Abstract

In recent years, many studies have been conducted to investigate the non-thermal effects of THz radiation on different organisms, but further studies are needed to fully elucidate the effects, especially on the molecular level. In this study, we explored the effects of at 3.1 THz radiation on protein expression in Escherichia coli (E. coli) using red fluorescent protein as a reporter molecule. After 8 hours of continuous THz irradiation of bacteria on LB (Luria-Bertani) solid plates at an average power of 33 mW/cm2 and 10 Hz pulse repetition frequency, we found that the plasmid copy number, protein expression and fluorescence intensity of bacteria from the irradiated area were 3.8-, 2.7-, and 3.3 times higher than in bacteria from the un-irradiated area, respectively. These findings suggest that plasmid replication changed significantly in bacteria exposed to 3.1 THz radiation, resulting in increased protein expression as evidenced by increased fluorescence intensity of the RFP reporter.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Frohlich, “The extraordinary dielectric properties of biological materials and the action of enzymes,” Proc. Natl. Acad. Sci. U. S. A. 72(11), 4211–4215 (1975).
    [Crossref]
  2. S. Romanenko, R. Begley, A. R. Harvey, L. Hool, and V. P. Wallace, “The interaction between electromagnetic fields at megahertz, gigahertz and terahertz frequencies with cells, tissues and organisms: risks and potential,” J. R. Soc., Interface 14(137), 20170585 (2017).
    [Crossref]
  3. A. N. Bogomazova, E. M. Vassina, T. N. Goryachkovskaya, V. M. Popik, A. S. Sokolov, N. A. Kolchanov, M. A. Lagarkova, S. L. Kiselev, and S. E. Peltek, “No DNA damage response and negligible genome-wide transcriptional changes in human embryonic stem cells exposed to terahertz radiation,” Sci. Rep. 5(1), 7749 (2015).
    [Crossref]
  4. I. Echchgadda, C. Z. Cerna, M. A. Sloan, D. P. Elam, and B. L. Ibey, “Effects of Different Terahertz Frequencies on Gene Expression in Human Keratinocytes,” Proc. SPIE 9321, 93210Q (2015).
    [Crossref]
  5. A. Korenstein-Ilan, A. Barbul, P. Hasin, A. Eliran, A. Gover, and R. Korenstein, “Terahertz radiation increases genomic instability in human lymphocytes,” Radiat. Res. 170(2), 224–234 (2008).
    [Crossref]
  6. T. Schrader, T. Kleine-Ostmann, K. Munter, C. Jastrow, and E. Schmid, “Spindle disturbances in human-hamster hybrid (A(L)) cells induced by the electrical component of the mobile communication frequency range signal,” Bioelectromagnetics 32(4), 291–301 (2011).
    [Crossref]
  7. G.-S. Park, Convergence of Terahertz Sciences in Biomedical Systems (Springer, 2012), pp. xiii.
  8. G. J. Wilmink and J. E. Grundt, “Invited Review Article: Current State of Research on Biological Effects of Terahertz Radiation,” J. Infrared, Millimeter, Terahertz Waves 32(10), 1074–1122 (2011).
    [Crossref]
  9. S. J. Webb and D. D. Dodds, “Inhibition of bacterial cell growth by 136 gc microwaves,” Nature 218(5139), 374–375 (1968).
    [Crossref]
  10. E. V. Demidova, T. N. Goryachkovskaya, I. A. Mescheryakova, T. K. Malup, A. I. Semenov, N. A. Vinokurov, N. A. Kolchanov, V. M. Popik, and S. E. Peltek, “Impact of Terahertz Radiation on Stress-Sensitive Genes of E.Coli Cell,” IEEE Trans. Terahertz Sci. Technol. 6(3), 435–441 (2016).
    [Crossref]
  11. S. E. Pelteka, E. V. Demidova, V. M. Popikb, and T. N. Goryachkovskayaa, “Stress-Induced Systems in Escherichia coli and Their Response to Terahertz Radiation,” Russ. J. Genet.: Appl. Res. 7(8), 858–868 (2017).
    [Crossref]
  12. E. V. Demidova, T. N. Goryachkovskaya, T. K. Malup, S. V. Bannikova, A. I. Semenov, N. A. Vinokurov, N. A. Kolchanov, V. M. Popik, and S. E. Peltek, “Studying the non-thermal effects of terahertz radiation on E. coli/pKatG-GFP biosensor cells,” Bioelectromagnetics 34(1), 15–21 (2013).
    [Crossref]
  13. L. T. Liow, M. D. K. Go, and W. S. Yew, “Characterisation of Constitutive Promoters from the Anderson library in Chromobacterium violaceum ATCC 12472,” Eng. Biol. 3(3), 57–66 (2019).
    [Crossref]
  14. M. Li, X. Yang, Z. Xu, H. Wang, D. Xiao, X. Shu, X. Lu, W. Huang, and Y. Dou, “China's First Tera-Hertz Free Electron Laser Oscillator,” in 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), (IEEE, 2018), 1–3.
  15. G. del Solar, R. Giraldo, M. J. Ruiz-Echevarria, M. Espinosa, and R. Diaz-Orejas, “Replication and control of circular bacterial plasmids,” Microbiol. Mol. Biol. Rev. 62(2), 434–464 (1998).
    [Crossref]
  16. S. Mhatre, “Construction of a Modular Vector Library for varied gene expression in Escherichia coli,” University of the Sciences in Philadelphia (2010).
  17. G. Cesareni, M. Cornelissen, R. M. Lacatena, and L. Castagnoli, “Control of Pmb1 Replication - Inhibition of Primer Formation by Rop Requires Rna1,” Embo J. 3(6), 1365–1369 (1984).
    [Crossref]
  18. S. Lin-Chao, W.-T. Chen, and T.-T. Wong, “High copy number of the pUC plasmid results from a Rom/Rop-suppressible point mutation in RNA II,” Mol. Microbiol. 6(22), 3385–3393 (1992).
    [Crossref]
  19. C. Di Primo, “Real time analysis of the RNAI-RNAII-Rop complex by surface plasmon resonance: from a decaying surface to a standard kinetic analysis,” J. Mol. Recognit. 21(1), 37–45 (2008).
    [Crossref]
  20. B. M. Fischer, M. Walther, and J. P. Uhd, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47(21), 3807–3814 (2002).
    [Crossref]
  21. B. S. Alexandrov, V. Gelev, A. R. Bishop, A. Usheva, and KØ Rasmussen, “DNA Breathing Dynamics in the Presence of a Terahertz Field,” Phys. Lett. A 374(10), 1214–1217 (2010).
    [Crossref]
  22. A. A. Greschner, X. Ropagnol, M. Kort, N. Zuberi, J. Perreault, L. Razzari, T. Ozaki, and M. A. Gauthier, “Room-Temperature and Selective Triggering of Supramolecular DNA Assembly/Disassembly by Nonionizing Radiation,” J. Am. Chem. Soc. 141(8), 3456–3469 (2019).
    [Crossref]
  23. A. Bykhovski, T. Globus, T. Khromova, B. Gelmont, D. Woolard, and M. Bykhovskaia, “An analysis of the THz frequency signatures in the cellular components of biological agents,” Terahertz for Military and Security Applications IV 6212, 62120H (2006).
    [Crossref]

2019 (2)

L. T. Liow, M. D. K. Go, and W. S. Yew, “Characterisation of Constitutive Promoters from the Anderson library in Chromobacterium violaceum ATCC 12472,” Eng. Biol. 3(3), 57–66 (2019).
[Crossref]

A. A. Greschner, X. Ropagnol, M. Kort, N. Zuberi, J. Perreault, L. Razzari, T. Ozaki, and M. A. Gauthier, “Room-Temperature and Selective Triggering of Supramolecular DNA Assembly/Disassembly by Nonionizing Radiation,” J. Am. Chem. Soc. 141(8), 3456–3469 (2019).
[Crossref]

2017 (2)

S. E. Pelteka, E. V. Demidova, V. M. Popikb, and T. N. Goryachkovskayaa, “Stress-Induced Systems in Escherichia coli and Their Response to Terahertz Radiation,” Russ. J. Genet.: Appl. Res. 7(8), 858–868 (2017).
[Crossref]

S. Romanenko, R. Begley, A. R. Harvey, L. Hool, and V. P. Wallace, “The interaction between electromagnetic fields at megahertz, gigahertz and terahertz frequencies with cells, tissues and organisms: risks and potential,” J. R. Soc., Interface 14(137), 20170585 (2017).
[Crossref]

2016 (1)

E. V. Demidova, T. N. Goryachkovskaya, I. A. Mescheryakova, T. K. Malup, A. I. Semenov, N. A. Vinokurov, N. A. Kolchanov, V. M. Popik, and S. E. Peltek, “Impact of Terahertz Radiation on Stress-Sensitive Genes of E.Coli Cell,” IEEE Trans. Terahertz Sci. Technol. 6(3), 435–441 (2016).
[Crossref]

2015 (2)

A. N. Bogomazova, E. M. Vassina, T. N. Goryachkovskaya, V. M. Popik, A. S. Sokolov, N. A. Kolchanov, M. A. Lagarkova, S. L. Kiselev, and S. E. Peltek, “No DNA damage response and negligible genome-wide transcriptional changes in human embryonic stem cells exposed to terahertz radiation,” Sci. Rep. 5(1), 7749 (2015).
[Crossref]

I. Echchgadda, C. Z. Cerna, M. A. Sloan, D. P. Elam, and B. L. Ibey, “Effects of Different Terahertz Frequencies on Gene Expression in Human Keratinocytes,” Proc. SPIE 9321, 93210Q (2015).
[Crossref]

2013 (1)

E. V. Demidova, T. N. Goryachkovskaya, T. K. Malup, S. V. Bannikova, A. I. Semenov, N. A. Vinokurov, N. A. Kolchanov, V. M. Popik, and S. E. Peltek, “Studying the non-thermal effects of terahertz radiation on E. coli/pKatG-GFP biosensor cells,” Bioelectromagnetics 34(1), 15–21 (2013).
[Crossref]

2011 (2)

T. Schrader, T. Kleine-Ostmann, K. Munter, C. Jastrow, and E. Schmid, “Spindle disturbances in human-hamster hybrid (A(L)) cells induced by the electrical component of the mobile communication frequency range signal,” Bioelectromagnetics 32(4), 291–301 (2011).
[Crossref]

G. J. Wilmink and J. E. Grundt, “Invited Review Article: Current State of Research on Biological Effects of Terahertz Radiation,” J. Infrared, Millimeter, Terahertz Waves 32(10), 1074–1122 (2011).
[Crossref]

2010 (1)

B. S. Alexandrov, V. Gelev, A. R. Bishop, A. Usheva, and KØ Rasmussen, “DNA Breathing Dynamics in the Presence of a Terahertz Field,” Phys. Lett. A 374(10), 1214–1217 (2010).
[Crossref]

2008 (2)

C. Di Primo, “Real time analysis of the RNAI-RNAII-Rop complex by surface plasmon resonance: from a decaying surface to a standard kinetic analysis,” J. Mol. Recognit. 21(1), 37–45 (2008).
[Crossref]

A. Korenstein-Ilan, A. Barbul, P. Hasin, A. Eliran, A. Gover, and R. Korenstein, “Terahertz radiation increases genomic instability in human lymphocytes,” Radiat. Res. 170(2), 224–234 (2008).
[Crossref]

2006 (1)

A. Bykhovski, T. Globus, T. Khromova, B. Gelmont, D. Woolard, and M. Bykhovskaia, “An analysis of the THz frequency signatures in the cellular components of biological agents,” Terahertz for Military and Security Applications IV 6212, 62120H (2006).
[Crossref]

2002 (1)

B. M. Fischer, M. Walther, and J. P. Uhd, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47(21), 3807–3814 (2002).
[Crossref]

1998 (1)

G. del Solar, R. Giraldo, M. J. Ruiz-Echevarria, M. Espinosa, and R. Diaz-Orejas, “Replication and control of circular bacterial plasmids,” Microbiol. Mol. Biol. Rev. 62(2), 434–464 (1998).
[Crossref]

1992 (1)

S. Lin-Chao, W.-T. Chen, and T.-T. Wong, “High copy number of the pUC plasmid results from a Rom/Rop-suppressible point mutation in RNA II,” Mol. Microbiol. 6(22), 3385–3393 (1992).
[Crossref]

1984 (1)

G. Cesareni, M. Cornelissen, R. M. Lacatena, and L. Castagnoli, “Control of Pmb1 Replication - Inhibition of Primer Formation by Rop Requires Rna1,” Embo J. 3(6), 1365–1369 (1984).
[Crossref]

1975 (1)

H. Frohlich, “The extraordinary dielectric properties of biological materials and the action of enzymes,” Proc. Natl. Acad. Sci. U. S. A. 72(11), 4211–4215 (1975).
[Crossref]

1968 (1)

S. J. Webb and D. D. Dodds, “Inhibition of bacterial cell growth by 136 gc microwaves,” Nature 218(5139), 374–375 (1968).
[Crossref]

Alexandrov, B. S.

B. S. Alexandrov, V. Gelev, A. R. Bishop, A. Usheva, and KØ Rasmussen, “DNA Breathing Dynamics in the Presence of a Terahertz Field,” Phys. Lett. A 374(10), 1214–1217 (2010).
[Crossref]

Bannikova, S. V.

E. V. Demidova, T. N. Goryachkovskaya, T. K. Malup, S. V. Bannikova, A. I. Semenov, N. A. Vinokurov, N. A. Kolchanov, V. M. Popik, and S. E. Peltek, “Studying the non-thermal effects of terahertz radiation on E. coli/pKatG-GFP biosensor cells,” Bioelectromagnetics 34(1), 15–21 (2013).
[Crossref]

Barbul, A.

A. Korenstein-Ilan, A. Barbul, P. Hasin, A. Eliran, A. Gover, and R. Korenstein, “Terahertz radiation increases genomic instability in human lymphocytes,” Radiat. Res. 170(2), 224–234 (2008).
[Crossref]

Begley, R.

S. Romanenko, R. Begley, A. R. Harvey, L. Hool, and V. P. Wallace, “The interaction between electromagnetic fields at megahertz, gigahertz and terahertz frequencies with cells, tissues and organisms: risks and potential,” J. R. Soc., Interface 14(137), 20170585 (2017).
[Crossref]

Bishop, A. R.

B. S. Alexandrov, V. Gelev, A. R. Bishop, A. Usheva, and KØ Rasmussen, “DNA Breathing Dynamics in the Presence of a Terahertz Field,” Phys. Lett. A 374(10), 1214–1217 (2010).
[Crossref]

Bogomazova, A. N.

A. N. Bogomazova, E. M. Vassina, T. N. Goryachkovskaya, V. M. Popik, A. S. Sokolov, N. A. Kolchanov, M. A. Lagarkova, S. L. Kiselev, and S. E. Peltek, “No DNA damage response and negligible genome-wide transcriptional changes in human embryonic stem cells exposed to terahertz radiation,” Sci. Rep. 5(1), 7749 (2015).
[Crossref]

Bykhovskaia, M.

A. Bykhovski, T. Globus, T. Khromova, B. Gelmont, D. Woolard, and M. Bykhovskaia, “An analysis of the THz frequency signatures in the cellular components of biological agents,” Terahertz for Military and Security Applications IV 6212, 62120H (2006).
[Crossref]

Bykhovski, A.

A. Bykhovski, T. Globus, T. Khromova, B. Gelmont, D. Woolard, and M. Bykhovskaia, “An analysis of the THz frequency signatures in the cellular components of biological agents,” Terahertz for Military and Security Applications IV 6212, 62120H (2006).
[Crossref]

Castagnoli, L.

G. Cesareni, M. Cornelissen, R. M. Lacatena, and L. Castagnoli, “Control of Pmb1 Replication - Inhibition of Primer Formation by Rop Requires Rna1,” Embo J. 3(6), 1365–1369 (1984).
[Crossref]

Cerna, C. Z.

I. Echchgadda, C. Z. Cerna, M. A. Sloan, D. P. Elam, and B. L. Ibey, “Effects of Different Terahertz Frequencies on Gene Expression in Human Keratinocytes,” Proc. SPIE 9321, 93210Q (2015).
[Crossref]

Cesareni, G.

G. Cesareni, M. Cornelissen, R. M. Lacatena, and L. Castagnoli, “Control of Pmb1 Replication - Inhibition of Primer Formation by Rop Requires Rna1,” Embo J. 3(6), 1365–1369 (1984).
[Crossref]

Chen, W.-T.

S. Lin-Chao, W.-T. Chen, and T.-T. Wong, “High copy number of the pUC plasmid results from a Rom/Rop-suppressible point mutation in RNA II,” Mol. Microbiol. 6(22), 3385–3393 (1992).
[Crossref]

Cornelissen, M.

G. Cesareni, M. Cornelissen, R. M. Lacatena, and L. Castagnoli, “Control of Pmb1 Replication - Inhibition of Primer Formation by Rop Requires Rna1,” Embo J. 3(6), 1365–1369 (1984).
[Crossref]

del Solar, G.

G. del Solar, R. Giraldo, M. J. Ruiz-Echevarria, M. Espinosa, and R. Diaz-Orejas, “Replication and control of circular bacterial plasmids,” Microbiol. Mol. Biol. Rev. 62(2), 434–464 (1998).
[Crossref]

Demidova, E. V.

S. E. Pelteka, E. V. Demidova, V. M. Popikb, and T. N. Goryachkovskayaa, “Stress-Induced Systems in Escherichia coli and Their Response to Terahertz Radiation,” Russ. J. Genet.: Appl. Res. 7(8), 858–868 (2017).
[Crossref]

E. V. Demidova, T. N. Goryachkovskaya, I. A. Mescheryakova, T. K. Malup, A. I. Semenov, N. A. Vinokurov, N. A. Kolchanov, V. M. Popik, and S. E. Peltek, “Impact of Terahertz Radiation on Stress-Sensitive Genes of E.Coli Cell,” IEEE Trans. Terahertz Sci. Technol. 6(3), 435–441 (2016).
[Crossref]

E. V. Demidova, T. N. Goryachkovskaya, T. K. Malup, S. V. Bannikova, A. I. Semenov, N. A. Vinokurov, N. A. Kolchanov, V. M. Popik, and S. E. Peltek, “Studying the non-thermal effects of terahertz radiation on E. coli/pKatG-GFP biosensor cells,” Bioelectromagnetics 34(1), 15–21 (2013).
[Crossref]

Di Primo, C.

C. Di Primo, “Real time analysis of the RNAI-RNAII-Rop complex by surface plasmon resonance: from a decaying surface to a standard kinetic analysis,” J. Mol. Recognit. 21(1), 37–45 (2008).
[Crossref]

Diaz-Orejas, R.

G. del Solar, R. Giraldo, M. J. Ruiz-Echevarria, M. Espinosa, and R. Diaz-Orejas, “Replication and control of circular bacterial plasmids,” Microbiol. Mol. Biol. Rev. 62(2), 434–464 (1998).
[Crossref]

Dodds, D. D.

S. J. Webb and D. D. Dodds, “Inhibition of bacterial cell growth by 136 gc microwaves,” Nature 218(5139), 374–375 (1968).
[Crossref]

Dou, Y.

M. Li, X. Yang, Z. Xu, H. Wang, D. Xiao, X. Shu, X. Lu, W. Huang, and Y. Dou, “China's First Tera-Hertz Free Electron Laser Oscillator,” in 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), (IEEE, 2018), 1–3.

Echchgadda, I.

I. Echchgadda, C. Z. Cerna, M. A. Sloan, D. P. Elam, and B. L. Ibey, “Effects of Different Terahertz Frequencies on Gene Expression in Human Keratinocytes,” Proc. SPIE 9321, 93210Q (2015).
[Crossref]

Elam, D. P.

I. Echchgadda, C. Z. Cerna, M. A. Sloan, D. P. Elam, and B. L. Ibey, “Effects of Different Terahertz Frequencies on Gene Expression in Human Keratinocytes,” Proc. SPIE 9321, 93210Q (2015).
[Crossref]

Eliran, A.

A. Korenstein-Ilan, A. Barbul, P. Hasin, A. Eliran, A. Gover, and R. Korenstein, “Terahertz radiation increases genomic instability in human lymphocytes,” Radiat. Res. 170(2), 224–234 (2008).
[Crossref]

Espinosa, M.

G. del Solar, R. Giraldo, M. J. Ruiz-Echevarria, M. Espinosa, and R. Diaz-Orejas, “Replication and control of circular bacterial plasmids,” Microbiol. Mol. Biol. Rev. 62(2), 434–464 (1998).
[Crossref]

Fischer, B. M.

B. M. Fischer, M. Walther, and J. P. Uhd, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47(21), 3807–3814 (2002).
[Crossref]

Frohlich, H.

H. Frohlich, “The extraordinary dielectric properties of biological materials and the action of enzymes,” Proc. Natl. Acad. Sci. U. S. A. 72(11), 4211–4215 (1975).
[Crossref]

Gauthier, M. A.

A. A. Greschner, X. Ropagnol, M. Kort, N. Zuberi, J. Perreault, L. Razzari, T. Ozaki, and M. A. Gauthier, “Room-Temperature and Selective Triggering of Supramolecular DNA Assembly/Disassembly by Nonionizing Radiation,” J. Am. Chem. Soc. 141(8), 3456–3469 (2019).
[Crossref]

Gelev, V.

B. S. Alexandrov, V. Gelev, A. R. Bishop, A. Usheva, and KØ Rasmussen, “DNA Breathing Dynamics in the Presence of a Terahertz Field,” Phys. Lett. A 374(10), 1214–1217 (2010).
[Crossref]

Gelmont, B.

A. Bykhovski, T. Globus, T. Khromova, B. Gelmont, D. Woolard, and M. Bykhovskaia, “An analysis of the THz frequency signatures in the cellular components of biological agents,” Terahertz for Military and Security Applications IV 6212, 62120H (2006).
[Crossref]

Giraldo, R.

G. del Solar, R. Giraldo, M. J. Ruiz-Echevarria, M. Espinosa, and R. Diaz-Orejas, “Replication and control of circular bacterial plasmids,” Microbiol. Mol. Biol. Rev. 62(2), 434–464 (1998).
[Crossref]

Globus, T.

A. Bykhovski, T. Globus, T. Khromova, B. Gelmont, D. Woolard, and M. Bykhovskaia, “An analysis of the THz frequency signatures in the cellular components of biological agents,” Terahertz for Military and Security Applications IV 6212, 62120H (2006).
[Crossref]

Go, M. D. K.

L. T. Liow, M. D. K. Go, and W. S. Yew, “Characterisation of Constitutive Promoters from the Anderson library in Chromobacterium violaceum ATCC 12472,” Eng. Biol. 3(3), 57–66 (2019).
[Crossref]

Goryachkovskaya, T. N.

E. V. Demidova, T. N. Goryachkovskaya, I. A. Mescheryakova, T. K. Malup, A. I. Semenov, N. A. Vinokurov, N. A. Kolchanov, V. M. Popik, and S. E. Peltek, “Impact of Terahertz Radiation on Stress-Sensitive Genes of E.Coli Cell,” IEEE Trans. Terahertz Sci. Technol. 6(3), 435–441 (2016).
[Crossref]

A. N. Bogomazova, E. M. Vassina, T. N. Goryachkovskaya, V. M. Popik, A. S. Sokolov, N. A. Kolchanov, M. A. Lagarkova, S. L. Kiselev, and S. E. Peltek, “No DNA damage response and negligible genome-wide transcriptional changes in human embryonic stem cells exposed to terahertz radiation,” Sci. Rep. 5(1), 7749 (2015).
[Crossref]

E. V. Demidova, T. N. Goryachkovskaya, T. K. Malup, S. V. Bannikova, A. I. Semenov, N. A. Vinokurov, N. A. Kolchanov, V. M. Popik, and S. E. Peltek, “Studying the non-thermal effects of terahertz radiation on E. coli/pKatG-GFP biosensor cells,” Bioelectromagnetics 34(1), 15–21 (2013).
[Crossref]

Goryachkovskayaa, T. N.

S. E. Pelteka, E. V. Demidova, V. M. Popikb, and T. N. Goryachkovskayaa, “Stress-Induced Systems in Escherichia coli and Their Response to Terahertz Radiation,” Russ. J. Genet.: Appl. Res. 7(8), 858–868 (2017).
[Crossref]

Gover, A.

A. Korenstein-Ilan, A. Barbul, P. Hasin, A. Eliran, A. Gover, and R. Korenstein, “Terahertz radiation increases genomic instability in human lymphocytes,” Radiat. Res. 170(2), 224–234 (2008).
[Crossref]

Greschner, A. A.

A. A. Greschner, X. Ropagnol, M. Kort, N. Zuberi, J. Perreault, L. Razzari, T. Ozaki, and M. A. Gauthier, “Room-Temperature and Selective Triggering of Supramolecular DNA Assembly/Disassembly by Nonionizing Radiation,” J. Am. Chem. Soc. 141(8), 3456–3469 (2019).
[Crossref]

Grundt, J. E.

G. J. Wilmink and J. E. Grundt, “Invited Review Article: Current State of Research on Biological Effects of Terahertz Radiation,” J. Infrared, Millimeter, Terahertz Waves 32(10), 1074–1122 (2011).
[Crossref]

Harvey, A. R.

S. Romanenko, R. Begley, A. R. Harvey, L. Hool, and V. P. Wallace, “The interaction between electromagnetic fields at megahertz, gigahertz and terahertz frequencies with cells, tissues and organisms: risks and potential,” J. R. Soc., Interface 14(137), 20170585 (2017).
[Crossref]

Hasin, P.

A. Korenstein-Ilan, A. Barbul, P. Hasin, A. Eliran, A. Gover, and R. Korenstein, “Terahertz radiation increases genomic instability in human lymphocytes,” Radiat. Res. 170(2), 224–234 (2008).
[Crossref]

Hool, L.

S. Romanenko, R. Begley, A. R. Harvey, L. Hool, and V. P. Wallace, “The interaction between electromagnetic fields at megahertz, gigahertz and terahertz frequencies with cells, tissues and organisms: risks and potential,” J. R. Soc., Interface 14(137), 20170585 (2017).
[Crossref]

Huang, W.

M. Li, X. Yang, Z. Xu, H. Wang, D. Xiao, X. Shu, X. Lu, W. Huang, and Y. Dou, “China's First Tera-Hertz Free Electron Laser Oscillator,” in 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), (IEEE, 2018), 1–3.

Ibey, B. L.

I. Echchgadda, C. Z. Cerna, M. A. Sloan, D. P. Elam, and B. L. Ibey, “Effects of Different Terahertz Frequencies on Gene Expression in Human Keratinocytes,” Proc. SPIE 9321, 93210Q (2015).
[Crossref]

Jastrow, C.

T. Schrader, T. Kleine-Ostmann, K. Munter, C. Jastrow, and E. Schmid, “Spindle disturbances in human-hamster hybrid (A(L)) cells induced by the electrical component of the mobile communication frequency range signal,” Bioelectromagnetics 32(4), 291–301 (2011).
[Crossref]

Khromova, T.

A. Bykhovski, T. Globus, T. Khromova, B. Gelmont, D. Woolard, and M. Bykhovskaia, “An analysis of the THz frequency signatures in the cellular components of biological agents,” Terahertz for Military and Security Applications IV 6212, 62120H (2006).
[Crossref]

Kiselev, S. L.

A. N. Bogomazova, E. M. Vassina, T. N. Goryachkovskaya, V. M. Popik, A. S. Sokolov, N. A. Kolchanov, M. A. Lagarkova, S. L. Kiselev, and S. E. Peltek, “No DNA damage response and negligible genome-wide transcriptional changes in human embryonic stem cells exposed to terahertz radiation,” Sci. Rep. 5(1), 7749 (2015).
[Crossref]

Kleine-Ostmann, T.

T. Schrader, T. Kleine-Ostmann, K. Munter, C. Jastrow, and E. Schmid, “Spindle disturbances in human-hamster hybrid (A(L)) cells induced by the electrical component of the mobile communication frequency range signal,” Bioelectromagnetics 32(4), 291–301 (2011).
[Crossref]

Kolchanov, N. A.

E. V. Demidova, T. N. Goryachkovskaya, I. A. Mescheryakova, T. K. Malup, A. I. Semenov, N. A. Vinokurov, N. A. Kolchanov, V. M. Popik, and S. E. Peltek, “Impact of Terahertz Radiation on Stress-Sensitive Genes of E.Coli Cell,” IEEE Trans. Terahertz Sci. Technol. 6(3), 435–441 (2016).
[Crossref]

A. N. Bogomazova, E. M. Vassina, T. N. Goryachkovskaya, V. M. Popik, A. S. Sokolov, N. A. Kolchanov, M. A. Lagarkova, S. L. Kiselev, and S. E. Peltek, “No DNA damage response and negligible genome-wide transcriptional changes in human embryonic stem cells exposed to terahertz radiation,” Sci. Rep. 5(1), 7749 (2015).
[Crossref]

E. V. Demidova, T. N. Goryachkovskaya, T. K. Malup, S. V. Bannikova, A. I. Semenov, N. A. Vinokurov, N. A. Kolchanov, V. M. Popik, and S. E. Peltek, “Studying the non-thermal effects of terahertz radiation on E. coli/pKatG-GFP biosensor cells,” Bioelectromagnetics 34(1), 15–21 (2013).
[Crossref]

Korenstein, R.

A. Korenstein-Ilan, A. Barbul, P. Hasin, A. Eliran, A. Gover, and R. Korenstein, “Terahertz radiation increases genomic instability in human lymphocytes,” Radiat. Res. 170(2), 224–234 (2008).
[Crossref]

Korenstein-Ilan, A.

A. Korenstein-Ilan, A. Barbul, P. Hasin, A. Eliran, A. Gover, and R. Korenstein, “Terahertz radiation increases genomic instability in human lymphocytes,” Radiat. Res. 170(2), 224–234 (2008).
[Crossref]

Kort, M.

A. A. Greschner, X. Ropagnol, M. Kort, N. Zuberi, J. Perreault, L. Razzari, T. Ozaki, and M. A. Gauthier, “Room-Temperature and Selective Triggering of Supramolecular DNA Assembly/Disassembly by Nonionizing Radiation,” J. Am. Chem. Soc. 141(8), 3456–3469 (2019).
[Crossref]

Lacatena, R. M.

G. Cesareni, M. Cornelissen, R. M. Lacatena, and L. Castagnoli, “Control of Pmb1 Replication - Inhibition of Primer Formation by Rop Requires Rna1,” Embo J. 3(6), 1365–1369 (1984).
[Crossref]

Lagarkova, M. A.

A. N. Bogomazova, E. M. Vassina, T. N. Goryachkovskaya, V. M. Popik, A. S. Sokolov, N. A. Kolchanov, M. A. Lagarkova, S. L. Kiselev, and S. E. Peltek, “No DNA damage response and negligible genome-wide transcriptional changes in human embryonic stem cells exposed to terahertz radiation,” Sci. Rep. 5(1), 7749 (2015).
[Crossref]

Li, M.

M. Li, X. Yang, Z. Xu, H. Wang, D. Xiao, X. Shu, X. Lu, W. Huang, and Y. Dou, “China's First Tera-Hertz Free Electron Laser Oscillator,” in 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), (IEEE, 2018), 1–3.

Lin-Chao, S.

S. Lin-Chao, W.-T. Chen, and T.-T. Wong, “High copy number of the pUC plasmid results from a Rom/Rop-suppressible point mutation in RNA II,” Mol. Microbiol. 6(22), 3385–3393 (1992).
[Crossref]

Liow, L. T.

L. T. Liow, M. D. K. Go, and W. S. Yew, “Characterisation of Constitutive Promoters from the Anderson library in Chromobacterium violaceum ATCC 12472,” Eng. Biol. 3(3), 57–66 (2019).
[Crossref]

Lu, X.

M. Li, X. Yang, Z. Xu, H. Wang, D. Xiao, X. Shu, X. Lu, W. Huang, and Y. Dou, “China's First Tera-Hertz Free Electron Laser Oscillator,” in 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), (IEEE, 2018), 1–3.

Malup, T. K.

E. V. Demidova, T. N. Goryachkovskaya, I. A. Mescheryakova, T. K. Malup, A. I. Semenov, N. A. Vinokurov, N. A. Kolchanov, V. M. Popik, and S. E. Peltek, “Impact of Terahertz Radiation on Stress-Sensitive Genes of E.Coli Cell,” IEEE Trans. Terahertz Sci. Technol. 6(3), 435–441 (2016).
[Crossref]

E. V. Demidova, T. N. Goryachkovskaya, T. K. Malup, S. V. Bannikova, A. I. Semenov, N. A. Vinokurov, N. A. Kolchanov, V. M. Popik, and S. E. Peltek, “Studying the non-thermal effects of terahertz radiation on E. coli/pKatG-GFP biosensor cells,” Bioelectromagnetics 34(1), 15–21 (2013).
[Crossref]

Mescheryakova, I. A.

E. V. Demidova, T. N. Goryachkovskaya, I. A. Mescheryakova, T. K. Malup, A. I. Semenov, N. A. Vinokurov, N. A. Kolchanov, V. M. Popik, and S. E. Peltek, “Impact of Terahertz Radiation on Stress-Sensitive Genes of E.Coli Cell,” IEEE Trans. Terahertz Sci. Technol. 6(3), 435–441 (2016).
[Crossref]

Mhatre, S.

S. Mhatre, “Construction of a Modular Vector Library for varied gene expression in Escherichia coli,” University of the Sciences in Philadelphia (2010).

Munter, K.

T. Schrader, T. Kleine-Ostmann, K. Munter, C. Jastrow, and E. Schmid, “Spindle disturbances in human-hamster hybrid (A(L)) cells induced by the electrical component of the mobile communication frequency range signal,” Bioelectromagnetics 32(4), 291–301 (2011).
[Crossref]

Ozaki, T.

A. A. Greschner, X. Ropagnol, M. Kort, N. Zuberi, J. Perreault, L. Razzari, T. Ozaki, and M. A. Gauthier, “Room-Temperature and Selective Triggering of Supramolecular DNA Assembly/Disassembly by Nonionizing Radiation,” J. Am. Chem. Soc. 141(8), 3456–3469 (2019).
[Crossref]

Park, G.-S.

G.-S. Park, Convergence of Terahertz Sciences in Biomedical Systems (Springer, 2012), pp. xiii.

Peltek, S. E.

E. V. Demidova, T. N. Goryachkovskaya, I. A. Mescheryakova, T. K. Malup, A. I. Semenov, N. A. Vinokurov, N. A. Kolchanov, V. M. Popik, and S. E. Peltek, “Impact of Terahertz Radiation on Stress-Sensitive Genes of E.Coli Cell,” IEEE Trans. Terahertz Sci. Technol. 6(3), 435–441 (2016).
[Crossref]

A. N. Bogomazova, E. M. Vassina, T. N. Goryachkovskaya, V. M. Popik, A. S. Sokolov, N. A. Kolchanov, M. A. Lagarkova, S. L. Kiselev, and S. E. Peltek, “No DNA damage response and negligible genome-wide transcriptional changes in human embryonic stem cells exposed to terahertz radiation,” Sci. Rep. 5(1), 7749 (2015).
[Crossref]

E. V. Demidova, T. N. Goryachkovskaya, T. K. Malup, S. V. Bannikova, A. I. Semenov, N. A. Vinokurov, N. A. Kolchanov, V. M. Popik, and S. E. Peltek, “Studying the non-thermal effects of terahertz radiation on E. coli/pKatG-GFP biosensor cells,” Bioelectromagnetics 34(1), 15–21 (2013).
[Crossref]

Pelteka, S. E.

S. E. Pelteka, E. V. Demidova, V. M. Popikb, and T. N. Goryachkovskayaa, “Stress-Induced Systems in Escherichia coli and Their Response to Terahertz Radiation,” Russ. J. Genet.: Appl. Res. 7(8), 858–868 (2017).
[Crossref]

Perreault, J.

A. A. Greschner, X. Ropagnol, M. Kort, N. Zuberi, J. Perreault, L. Razzari, T. Ozaki, and M. A. Gauthier, “Room-Temperature and Selective Triggering of Supramolecular DNA Assembly/Disassembly by Nonionizing Radiation,” J. Am. Chem. Soc. 141(8), 3456–3469 (2019).
[Crossref]

Popik, V. M.

E. V. Demidova, T. N. Goryachkovskaya, I. A. Mescheryakova, T. K. Malup, A. I. Semenov, N. A. Vinokurov, N. A. Kolchanov, V. M. Popik, and S. E. Peltek, “Impact of Terahertz Radiation on Stress-Sensitive Genes of E.Coli Cell,” IEEE Trans. Terahertz Sci. Technol. 6(3), 435–441 (2016).
[Crossref]

A. N. Bogomazova, E. M. Vassina, T. N. Goryachkovskaya, V. M. Popik, A. S. Sokolov, N. A. Kolchanov, M. A. Lagarkova, S. L. Kiselev, and S. E. Peltek, “No DNA damage response and negligible genome-wide transcriptional changes in human embryonic stem cells exposed to terahertz radiation,” Sci. Rep. 5(1), 7749 (2015).
[Crossref]

E. V. Demidova, T. N. Goryachkovskaya, T. K. Malup, S. V. Bannikova, A. I. Semenov, N. A. Vinokurov, N. A. Kolchanov, V. M. Popik, and S. E. Peltek, “Studying the non-thermal effects of terahertz radiation on E. coli/pKatG-GFP biosensor cells,” Bioelectromagnetics 34(1), 15–21 (2013).
[Crossref]

Popikb, V. M.

S. E. Pelteka, E. V. Demidova, V. M. Popikb, and T. N. Goryachkovskayaa, “Stress-Induced Systems in Escherichia coli and Their Response to Terahertz Radiation,” Russ. J. Genet.: Appl. Res. 7(8), 858–868 (2017).
[Crossref]

Rasmussen, KØ

B. S. Alexandrov, V. Gelev, A. R. Bishop, A. Usheva, and KØ Rasmussen, “DNA Breathing Dynamics in the Presence of a Terahertz Field,” Phys. Lett. A 374(10), 1214–1217 (2010).
[Crossref]

Razzari, L.

A. A. Greschner, X. Ropagnol, M. Kort, N. Zuberi, J. Perreault, L. Razzari, T. Ozaki, and M. A. Gauthier, “Room-Temperature and Selective Triggering of Supramolecular DNA Assembly/Disassembly by Nonionizing Radiation,” J. Am. Chem. Soc. 141(8), 3456–3469 (2019).
[Crossref]

Romanenko, S.

S. Romanenko, R. Begley, A. R. Harvey, L. Hool, and V. P. Wallace, “The interaction between electromagnetic fields at megahertz, gigahertz and terahertz frequencies with cells, tissues and organisms: risks and potential,” J. R. Soc., Interface 14(137), 20170585 (2017).
[Crossref]

Ropagnol, X.

A. A. Greschner, X. Ropagnol, M. Kort, N. Zuberi, J. Perreault, L. Razzari, T. Ozaki, and M. A. Gauthier, “Room-Temperature and Selective Triggering of Supramolecular DNA Assembly/Disassembly by Nonionizing Radiation,” J. Am. Chem. Soc. 141(8), 3456–3469 (2019).
[Crossref]

Ruiz-Echevarria, M. J.

G. del Solar, R. Giraldo, M. J. Ruiz-Echevarria, M. Espinosa, and R. Diaz-Orejas, “Replication and control of circular bacterial plasmids,” Microbiol. Mol. Biol. Rev. 62(2), 434–464 (1998).
[Crossref]

Schmid, E.

T. Schrader, T. Kleine-Ostmann, K. Munter, C. Jastrow, and E. Schmid, “Spindle disturbances in human-hamster hybrid (A(L)) cells induced by the electrical component of the mobile communication frequency range signal,” Bioelectromagnetics 32(4), 291–301 (2011).
[Crossref]

Schrader, T.

T. Schrader, T. Kleine-Ostmann, K. Munter, C. Jastrow, and E. Schmid, “Spindle disturbances in human-hamster hybrid (A(L)) cells induced by the electrical component of the mobile communication frequency range signal,” Bioelectromagnetics 32(4), 291–301 (2011).
[Crossref]

Semenov, A. I.

E. V. Demidova, T. N. Goryachkovskaya, I. A. Mescheryakova, T. K. Malup, A. I. Semenov, N. A. Vinokurov, N. A. Kolchanov, V. M. Popik, and S. E. Peltek, “Impact of Terahertz Radiation on Stress-Sensitive Genes of E.Coli Cell,” IEEE Trans. Terahertz Sci. Technol. 6(3), 435–441 (2016).
[Crossref]

E. V. Demidova, T. N. Goryachkovskaya, T. K. Malup, S. V. Bannikova, A. I. Semenov, N. A. Vinokurov, N. A. Kolchanov, V. M. Popik, and S. E. Peltek, “Studying the non-thermal effects of terahertz radiation on E. coli/pKatG-GFP biosensor cells,” Bioelectromagnetics 34(1), 15–21 (2013).
[Crossref]

Shu, X.

M. Li, X. Yang, Z. Xu, H. Wang, D. Xiao, X. Shu, X. Lu, W. Huang, and Y. Dou, “China's First Tera-Hertz Free Electron Laser Oscillator,” in 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), (IEEE, 2018), 1–3.

Sloan, M. A.

I. Echchgadda, C. Z. Cerna, M. A. Sloan, D. P. Elam, and B. L. Ibey, “Effects of Different Terahertz Frequencies on Gene Expression in Human Keratinocytes,” Proc. SPIE 9321, 93210Q (2015).
[Crossref]

Sokolov, A. S.

A. N. Bogomazova, E. M. Vassina, T. N. Goryachkovskaya, V. M. Popik, A. S. Sokolov, N. A. Kolchanov, M. A. Lagarkova, S. L. Kiselev, and S. E. Peltek, “No DNA damage response and negligible genome-wide transcriptional changes in human embryonic stem cells exposed to terahertz radiation,” Sci. Rep. 5(1), 7749 (2015).
[Crossref]

Uhd, J. P.

B. M. Fischer, M. Walther, and J. P. Uhd, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47(21), 3807–3814 (2002).
[Crossref]

Usheva, A.

B. S. Alexandrov, V. Gelev, A. R. Bishop, A. Usheva, and KØ Rasmussen, “DNA Breathing Dynamics in the Presence of a Terahertz Field,” Phys. Lett. A 374(10), 1214–1217 (2010).
[Crossref]

Vassina, E. M.

A. N. Bogomazova, E. M. Vassina, T. N. Goryachkovskaya, V. M. Popik, A. S. Sokolov, N. A. Kolchanov, M. A. Lagarkova, S. L. Kiselev, and S. E. Peltek, “No DNA damage response and negligible genome-wide transcriptional changes in human embryonic stem cells exposed to terahertz radiation,” Sci. Rep. 5(1), 7749 (2015).
[Crossref]

Vinokurov, N. A.

E. V. Demidova, T. N. Goryachkovskaya, I. A. Mescheryakova, T. K. Malup, A. I. Semenov, N. A. Vinokurov, N. A. Kolchanov, V. M. Popik, and S. E. Peltek, “Impact of Terahertz Radiation on Stress-Sensitive Genes of E.Coli Cell,” IEEE Trans. Terahertz Sci. Technol. 6(3), 435–441 (2016).
[Crossref]

E. V. Demidova, T. N. Goryachkovskaya, T. K. Malup, S. V. Bannikova, A. I. Semenov, N. A. Vinokurov, N. A. Kolchanov, V. M. Popik, and S. E. Peltek, “Studying the non-thermal effects of terahertz radiation on E. coli/pKatG-GFP biosensor cells,” Bioelectromagnetics 34(1), 15–21 (2013).
[Crossref]

Wallace, V. P.

S. Romanenko, R. Begley, A. R. Harvey, L. Hool, and V. P. Wallace, “The interaction between electromagnetic fields at megahertz, gigahertz and terahertz frequencies with cells, tissues and organisms: risks and potential,” J. R. Soc., Interface 14(137), 20170585 (2017).
[Crossref]

Walther, M.

B. M. Fischer, M. Walther, and J. P. Uhd, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47(21), 3807–3814 (2002).
[Crossref]

Wang, H.

M. Li, X. Yang, Z. Xu, H. Wang, D. Xiao, X. Shu, X. Lu, W. Huang, and Y. Dou, “China's First Tera-Hertz Free Electron Laser Oscillator,” in 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), (IEEE, 2018), 1–3.

Webb, S. J.

S. J. Webb and D. D. Dodds, “Inhibition of bacterial cell growth by 136 gc microwaves,” Nature 218(5139), 374–375 (1968).
[Crossref]

Wilmink, G. J.

G. J. Wilmink and J. E. Grundt, “Invited Review Article: Current State of Research on Biological Effects of Terahertz Radiation,” J. Infrared, Millimeter, Terahertz Waves 32(10), 1074–1122 (2011).
[Crossref]

Wong, T.-T.

S. Lin-Chao, W.-T. Chen, and T.-T. Wong, “High copy number of the pUC plasmid results from a Rom/Rop-suppressible point mutation in RNA II,” Mol. Microbiol. 6(22), 3385–3393 (1992).
[Crossref]

Woolard, D.

A. Bykhovski, T. Globus, T. Khromova, B. Gelmont, D. Woolard, and M. Bykhovskaia, “An analysis of the THz frequency signatures in the cellular components of biological agents,” Terahertz for Military and Security Applications IV 6212, 62120H (2006).
[Crossref]

Xiao, D.

M. Li, X. Yang, Z. Xu, H. Wang, D. Xiao, X. Shu, X. Lu, W. Huang, and Y. Dou, “China's First Tera-Hertz Free Electron Laser Oscillator,” in 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), (IEEE, 2018), 1–3.

Xu, Z.

M. Li, X. Yang, Z. Xu, H. Wang, D. Xiao, X. Shu, X. Lu, W. Huang, and Y. Dou, “China's First Tera-Hertz Free Electron Laser Oscillator,” in 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), (IEEE, 2018), 1–3.

Yang, X.

M. Li, X. Yang, Z. Xu, H. Wang, D. Xiao, X. Shu, X. Lu, W. Huang, and Y. Dou, “China's First Tera-Hertz Free Electron Laser Oscillator,” in 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), (IEEE, 2018), 1–3.

Yew, W. S.

L. T. Liow, M. D. K. Go, and W. S. Yew, “Characterisation of Constitutive Promoters from the Anderson library in Chromobacterium violaceum ATCC 12472,” Eng. Biol. 3(3), 57–66 (2019).
[Crossref]

Zuberi, N.

A. A. Greschner, X. Ropagnol, M. Kort, N. Zuberi, J. Perreault, L. Razzari, T. Ozaki, and M. A. Gauthier, “Room-Temperature and Selective Triggering of Supramolecular DNA Assembly/Disassembly by Nonionizing Radiation,” J. Am. Chem. Soc. 141(8), 3456–3469 (2019).
[Crossref]

Bioelectromagnetics (2)

T. Schrader, T. Kleine-Ostmann, K. Munter, C. Jastrow, and E. Schmid, “Spindle disturbances in human-hamster hybrid (A(L)) cells induced by the electrical component of the mobile communication frequency range signal,” Bioelectromagnetics 32(4), 291–301 (2011).
[Crossref]

E. V. Demidova, T. N. Goryachkovskaya, T. K. Malup, S. V. Bannikova, A. I. Semenov, N. A. Vinokurov, N. A. Kolchanov, V. M. Popik, and S. E. Peltek, “Studying the non-thermal effects of terahertz radiation on E. coli/pKatG-GFP biosensor cells,” Bioelectromagnetics 34(1), 15–21 (2013).
[Crossref]

Embo J. (1)

G. Cesareni, M. Cornelissen, R. M. Lacatena, and L. Castagnoli, “Control of Pmb1 Replication - Inhibition of Primer Formation by Rop Requires Rna1,” Embo J. 3(6), 1365–1369 (1984).
[Crossref]

Eng. Biol. (1)

L. T. Liow, M. D. K. Go, and W. S. Yew, “Characterisation of Constitutive Promoters from the Anderson library in Chromobacterium violaceum ATCC 12472,” Eng. Biol. 3(3), 57–66 (2019).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

E. V. Demidova, T. N. Goryachkovskaya, I. A. Mescheryakova, T. K. Malup, A. I. Semenov, N. A. Vinokurov, N. A. Kolchanov, V. M. Popik, and S. E. Peltek, “Impact of Terahertz Radiation on Stress-Sensitive Genes of E.Coli Cell,” IEEE Trans. Terahertz Sci. Technol. 6(3), 435–441 (2016).
[Crossref]

J. Am. Chem. Soc. (1)

A. A. Greschner, X. Ropagnol, M. Kort, N. Zuberi, J. Perreault, L. Razzari, T. Ozaki, and M. A. Gauthier, “Room-Temperature and Selective Triggering of Supramolecular DNA Assembly/Disassembly by Nonionizing Radiation,” J. Am. Chem. Soc. 141(8), 3456–3469 (2019).
[Crossref]

J. Infrared, Millimeter, Terahertz Waves (1)

G. J. Wilmink and J. E. Grundt, “Invited Review Article: Current State of Research on Biological Effects of Terahertz Radiation,” J. Infrared, Millimeter, Terahertz Waves 32(10), 1074–1122 (2011).
[Crossref]

J. Mol. Recognit. (1)

C. Di Primo, “Real time analysis of the RNAI-RNAII-Rop complex by surface plasmon resonance: from a decaying surface to a standard kinetic analysis,” J. Mol. Recognit. 21(1), 37–45 (2008).
[Crossref]

J. R. Soc., Interface (1)

S. Romanenko, R. Begley, A. R. Harvey, L. Hool, and V. P. Wallace, “The interaction between electromagnetic fields at megahertz, gigahertz and terahertz frequencies with cells, tissues and organisms: risks and potential,” J. R. Soc., Interface 14(137), 20170585 (2017).
[Crossref]

Microbiol. Mol. Biol. Rev. (1)

G. del Solar, R. Giraldo, M. J. Ruiz-Echevarria, M. Espinosa, and R. Diaz-Orejas, “Replication and control of circular bacterial plasmids,” Microbiol. Mol. Biol. Rev. 62(2), 434–464 (1998).
[Crossref]

Mol. Microbiol. (1)

S. Lin-Chao, W.-T. Chen, and T.-T. Wong, “High copy number of the pUC plasmid results from a Rom/Rop-suppressible point mutation in RNA II,” Mol. Microbiol. 6(22), 3385–3393 (1992).
[Crossref]

Nature (1)

S. J. Webb and D. D. Dodds, “Inhibition of bacterial cell growth by 136 gc microwaves,” Nature 218(5139), 374–375 (1968).
[Crossref]

Phys. Lett. A (1)

B. S. Alexandrov, V. Gelev, A. R. Bishop, A. Usheva, and KØ Rasmussen, “DNA Breathing Dynamics in the Presence of a Terahertz Field,” Phys. Lett. A 374(10), 1214–1217 (2010).
[Crossref]

Phys. Med. Biol. (1)

B. M. Fischer, M. Walther, and J. P. Uhd, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47(21), 3807–3814 (2002).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

H. Frohlich, “The extraordinary dielectric properties of biological materials and the action of enzymes,” Proc. Natl. Acad. Sci. U. S. A. 72(11), 4211–4215 (1975).
[Crossref]

Proc. SPIE (1)

I. Echchgadda, C. Z. Cerna, M. A. Sloan, D. P. Elam, and B. L. Ibey, “Effects of Different Terahertz Frequencies on Gene Expression in Human Keratinocytes,” Proc. SPIE 9321, 93210Q (2015).
[Crossref]

Radiat. Res. (1)

A. Korenstein-Ilan, A. Barbul, P. Hasin, A. Eliran, A. Gover, and R. Korenstein, “Terahertz radiation increases genomic instability in human lymphocytes,” Radiat. Res. 170(2), 224–234 (2008).
[Crossref]

Russ. J. Genet.: Appl. Res. (1)

S. E. Pelteka, E. V. Demidova, V. M. Popikb, and T. N. Goryachkovskayaa, “Stress-Induced Systems in Escherichia coli and Their Response to Terahertz Radiation,” Russ. J. Genet.: Appl. Res. 7(8), 858–868 (2017).
[Crossref]

Sci. Rep. (1)

A. N. Bogomazova, E. M. Vassina, T. N. Goryachkovskaya, V. M. Popik, A. S. Sokolov, N. A. Kolchanov, M. A. Lagarkova, S. L. Kiselev, and S. E. Peltek, “No DNA damage response and negligible genome-wide transcriptional changes in human embryonic stem cells exposed to terahertz radiation,” Sci. Rep. 5(1), 7749 (2015).
[Crossref]

Terahertz for Military and Security Applications IV (1)

A. Bykhovski, T. Globus, T. Khromova, B. Gelmont, D. Woolard, and M. Bykhovskaia, “An analysis of the THz frequency signatures in the cellular components of biological agents,” Terahertz for Military and Security Applications IV 6212, 62120H (2006).
[Crossref]

Other (3)

G.-S. Park, Convergence of Terahertz Sciences in Biomedical Systems (Springer, 2012), pp. xiii.

M. Li, X. Yang, Z. Xu, H. Wang, D. Xiao, X. Shu, X. Lu, W. Huang, and Y. Dou, “China's First Tera-Hertz Free Electron Laser Oscillator,” in 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), (IEEE, 2018), 1–3.

S. Mhatre, “Construction of a Modular Vector Library for varied gene expression in Escherichia coli,” University of the Sciences in Philadelphia (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic diagram of the irradiation device. The exposure of E. coli DH5α (pUC-rfp) to terahertz radiation was carried out using a terahertz free electron laser device (CTFEL). The frequency was 3.1 THz, the spot diameter was 1 cm and the average power was 33mW/cm2. Terahertz radiation was released from the output hole coupled with the mirror downstream of the laser resonator, and then transmitted to the bunching collection system through the isolated vacuum environment. After bunching, terahertz radiation entered the atmospheric environment through the Mylar output window. The CTFEL radiation through each module was eventually directed with a rotary focus mirror to the sample in an incubator at 37 °C. The bacteria were exposed to continuous irradiation for 8 hours.
Fig. 2.
Fig. 2. Temperature changes during exposure to terahertz radiation. The sample temperature was measured using an infrared camera. The hollow circles indicate the temperature of the un-irradiated area, and the hollow boxes indicate the temperature of the irradiated area.
Fig. 3.
Fig. 3. Confocal laser scanning (CLS) micrographs showing fluorescent bacteria after 8 hours of exposure to terahertz radiation. The scale bar is 20 µm. (A) CLS images showing the red fluorescence intensity of E. coli cells after being exposed to THz radiation for 8 h. The figures (e) and (f) are un-irradiated samples; (b) and (f) are enlarged views of (a) and (e), respectively. (B) Merged images with optical micrographs of E. coli cells after exposure to THz radiation and the untreated control; (d) and (h) are enlarged views of (c) and (g), respectively. (C) Quantification of fluorescence intensity of E. coli cells after exposure to THz radiation. The data represent the means ± SD of eight independent repeats. ***p<0.001
Fig. 4.
Fig. 4. Effects of exposure to terahertz radiation on the expression of red fluorescent protein in E. coli. (A) Protein was extracted and analyzed via western blotting with an RFP-specific antibody. The protein concentrations were measured using the BCA assay and normalized. (B) Quantitative analysis of the immunoblots. The data represent means ± SD (n = 3). *** p<0.001
Fig. 5.
Fig. 5. Effects of exposure to terahertz radiation on the plasmid copy number. Colonies were picked from the irradiated and the un-irradiated areas, respectively. The plasmid copy numbers were quantified by qPCR with corresponding primers. The data represent the means ± SD (n = 3). *p<0.05

Tables (1)

Tables Icon

Table 1. Sequences of primers for real-time QPCR