakis(2-ethylhexyloxy)phthalocyaninatonickel(II),” Photodiagn. Photodyn. Ther. 32(10), 1422–1424 (1993).
[Crossref]

Sekkat, N.

N. Sekkat, H. v. d. Bergh, T. Nyokong, and N. Lange, “Like a Bolt from the Blue: Phthalocyanines in Biomedical Optics,” Molecules 17(1), 98–144 (2011).
[Crossref]

Selbo, P. K.

K. Berg, S. Nordstrand, P. K. Selbo, D. T. T. Tran, E. Angell-Petersen, and A. Høgset, “Disulfonated tetraphenyl chlorin (TPCS2a), a novel photosensitizer developed for clinical utilization of photochemical internalization,” Photochem. Photobiol. Sci. 10(10), 1637–1651 (2011).
[Crossref]

Sharman, W. M.

W. M. Sharman, C. M. Allen, and J. E. van Lier, “Photodynamic therapeutics: basic principles and clinical applications,” Drug Discovery Today 4(11), 507–517 (1999).
[Crossref]

Singh, S.

S. Singh, A. Aggarwal, N. V. S. D. K. Bhupathiraju, G. Arianna, K. Tiwari, and C. M. Drain, “Glycosylated Porphyrins, Phthalocyanines, and Other Porphyrinoids for Diagnostics and Therapeutics,” Chem. Rev. 115(18), 10261–10306 (2015).
[Crossref]

Smith, K. M.

W. Gregory Roberts, K. M. Smith, J. L. Mcculiough, and M. W. Berns, “Skin photosensitivity and photodestruction of several potential photodynamic sensitizers,” Photochem. Photobiol. 49(4), 431–438 (1989).
[Crossref]

Sommerauer, M.

M. Hanack, G. Schmid, and M. Sommerauer, “Chromatographic Separation of the Four Possible Structural Isomers of a Tetrasubstituted Phthalocyanine: Tetrakis(2-ethylhexyloxy)phthalocyaninatonickel(II),” Photodiagn. Photodyn. Ther. 32(10), 1422–1424 (1993).
[Crossref]

Song, J. B.

Z. J. Zhou, J. B. Song, L. M. Nie, and X. Y. Chen, “Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy,” Chem. Soc. Rev. 45(23), 6597–6626 (2016).
[Crossref]

Song, M.-R.

F.-L. Zhang, M.-R. Song, G.-K. Yuan, H.-N. Ye, Y. Tian, M.-D. Huang, J.-P. Xue, Z.-H. Zhang, and J.-Y. Liu, “A Molecular Combination of Zinc(II) Phthalocyanine and Tamoxifen Derivative for Dual Targeting Photodynamic Therapy and Hormone Therapy,” J. Med. Chem. 60(15), 6693–6703 (2017).
[Crossref]

Spring, B. Q.

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and Photodynamic Therapy: Mechanisms, Monitoring, and Optimization,” Chem. Rev. 110(5), 2795–2838 (2010).
[Crossref]

Tan, S. C.

A. J. Hutt and S. C. Tan, “Drug chirality and its clinical significance,” Drugs 52 Supplement 5, 1–12 (1996).
[Crossref]

Teichgraeber, U.

Thibaud, S.

T. Patrice, N. Rousset, L. Bourré, and S. Thibaud, Sensitizers in Photodynamic Therapy (The Royal Society of Chemistry, 2003), Vol. 2, pp. 59–66.

Tian, Y.

F.-L. Zhang, M.-R. Song, G.-K. Yuan, H.-N. Ye, Y. Tian, M.-D. Huang, J.-P. Xue, Z.-H. Zhang, and J.-Y. Liu, “A Molecular Combination of Zinc(II) Phthalocyanine and Tamoxifen Derivative for Dual Targeting Photodynamic Therapy and Hormone Therapy,” J. Med. Chem. 60(15), 6693–6703 (2017).
[Crossref]

Tiwari, K.

S. Singh, A. Aggarwal, N. V. S. D. K. Bhupathiraju, G. Arianna, K. Tiwari, and C. M. Drain, “Glycosylated Porphyrins, Phthalocyanines, and Other Porphyrinoids for Diagnostics and Therapeutics,” Chem. Rev. 115(18), 10261–10306 (2015).
[Crossref]

Tran, D. T. T.

K. Berg, S. Nordstrand, P. K. Selbo, D. T. T. Tran, E. Angell-Petersen, and A. Høgset, “Disulfonated tetraphenyl chlorin (TPCS2a), a novel photosensitizer developed for clinical utilization of photochemical internalization,” Photochem. Photobiol. Sci. 10(10), 1637–1651 (2011).
[Crossref]

van Lier, J. E.

W. M. Sharman, C. M. Allen, and J. E. van Lier, “Photodynamic therapeutics: basic principles and clinical applications,” Drug Discovery Today 4(11), 507–517 (1999).
[Crossref]

Van Straten, D.

D. Van Straten, V. Mashayekhi, H. S. De Bruijn, S. Oliveira, and D. J. Robinson, “Oncologic Photodynamic Therapy: Basic Principles, Current Clinical Status and Future Directions,” Cancers 9(12), 19–72 (2017).
[Crossref]

Verma, S.

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and Photodynamic Therapy: Mechanisms, Monitoring, and Optimization,” Chem. Rev. 110(5), 2795–2838 (2010).
[Crossref]

Walsh, C. D.

B. M. Luby, C. D. Walsh, and G. Zheng, “Advanced Photosensitizer Activation Strategies for Smarter Photodynamic Therapy Beacons,” Photodiagn. Photodyn. Ther. 58(9), 2558–2569 (2019).
[Crossref]

Xue, J.

X. Zhao, H. Ma, J. Chen, F. Zhang, X. Jia, and J. Xue, “An epidermal growth factor receptor-targeted and endoplasmic reticulum-localized organic photosensitizer toward photodynamic anticancer therapy,” Eur. J. Med. Chem. 182, 111625 (2019).
[Crossref]

X. Zhao, Y. Huang, G. Yuan, K. Zuo, Y. Huang, J. Chen, J. Li, and J. Xue, “A novel tumor and mitochondria dual-targeted photosensitizer showing ultra-efficient photodynamic anticancer activities,” Chem. Commun. 55(6), 866–869 (2019).
[Crossref]

J. Chen, Y. Fang, H. Liu, N. Chen, S. Chen, and J. Xue, “Quinolin-8-yloxy-substituted zinc(II) phthalocyanines for enhanced in vitro photodynamic therapy,” J. Porphyrins Phthalocyanines 22(09n10), 807–813 (2018).
[Crossref]

J. Chen, H. Ye, M. Zhang, J. Li, J. Liu, and J. Xue, “Erlotinib analogue-substituted zinc(II) phthalocyanines for small molecular target-based photodynamic cancer therapy,” Chin. J. Chem. 34(10), 983–988 (2016).
[Crossref]

Xue, J.-P.

F.-L. Zhang, M.-R. Song, G.-K. Yuan, H.-N. Ye, Y. Tian, M.-D. Huang, J.-P. Xue, Z.-H. Zhang, and J.-Y. Liu, “A Molecular Combination of Zinc(II) Phthalocyanine and Tamoxifen Derivative for Dual Targeting Photodynamic Therapy and Hormone Therapy,” J. Med. Chem. 60(15), 6693–6703 (2017).
[Crossref]

F.-L. Zhang, Q. Huang, J.-Y. Liu, M.-D. Huang, and J.-P. Xue, “Molecular-target-based anticancer photosensitizer: synthesis and in vitro photodynamic activity of erlotinib–zinc(II) phthalocyanine conjugates,” ChemMedChem 10(2), 312–320 (2015).
[Crossref]

F.-L. Zhang, Q. Huang, K. Zheng, J. Li, J.-Y. Liu, and J.-P. Xue, “A novel strategy for targeting photodynamic therapy. Molecular combo of photodynamic agent zinc(ii) phthalocyanine and small molecule target-based anticancer drug erlotinib,” Chem. Commun. 49(83), 9570–9572 (2013).
[Crossref]

X. Jia, F.-F. Yang, J. Li, J.-Y. Liu, and J.-P. Xue, “Synthesis and in Vitro Photodynamic Activity of Oligomeric Ethylene Glycol–Quinoline Substituted Zinc(II) Phthalocyanine Derivatives,” J. Med. Chem. 56(14), 5797–5805 (2013).
[Crossref]

Yang, F.-F.

X. Jia, F.-F. Yang, J. Li, J.-Y. Liu, and J.-P. Xue, “Synthesis and in Vitro Photodynamic Activity of Oligomeric Ethylene Glycol–Quinoline Substituted Zinc(II) Phthalocyanine Derivatives,” J. Med. Chem. 56(14), 5797–5805 (2013).
[Crossref]

Yang, M.

M. Yang, T. Yang, and C. Mao, “Enhancement of Photodynamic Cancer Therapy by Physical and Chemical Factors,” Photodiagn. Photodyn. Ther. 58(40), 14066–14080 (2019).
[Crossref]

Yang, T.

M. Yang, T. Yang, and C. Mao, “Enhancement of Photodynamic Cancer Therapy by Physical and Chemical Factors,” Photodiagn. Photodyn. Ther. 58(40), 14066–14080 (2019).
[Crossref]

Ye, H.

J. Chen, H. Ye, M. Zhang, J. Li, J. Liu, and J. Xue, “Erlotinib analogue-substituted zinc(II) phthalocyanines for small molecular target-based photodynamic cancer therapy,” Chin. J. Chem. 34(10), 983–988 (2016).
[Crossref]

Ye, H.-N.

F.-L. Zhang, M.-R. Song, G.-K. Yuan, H.-N. Ye, Y. Tian, M.-D. Huang, J.-P. Xue, Z.-H. Zhang, and J.-Y. Liu, “A Molecular Combination of Zinc(II) Phthalocyanine and Tamoxifen Derivative for Dual Targeting Photodynamic Therapy and Hormone Therapy,” J. Med. Chem. 60(15), 6693–6703 (2017).
[Crossref]

Yeung, H. Y.

H. Y. Yeung, P. C. Lo, D. K. Ng, and W. P. Fong, “Anti-tumor immunity of BAM-SiPc-mediated vascular photodynamic therapy in a BALB/c mouse model,” Cell. Mol. Immunol. 14(2), 223–234 (2017).
[Crossref]

Ying, J. W.

X. Li, B. D. Zheng, X. H. Peng, S. Z. Li, J. W. Ying, Y. Y. Zhao, J. D. Huang, and J. Yoon, “Phthalocyanines as medicinal photosensitizers: Developments in the last five years,” Coord. Chem. Rev. 379, 147–160 (2019).
[Crossref]

Yoon, J.

X. Li, B. D. Zheng, X. H. Peng, S. Z. Li, J. W. Ying, Y. Y. Zhao, J. D. Huang, and J. Yoon, “Phthalocyanines as medicinal photosensitizers: Developments in the last five years,” Coord. Chem. Rev. 379, 147–160 (2019).
[Crossref]

X. Li, S. Lee, and J. Yoon, “Supramolecular photosensitizers rejuvenate photodynamic therapy,” Chem. Soc. Rev. 47(4), 1174–1188 (2018).
[Crossref]

X. Li, N. Kwon, T. Guo, Z. Liu, and J. Yoon, “Innovative Strategies for Hypoxic-Tumor Photodynamic Therapy,” Angew. Chem., Int. Ed. 57(36), 11522–11531 (2018).
[Crossref]

Yuan, G.

X. Zhao, Y. Huang, G. Yuan, K. Zuo, Y. Huang, J. Chen, J. Li, and J. Xue, “A novel tumor and mitochondria dual-targeted photosensitizer showing ultra-efficient photodynamic anticancer activities,” Chem. Commun. 55(6), 866–869 (2019).
[Crossref]

Yuan, G.-K.

F.-L. Zhang, M.-R. Song, G.-K. Yuan, H.-N. Ye, Y. Tian, M.-D. Huang, J.-P. Xue, Z.-H. Zhang, and J.-Y. Liu, “A Molecular Combination of Zinc(II) Phthalocyanine and Tamoxifen Derivative for Dual Targeting Photodynamic Therapy and Hormone Therapy,” J. Med. Chem. 60(15), 6693–6703 (2017).
[Crossref]

Zhang, F.

X. Zhao, H. Ma, J. Chen, F. Zhang, X. Jia, and J. Xue, “An epidermal growth factor receptor-targeted and endoplasmic reticulum-localized organic photosensitizer toward photodynamic anticancer therapy,” Eur. J. Med. Chem. 182, 111625 (2019).
[Crossref]

Zhang, F.-L.

F.-L. Zhang, M.-R. Song, G.-K. Yuan, H.-N. Ye, Y. Tian, M.-D. Huang, J.-P. Xue, Z.-H. Zhang, and J.-Y. Liu, “A Molecular Combination of Zinc(II) Phthalocyanine and Tamoxifen Derivative for Dual Targeting Photodynamic Therapy and Hormone Therapy,” J. Med. Chem. 60(15), 6693–6703 (2017).
[Crossref]

F.-L. Zhang, Q. Huang, J.-Y. Liu, M.-D. Huang, and J.-P. Xue, “Molecular-target-based anticancer photosensitizer: synthesis and in vitro photodynamic activity of erlotinib–zinc(II) phthalocyanine conjugates,” ChemMedChem 10(2), 312–320 (2015).
[Crossref]

F.-L. Zhang, Q. Huang, K. Zheng, J. Li, J.-Y. Liu, and J.-P. Xue, “A novel strategy for targeting photodynamic therapy. Molecular combo of photodynamic agent zinc(ii) phthalocyanine and small molecule target-based anticancer drug erlotinib,” Chem. Commun. 49(83), 9570–9572 (2013).
[Crossref]

Zhang, H.

J. Zhang, C. Jiang, J. P. Figueiró Longo, R. B. Azevedo, H. Zhang, and L. A. Muehlmann, “An updated overview on the development of new photosensitizers for anticancer photodynamic therapy,” Acta Pharm. Sin. B 8(2), 137–146 (2018).
[Crossref]

Zhang, J.

J. Zhang, C. Jiang, J. P. Figueiró Longo, R. B. Azevedo, H. Zhang, and L. A. Muehlmann, “An updated overview on the development of new photosensitizers for anticancer photodynamic therapy,” Acta Pharm. Sin. B 8(2), 137–146 (2018).
[Crossref]

Zhang, M.

J. Chen, H. Ye, M. Zhang, J. Li, J. Liu, and J. Xue, “Erlotinib analogue-substituted zinc(II) phthalocyanines for small molecular target-based photodynamic cancer therapy,” Chin. J. Chem. 34(10), 983–988 (2016).
[Crossref]

Zhang, Q.

Z. Dong, L. Feng, Y. Hao, M. Chen, M. Gao, Y. Chao, H. Zhao, W. Zhu, J. Liu, C. Liang, Q. Zhang, and Z. Liu, “Synthesis of Hollow Biomineralized CaCO3–Polydopamine Nanoparticles for Multimodal Imaging-Guided Cancer Photodynamic Therapy with Reduced Skin Photosensitivity,” J. Am. Chem. Soc. 140(6), 2165–2178 (2018).
[Crossref]

Zhang, Y.

Y. Zhang and J. F. Lovell, “Porphyrins as Theranostic Agents from Prehistoric to Modern Times,” Theranostics 2(9), 905–915 (2012).
[Crossref]

Zhang, Z.-H.

F.-L. Zhang, M.-R. Song, G.-K. Yuan, H.-N. Ye, Y. Tian, M.-D. Huang, J.-P. Xue, Z.-H. Zhang, and J.-Y. Liu, “A Molecular Combination of Zinc(II) Phthalocyanine and Tamoxifen Derivative for Dual Targeting Photodynamic Therapy and Hormone Therapy,” J. Med. Chem. 60(15), 6693–6703 (2017).
[Crossref]

Zhao, H.

Z. Dong, L. Feng, Y. Hao, M. Chen, M. Gao, Y. Chao, H. Zhao, W. Zhu, J. Liu, C. Liang, Q. Zhang, and Z. Liu, “Synthesis of Hollow Biomineralized CaCO3–Polydopamine Nanoparticles for Multimodal Imaging-Guided Cancer Photodynamic Therapy with Reduced Skin Photosensitivity,” J. Am. Chem. Soc. 140(6), 2165–2178 (2018).
[Crossref]

Zhao, X.

X. Zhao, H. Ma, J. Chen, F. Zhang, X. Jia, and J. Xue, “An epidermal growth factor receptor-targeted and endoplasmic reticulum-localized organic photosensitizer toward photodynamic anticancer therapy,” Eur. J. Med. Chem. 182, 111625 (2019).
[Crossref]

X. Zhao, Y. Huang, G. Yuan, K. Zuo, Y. Huang, J. Chen, J. Li, and J. Xue, “A novel tumor and mitochondria dual-targeted photosensitizer showing ultra-efficient photodynamic anticancer activities,” Chem. Commun. 55(6), 866–869 (2019).
[Crossref]

Zhao, Y. Y.

X. Li, B. D. Zheng, X. H. Peng, S. Z. Li, J. W. Ying, Y. Y. Zhao, J. D. Huang, and J. Yoon, “Phthalocyanines as medicinal photosensitizers: Developments in the last five years,” Coord. Chem. Rev. 379, 147–160 (2019).
[Crossref]

Zheng, B. D.

X. Li, B. D. Zheng, X. H. Peng, S. Z. Li, J. W. Ying, Y. Y. Zhao, J. D. Huang, and J. Yoon, “Phthalocyanines as medicinal photosensitizers: Developments in the last five years,” Coord. Chem. Rev. 379, 147–160 (2019).
[Crossref]

Zheng, G.

B. M. Luby, C. D. Walsh, and G. Zheng, “Advanced Photosensitizer Activation Strategies for Smarter Photodynamic Therapy Beacons,” Photodiagn. Photodyn. Ther. 58(9), 2558–2569 (2019).
[Crossref]

J. F. Lovell, T. W. B. Liu, J. Chen, and G. Zheng, “Activatable Photosensitizers for Imaging and Therapy,” Chem. Rev. 110(5), 2839–2857 (2010).
[Crossref]

Zheng, K.

F.-L. Zhang, Q. Huang, K. Zheng, J. Li, J.-Y. Liu, and J.-P. Xue, “A novel strategy for targeting photodynamic therapy. Molecular combo of photodynamic agent zinc(ii) phthalocyanine and small molecule target-based anticancer drug erlotinib,” Chem. Commun. 49(83), 9570–9572 (2013).
[Crossref]

Zhou, Z. J.

Z. J. Zhou, J. B. Song, L. M. Nie, and X. Y. Chen, “Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy,” Chem. Soc. Rev. 45(23), 6597–6626 (2016).
[Crossref]

Zhu, W.

Z. Dong, L. Feng, Y. Hao, M. Chen, M. Gao, Y. Chao, H. Zhao, W. Zhu, J. Liu, C. Liang, Q. Zhang, and Z. Liu, “Synthesis of Hollow Biomineralized CaCO3–Polydopamine Nanoparticles for Multimodal Imaging-Guided Cancer Photodynamic Therapy with Reduced Skin Photosensitivity,” J. Am. Chem. Soc. 140(6), 2165–2178 (2018).
[Crossref]

Zuo, K.

X. Zhao, Y. Huang, G. Yuan, K. Zuo, Y. Huang, J. Chen, J. Li, and J. Xue, “A novel tumor and mitochondria dual-targeted photosensitizer showing ultra-efficient photodynamic anticancer activities,” Chem. Commun. 55(6), 866–869 (2019).
[Crossref]

Acta Pharm. Sin. B (1)

J. Zhang, C. Jiang, J. P. Figueiró Longo, R. B. Azevedo, H. Zhang, and L. A. Muehlmann, “An updated overview on the development of new photosensitizers for anticancer photodynamic therapy,” Acta Pharm. Sin. B 8(2), 137–146 (2018).
[Crossref]

Angew. Chem., Int. Ed. (1)

X. Li, N. Kwon, T. Guo, Z. Liu, and J. Yoon, “Innovative Strategies for Hypoxic-Tumor Photodynamic Therapy,” Angew. Chem., Int. Ed. 57(36), 11522–11531 (2018).
[Crossref]

Biomed. Opt. Express (1)

Cancers (1)

D. Van Straten, V. Mashayekhi, H. S. De Bruijn, S. Oliveira, and D. J. Robinson, “Oncologic Photodynamic Therapy: Basic Principles, Current Clinical Status and Future Directions,” Cancers 9(12), 19–72 (2017).
[Crossref]

Cell. Mol. Immunol. (1)

H. Y. Yeung, P. C. Lo, D. K. Ng, and W. P. Fong, “Anti-tumor immunity of BAM-SiPc-mediated vascular photodynamic therapy in a BALB/c mouse model,” Cell. Mol. Immunol. 14(2), 223–234 (2017).
[Crossref]

Chem. Commun. (2)

F.-L. Zhang, Q. Huang, K. Zheng, J. Li, J.-Y. Liu, and J.-P. Xue, “A novel strategy for targeting photodynamic therapy. Molecular combo of photodynamic agent zinc(ii) phthalocyanine and small molecule target-based anticancer drug erlotinib,” Chem. Commun. 49(83), 9570–9572 (2013).
[Crossref]

X. Zhao, Y. Huang, G. Yuan, K. Zuo, Y. Huang, J. Chen, J. Li, and J. Xue, “A novel tumor and mitochondria dual-targeted photosensitizer showing ultra-efficient photodynamic anticancer activities,” Chem. Commun. 55(6), 866–869 (2019).
[Crossref]

Chem. Rev. (3)

S. Singh, A. Aggarwal, N. V. S. D. K. Bhupathiraju, G. Arianna, K. Tiwari, and C. M. Drain, “Glycosylated Porphyrins, Phthalocyanines, and Other Porphyrinoids for Diagnostics and Therapeutics,” Chem. Rev. 115(18), 10261–10306 (2015).
[Crossref]

J. F. Lovell, T. W. B. Liu, J. Chen, and G. Zheng, “Activatable Photosensitizers for Imaging and Therapy,” Chem. Rev. 110(5), 2839–2857 (2010).
[Crossref]

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and Photodynamic Therapy: Mechanisms, Monitoring, and Optimization,” Chem. Rev. 110(5), 2795–2838 (2010).
[Crossref]

Chem. Soc. Rev. (4)

Z. J. Zhou, J. B. Song, L. M. Nie, and X. Y. Chen, “Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy,” Chem. Soc. Rev. 45(23), 6597–6626 (2016).
[Crossref]

X. Li, S. Lee, and J. Yoon, “Supramolecular photosensitizers rejuvenate photodynamic therapy,” Chem. Soc. Rev. 47(4), 1174–1188 (2018).
[Crossref]

A. Kamkaew, S. H. Lim, H. B. Lee, L. V. Kiew, L. Y. Chung, and K. Burgess, “BODIPY dyes in photodynamic therapy,” Chem. Soc. Rev. 42(1), 77–88 (2013).
[Crossref]

M. Ethirajan, Y. Chen, P. Joshi, and R. K. Pandey, “The role of porphyrin chemistry in tumor imaging and photodynamic therapy,” Chem. Soc. Rev. 40(1), 340–362 (2011).
[Crossref]

ChemMedChem (1)

F.-L. Zhang, Q. Huang, J.-Y. Liu, M.-D. Huang, and J.-P. Xue, “Molecular-target-based anticancer photosensitizer: synthesis and in vitro photodynamic activity of erlotinib–zinc(II) phthalocyanine conjugates,” ChemMedChem 10(2), 312–320 (2015).
[Crossref]

Chin. J. Chem. (1)

J. Chen, H. Ye, M. Zhang, J. Li, J. Liu, and J. Xue, “Erlotinib analogue-substituted zinc(II) phthalocyanines for small molecular target-based photodynamic cancer therapy,” Chin. J. Chem. 34(10), 983–988 (2016).
[Crossref]

Coord. Chem. Rev. (1)

X. Li, B. D. Zheng, X. H. Peng, S. Z. Li, J. W. Ying, Y. Y. Zhao, J. D. Huang, and J. Yoon, “Phthalocyanines as medicinal photosensitizers: Developments in the last five years,” Coord. Chem. Rev. 379, 147–160 (2019).
[Crossref]

Dalton Trans. (1)

I. Gurol, M. Durmus, V. Ahsen, and T. Nyokong, “Synthesis, photophysical and photochemical properties of substituted zinc phthalocyanines,” Dalton Trans. 34, 3782–3791 (2007).
[Crossref]

Drug Discovery Today (1)

W. M. Sharman, C. M. Allen, and J. E. van Lier, “Photodynamic therapeutics: basic principles and clinical applications,” Drug Discovery Today 4(11), 507–517 (1999).
[Crossref]

Drugs (1)

A. J. Hutt and S. C. Tan, “Drug chirality and its clinical significance,” Drugs 52 Supplement 5, 1–12 (1996).
[Crossref]

Eur. J. Med. Chem. (1)

X. Zhao, H. Ma, J. Chen, F. Zhang, X. Jia, and J. Xue, “An epidermal growth factor receptor-targeted and endoplasmic reticulum-localized organic photosensitizer toward photodynamic anticancer therapy,” Eur. J. Med. Chem. 182, 111625 (2019).
[Crossref]

J. Am. Chem. Soc. (1)

Z. Dong, L. Feng, Y. Hao, M. Chen, M. Gao, Y. Chao, H. Zhao, W. Zhu, J. Liu, C. Liang, Q. Zhang, and Z. Liu, “Synthesis of Hollow Biomineralized CaCO3–Polydopamine Nanoparticles for Multimodal Imaging-Guided Cancer Photodynamic Therapy with Reduced Skin Photosensitivity,” J. Am. Chem. Soc. 140(6), 2165–2178 (2018).
[Crossref]

J. Med. Chem. (2)

X. Jia, F.-F. Yang, J. Li, J.-Y. Liu, and J.-P. Xue, “Synthesis and in Vitro Photodynamic Activity of Oligomeric Ethylene Glycol–Quinoline Substituted Zinc(II) Phthalocyanine Derivatives,” J. Med. Chem. 56(14), 5797–5805 (2013).
[Crossref]

F.-L. Zhang, M.-R. Song, G.-K. Yuan, H.-N. Ye, Y. Tian, M.-D. Huang, J.-P. Xue, Z.-H. Zhang, and J.-Y. Liu, “A Molecular Combination of Zinc(II) Phthalocyanine and Tamoxifen Derivative for Dual Targeting Photodynamic Therapy and Hormone Therapy,” J. Med. Chem. 60(15), 6693–6703 (2017).
[Crossref]

J. Natl. Cancer Inst. (1)

T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng, “Photodynamic Therapy,” J. Natl. Cancer Inst. 90(12), 889–905 (1998).
[Crossref]

J. Porphyrins Phthalocyanines (1)

J. Chen, Y. Fang, H. Liu, N. Chen, S. Chen, and J. Xue, “Quinolin-8-yloxy-substituted zinc(II) phthalocyanines for enhanced in vitro photodynamic therapy,” J. Porphyrins Phthalocyanines 22(09n10), 807–813 (2018).
[Crossref]

Lasers Surg. Med. (1)

D. A. Bellnier, W. R. Greco, G. M. Loewen, H. Nava, A. R. Oseroff, and T. J. Dougherty, “Clinical Pharmacokinetics of the PDT Photosensitizers Porfimer Sodium (Photofrin), 2-[1-Hexyloxyethyl]-2-Devinyl Pyropheophorbide-a (Photochlor) and 5-ALA-Induced Protoporphyrin IX,” Lasers Surg. Med. 38(5), 439–444 (2006).
[Crossref]

Molecules (1)

N. Sekkat, H. v. d. Bergh, T. Nyokong, and N. Lange, “Like a Bolt from the Blue: Phthalocyanines in Biomedical Optics,” Molecules 17(1), 98–144 (2011).
[Crossref]

Nat. Rev. Cancer (2)

D. E. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer 3(5), 380–387 (2003).
[Crossref]

A. P. Castano, P. Mroz, and M. R. Hamblin, “Photodynamic therapy and anti-tumour immunity,” Nat. Rev. Cancer 6(7), 535–545 (2006).
[Crossref]

Photochem. Photobiol. (2)

A. E. O’Connor, W. M. Gallagher, and A. T. Byrne, “Porphyrin and Nonporphyrin Photosensitizers in Oncology: Preclinical and Clinical Advances in Photodynamic Therapy,” Photochem. Photobiol. 85(5), 1053–1074 (2009).
[Crossref]

W. Gregory Roberts, K. M. Smith, J. L. Mcculiough, and M. W. Berns, “Skin photosensitivity and photodestruction of several potential photodynamic sensitizers,” Photochem. Photobiol. 49(4), 431–438 (1989).
[Crossref]

Photochem. Photobiol. Sci. (1)

K. Berg, S. Nordstrand, P. K. Selbo, D. T. T. Tran, E. Angell-Petersen, and A. Høgset, “Disulfonated tetraphenyl chlorin (TPCS2a), a novel photosensitizer developed for clinical utilization of photochemical internalization,” Photochem. Photobiol. Sci. 10(10), 1637–1651 (2011).
[Crossref]

Photodiagn. Photodyn. Ther. (3)

M. Hanack, G. Schmid, and M. Sommerauer, “Chromatographic Separation of the Four Possible Structural Isomers of a Tetrasubstituted Phthalocyanine: Tetrakis(2-ethylhexyloxy)phthalocyaninatonickel(II),” Photodiagn. Photodyn. Ther. 32(10), 1422–1424 (1993).
[Crossref]

B. M. Luby, C. D. Walsh, and G. Zheng, “Advanced Photosensitizer Activation Strategies for Smarter Photodynamic Therapy Beacons,” Photodiagn. Photodyn. Ther. 58(9), 2558–2569 (2019).
[Crossref]

M. Yang, T. Yang, and C. Mao, “Enhancement of Photodynamic Cancer Therapy by Physical and Chemical Factors,” Photodiagn. Photodyn. Ther. 58(40), 14066–14080 (2019).
[Crossref]

Photodiagnosis Photodyn. Ther. (1)

T. S. Mang, “Lasers and light sources for PDT: past, present and future,” Photodiagnosis Photodyn. Ther. 1(1), 43–48 (2004).
[Crossref]

Theranostics (1)

Y. Zhang and J. F. Lovell, “Porphyrins as Theranostic Agents from Prehistoric to Modern Times,” Theranostics 2(9), 905–915 (2012).
[Crossref]

Other (2)

T. Patrice, N. Rousset, L. Bourré, and S. Thibaud, Sensitizers in Photodynamic Therapy (The Royal Society of Chemistry, 2003), Vol. 2, pp. 59–66.

N. Brasseur, Sensitizers for Photodynamic Therapy: Phthalocyanines (The Royal Society of Chemistry, 2003), Vol. 2, pp. 105–118.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Chemical structure of ZnPc-Q1. (b) X-ray crystal structure of ZnPc-Q1 (C: grey, N: blue, O: red, H: white, Zn: green). (c) The molecular packing of ZnPc-Q1. For clarity, all H atoms are omitted and strong hydrogen bonds are shown by green dash lines (C: grey, N: blue, O: red, Zn: green). (d) Close packing of a face-to-face dimmer formed by hydrogen bond.
Fig. 2.
Fig. 2. Cytotoxic effects of Photofrin and ZnPc-Q1 toward (a) H460 cells and (b) Bel7042 cells (incubation time: 4 h; data expressed as mean ± SD from three experiments, each performed in quadruplicate). (c) Colony formation assay of Photofrin and ZnPc-Q1 toward H460 cells (incubation time: 4 h).
Fig. 3.
Fig. 3. (a) Fluorescence microscopy images of H460 cells and Bel7402 cells, which were stained with Hoechst33258 immediately after PDT (scale bar: 50 µM). (b) Annexin V-FITC/PI dual staining assay of H460 cells after PDT treatment with light and ZnPc-Q1 (*p < 0.05).
Fig. 4.
Fig. 4. Cell cycle analysis determined by flow cytometry with propidium iodide (PI) staining. (a) Effects of Photofrin (2.00–5.00 µg/mL, 3.30–8.25 µM) and ZnPc-Q1 (0.03-3.00 µg/mL, 0.04–4.16 µM) PDT on cell cycle distribution of H460 cells. (b) Cell cycle phase (sub-G1, G1, S and G2/M) distributions of H460 cells after PDT. (c) Percentage of apoptosis cell population. Each value is the mean ± SD from three experiments, each performed in triplicate with *p < 0.05.
Fig. 5.
Fig. 5. (a) H460 tumor volume curves of mice treated with only light (Blank), light and solvent (Vehicle), 20 mg/kg Photofrin, and 1.2 mg/kg ZnPc-Q1 (light fluence 76.2 J/ cm2 and irradiation time 600 s). (b) H460 tumor inhibition rate in each group after treatment. (c) Body weight curves of mice in each group after treatment. (d) Images of excised H460 tumors and mice in each group after treatment on the 15th day. (*p < 0.05).
Fig. 6.
Fig. 6. Micrographs of osmium acid-fixed and H&E-stained H460 tumor sections obtained using transmission electron microscopy and light microscopy, respectively, collected from the different groups two days after treatment. The scale bars are 2 µm for osmium acid fixing and 5 mm for H&E staining, respectively.

Tables (2)

Tables Icon

Table 1. In vitro anticancer activities (IC50) of Photofrin and ZnPc-Q1 in different cancer cells (mean ± SEM).

Tables Icon

Table 2. Colony formation rates of Photofrin and ZnPc-Q1.