G. Einstein, P. Aruna, and S. Ganesan, “Monte Carlo based model for diffuse reflectance from turbid media for the diagnosis of epithelial dysplasia,” Optik 181, 828–835 (2019).

[Crossref]

P. Naglia, F. Pernua, B. Likar, and M. Burmen, “Lookup table-based sampling of the phase function for Monte Carlo simulations of light propagation in turbid media,” Biomed. Opt. Express 8(3), 1895–1910 (2017).

[Crossref]

P. Naglic, F. Pernus, B. Likar, and M. Buermen, “Adopting higher-order similarity relations for improved estimation of optical properties from subdiffusive reflectance,” Opt. Lett. 42(7), 1357–1360 (2017).

[Crossref]

N. Bodenschatz, P. Krauter, A. Liemert, and A. Kienle, “Quantifying phase function influence in subdiffusively backscattered light,” J. Biomed. Opt. 21(3), 035002 (2016).

[Crossref]

P. Naglic, F. Pernus, B. Likar, and M. Burmen, “Estimation of optical properties by spatially resolved reflectance spectroscopy in the subdiffusive regime,” J. Biomed. Opt. 21(9), 095003 (2016).

[Crossref]

M. Sharma, R. Hennessy, M. K. Markey, and J. W. Tunnell, “Verification of a two-layer inverse Monte Carlo absorption model using multiple source-detector separation diffuse reflectance spectroscopy,” Biomed. Opt. Express 5(1), 40–53 (2014).

[Crossref]

X. Zhong, X. Wen, and D. Zhu, “Lookup-table-based inverse model for human skin reflectance spectroscopy: two-layered Monte Carlo simulations and experiments,” Opt. Express 22(2), 1852–1864 (2014).

[Crossref]

D. J. Cappon, T. J. Farrell, Q. Fang, and J. E. Hayward, “Fiber-optic probe design and optical property recovery algorithm for optical biopsy of brain tissue,” J. Biomed. Opt. 18(10), 107004 (2013).

[Crossref]

A. Liemert and A. Kienle, “Exact and efficient solution of the radiative transport equation for the semi-infinite medium,” Sci. Rep. 3(1), 2018 (2013).

[Crossref]

R. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).

[Crossref]

I. Fredriksson, M. Larsson, and T. Stromberg, “Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy,” J. Biomed. Opt. 17(4), 047004 (2012).

[Crossref]

E. Vitkin, V. Turzhitsky, L. Qiu, L. Guo, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Photon diffusion near the point-of-entry in anisotropically scattering turbid media,” Nat. Commun. 2(1), 587 (2011).

[Crossref]

J. L. Sandell and T. C. Zhu, “A review of in-vivo optical properties of human tissues and its impact on PDT,” J. Biophotonics 4(11-12), 773–787 (2011).

[Crossref]

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innovative Opt. Health Sci. 04(01), 9–38 (2011).

[Crossref]

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13(6), 060504 (2008).

[Crossref]

P. Thueler, I. Charvet, F. Bevilacqua, M. St. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8(3), 495 (2003).

[Crossref]

C. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J. Biomed. Opt. 8(2), 237 (2003).

[Crossref]

F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39(34), 6498 (2000).

[Crossref]

I. D. Nikolov and C. D. Ivanov, “Optical plastic refractive measurements in the visible and the near-infrared regions,” Appl. Opt. 39(13), 2067–2070 (2000).

[Crossref]

F. Bevilacqua and C. Depeursinge, “Monte Carlo study of diffuse reflectance at source-detector separations close to one transport mean free path,” J. Opt. Soc. Am. A 16(12), 2935–2945 (1999).

[Crossref]

F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38(22), 4939–4950 (1999).

[Crossref]

L. Wang, S. Jacques, and L. Zheng, “Mcml - Monte-Carlo Modeling of Light Transport in Multilayered Tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).

[Crossref]

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13(6), 060504 (2008).

[Crossref]

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13(6), 060504 (2008).

[Crossref]

G. Einstein, P. Aruna, and S. Ganesan, “Monte Carlo based model for diffuse reflectance from turbid media for the diagnosis of epithelial dysplasia,” Optik 181, 828–835 (2019).

[Crossref]

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innovative Opt. Health Sci. 04(01), 9–38 (2011).

[Crossref]

P. Thueler, I. Charvet, F. Bevilacqua, M. St. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8(3), 495 (2003).

[Crossref]

F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39(34), 6498 (2000).

[Crossref]

F. Bevilacqua and C. Depeursinge, “Monte Carlo study of diffuse reflectance at source-detector separations close to one transport mean free path,” J. Opt. Soc. Am. A 16(12), 2935–2945 (1999).

[Crossref]

F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38(22), 4939–4950 (1999).

[Crossref]

N. Bodenschatz, P. Krauter, A. Liemert, and A. Kienle, “Quantifying phase function influence in subdiffusively backscattered light,” J. Biomed. Opt. 21(3), 035002 (2016).

[Crossref]

P. Naglic, F. Pernus, B. Likar, and M. Buermen, “Adopting higher-order similarity relations for improved estimation of optical properties from subdiffusive reflectance,” Opt. Lett. 42(7), 1357–1360 (2017).

[Crossref]

P. Naglic, F. Pernus, B. Likar, and M. Buermen, “Limitations of the commonly used simplified laterally uniform optical fiber probe-tissue interface in Monte Carlo simulations of diffuse reflectance,” Biomed. Opt. Express 6(10), 3973–3988 (2015).

[Crossref]

M. Ivancic, P. Naglic, F. Pernus, B. Likar, and M. Burmen, “Efficient estimation of subdiffusive optical parameters in real time from spatially resolved reflectance by artificial neural networks,” Opt. Lett. 43(12), 2901–2904 (2018).

[Crossref]

P. Naglia, F. Pernua, B. Likar, and M. Burmen, “Lookup table-based sampling of the phase function for Monte Carlo simulations of light propagation in turbid media,” Biomed. Opt. Express 8(3), 1895–1910 (2017).

[Crossref]

P. Naglic, F. Pernus, B. Likar, and M. Burmen, “Estimation of optical properties by spatially resolved reflectance spectroscopy in the subdiffusive regime,” J. Biomed. Opt. 21(9), 095003 (2016).

[Crossref]

M. Ivancic, P. Naglic, F. Pernus, B. Likar, and M. Burmen, “Extraction of optical properties from hyperspectral images by Monte Carlo light propagation model,” in Optical Interactions with Tissue and Cells Xxvii, vol. 9706E. D. Jansen, ed. (Spie-Int Soc Optical Engineering, Bellingham, 2016), p. 97061A

P. Naglic, M. Ivancic, F. Pernus, B. Likar, and M. Burmen, “Portable measurement system for real-time acquisition and analysis of in-vivo spatially resolved reflectance in the subdiffusive regime,” Design and Quality for Biomedical Technologies Xi, vol. 10486R. Raghavachari and R. Liang, eds. (Spie-Int Soc Optical Engineering, Bellingham, 2018), p. UNSP 1048618.

D. J. Cappon, T. J. Farrell, Q. Fang, and J. E. Hayward, “Fiber-optic probe design and optical property recovery algorithm for optical biopsy of brain tissue,” J. Biomed. Opt. 18(10), 107004 (2013).

[Crossref]

P. Thueler, I. Charvet, F. Bevilacqua, M. St. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8(3), 495 (2003).

[Crossref]

F. Chollet, Deep learning with python (Manning Publications Co., 2017).

P. Thueler, I. Charvet, F. Bevilacqua, M. St. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8(3), 495 (2003).

[Crossref]

F. Bevilacqua and C. Depeursinge, “Monte Carlo study of diffuse reflectance at source-detector separations close to one transport mean free path,” J. Opt. Soc. Am. A 16(12), 2935–2945 (1999).

[Crossref]

F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38(22), 4939–4950 (1999).

[Crossref]

G. Einstein, P. Aruna, and S. Ganesan, “Monte Carlo based model for diffuse reflectance from turbid media for the diagnosis of epithelial dysplasia,” Optik 181, 828–835 (2019).

[Crossref]

D. J. Cappon, T. J. Farrell, Q. Fang, and J. E. Hayward, “Fiber-optic probe design and optical property recovery algorithm for optical biopsy of brain tissue,” J. Biomed. Opt. 18(10), 107004 (2013).

[Crossref]

D. J. Cappon, T. J. Farrell, Q. Fang, and J. E. Hayward, “Fiber-optic probe design and optical property recovery algorithm for optical biopsy of brain tissue,” J. Biomed. Opt. 18(10), 107004 (2013).

[Crossref]

I. Fredriksson, M. Larsson, and T. Stromberg, “Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy,” J. Biomed. Opt. 17(4), 047004 (2012).

[Crossref]

G. Einstein, P. Aruna, and S. Ganesan, “Monte Carlo based model for diffuse reflectance from turbid media for the diagnosis of epithelial dysplasia,” Optik 181, 828–835 (2019).

[Crossref]

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innovative Opt. Health Sci. 04(01), 9–38 (2011).

[Crossref]

E. Vitkin, V. Turzhitsky, L. Qiu, L. Guo, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Photon diffusion near the point-of-entry in anisotropically scattering turbid media,” Nat. Commun. 2(1), 587 (2011).

[Crossref]

E. Vitkin, V. Turzhitsky, L. Qiu, L. Guo, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Photon diffusion near the point-of-entry in anisotropically scattering turbid media,” Nat. Commun. 2(1), 587 (2011).

[Crossref]

D. J. Cappon, T. J. Farrell, Q. Fang, and J. E. Hayward, “Fiber-optic probe design and optical property recovery algorithm for optical biopsy of brain tissue,” J. Biomed. Opt. 18(10), 107004 (2013).

[Crossref]

M. Sharma, R. Hennessy, M. K. Markey, and J. W. Tunnell, “Verification of a two-layer inverse Monte Carlo absorption model using multiple source-detector separation diffuse reflectance spectroscopy,” Biomed. Opt. Express 5(1), 40–53 (2014).

[Crossref]

R. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).

[Crossref]

E. Vitkin, V. Turzhitsky, L. Qiu, L. Guo, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Photon diffusion near the point-of-entry in anisotropically scattering turbid media,” Nat. Commun. 2(1), 587 (2011).

[Crossref]

M. Ivancic, P. Naglic, F. Pernus, B. Likar, and M. Burmen, “Efficient estimation of subdiffusive optical parameters in real time from spatially resolved reflectance by artificial neural networks,” Opt. Lett. 43(12), 2901–2904 (2018).

[Crossref]

M. Ivancic, P. Naglic, F. Pernus, B. Likar, and M. Burmen, “Extraction of optical properties from hyperspectral images by Monte Carlo light propagation model,” in Optical Interactions with Tissue and Cells Xxvii, vol. 9706E. D. Jansen, ed. (Spie-Int Soc Optical Engineering, Bellingham, 2016), p. 97061A

P. Naglic, M. Ivancic, F. Pernus, B. Likar, and M. Burmen, “Portable measurement system for real-time acquisition and analysis of in-vivo spatially resolved reflectance in the subdiffusive regime,” Design and Quality for Biomedical Technologies Xi, vol. 10486R. Raghavachari and R. Liang, eds. (Spie-Int Soc Optical Engineering, Bellingham, 2018), p. UNSP 1048618.

L. Wang, S. Jacques, and L. Zheng, “Mcml - Monte-Carlo Modeling of Light Transport in Multilayered Tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).

[Crossref]

N. Bodenschatz, P. Krauter, A. Liemert, and A. Kienle, “Quantifying phase function influence in subdiffusively backscattered light,” J. Biomed. Opt. 21(3), 035002 (2016).

[Crossref]

A. Liemert and A. Kienle, “Exact and efficient solution of the radiative transport equation for the semi-infinite medium,” Sci. Rep. 3(1), 2018 (2013).

[Crossref]

A. Kienle and M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A 14(1), 246–254 (1997).

[Crossref]

N. Bodenschatz, P. Krauter, A. Liemert, and A. Kienle, “Quantifying phase function influence in subdiffusively backscattered light,” J. Biomed. Opt. 21(3), 035002 (2016).

[Crossref]

I. Fredriksson, M. Larsson, and T. Stromberg, “Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy,” J. Biomed. Opt. 17(4), 047004 (2012).

[Crossref]

N. Bodenschatz, P. Krauter, A. Liemert, and A. Kienle, “Quantifying phase function influence in subdiffusively backscattered light,” J. Biomed. Opt. 21(3), 035002 (2016).

[Crossref]

A. Liemert and A. Kienle, “Exact and efficient solution of the radiative transport equation for the semi-infinite medium,” Sci. Rep. 3(1), 2018 (2013).

[Crossref]

M. Ivancic, P. Naglic, F. Pernus, B. Likar, and M. Burmen, “Efficient estimation of subdiffusive optical parameters in real time from spatially resolved reflectance by artificial neural networks,” Opt. Lett. 43(12), 2901–2904 (2018).

[Crossref]

P. Naglic, F. Pernus, B. Likar, and M. Buermen, “Adopting higher-order similarity relations for improved estimation of optical properties from subdiffusive reflectance,” Opt. Lett. 42(7), 1357–1360 (2017).

[Crossref]

P. Naglia, F. Pernua, B. Likar, and M. Burmen, “Lookup table-based sampling of the phase function for Monte Carlo simulations of light propagation in turbid media,” Biomed. Opt. Express 8(3), 1895–1910 (2017).

[Crossref]

P. Naglic, F. Pernus, B. Likar, and M. Burmen, “Estimation of optical properties by spatially resolved reflectance spectroscopy in the subdiffusive regime,” J. Biomed. Opt. 21(9), 095003 (2016).

[Crossref]

P. Naglic, F. Pernus, B. Likar, and M. Buermen, “Limitations of the commonly used simplified laterally uniform optical fiber probe-tissue interface in Monte Carlo simulations of diffuse reflectance,” Biomed. Opt. Express 6(10), 3973–3988 (2015).

[Crossref]

M. Ivancic, P. Naglic, F. Pernus, B. Likar, and M. Burmen, “Extraction of optical properties from hyperspectral images by Monte Carlo light propagation model,” in Optical Interactions with Tissue and Cells Xxvii, vol. 9706E. D. Jansen, ed. (Spie-Int Soc Optical Engineering, Bellingham, 2016), p. 97061A

P. Naglic, M. Ivancic, F. Pernus, B. Likar, and M. Burmen, “Portable measurement system for real-time acquisition and analysis of in-vivo spatially resolved reflectance in the subdiffusive regime,” Design and Quality for Biomedical Technologies Xi, vol. 10486R. Raghavachari and R. Liang, eds. (Spie-Int Soc Optical Engineering, Bellingham, 2018), p. UNSP 1048618.

R. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).

[Crossref]

C. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J. Biomed. Opt. 8(2), 237 (2003).

[Crossref]

M. Sharma, R. Hennessy, M. K. Markey, and J. W. Tunnell, “Verification of a two-layer inverse Monte Carlo absorption model using multiple source-detector separation diffuse reflectance spectroscopy,” Biomed. Opt. Express 5(1), 40–53 (2014).

[Crossref]

R. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).

[Crossref]

P. Thueler, I. Charvet, F. Bevilacqua, M. St. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8(3), 495 (2003).

[Crossref]

F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38(22), 4939–4950 (1999).

[Crossref]

P. Thueler, I. Charvet, F. Bevilacqua, M. St. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8(3), 495 (2003).

[Crossref]

M. Ivancic, P. Naglic, F. Pernus, B. Likar, and M. Burmen, “Efficient estimation of subdiffusive optical parameters in real time from spatially resolved reflectance by artificial neural networks,” Opt. Lett. 43(12), 2901–2904 (2018).

[Crossref]

P. Naglic, F. Pernus, B. Likar, and M. Buermen, “Adopting higher-order similarity relations for improved estimation of optical properties from subdiffusive reflectance,” Opt. Lett. 42(7), 1357–1360 (2017).

[Crossref]

P. Naglic, F. Pernus, B. Likar, and M. Burmen, “Estimation of optical properties by spatially resolved reflectance spectroscopy in the subdiffusive regime,” J. Biomed. Opt. 21(9), 095003 (2016).

[Crossref]

P. Naglic, F. Pernus, B. Likar, and M. Buermen, “Limitations of the commonly used simplified laterally uniform optical fiber probe-tissue interface in Monte Carlo simulations of diffuse reflectance,” Biomed. Opt. Express 6(10), 3973–3988 (2015).

[Crossref]

M. Ivancic, P. Naglic, F. Pernus, B. Likar, and M. Burmen, “Extraction of optical properties from hyperspectral images by Monte Carlo light propagation model,” in Optical Interactions with Tissue and Cells Xxvii, vol. 9706E. D. Jansen, ed. (Spie-Int Soc Optical Engineering, Bellingham, 2016), p. 97061A

P. Naglic, M. Ivancic, F. Pernus, B. Likar, and M. Burmen, “Portable measurement system for real-time acquisition and analysis of in-vivo spatially resolved reflectance in the subdiffusive regime,” Design and Quality for Biomedical Technologies Xi, vol. 10486R. Raghavachari and R. Liang, eds. (Spie-Int Soc Optical Engineering, Bellingham, 2018), p. UNSP 1048618.

P. Thueler, I. Charvet, F. Bevilacqua, M. St. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8(3), 495 (2003).

[Crossref]

E. Vitkin, V. Turzhitsky, L. Qiu, L. Guo, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Photon diffusion near the point-of-entry in anisotropically scattering turbid media,” Nat. Commun. 2(1), 587 (2011).

[Crossref]

M. Ivancic, P. Naglic, F. Pernus, B. Likar, and M. Burmen, “Efficient estimation of subdiffusive optical parameters in real time from spatially resolved reflectance by artificial neural networks,” Opt. Lett. 43(12), 2901–2904 (2018).

[Crossref]

P. Naglic, F. Pernus, B. Likar, and M. Buermen, “Adopting higher-order similarity relations for improved estimation of optical properties from subdiffusive reflectance,” Opt. Lett. 42(7), 1357–1360 (2017).

[Crossref]

P. Naglic, F. Pernus, B. Likar, and M. Burmen, “Estimation of optical properties by spatially resolved reflectance spectroscopy in the subdiffusive regime,” J. Biomed. Opt. 21(9), 095003 (2016).

[Crossref]

P. Naglic, F. Pernus, B. Likar, and M. Buermen, “Limitations of the commonly used simplified laterally uniform optical fiber probe-tissue interface in Monte Carlo simulations of diffuse reflectance,” Biomed. Opt. Express 6(10), 3973–3988 (2015).

[Crossref]

M. Ivancic, P. Naglic, F. Pernus, B. Likar, and M. Burmen, “Extraction of optical properties from hyperspectral images by Monte Carlo light propagation model,” in Optical Interactions with Tissue and Cells Xxvii, vol. 9706E. D. Jansen, ed. (Spie-Int Soc Optical Engineering, Bellingham, 2016), p. 97061A

P. Naglic, M. Ivancic, F. Pernus, B. Likar, and M. Burmen, “Portable measurement system for real-time acquisition and analysis of in-vivo spatially resolved reflectance in the subdiffusive regime,” Design and Quality for Biomedical Technologies Xi, vol. 10486R. Raghavachari and R. Liang, eds. (Spie-Int Soc Optical Engineering, Bellingham, 2018), p. UNSP 1048618.

E. Vitkin, V. Turzhitsky, L. Qiu, L. Guo, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Photon diffusion near the point-of-entry in anisotropically scattering turbid media,” Nat. Commun. 2(1), 587 (2011).

[Crossref]

J. L. Sandell and T. C. Zhu, “A review of in-vivo optical properties of human tissues and its impact on PDT,” J. Biophotonics 4(11-12), 773–787 (2011).

[Crossref]

P. Thueler, I. Charvet, F. Bevilacqua, M. St. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8(3), 495 (2003).

[Crossref]

I. Fredriksson, M. Larsson, and T. Stromberg, “Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy,” J. Biomed. Opt. 17(4), 047004 (2012).

[Crossref]

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13(6), 060504 (2008).

[Crossref]

P. Thueler, I. Charvet, F. Bevilacqua, M. St. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8(3), 495 (2003).

[Crossref]

F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39(34), 6498 (2000).

[Crossref]

F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38(22), 4939–4950 (1999).

[Crossref]

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innovative Opt. Health Sci. 04(01), 9–38 (2011).

[Crossref]

M. Sharma, R. Hennessy, M. K. Markey, and J. W. Tunnell, “Verification of a two-layer inverse Monte Carlo absorption model using multiple source-detector separation diffuse reflectance spectroscopy,” Biomed. Opt. Express 5(1), 40–53 (2014).

[Crossref]

R. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).

[Crossref]

E. Vitkin, V. Turzhitsky, L. Qiu, L. Guo, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Photon diffusion near the point-of-entry in anisotropically scattering turbid media,” Nat. Commun. 2(1), 587 (2011).

[Crossref]

P. Thueler, I. Charvet, F. Bevilacqua, M. St. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8(3), 495 (2003).

[Crossref]

E. Vitkin, V. Turzhitsky, L. Qiu, L. Guo, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Photon diffusion near the point-of-entry in anisotropically scattering turbid media,” Nat. Commun. 2(1), 587 (2011).

[Crossref]

L. Wang, S. Jacques, and L. Zheng, “Mcml - Monte-Carlo Modeling of Light Transport in Multilayered Tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).

[Crossref]

L. V. Wang and H.-i. Wu, Biomedical optics: principles and imaging (John Wiley & Sons, 2012).

L. V. Wang and H.-i. Wu, Biomedical optics: principles and imaging (John Wiley & Sons, 2012).

L. Wang, S. Jacques, and L. Zheng, “Mcml - Monte-Carlo Modeling of Light Transport in Multilayered Tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).

[Crossref]

C. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J. Biomed. Opt. 8(2), 237 (2003).

[Crossref]

J. L. Sandell and T. C. Zhu, “A review of in-vivo optical properties of human tissues and its impact on PDT,” J. Biophotonics 4(11-12), 773–787 (2011).

[Crossref]

I. D. Nikolov and C. D. Ivanov, “Optical plastic refractive measurements in the visible and the near-infrared regions,” Appl. Opt. 39(13), 2067–2070 (2000).

[Crossref]

F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38(22), 4939–4950 (1999).

[Crossref]

F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39(34), 6498 (2000).

[Crossref]

G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt. 45(5), 1062–1071 (2006).

[Crossref]

P. Naglic, F. Pernus, B. Likar, and M. Buermen, “Limitations of the commonly used simplified laterally uniform optical fiber probe-tissue interface in Monte Carlo simulations of diffuse reflectance,” Biomed. Opt. Express 6(10), 3973–3988 (2015).

[Crossref]

P. Naglia, F. Pernua, B. Likar, and M. Burmen, “Lookup table-based sampling of the phase function for Monte Carlo simulations of light propagation in turbid media,” Biomed. Opt. Express 8(3), 1895–1910 (2017).

[Crossref]

M. Sharma, R. Hennessy, M. K. Markey, and J. W. Tunnell, “Verification of a two-layer inverse Monte Carlo absorption model using multiple source-detector separation diffuse reflectance spectroscopy,” Biomed. Opt. Express 5(1), 40–53 (2014).

[Crossref]

L. Wang, S. Jacques, and L. Zheng, “Mcml - Monte-Carlo Modeling of Light Transport in Multilayered Tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).

[Crossref]

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13(6), 060504 (2008).

[Crossref]

N. Bodenschatz, P. Krauter, A. Liemert, and A. Kienle, “Quantifying phase function influence in subdiffusively backscattered light,” J. Biomed. Opt. 21(3), 035002 (2016).

[Crossref]

P. Naglic, F. Pernus, B. Likar, and M. Burmen, “Estimation of optical properties by spatially resolved reflectance spectroscopy in the subdiffusive regime,” J. Biomed. Opt. 21(9), 095003 (2016).

[Crossref]

P. Thueler, I. Charvet, F. Bevilacqua, M. St. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8(3), 495 (2003).

[Crossref]

C. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J. Biomed. Opt. 8(2), 237 (2003).

[Crossref]

R. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).

[Crossref]

I. Fredriksson, M. Larsson, and T. Stromberg, “Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy,” J. Biomed. Opt. 17(4), 047004 (2012).

[Crossref]

D. J. Cappon, T. J. Farrell, Q. Fang, and J. E. Hayward, “Fiber-optic probe design and optical property recovery algorithm for optical biopsy of brain tissue,” J. Biomed. Opt. 18(10), 107004 (2013).

[Crossref]

J. L. Sandell and T. C. Zhu, “A review of in-vivo optical properties of human tissues and its impact on PDT,” J. Biophotonics 4(11-12), 773–787 (2011).

[Crossref]

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innovative Opt. Health Sci. 04(01), 9–38 (2011).

[Crossref]

E. Vitkin, V. Turzhitsky, L. Qiu, L. Guo, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Photon diffusion near the point-of-entry in anisotropically scattering turbid media,” Nat. Commun. 2(1), 587 (2011).

[Crossref]

P. Naglic, F. Pernus, B. Likar, and M. Buermen, “Adopting higher-order similarity relations for improved estimation of optical properties from subdiffusive reflectance,” Opt. Lett. 42(7), 1357–1360 (2017).

[Crossref]

M. Ivancic, P. Naglic, F. Pernus, B. Likar, and M. Burmen, “Efficient estimation of subdiffusive optical parameters in real time from spatially resolved reflectance by artificial neural networks,” Opt. Lett. 43(12), 2901–2904 (2018).

[Crossref]

H. J. Tian, Y. Liu, and L. J. Wang, “Influence of the third-order parameter on diffuse reflectance at small source-detector separations,” Opt. Lett. 31(7), 933–935 (2006).

[Crossref]

G. Einstein, P. Aruna, and S. Ganesan, “Monte Carlo based model for diffuse reflectance from turbid media for the diagnosis of epithelial dysplasia,” Optik 181, 828–835 (2019).

[Crossref]

A. Liemert and A. Kienle, “Exact and efficient solution of the radiative transport equation for the semi-infinite medium,” Sci. Rep. 3(1), 2018 (2013).

[Crossref]

M. Ivancic, P. Naglic, F. Pernus, B. Likar, and M. Burmen, “Extraction of optical properties from hyperspectral images by Monte Carlo light propagation model,” in Optical Interactions with Tissue and Cells Xxvii, vol. 9706E. D. Jansen, ed. (Spie-Int Soc Optical Engineering, Bellingham, 2016), p. 97061A

L. V. Wang and H.-i. Wu, Biomedical optics: principles and imaging (John Wiley & Sons, 2012).

F. Chollet, Deep learning with python (Manning Publications Co., 2017).

P. Naglic, M. Ivancic, F. Pernus, B. Likar, and M. Burmen, “Portable measurement system for real-time acquisition and analysis of in-vivo spatially resolved reflectance in the subdiffusive regime,” Design and Quality for Biomedical Technologies Xi, vol. 10486R. Raghavachari and R. Liang, eds. (Spie-Int Soc Optical Engineering, Bellingham, 2018), p. UNSP 1048618.