Abstract

Fast and accurate continuous glucose monitoring is needed in future systems for control of blood glucose levels in type 1 diabetes patients. Direct spectroscopic measurement of glucose in the peritoneal cavity is an attractive alternative to conventional electrochemical sensors placed subcutaneously. We demonstrate the feasibility of fast glucose measurements in peritoneal fluid using a fibre-coupled tuneable mid-infrared quantum cascade laser. Mid-infrared spectra (1200–925 cm−1) of peritoneal fluid samples from pigs with physiological glucose levels (32–426 mg/dL, or 1.8–23.7 mmol/L) were acquired with a tuneable quantum cascade laser employing both transmission and attenuated total reflection (ATR) spectroscopy. Using partial least-squares regression, glucose concentrations were predicted with mean absolute percentage errors (MAPEs) of 8.7% and 12.2% in the transmission and ATR configurations, respectively. These results show that highly accurate concentration predictions are possible with mid-infrared spectroscopy of peritoneal fluid, and represent a first step towards a miniaturised optical sensor for intraperitoneal continuous glucose monitoring.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Battelino, I. Conget, B. Olsen, I. Schütz-Fuhrmann, E. Hommel, R. Hoogma, U. Schierloh, N. Sulli, and J. Bolinder, “The use and efficacy of continuous glucose monitoring in type 1 diabetes treated with insulin pump therapy: A randomised controlled trial,” Diabetologia 55(12), 3155–3162 (2012).
    [Crossref]
  2. B. M. Frier, “Morbidity of hypoglycemia in type 1 diabetes,” Diabetes Res. Clin. Pract. 65, S47–S52 (2004).
    [Crossref]
  3. D. M. Nathan, “Long-Term Complications of Diabetes Mellitus,” N. Engl. J. Med. 328(23), 1676–1685 (1993).
    [Crossref]
  4. J. Wang, “Electrochemical glucose biosensors,” Chem. Rev. 108(2), 814–825 (2008).
    [Crossref]
  5. I. L. Jernelv, K. Milenko, S. S. Fuglerud, D. R. Hjelme, R. Ellingsen, and A. Aksnes, “A review of optical methods for continuous glucose monitoring,” Appl. Spectrosc. Rev. 54(7), 543–572 (2019).
    [Crossref]
  6. A. Schwaighofer, M. Brandstetter, and B. Lendl, “Quantum cascade lasers (QCLs) in biomedical spectroscopy,” Chem. Soc. Rev. 46(19), 5903–5924 (2017).
    [Crossref]
  7. A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol. 25(8), 083001 (2010).
    [Crossref]
  8. M. Brandstetter, T. Sumalowitsch, A. Genner, A. E. Posch, C. Herwig, A. Drolz, V. Fuhrmann, T. Perkmann, and B. Lendl, “Reagent-free monitoring of multiple clinically relevant parameters in human blood plasma using a mid-infrared quantum cascade laser based sensor system,” Analyst 138(14), 4022–4028 (2013).
    [Crossref]
  9. C. Vrančić, N. Kruger, N. Gretz, S. Neudecker, A. Pucci, and W. Petrich, “A quantitative look inside the body: Minimally invasive infrared analysis in vivo,” Anal. Chem. 86(21), 10511–10514 (2014).
    [Crossref]
  10. A. Werth, S. Liakat, A. Dong, C. M. Woods, and C. F. Gmachl, “Implementation of an integrating sphere for the enhancement of noninvasive glucose detection using quantum cascade laser spectroscopy,” Appl. Phys. B 124(5), 75 (2018).
    [Crossref]
  11. S. Kino, S. Omori, T. Katagiri, and Y. Matsuura, “Hollow optical-fiber based infrared spectroscopy for measurement of blood glucose level by using multi-reflection prism,” Biomed. Opt. Express 7(2), 701–708 (2016).
    [Crossref]
  12. J. C. Pickup, S. C. Freeman, and A. J. Sutton, “Glycaemic control in type 1 diabetes during real time continuous glucose monitoring compared with self monitoring of blood glucose: meta-analysis of randomised controlled trials using individual patient data,” BMJ 343(jul07 1), d3805 (2011).
    [Crossref]
  13. K. L. Helton, B. D. Ratner, and N. A. Wisniewski, “Biomechanics of the sensor-tissue interface - Effects of motion, pressure, and design on sensor performance and foreign body response - Part II: Examples and application,” J. Diabetes Sci. Technol. 5(3), 647–656 (2011).
    [Crossref]
  14. M. S. Boyne, D. M. Silver, J. Kaplan, and C. D. Saudek, “Timing of Changes in Interstitial and Venous Blood Glucose Measured with a Continuous Subcutaneous Glucose Sensor,” Diabetes 52(11), 2790–2794 (2003).
    [Crossref]
  15. L. Dye, M. Mansfield, N. Lasikiewicz, L. Mahawish, R. Schnell, D. Talbot, H. Chauhan, F. Croden, and C. Lawton, “Correspondence of continuous interstitial glucose measurement against arterialised and capillary glucose following an oral glucose tolerance test in healthy volunteers,” Br. J. Nutr. 103(1), 134–140 (2010).
    [Crossref]
  16. M. Sinha, K. M. McKeon, S. Parker, L. G. Goergen, H. Zheng, F. H. El-Khatib, and S. J. Russell, “A Comparison of Time Delay in Three Continuous Glucose Monitors for Adolescents and Adults,” J. Diabetes Sci. Technol. 11(6), 1132–1137 (2017).
    [Crossref]
  17. Ø. Stavdahl, A. L. Fougner, K. Kölle, S. C. Christiansen, R. Ellingsen, and S. M. Carlsen, “The Artificial Pancreas: A Dynamic Challenge,” IFAC-PapersOnLine 49(7), 765–772 (2016).
    [Crossref]
  18. L. Huyett, E. Dassau, H. Zisser, and F. Iii, “Glucose Sensor Dynamics and the Artificial Pancreas,” IEEE Control. Syst. Mag. 38(1), 30–46 (2018).
    [Crossref]
  19. D. R. Burnett, L. M. Huyett, H. C. Zisser, F. J. Doyle, and B. D. Mensh, “Glucose sensing in the peritoneal space offers faster kinetics than sensing in the subcutaneous space,” Diabetes 63(7), 2498–2505 (2014).
    [Crossref]
  20. A. L. Fougner, K. Kölle, N. K. Skjærvold, N. A. Elvemo, D. R. Hjelme, R. Ellingsen, S. M. Carlsen, and Ø. Stavdahl, “Intraperitoneal Glucose Sensing is Sometimes Surprisingly Rapid,” Model. Identif. Control. 37(2), 121–131 (2016).
    [Crossref]
  21. M. K. Åm, A. L. Fougner, R. Ellingsen, D. R. Hjelme, P. C. Bösch, O. Stavdahl, S. M. Carlsen, and S. C. Christiansen, “Why intraperitoneal glucose sensing is sometimes surprisingly rapid and sometimes slow: A hypothesis,” Med. Hypotheses 132, 109318 (2019).
    [Crossref]
  22. M. K. Åm, K. Kölle, A. L. Fougner, I. Dirnena-Fusini, P. C. Bösch, R. Ellingsen, D. R. Hjelme, O. Stavdahl, S. M. Carlsen, and S. C. Christiansen, “Effect of sensor location on continuous intraperitoneal glucose sensing in an animal model,” PLoS One 13(10), e0205447 (2018).
    [Crossref]
  23. L. M. Huyett, R. Mittal, H. C. Zisser, E. S. Luxon, A. Yee, E. Dassau, F. J. Doyle, and D. R. Burnett, “Preliminary Evaluation of a Long-Term Intraperitoneal Glucose Sensor With Flushing Mechanism,” J. Diabetes Sci. Technol. 10(5), 1192–1194 (2016).
    [Crossref]
  24. J. J. Kaneko, J. W. Harvey, and M. L. Bruss, Clinical Biochemistry in Domestic Animals, 6th ed (Academic Press, 2008).
  25. M. Laposata, Laposata’s Laboratory Medicine Diagnosis of Disease in Clinical Laboratory, 3rd ed (McGraw-Hill Education/Medical, 2018).
  26. I. L. Jernelv, K. Strøm, D. R. Hjelme, and A. Aksnes, “Infrared Spectroscopy with a Fiber-Coupled Quantum Cascade Laser for Attenuated Total Reflection Measurements Towards Biomedical Applications,” Sensors 19(23), 5130 (2019).
    [Crossref]
  27. I. L. Jernelv, K. Strøm, D. R. Hjelme, and A. Aksnes, “Mid-infrared spectroscopy with a fiber-coupled tuneable quantum cascade laser for glucose sensing,” Proc. SPIE 1123, 36 (2020).
    [Crossref]
  28. Y. W. Shi, K. Ito, L. Ma, T. Yoshida, Y. Matsuura, and M. Miyagi, “Fabrication of a polymer-coated silver hollow optical fiber with high performance,” Appl. Opt. 45(26), 6736–6740 (2006).
    [Crossref]
  29. K. Iwai, M. Miyagi, Y.-W. Shi, and Y. Matsuura, “Fabrication of silver-coated hollow fiber with an inner diameter of 100 µm or less,” Proc. SPIE 7894, 78940B (2011).
    [Crossref]
  30. C. Vigano, J. M. Ruysschaert, and E. Goormaghtigh, “Sensor applications of attenuated total reflection infrared spectroscopy,” Talanta 65(5), 1132–1142 (2005).
    [Crossref]
  31. H. Kirchsteiger, L. Heinemann, G. Freckmann, V. Lodwig, G. Schmelzeisen-Redeker, M. Schoemaker, and L. Del Re, “Performance comparison of CGM systems: MARD values are not always a reliable indicator of CGM system accuracy,” J. Diabetes Sci. Technol. 9(5), 1030–1040 (2015).
    [Crossref]
  32. D. Rodbard, “Continuous Glucose Monitoring: A Review of Successes,” Diabetes Technol. Ther. 18(S2), 3–13 (2016).
    [Crossref]
  33. I. L. Jernelv, J. Høvik, D. R. Hjelme, and A. Aksnes, “Signal enhancement in microstructured silicon attenuated total reflection elements for quantum cascade laser-based spectroscopy,” Proc. SPIE 11359, 9 (2020).
    [Crossref]
  34. W. B. Martin, S. Mirov, and R. Venugopalan, “Middle infrared, quantum cascade laser optoelectronic absorption system for monitoring glucose in serum,” Appl. Spectrosc. 59(7), 881–884 (2005).
    [Crossref]
  35. Y. Matsuura and T. Koyama, “Non-invasive blood glucose measurement using quantum cascade lasers,” Proc. SPIE 39(2), 105–110 (2018).
    [Crossref]
  36. T. Wittek, A. Grosche, L. Locher, A. Alkaassem, and M. Fürll, “Biochemical constituents of peritoneal fluid in cows,” Vet. Rec. 166(1), 15–19 (2010).
    [Crossref]

2020 (2)

I. L. Jernelv, K. Strøm, D. R. Hjelme, and A. Aksnes, “Mid-infrared spectroscopy with a fiber-coupled tuneable quantum cascade laser for glucose sensing,” Proc. SPIE 1123, 36 (2020).
[Crossref]

I. L. Jernelv, J. Høvik, D. R. Hjelme, and A. Aksnes, “Signal enhancement in microstructured silicon attenuated total reflection elements for quantum cascade laser-based spectroscopy,” Proc. SPIE 11359, 9 (2020).
[Crossref]

2019 (3)

M. K. Åm, A. L. Fougner, R. Ellingsen, D. R. Hjelme, P. C. Bösch, O. Stavdahl, S. M. Carlsen, and S. C. Christiansen, “Why intraperitoneal glucose sensing is sometimes surprisingly rapid and sometimes slow: A hypothesis,” Med. Hypotheses 132, 109318 (2019).
[Crossref]

I. L. Jernelv, K. Strøm, D. R. Hjelme, and A. Aksnes, “Infrared Spectroscopy with a Fiber-Coupled Quantum Cascade Laser for Attenuated Total Reflection Measurements Towards Biomedical Applications,” Sensors 19(23), 5130 (2019).
[Crossref]

I. L. Jernelv, K. Milenko, S. S. Fuglerud, D. R. Hjelme, R. Ellingsen, and A. Aksnes, “A review of optical methods for continuous glucose monitoring,” Appl. Spectrosc. Rev. 54(7), 543–572 (2019).
[Crossref]

2018 (4)

A. Werth, S. Liakat, A. Dong, C. M. Woods, and C. F. Gmachl, “Implementation of an integrating sphere for the enhancement of noninvasive glucose detection using quantum cascade laser spectroscopy,” Appl. Phys. B 124(5), 75 (2018).
[Crossref]

L. Huyett, E. Dassau, H. Zisser, and F. Iii, “Glucose Sensor Dynamics and the Artificial Pancreas,” IEEE Control. Syst. Mag. 38(1), 30–46 (2018).
[Crossref]

M. K. Åm, K. Kölle, A. L. Fougner, I. Dirnena-Fusini, P. C. Bösch, R. Ellingsen, D. R. Hjelme, O. Stavdahl, S. M. Carlsen, and S. C. Christiansen, “Effect of sensor location on continuous intraperitoneal glucose sensing in an animal model,” PLoS One 13(10), e0205447 (2018).
[Crossref]

Y. Matsuura and T. Koyama, “Non-invasive blood glucose measurement using quantum cascade lasers,” Proc. SPIE 39(2), 105–110 (2018).
[Crossref]

2017 (2)

M. Sinha, K. M. McKeon, S. Parker, L. G. Goergen, H. Zheng, F. H. El-Khatib, and S. J. Russell, “A Comparison of Time Delay in Three Continuous Glucose Monitors for Adolescents and Adults,” J. Diabetes Sci. Technol. 11(6), 1132–1137 (2017).
[Crossref]

A. Schwaighofer, M. Brandstetter, and B. Lendl, “Quantum cascade lasers (QCLs) in biomedical spectroscopy,” Chem. Soc. Rev. 46(19), 5903–5924 (2017).
[Crossref]

2016 (5)

S. Kino, S. Omori, T. Katagiri, and Y. Matsuura, “Hollow optical-fiber based infrared spectroscopy for measurement of blood glucose level by using multi-reflection prism,” Biomed. Opt. Express 7(2), 701–708 (2016).
[Crossref]

Ø. Stavdahl, A. L. Fougner, K. Kölle, S. C. Christiansen, R. Ellingsen, and S. M. Carlsen, “The Artificial Pancreas: A Dynamic Challenge,” IFAC-PapersOnLine 49(7), 765–772 (2016).
[Crossref]

D. Rodbard, “Continuous Glucose Monitoring: A Review of Successes,” Diabetes Technol. Ther. 18(S2), 3–13 (2016).
[Crossref]

L. M. Huyett, R. Mittal, H. C. Zisser, E. S. Luxon, A. Yee, E. Dassau, F. J. Doyle, and D. R. Burnett, “Preliminary Evaluation of a Long-Term Intraperitoneal Glucose Sensor With Flushing Mechanism,” J. Diabetes Sci. Technol. 10(5), 1192–1194 (2016).
[Crossref]

A. L. Fougner, K. Kölle, N. K. Skjærvold, N. A. Elvemo, D. R. Hjelme, R. Ellingsen, S. M. Carlsen, and Ø. Stavdahl, “Intraperitoneal Glucose Sensing is Sometimes Surprisingly Rapid,” Model. Identif. Control. 37(2), 121–131 (2016).
[Crossref]

2015 (1)

H. Kirchsteiger, L. Heinemann, G. Freckmann, V. Lodwig, G. Schmelzeisen-Redeker, M. Schoemaker, and L. Del Re, “Performance comparison of CGM systems: MARD values are not always a reliable indicator of CGM system accuracy,” J. Diabetes Sci. Technol. 9(5), 1030–1040 (2015).
[Crossref]

2014 (2)

D. R. Burnett, L. M. Huyett, H. C. Zisser, F. J. Doyle, and B. D. Mensh, “Glucose sensing in the peritoneal space offers faster kinetics than sensing in the subcutaneous space,” Diabetes 63(7), 2498–2505 (2014).
[Crossref]

C. Vrančić, N. Kruger, N. Gretz, S. Neudecker, A. Pucci, and W. Petrich, “A quantitative look inside the body: Minimally invasive infrared analysis in vivo,” Anal. Chem. 86(21), 10511–10514 (2014).
[Crossref]

2013 (1)

M. Brandstetter, T. Sumalowitsch, A. Genner, A. E. Posch, C. Herwig, A. Drolz, V. Fuhrmann, T. Perkmann, and B. Lendl, “Reagent-free monitoring of multiple clinically relevant parameters in human blood plasma using a mid-infrared quantum cascade laser based sensor system,” Analyst 138(14), 4022–4028 (2013).
[Crossref]

2012 (1)

T. Battelino, I. Conget, B. Olsen, I. Schütz-Fuhrmann, E. Hommel, R. Hoogma, U. Schierloh, N. Sulli, and J. Bolinder, “The use and efficacy of continuous glucose monitoring in type 1 diabetes treated with insulin pump therapy: A randomised controlled trial,” Diabetologia 55(12), 3155–3162 (2012).
[Crossref]

2011 (3)

J. C. Pickup, S. C. Freeman, and A. J. Sutton, “Glycaemic control in type 1 diabetes during real time continuous glucose monitoring compared with self monitoring of blood glucose: meta-analysis of randomised controlled trials using individual patient data,” BMJ 343(jul07 1), d3805 (2011).
[Crossref]

K. L. Helton, B. D. Ratner, and N. A. Wisniewski, “Biomechanics of the sensor-tissue interface - Effects of motion, pressure, and design on sensor performance and foreign body response - Part II: Examples and application,” J. Diabetes Sci. Technol. 5(3), 647–656 (2011).
[Crossref]

K. Iwai, M. Miyagi, Y.-W. Shi, and Y. Matsuura, “Fabrication of silver-coated hollow fiber with an inner diameter of 100 µm or less,” Proc. SPIE 7894, 78940B (2011).
[Crossref]

2010 (3)

T. Wittek, A. Grosche, L. Locher, A. Alkaassem, and M. Fürll, “Biochemical constituents of peritoneal fluid in cows,” Vet. Rec. 166(1), 15–19 (2010).
[Crossref]

A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol. 25(8), 083001 (2010).
[Crossref]

L. Dye, M. Mansfield, N. Lasikiewicz, L. Mahawish, R. Schnell, D. Talbot, H. Chauhan, F. Croden, and C. Lawton, “Correspondence of continuous interstitial glucose measurement against arterialised and capillary glucose following an oral glucose tolerance test in healthy volunteers,” Br. J. Nutr. 103(1), 134–140 (2010).
[Crossref]

2008 (1)

J. Wang, “Electrochemical glucose biosensors,” Chem. Rev. 108(2), 814–825 (2008).
[Crossref]

2006 (1)

2005 (2)

C. Vigano, J. M. Ruysschaert, and E. Goormaghtigh, “Sensor applications of attenuated total reflection infrared spectroscopy,” Talanta 65(5), 1132–1142 (2005).
[Crossref]

W. B. Martin, S. Mirov, and R. Venugopalan, “Middle infrared, quantum cascade laser optoelectronic absorption system for monitoring glucose in serum,” Appl. Spectrosc. 59(7), 881–884 (2005).
[Crossref]

2004 (1)

B. M. Frier, “Morbidity of hypoglycemia in type 1 diabetes,” Diabetes Res. Clin. Pract. 65, S47–S52 (2004).
[Crossref]

2003 (1)

M. S. Boyne, D. M. Silver, J. Kaplan, and C. D. Saudek, “Timing of Changes in Interstitial and Venous Blood Glucose Measured with a Continuous Subcutaneous Glucose Sensor,” Diabetes 52(11), 2790–2794 (2003).
[Crossref]

1993 (1)

D. M. Nathan, “Long-Term Complications of Diabetes Mellitus,” N. Engl. J. Med. 328(23), 1676–1685 (1993).
[Crossref]

Aksnes, A.

I. L. Jernelv, K. Strøm, D. R. Hjelme, and A. Aksnes, “Mid-infrared spectroscopy with a fiber-coupled tuneable quantum cascade laser for glucose sensing,” Proc. SPIE 1123, 36 (2020).
[Crossref]

I. L. Jernelv, J. Høvik, D. R. Hjelme, and A. Aksnes, “Signal enhancement in microstructured silicon attenuated total reflection elements for quantum cascade laser-based spectroscopy,” Proc. SPIE 11359, 9 (2020).
[Crossref]

I. L. Jernelv, K. Strøm, D. R. Hjelme, and A. Aksnes, “Infrared Spectroscopy with a Fiber-Coupled Quantum Cascade Laser for Attenuated Total Reflection Measurements Towards Biomedical Applications,” Sensors 19(23), 5130 (2019).
[Crossref]

I. L. Jernelv, K. Milenko, S. S. Fuglerud, D. R. Hjelme, R. Ellingsen, and A. Aksnes, “A review of optical methods for continuous glucose monitoring,” Appl. Spectrosc. Rev. 54(7), 543–572 (2019).
[Crossref]

Alkaassem, A.

T. Wittek, A. Grosche, L. Locher, A. Alkaassem, and M. Fürll, “Biochemical constituents of peritoneal fluid in cows,” Vet. Rec. 166(1), 15–19 (2010).
[Crossref]

Åm, M. K.

M. K. Åm, A. L. Fougner, R. Ellingsen, D. R. Hjelme, P. C. Bösch, O. Stavdahl, S. M. Carlsen, and S. C. Christiansen, “Why intraperitoneal glucose sensing is sometimes surprisingly rapid and sometimes slow: A hypothesis,” Med. Hypotheses 132, 109318 (2019).
[Crossref]

M. K. Åm, K. Kölle, A. L. Fougner, I. Dirnena-Fusini, P. C. Bösch, R. Ellingsen, D. R. Hjelme, O. Stavdahl, S. M. Carlsen, and S. C. Christiansen, “Effect of sensor location on continuous intraperitoneal glucose sensing in an animal model,” PLoS One 13(10), e0205447 (2018).
[Crossref]

Battelino, T.

T. Battelino, I. Conget, B. Olsen, I. Schütz-Fuhrmann, E. Hommel, R. Hoogma, U. Schierloh, N. Sulli, and J. Bolinder, “The use and efficacy of continuous glucose monitoring in type 1 diabetes treated with insulin pump therapy: A randomised controlled trial,” Diabetologia 55(12), 3155–3162 (2012).
[Crossref]

Bolinder, J.

T. Battelino, I. Conget, B. Olsen, I. Schütz-Fuhrmann, E. Hommel, R. Hoogma, U. Schierloh, N. Sulli, and J. Bolinder, “The use and efficacy of continuous glucose monitoring in type 1 diabetes treated with insulin pump therapy: A randomised controlled trial,” Diabetologia 55(12), 3155–3162 (2012).
[Crossref]

Bösch, P. C.

M. K. Åm, A. L. Fougner, R. Ellingsen, D. R. Hjelme, P. C. Bösch, O. Stavdahl, S. M. Carlsen, and S. C. Christiansen, “Why intraperitoneal glucose sensing is sometimes surprisingly rapid and sometimes slow: A hypothesis,” Med. Hypotheses 132, 109318 (2019).
[Crossref]

M. K. Åm, K. Kölle, A. L. Fougner, I. Dirnena-Fusini, P. C. Bösch, R. Ellingsen, D. R. Hjelme, O. Stavdahl, S. M. Carlsen, and S. C. Christiansen, “Effect of sensor location on continuous intraperitoneal glucose sensing in an animal model,” PLoS One 13(10), e0205447 (2018).
[Crossref]

Boyne, M. S.

M. S. Boyne, D. M. Silver, J. Kaplan, and C. D. Saudek, “Timing of Changes in Interstitial and Venous Blood Glucose Measured with a Continuous Subcutaneous Glucose Sensor,” Diabetes 52(11), 2790–2794 (2003).
[Crossref]

Brandstetter, M.

A. Schwaighofer, M. Brandstetter, and B. Lendl, “Quantum cascade lasers (QCLs) in biomedical spectroscopy,” Chem. Soc. Rev. 46(19), 5903–5924 (2017).
[Crossref]

M. Brandstetter, T. Sumalowitsch, A. Genner, A. E. Posch, C. Herwig, A. Drolz, V. Fuhrmann, T. Perkmann, and B. Lendl, “Reagent-free monitoring of multiple clinically relevant parameters in human blood plasma using a mid-infrared quantum cascade laser based sensor system,” Analyst 138(14), 4022–4028 (2013).
[Crossref]

Bruss, M. L.

J. J. Kaneko, J. W. Harvey, and M. L. Bruss, Clinical Biochemistry in Domestic Animals, 6th ed (Academic Press, 2008).

Burnett, D. R.

L. M. Huyett, R. Mittal, H. C. Zisser, E. S. Luxon, A. Yee, E. Dassau, F. J. Doyle, and D. R. Burnett, “Preliminary Evaluation of a Long-Term Intraperitoneal Glucose Sensor With Flushing Mechanism,” J. Diabetes Sci. Technol. 10(5), 1192–1194 (2016).
[Crossref]

D. R. Burnett, L. M. Huyett, H. C. Zisser, F. J. Doyle, and B. D. Mensh, “Glucose sensing in the peritoneal space offers faster kinetics than sensing in the subcutaneous space,” Diabetes 63(7), 2498–2505 (2014).
[Crossref]

Carlsen, S. M.

M. K. Åm, A. L. Fougner, R. Ellingsen, D. R. Hjelme, P. C. Bösch, O. Stavdahl, S. M. Carlsen, and S. C. Christiansen, “Why intraperitoneal glucose sensing is sometimes surprisingly rapid and sometimes slow: A hypothesis,” Med. Hypotheses 132, 109318 (2019).
[Crossref]

M. K. Åm, K. Kölle, A. L. Fougner, I. Dirnena-Fusini, P. C. Bösch, R. Ellingsen, D. R. Hjelme, O. Stavdahl, S. M. Carlsen, and S. C. Christiansen, “Effect of sensor location on continuous intraperitoneal glucose sensing in an animal model,” PLoS One 13(10), e0205447 (2018).
[Crossref]

A. L. Fougner, K. Kölle, N. K. Skjærvold, N. A. Elvemo, D. R. Hjelme, R. Ellingsen, S. M. Carlsen, and Ø. Stavdahl, “Intraperitoneal Glucose Sensing is Sometimes Surprisingly Rapid,” Model. Identif. Control. 37(2), 121–131 (2016).
[Crossref]

Ø. Stavdahl, A. L. Fougner, K. Kölle, S. C. Christiansen, R. Ellingsen, and S. M. Carlsen, “The Artificial Pancreas: A Dynamic Challenge,” IFAC-PapersOnLine 49(7), 765–772 (2016).
[Crossref]

Chauhan, H.

L. Dye, M. Mansfield, N. Lasikiewicz, L. Mahawish, R. Schnell, D. Talbot, H. Chauhan, F. Croden, and C. Lawton, “Correspondence of continuous interstitial glucose measurement against arterialised and capillary glucose following an oral glucose tolerance test in healthy volunteers,” Br. J. Nutr. 103(1), 134–140 (2010).
[Crossref]

Christiansen, S. C.

M. K. Åm, A. L. Fougner, R. Ellingsen, D. R. Hjelme, P. C. Bösch, O. Stavdahl, S. M. Carlsen, and S. C. Christiansen, “Why intraperitoneal glucose sensing is sometimes surprisingly rapid and sometimes slow: A hypothesis,” Med. Hypotheses 132, 109318 (2019).
[Crossref]

M. K. Åm, K. Kölle, A. L. Fougner, I. Dirnena-Fusini, P. C. Bösch, R. Ellingsen, D. R. Hjelme, O. Stavdahl, S. M. Carlsen, and S. C. Christiansen, “Effect of sensor location on continuous intraperitoneal glucose sensing in an animal model,” PLoS One 13(10), e0205447 (2018).
[Crossref]

Ø. Stavdahl, A. L. Fougner, K. Kölle, S. C. Christiansen, R. Ellingsen, and S. M. Carlsen, “The Artificial Pancreas: A Dynamic Challenge,” IFAC-PapersOnLine 49(7), 765–772 (2016).
[Crossref]

Conget, I.

T. Battelino, I. Conget, B. Olsen, I. Schütz-Fuhrmann, E. Hommel, R. Hoogma, U. Schierloh, N. Sulli, and J. Bolinder, “The use and efficacy of continuous glucose monitoring in type 1 diabetes treated with insulin pump therapy: A randomised controlled trial,” Diabetologia 55(12), 3155–3162 (2012).
[Crossref]

Croden, F.

L. Dye, M. Mansfield, N. Lasikiewicz, L. Mahawish, R. Schnell, D. Talbot, H. Chauhan, F. Croden, and C. Lawton, “Correspondence of continuous interstitial glucose measurement against arterialised and capillary glucose following an oral glucose tolerance test in healthy volunteers,” Br. J. Nutr. 103(1), 134–140 (2010).
[Crossref]

Dassau, E.

L. Huyett, E. Dassau, H. Zisser, and F. Iii, “Glucose Sensor Dynamics and the Artificial Pancreas,” IEEE Control. Syst. Mag. 38(1), 30–46 (2018).
[Crossref]

L. M. Huyett, R. Mittal, H. C. Zisser, E. S. Luxon, A. Yee, E. Dassau, F. J. Doyle, and D. R. Burnett, “Preliminary Evaluation of a Long-Term Intraperitoneal Glucose Sensor With Flushing Mechanism,” J. Diabetes Sci. Technol. 10(5), 1192–1194 (2016).
[Crossref]

Del Re, L.

H. Kirchsteiger, L. Heinemann, G. Freckmann, V. Lodwig, G. Schmelzeisen-Redeker, M. Schoemaker, and L. Del Re, “Performance comparison of CGM systems: MARD values are not always a reliable indicator of CGM system accuracy,” J. Diabetes Sci. Technol. 9(5), 1030–1040 (2015).
[Crossref]

Dirnena-Fusini, I.

M. K. Åm, K. Kölle, A. L. Fougner, I. Dirnena-Fusini, P. C. Bösch, R. Ellingsen, D. R. Hjelme, O. Stavdahl, S. M. Carlsen, and S. C. Christiansen, “Effect of sensor location on continuous intraperitoneal glucose sensing in an animal model,” PLoS One 13(10), e0205447 (2018).
[Crossref]

Dong, A.

A. Werth, S. Liakat, A. Dong, C. M. Woods, and C. F. Gmachl, “Implementation of an integrating sphere for the enhancement of noninvasive glucose detection using quantum cascade laser spectroscopy,” Appl. Phys. B 124(5), 75 (2018).
[Crossref]

Doyle, F. J.

L. M. Huyett, R. Mittal, H. C. Zisser, E. S. Luxon, A. Yee, E. Dassau, F. J. Doyle, and D. R. Burnett, “Preliminary Evaluation of a Long-Term Intraperitoneal Glucose Sensor With Flushing Mechanism,” J. Diabetes Sci. Technol. 10(5), 1192–1194 (2016).
[Crossref]

D. R. Burnett, L. M. Huyett, H. C. Zisser, F. J. Doyle, and B. D. Mensh, “Glucose sensing in the peritoneal space offers faster kinetics than sensing in the subcutaneous space,” Diabetes 63(7), 2498–2505 (2014).
[Crossref]

Drolz, A.

M. Brandstetter, T. Sumalowitsch, A. Genner, A. E. Posch, C. Herwig, A. Drolz, V. Fuhrmann, T. Perkmann, and B. Lendl, “Reagent-free monitoring of multiple clinically relevant parameters in human blood plasma using a mid-infrared quantum cascade laser based sensor system,” Analyst 138(14), 4022–4028 (2013).
[Crossref]

Dye, L.

L. Dye, M. Mansfield, N. Lasikiewicz, L. Mahawish, R. Schnell, D. Talbot, H. Chauhan, F. Croden, and C. Lawton, “Correspondence of continuous interstitial glucose measurement against arterialised and capillary glucose following an oral glucose tolerance test in healthy volunteers,” Br. J. Nutr. 103(1), 134–140 (2010).
[Crossref]

El-Khatib, F. H.

M. Sinha, K. M. McKeon, S. Parker, L. G. Goergen, H. Zheng, F. H. El-Khatib, and S. J. Russell, “A Comparison of Time Delay in Three Continuous Glucose Monitors for Adolescents and Adults,” J. Diabetes Sci. Technol. 11(6), 1132–1137 (2017).
[Crossref]

Ellingsen, R.

M. K. Åm, A. L. Fougner, R. Ellingsen, D. R. Hjelme, P. C. Bösch, O. Stavdahl, S. M. Carlsen, and S. C. Christiansen, “Why intraperitoneal glucose sensing is sometimes surprisingly rapid and sometimes slow: A hypothesis,” Med. Hypotheses 132, 109318 (2019).
[Crossref]

I. L. Jernelv, K. Milenko, S. S. Fuglerud, D. R. Hjelme, R. Ellingsen, and A. Aksnes, “A review of optical methods for continuous glucose monitoring,” Appl. Spectrosc. Rev. 54(7), 543–572 (2019).
[Crossref]

M. K. Åm, K. Kölle, A. L. Fougner, I. Dirnena-Fusini, P. C. Bösch, R. Ellingsen, D. R. Hjelme, O. Stavdahl, S. M. Carlsen, and S. C. Christiansen, “Effect of sensor location on continuous intraperitoneal glucose sensing in an animal model,” PLoS One 13(10), e0205447 (2018).
[Crossref]

A. L. Fougner, K. Kölle, N. K. Skjærvold, N. A. Elvemo, D. R. Hjelme, R. Ellingsen, S. M. Carlsen, and Ø. Stavdahl, “Intraperitoneal Glucose Sensing is Sometimes Surprisingly Rapid,” Model. Identif. Control. 37(2), 121–131 (2016).
[Crossref]

Ø. Stavdahl, A. L. Fougner, K. Kölle, S. C. Christiansen, R. Ellingsen, and S. M. Carlsen, “The Artificial Pancreas: A Dynamic Challenge,” IFAC-PapersOnLine 49(7), 765–772 (2016).
[Crossref]

Elvemo, N. A.

A. L. Fougner, K. Kölle, N. K. Skjærvold, N. A. Elvemo, D. R. Hjelme, R. Ellingsen, S. M. Carlsen, and Ø. Stavdahl, “Intraperitoneal Glucose Sensing is Sometimes Surprisingly Rapid,” Model. Identif. Control. 37(2), 121–131 (2016).
[Crossref]

Faist, J.

A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol. 25(8), 083001 (2010).
[Crossref]

Fougner, A. L.

M. K. Åm, A. L. Fougner, R. Ellingsen, D. R. Hjelme, P. C. Bösch, O. Stavdahl, S. M. Carlsen, and S. C. Christiansen, “Why intraperitoneal glucose sensing is sometimes surprisingly rapid and sometimes slow: A hypothesis,” Med. Hypotheses 132, 109318 (2019).
[Crossref]

M. K. Åm, K. Kölle, A. L. Fougner, I. Dirnena-Fusini, P. C. Bösch, R. Ellingsen, D. R. Hjelme, O. Stavdahl, S. M. Carlsen, and S. C. Christiansen, “Effect of sensor location on continuous intraperitoneal glucose sensing in an animal model,” PLoS One 13(10), e0205447 (2018).
[Crossref]

A. L. Fougner, K. Kölle, N. K. Skjærvold, N. A. Elvemo, D. R. Hjelme, R. Ellingsen, S. M. Carlsen, and Ø. Stavdahl, “Intraperitoneal Glucose Sensing is Sometimes Surprisingly Rapid,” Model. Identif. Control. 37(2), 121–131 (2016).
[Crossref]

Ø. Stavdahl, A. L. Fougner, K. Kölle, S. C. Christiansen, R. Ellingsen, and S. M. Carlsen, “The Artificial Pancreas: A Dynamic Challenge,” IFAC-PapersOnLine 49(7), 765–772 (2016).
[Crossref]

Freckmann, G.

H. Kirchsteiger, L. Heinemann, G. Freckmann, V. Lodwig, G. Schmelzeisen-Redeker, M. Schoemaker, and L. Del Re, “Performance comparison of CGM systems: MARD values are not always a reliable indicator of CGM system accuracy,” J. Diabetes Sci. Technol. 9(5), 1030–1040 (2015).
[Crossref]

Freeman, S. C.

J. C. Pickup, S. C. Freeman, and A. J. Sutton, “Glycaemic control in type 1 diabetes during real time continuous glucose monitoring compared with self monitoring of blood glucose: meta-analysis of randomised controlled trials using individual patient data,” BMJ 343(jul07 1), d3805 (2011).
[Crossref]

Frier, B. M.

B. M. Frier, “Morbidity of hypoglycemia in type 1 diabetes,” Diabetes Res. Clin. Pract. 65, S47–S52 (2004).
[Crossref]

Fuglerud, S. S.

I. L. Jernelv, K. Milenko, S. S. Fuglerud, D. R. Hjelme, R. Ellingsen, and A. Aksnes, “A review of optical methods for continuous glucose monitoring,” Appl. Spectrosc. Rev. 54(7), 543–572 (2019).
[Crossref]

Fuhrmann, V.

M. Brandstetter, T. Sumalowitsch, A. Genner, A. E. Posch, C. Herwig, A. Drolz, V. Fuhrmann, T. Perkmann, and B. Lendl, “Reagent-free monitoring of multiple clinically relevant parameters in human blood plasma using a mid-infrared quantum cascade laser based sensor system,” Analyst 138(14), 4022–4028 (2013).
[Crossref]

Fürll, M.

T. Wittek, A. Grosche, L. Locher, A. Alkaassem, and M. Fürll, “Biochemical constituents of peritoneal fluid in cows,” Vet. Rec. 166(1), 15–19 (2010).
[Crossref]

Genner, A.

M. Brandstetter, T. Sumalowitsch, A. Genner, A. E. Posch, C. Herwig, A. Drolz, V. Fuhrmann, T. Perkmann, and B. Lendl, “Reagent-free monitoring of multiple clinically relevant parameters in human blood plasma using a mid-infrared quantum cascade laser based sensor system,” Analyst 138(14), 4022–4028 (2013).
[Crossref]

Gmachl, C. F.

A. Werth, S. Liakat, A. Dong, C. M. Woods, and C. F. Gmachl, “Implementation of an integrating sphere for the enhancement of noninvasive glucose detection using quantum cascade laser spectroscopy,” Appl. Phys. B 124(5), 75 (2018).
[Crossref]

Goergen, L. G.

M. Sinha, K. M. McKeon, S. Parker, L. G. Goergen, H. Zheng, F. H. El-Khatib, and S. J. Russell, “A Comparison of Time Delay in Three Continuous Glucose Monitors for Adolescents and Adults,” J. Diabetes Sci. Technol. 11(6), 1132–1137 (2017).
[Crossref]

Goormaghtigh, E.

C. Vigano, J. M. Ruysschaert, and E. Goormaghtigh, “Sensor applications of attenuated total reflection infrared spectroscopy,” Talanta 65(5), 1132–1142 (2005).
[Crossref]

Gretz, N.

C. Vrančić, N. Kruger, N. Gretz, S. Neudecker, A. Pucci, and W. Petrich, “A quantitative look inside the body: Minimally invasive infrared analysis in vivo,” Anal. Chem. 86(21), 10511–10514 (2014).
[Crossref]

Grosche, A.

T. Wittek, A. Grosche, L. Locher, A. Alkaassem, and M. Fürll, “Biochemical constituents of peritoneal fluid in cows,” Vet. Rec. 166(1), 15–19 (2010).
[Crossref]

Harvey, J. W.

J. J. Kaneko, J. W. Harvey, and M. L. Bruss, Clinical Biochemistry in Domestic Animals, 6th ed (Academic Press, 2008).

Heinemann, L.

H. Kirchsteiger, L. Heinemann, G. Freckmann, V. Lodwig, G. Schmelzeisen-Redeker, M. Schoemaker, and L. Del Re, “Performance comparison of CGM systems: MARD values are not always a reliable indicator of CGM system accuracy,” J. Diabetes Sci. Technol. 9(5), 1030–1040 (2015).
[Crossref]

Helton, K. L.

K. L. Helton, B. D. Ratner, and N. A. Wisniewski, “Biomechanics of the sensor-tissue interface - Effects of motion, pressure, and design on sensor performance and foreign body response - Part II: Examples and application,” J. Diabetes Sci. Technol. 5(3), 647–656 (2011).
[Crossref]

Herwig, C.

M. Brandstetter, T. Sumalowitsch, A. Genner, A. E. Posch, C. Herwig, A. Drolz, V. Fuhrmann, T. Perkmann, and B. Lendl, “Reagent-free monitoring of multiple clinically relevant parameters in human blood plasma using a mid-infrared quantum cascade laser based sensor system,” Analyst 138(14), 4022–4028 (2013).
[Crossref]

Hjelme, D. R.

I. L. Jernelv, K. Strøm, D. R. Hjelme, and A. Aksnes, “Mid-infrared spectroscopy with a fiber-coupled tuneable quantum cascade laser for glucose sensing,” Proc. SPIE 1123, 36 (2020).
[Crossref]

I. L. Jernelv, J. Høvik, D. R. Hjelme, and A. Aksnes, “Signal enhancement in microstructured silicon attenuated total reflection elements for quantum cascade laser-based spectroscopy,” Proc. SPIE 11359, 9 (2020).
[Crossref]

I. L. Jernelv, K. Strøm, D. R. Hjelme, and A. Aksnes, “Infrared Spectroscopy with a Fiber-Coupled Quantum Cascade Laser for Attenuated Total Reflection Measurements Towards Biomedical Applications,” Sensors 19(23), 5130 (2019).
[Crossref]

I. L. Jernelv, K. Milenko, S. S. Fuglerud, D. R. Hjelme, R. Ellingsen, and A. Aksnes, “A review of optical methods for continuous glucose monitoring,” Appl. Spectrosc. Rev. 54(7), 543–572 (2019).
[Crossref]

M. K. Åm, A. L. Fougner, R. Ellingsen, D. R. Hjelme, P. C. Bösch, O. Stavdahl, S. M. Carlsen, and S. C. Christiansen, “Why intraperitoneal glucose sensing is sometimes surprisingly rapid and sometimes slow: A hypothesis,” Med. Hypotheses 132, 109318 (2019).
[Crossref]

M. K. Åm, K. Kölle, A. L. Fougner, I. Dirnena-Fusini, P. C. Bösch, R. Ellingsen, D. R. Hjelme, O. Stavdahl, S. M. Carlsen, and S. C. Christiansen, “Effect of sensor location on continuous intraperitoneal glucose sensing in an animal model,” PLoS One 13(10), e0205447 (2018).
[Crossref]

A. L. Fougner, K. Kölle, N. K. Skjærvold, N. A. Elvemo, D. R. Hjelme, R. Ellingsen, S. M. Carlsen, and Ø. Stavdahl, “Intraperitoneal Glucose Sensing is Sometimes Surprisingly Rapid,” Model. Identif. Control. 37(2), 121–131 (2016).
[Crossref]

Hommel, E.

T. Battelino, I. Conget, B. Olsen, I. Schütz-Fuhrmann, E. Hommel, R. Hoogma, U. Schierloh, N. Sulli, and J. Bolinder, “The use and efficacy of continuous glucose monitoring in type 1 diabetes treated with insulin pump therapy: A randomised controlled trial,” Diabetologia 55(12), 3155–3162 (2012).
[Crossref]

Hoogma, R.

T. Battelino, I. Conget, B. Olsen, I. Schütz-Fuhrmann, E. Hommel, R. Hoogma, U. Schierloh, N. Sulli, and J. Bolinder, “The use and efficacy of continuous glucose monitoring in type 1 diabetes treated with insulin pump therapy: A randomised controlled trial,” Diabetologia 55(12), 3155–3162 (2012).
[Crossref]

Høvik, J.

I. L. Jernelv, J. Høvik, D. R. Hjelme, and A. Aksnes, “Signal enhancement in microstructured silicon attenuated total reflection elements for quantum cascade laser-based spectroscopy,” Proc. SPIE 11359, 9 (2020).
[Crossref]

Hugi, A.

A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol. 25(8), 083001 (2010).
[Crossref]

Huyett, L.

L. Huyett, E. Dassau, H. Zisser, and F. Iii, “Glucose Sensor Dynamics and the Artificial Pancreas,” IEEE Control. Syst. Mag. 38(1), 30–46 (2018).
[Crossref]

Huyett, L. M.

L. M. Huyett, R. Mittal, H. C. Zisser, E. S. Luxon, A. Yee, E. Dassau, F. J. Doyle, and D. R. Burnett, “Preliminary Evaluation of a Long-Term Intraperitoneal Glucose Sensor With Flushing Mechanism,” J. Diabetes Sci. Technol. 10(5), 1192–1194 (2016).
[Crossref]

D. R. Burnett, L. M. Huyett, H. C. Zisser, F. J. Doyle, and B. D. Mensh, “Glucose sensing in the peritoneal space offers faster kinetics than sensing in the subcutaneous space,” Diabetes 63(7), 2498–2505 (2014).
[Crossref]

Iii, F.

L. Huyett, E. Dassau, H. Zisser, and F. Iii, “Glucose Sensor Dynamics and the Artificial Pancreas,” IEEE Control. Syst. Mag. 38(1), 30–46 (2018).
[Crossref]

Ito, K.

Iwai, K.

K. Iwai, M. Miyagi, Y.-W. Shi, and Y. Matsuura, “Fabrication of silver-coated hollow fiber with an inner diameter of 100 µm or less,” Proc. SPIE 7894, 78940B (2011).
[Crossref]

Jernelv, I. L.

I. L. Jernelv, K. Strøm, D. R. Hjelme, and A. Aksnes, “Mid-infrared spectroscopy with a fiber-coupled tuneable quantum cascade laser for glucose sensing,” Proc. SPIE 1123, 36 (2020).
[Crossref]

I. L. Jernelv, J. Høvik, D. R. Hjelme, and A. Aksnes, “Signal enhancement in microstructured silicon attenuated total reflection elements for quantum cascade laser-based spectroscopy,” Proc. SPIE 11359, 9 (2020).
[Crossref]

I. L. Jernelv, K. Strøm, D. R. Hjelme, and A. Aksnes, “Infrared Spectroscopy with a Fiber-Coupled Quantum Cascade Laser for Attenuated Total Reflection Measurements Towards Biomedical Applications,” Sensors 19(23), 5130 (2019).
[Crossref]

I. L. Jernelv, K. Milenko, S. S. Fuglerud, D. R. Hjelme, R. Ellingsen, and A. Aksnes, “A review of optical methods for continuous glucose monitoring,” Appl. Spectrosc. Rev. 54(7), 543–572 (2019).
[Crossref]

Kaneko, J. J.

J. J. Kaneko, J. W. Harvey, and M. L. Bruss, Clinical Biochemistry in Domestic Animals, 6th ed (Academic Press, 2008).

Kaplan, J.

M. S. Boyne, D. M. Silver, J. Kaplan, and C. D. Saudek, “Timing of Changes in Interstitial and Venous Blood Glucose Measured with a Continuous Subcutaneous Glucose Sensor,” Diabetes 52(11), 2790–2794 (2003).
[Crossref]

Katagiri, T.

Kino, S.

Kirchsteiger, H.

H. Kirchsteiger, L. Heinemann, G. Freckmann, V. Lodwig, G. Schmelzeisen-Redeker, M. Schoemaker, and L. Del Re, “Performance comparison of CGM systems: MARD values are not always a reliable indicator of CGM system accuracy,” J. Diabetes Sci. Technol. 9(5), 1030–1040 (2015).
[Crossref]

Kölle, K.

M. K. Åm, K. Kölle, A. L. Fougner, I. Dirnena-Fusini, P. C. Bösch, R. Ellingsen, D. R. Hjelme, O. Stavdahl, S. M. Carlsen, and S. C. Christiansen, “Effect of sensor location on continuous intraperitoneal glucose sensing in an animal model,” PLoS One 13(10), e0205447 (2018).
[Crossref]

A. L. Fougner, K. Kölle, N. K. Skjærvold, N. A. Elvemo, D. R. Hjelme, R. Ellingsen, S. M. Carlsen, and Ø. Stavdahl, “Intraperitoneal Glucose Sensing is Sometimes Surprisingly Rapid,” Model. Identif. Control. 37(2), 121–131 (2016).
[Crossref]

Ø. Stavdahl, A. L. Fougner, K. Kölle, S. C. Christiansen, R. Ellingsen, and S. M. Carlsen, “The Artificial Pancreas: A Dynamic Challenge,” IFAC-PapersOnLine 49(7), 765–772 (2016).
[Crossref]

Koyama, T.

Y. Matsuura and T. Koyama, “Non-invasive blood glucose measurement using quantum cascade lasers,” Proc. SPIE 39(2), 105–110 (2018).
[Crossref]

Kruger, N.

C. Vrančić, N. Kruger, N. Gretz, S. Neudecker, A. Pucci, and W. Petrich, “A quantitative look inside the body: Minimally invasive infrared analysis in vivo,” Anal. Chem. 86(21), 10511–10514 (2014).
[Crossref]

Laposata, M.

M. Laposata, Laposata’s Laboratory Medicine Diagnosis of Disease in Clinical Laboratory, 3rd ed (McGraw-Hill Education/Medical, 2018).

Lasikiewicz, N.

L. Dye, M. Mansfield, N. Lasikiewicz, L. Mahawish, R. Schnell, D. Talbot, H. Chauhan, F. Croden, and C. Lawton, “Correspondence of continuous interstitial glucose measurement against arterialised and capillary glucose following an oral glucose tolerance test in healthy volunteers,” Br. J. Nutr. 103(1), 134–140 (2010).
[Crossref]

Lawton, C.

L. Dye, M. Mansfield, N. Lasikiewicz, L. Mahawish, R. Schnell, D. Talbot, H. Chauhan, F. Croden, and C. Lawton, “Correspondence of continuous interstitial glucose measurement against arterialised and capillary glucose following an oral glucose tolerance test in healthy volunteers,” Br. J. Nutr. 103(1), 134–140 (2010).
[Crossref]

Lendl, B.

A. Schwaighofer, M. Brandstetter, and B. Lendl, “Quantum cascade lasers (QCLs) in biomedical spectroscopy,” Chem. Soc. Rev. 46(19), 5903–5924 (2017).
[Crossref]

M. Brandstetter, T. Sumalowitsch, A. Genner, A. E. Posch, C. Herwig, A. Drolz, V. Fuhrmann, T. Perkmann, and B. Lendl, “Reagent-free monitoring of multiple clinically relevant parameters in human blood plasma using a mid-infrared quantum cascade laser based sensor system,” Analyst 138(14), 4022–4028 (2013).
[Crossref]

Liakat, S.

A. Werth, S. Liakat, A. Dong, C. M. Woods, and C. F. Gmachl, “Implementation of an integrating sphere for the enhancement of noninvasive glucose detection using quantum cascade laser spectroscopy,” Appl. Phys. B 124(5), 75 (2018).
[Crossref]

Locher, L.

T. Wittek, A. Grosche, L. Locher, A. Alkaassem, and M. Fürll, “Biochemical constituents of peritoneal fluid in cows,” Vet. Rec. 166(1), 15–19 (2010).
[Crossref]

Lodwig, V.

H. Kirchsteiger, L. Heinemann, G. Freckmann, V. Lodwig, G. Schmelzeisen-Redeker, M. Schoemaker, and L. Del Re, “Performance comparison of CGM systems: MARD values are not always a reliable indicator of CGM system accuracy,” J. Diabetes Sci. Technol. 9(5), 1030–1040 (2015).
[Crossref]

Luxon, E. S.

L. M. Huyett, R. Mittal, H. C. Zisser, E. S. Luxon, A. Yee, E. Dassau, F. J. Doyle, and D. R. Burnett, “Preliminary Evaluation of a Long-Term Intraperitoneal Glucose Sensor With Flushing Mechanism,” J. Diabetes Sci. Technol. 10(5), 1192–1194 (2016).
[Crossref]

Ma, L.

Mahawish, L.

L. Dye, M. Mansfield, N. Lasikiewicz, L. Mahawish, R. Schnell, D. Talbot, H. Chauhan, F. Croden, and C. Lawton, “Correspondence of continuous interstitial glucose measurement against arterialised and capillary glucose following an oral glucose tolerance test in healthy volunteers,” Br. J. Nutr. 103(1), 134–140 (2010).
[Crossref]

Mansfield, M.

L. Dye, M. Mansfield, N. Lasikiewicz, L. Mahawish, R. Schnell, D. Talbot, H. Chauhan, F. Croden, and C. Lawton, “Correspondence of continuous interstitial glucose measurement against arterialised and capillary glucose following an oral glucose tolerance test in healthy volunteers,” Br. J. Nutr. 103(1), 134–140 (2010).
[Crossref]

Martin, W. B.

Matsuura, Y.

Y. Matsuura and T. Koyama, “Non-invasive blood glucose measurement using quantum cascade lasers,” Proc. SPIE 39(2), 105–110 (2018).
[Crossref]

S. Kino, S. Omori, T. Katagiri, and Y. Matsuura, “Hollow optical-fiber based infrared spectroscopy for measurement of blood glucose level by using multi-reflection prism,” Biomed. Opt. Express 7(2), 701–708 (2016).
[Crossref]

K. Iwai, M. Miyagi, Y.-W. Shi, and Y. Matsuura, “Fabrication of silver-coated hollow fiber with an inner diameter of 100 µm or less,” Proc. SPIE 7894, 78940B (2011).
[Crossref]

Y. W. Shi, K. Ito, L. Ma, T. Yoshida, Y. Matsuura, and M. Miyagi, “Fabrication of a polymer-coated silver hollow optical fiber with high performance,” Appl. Opt. 45(26), 6736–6740 (2006).
[Crossref]

Maulini, R.

A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol. 25(8), 083001 (2010).
[Crossref]

McKeon, K. M.

M. Sinha, K. M. McKeon, S. Parker, L. G. Goergen, H. Zheng, F. H. El-Khatib, and S. J. Russell, “A Comparison of Time Delay in Three Continuous Glucose Monitors for Adolescents and Adults,” J. Diabetes Sci. Technol. 11(6), 1132–1137 (2017).
[Crossref]

Mensh, B. D.

D. R. Burnett, L. M. Huyett, H. C. Zisser, F. J. Doyle, and B. D. Mensh, “Glucose sensing in the peritoneal space offers faster kinetics than sensing in the subcutaneous space,” Diabetes 63(7), 2498–2505 (2014).
[Crossref]

Milenko, K.

I. L. Jernelv, K. Milenko, S. S. Fuglerud, D. R. Hjelme, R. Ellingsen, and A. Aksnes, “A review of optical methods for continuous glucose monitoring,” Appl. Spectrosc. Rev. 54(7), 543–572 (2019).
[Crossref]

Mirov, S.

Mittal, R.

L. M. Huyett, R. Mittal, H. C. Zisser, E. S. Luxon, A. Yee, E. Dassau, F. J. Doyle, and D. R. Burnett, “Preliminary Evaluation of a Long-Term Intraperitoneal Glucose Sensor With Flushing Mechanism,” J. Diabetes Sci. Technol. 10(5), 1192–1194 (2016).
[Crossref]

Miyagi, M.

K. Iwai, M. Miyagi, Y.-W. Shi, and Y. Matsuura, “Fabrication of silver-coated hollow fiber with an inner diameter of 100 µm or less,” Proc. SPIE 7894, 78940B (2011).
[Crossref]

Y. W. Shi, K. Ito, L. Ma, T. Yoshida, Y. Matsuura, and M. Miyagi, “Fabrication of a polymer-coated silver hollow optical fiber with high performance,” Appl. Opt. 45(26), 6736–6740 (2006).
[Crossref]

Nathan, D. M.

D. M. Nathan, “Long-Term Complications of Diabetes Mellitus,” N. Engl. J. Med. 328(23), 1676–1685 (1993).
[Crossref]

Neudecker, S.

C. Vrančić, N. Kruger, N. Gretz, S. Neudecker, A. Pucci, and W. Petrich, “A quantitative look inside the body: Minimally invasive infrared analysis in vivo,” Anal. Chem. 86(21), 10511–10514 (2014).
[Crossref]

Olsen, B.

T. Battelino, I. Conget, B. Olsen, I. Schütz-Fuhrmann, E. Hommel, R. Hoogma, U. Schierloh, N. Sulli, and J. Bolinder, “The use and efficacy of continuous glucose monitoring in type 1 diabetes treated with insulin pump therapy: A randomised controlled trial,” Diabetologia 55(12), 3155–3162 (2012).
[Crossref]

Omori, S.

Parker, S.

M. Sinha, K. M. McKeon, S. Parker, L. G. Goergen, H. Zheng, F. H. El-Khatib, and S. J. Russell, “A Comparison of Time Delay in Three Continuous Glucose Monitors for Adolescents and Adults,” J. Diabetes Sci. Technol. 11(6), 1132–1137 (2017).
[Crossref]

Perkmann, T.

M. Brandstetter, T. Sumalowitsch, A. Genner, A. E. Posch, C. Herwig, A. Drolz, V. Fuhrmann, T. Perkmann, and B. Lendl, “Reagent-free monitoring of multiple clinically relevant parameters in human blood plasma using a mid-infrared quantum cascade laser based sensor system,” Analyst 138(14), 4022–4028 (2013).
[Crossref]

Petrich, W.

C. Vrančić, N. Kruger, N. Gretz, S. Neudecker, A. Pucci, and W. Petrich, “A quantitative look inside the body: Minimally invasive infrared analysis in vivo,” Anal. Chem. 86(21), 10511–10514 (2014).
[Crossref]

Pickup, J. C.

J. C. Pickup, S. C. Freeman, and A. J. Sutton, “Glycaemic control in type 1 diabetes during real time continuous glucose monitoring compared with self monitoring of blood glucose: meta-analysis of randomised controlled trials using individual patient data,” BMJ 343(jul07 1), d3805 (2011).
[Crossref]

Posch, A. E.

M. Brandstetter, T. Sumalowitsch, A. Genner, A. E. Posch, C. Herwig, A. Drolz, V. Fuhrmann, T. Perkmann, and B. Lendl, “Reagent-free monitoring of multiple clinically relevant parameters in human blood plasma using a mid-infrared quantum cascade laser based sensor system,” Analyst 138(14), 4022–4028 (2013).
[Crossref]

Pucci, A.

C. Vrančić, N. Kruger, N. Gretz, S. Neudecker, A. Pucci, and W. Petrich, “A quantitative look inside the body: Minimally invasive infrared analysis in vivo,” Anal. Chem. 86(21), 10511–10514 (2014).
[Crossref]

Ratner, B. D.

K. L. Helton, B. D. Ratner, and N. A. Wisniewski, “Biomechanics of the sensor-tissue interface - Effects of motion, pressure, and design on sensor performance and foreign body response - Part II: Examples and application,” J. Diabetes Sci. Technol. 5(3), 647–656 (2011).
[Crossref]

Rodbard, D.

D. Rodbard, “Continuous Glucose Monitoring: A Review of Successes,” Diabetes Technol. Ther. 18(S2), 3–13 (2016).
[Crossref]

Russell, S. J.

M. Sinha, K. M. McKeon, S. Parker, L. G. Goergen, H. Zheng, F. H. El-Khatib, and S. J. Russell, “A Comparison of Time Delay in Three Continuous Glucose Monitors for Adolescents and Adults,” J. Diabetes Sci. Technol. 11(6), 1132–1137 (2017).
[Crossref]

Ruysschaert, J. M.

C. Vigano, J. M. Ruysschaert, and E. Goormaghtigh, “Sensor applications of attenuated total reflection infrared spectroscopy,” Talanta 65(5), 1132–1142 (2005).
[Crossref]

Saudek, C. D.

M. S. Boyne, D. M. Silver, J. Kaplan, and C. D. Saudek, “Timing of Changes in Interstitial and Venous Blood Glucose Measured with a Continuous Subcutaneous Glucose Sensor,” Diabetes 52(11), 2790–2794 (2003).
[Crossref]

Schierloh, U.

T. Battelino, I. Conget, B. Olsen, I. Schütz-Fuhrmann, E. Hommel, R. Hoogma, U. Schierloh, N. Sulli, and J. Bolinder, “The use and efficacy of continuous glucose monitoring in type 1 diabetes treated with insulin pump therapy: A randomised controlled trial,” Diabetologia 55(12), 3155–3162 (2012).
[Crossref]

Schmelzeisen-Redeker, G.

H. Kirchsteiger, L. Heinemann, G. Freckmann, V. Lodwig, G. Schmelzeisen-Redeker, M. Schoemaker, and L. Del Re, “Performance comparison of CGM systems: MARD values are not always a reliable indicator of CGM system accuracy,” J. Diabetes Sci. Technol. 9(5), 1030–1040 (2015).
[Crossref]

Schnell, R.

L. Dye, M. Mansfield, N. Lasikiewicz, L. Mahawish, R. Schnell, D. Talbot, H. Chauhan, F. Croden, and C. Lawton, “Correspondence of continuous interstitial glucose measurement against arterialised and capillary glucose following an oral glucose tolerance test in healthy volunteers,” Br. J. Nutr. 103(1), 134–140 (2010).
[Crossref]

Schoemaker, M.

H. Kirchsteiger, L. Heinemann, G. Freckmann, V. Lodwig, G. Schmelzeisen-Redeker, M. Schoemaker, and L. Del Re, “Performance comparison of CGM systems: MARD values are not always a reliable indicator of CGM system accuracy,” J. Diabetes Sci. Technol. 9(5), 1030–1040 (2015).
[Crossref]

Schütz-Fuhrmann, I.

T. Battelino, I. Conget, B. Olsen, I. Schütz-Fuhrmann, E. Hommel, R. Hoogma, U. Schierloh, N. Sulli, and J. Bolinder, “The use and efficacy of continuous glucose monitoring in type 1 diabetes treated with insulin pump therapy: A randomised controlled trial,” Diabetologia 55(12), 3155–3162 (2012).
[Crossref]

Schwaighofer, A.

A. Schwaighofer, M. Brandstetter, and B. Lendl, “Quantum cascade lasers (QCLs) in biomedical spectroscopy,” Chem. Soc. Rev. 46(19), 5903–5924 (2017).
[Crossref]

Shi, Y. W.

Shi, Y.-W.

K. Iwai, M. Miyagi, Y.-W. Shi, and Y. Matsuura, “Fabrication of silver-coated hollow fiber with an inner diameter of 100 µm or less,” Proc. SPIE 7894, 78940B (2011).
[Crossref]

Silver, D. M.

M. S. Boyne, D. M. Silver, J. Kaplan, and C. D. Saudek, “Timing of Changes in Interstitial and Venous Blood Glucose Measured with a Continuous Subcutaneous Glucose Sensor,” Diabetes 52(11), 2790–2794 (2003).
[Crossref]

Sinha, M.

M. Sinha, K. M. McKeon, S. Parker, L. G. Goergen, H. Zheng, F. H. El-Khatib, and S. J. Russell, “A Comparison of Time Delay in Three Continuous Glucose Monitors for Adolescents and Adults,” J. Diabetes Sci. Technol. 11(6), 1132–1137 (2017).
[Crossref]

Skjærvold, N. K.

A. L. Fougner, K. Kölle, N. K. Skjærvold, N. A. Elvemo, D. R. Hjelme, R. Ellingsen, S. M. Carlsen, and Ø. Stavdahl, “Intraperitoneal Glucose Sensing is Sometimes Surprisingly Rapid,” Model. Identif. Control. 37(2), 121–131 (2016).
[Crossref]

Stavdahl, O.

M. K. Åm, A. L. Fougner, R. Ellingsen, D. R. Hjelme, P. C. Bösch, O. Stavdahl, S. M. Carlsen, and S. C. Christiansen, “Why intraperitoneal glucose sensing is sometimes surprisingly rapid and sometimes slow: A hypothesis,” Med. Hypotheses 132, 109318 (2019).
[Crossref]

M. K. Åm, K. Kölle, A. L. Fougner, I. Dirnena-Fusini, P. C. Bösch, R. Ellingsen, D. R. Hjelme, O. Stavdahl, S. M. Carlsen, and S. C. Christiansen, “Effect of sensor location on continuous intraperitoneal glucose sensing in an animal model,” PLoS One 13(10), e0205447 (2018).
[Crossref]

Stavdahl, Ø.

A. L. Fougner, K. Kölle, N. K. Skjærvold, N. A. Elvemo, D. R. Hjelme, R. Ellingsen, S. M. Carlsen, and Ø. Stavdahl, “Intraperitoneal Glucose Sensing is Sometimes Surprisingly Rapid,” Model. Identif. Control. 37(2), 121–131 (2016).
[Crossref]

Ø. Stavdahl, A. L. Fougner, K. Kölle, S. C. Christiansen, R. Ellingsen, and S. M. Carlsen, “The Artificial Pancreas: A Dynamic Challenge,” IFAC-PapersOnLine 49(7), 765–772 (2016).
[Crossref]

Strøm, K.

I. L. Jernelv, K. Strøm, D. R. Hjelme, and A. Aksnes, “Mid-infrared spectroscopy with a fiber-coupled tuneable quantum cascade laser for glucose sensing,” Proc. SPIE 1123, 36 (2020).
[Crossref]

I. L. Jernelv, K. Strøm, D. R. Hjelme, and A. Aksnes, “Infrared Spectroscopy with a Fiber-Coupled Quantum Cascade Laser for Attenuated Total Reflection Measurements Towards Biomedical Applications,” Sensors 19(23), 5130 (2019).
[Crossref]

Sulli, N.

T. Battelino, I. Conget, B. Olsen, I. Schütz-Fuhrmann, E. Hommel, R. Hoogma, U. Schierloh, N. Sulli, and J. Bolinder, “The use and efficacy of continuous glucose monitoring in type 1 diabetes treated with insulin pump therapy: A randomised controlled trial,” Diabetologia 55(12), 3155–3162 (2012).
[Crossref]

Sumalowitsch, T.

M. Brandstetter, T. Sumalowitsch, A. Genner, A. E. Posch, C. Herwig, A. Drolz, V. Fuhrmann, T. Perkmann, and B. Lendl, “Reagent-free monitoring of multiple clinically relevant parameters in human blood plasma using a mid-infrared quantum cascade laser based sensor system,” Analyst 138(14), 4022–4028 (2013).
[Crossref]

Sutton, A. J.

J. C. Pickup, S. C. Freeman, and A. J. Sutton, “Glycaemic control in type 1 diabetes during real time continuous glucose monitoring compared with self monitoring of blood glucose: meta-analysis of randomised controlled trials using individual patient data,” BMJ 343(jul07 1), d3805 (2011).
[Crossref]

Talbot, D.

L. Dye, M. Mansfield, N. Lasikiewicz, L. Mahawish, R. Schnell, D. Talbot, H. Chauhan, F. Croden, and C. Lawton, “Correspondence of continuous interstitial glucose measurement against arterialised and capillary glucose following an oral glucose tolerance test in healthy volunteers,” Br. J. Nutr. 103(1), 134–140 (2010).
[Crossref]

Venugopalan, R.

Vigano, C.

C. Vigano, J. M. Ruysschaert, and E. Goormaghtigh, “Sensor applications of attenuated total reflection infrared spectroscopy,” Talanta 65(5), 1132–1142 (2005).
[Crossref]

Vrancic, C.

C. Vrančić, N. Kruger, N. Gretz, S. Neudecker, A. Pucci, and W. Petrich, “A quantitative look inside the body: Minimally invasive infrared analysis in vivo,” Anal. Chem. 86(21), 10511–10514 (2014).
[Crossref]

Wang, J.

J. Wang, “Electrochemical glucose biosensors,” Chem. Rev. 108(2), 814–825 (2008).
[Crossref]

Werth, A.

A. Werth, S. Liakat, A. Dong, C. M. Woods, and C. F. Gmachl, “Implementation of an integrating sphere for the enhancement of noninvasive glucose detection using quantum cascade laser spectroscopy,” Appl. Phys. B 124(5), 75 (2018).
[Crossref]

Wisniewski, N. A.

K. L. Helton, B. D. Ratner, and N. A. Wisniewski, “Biomechanics of the sensor-tissue interface - Effects of motion, pressure, and design on sensor performance and foreign body response - Part II: Examples and application,” J. Diabetes Sci. Technol. 5(3), 647–656 (2011).
[Crossref]

Wittek, T.

T. Wittek, A. Grosche, L. Locher, A. Alkaassem, and M. Fürll, “Biochemical constituents of peritoneal fluid in cows,” Vet. Rec. 166(1), 15–19 (2010).
[Crossref]

Woods, C. M.

A. Werth, S. Liakat, A. Dong, C. M. Woods, and C. F. Gmachl, “Implementation of an integrating sphere for the enhancement of noninvasive glucose detection using quantum cascade laser spectroscopy,” Appl. Phys. B 124(5), 75 (2018).
[Crossref]

Yee, A.

L. M. Huyett, R. Mittal, H. C. Zisser, E. S. Luxon, A. Yee, E. Dassau, F. J. Doyle, and D. R. Burnett, “Preliminary Evaluation of a Long-Term Intraperitoneal Glucose Sensor With Flushing Mechanism,” J. Diabetes Sci. Technol. 10(5), 1192–1194 (2016).
[Crossref]

Yoshida, T.

Zheng, H.

M. Sinha, K. M. McKeon, S. Parker, L. G. Goergen, H. Zheng, F. H. El-Khatib, and S. J. Russell, “A Comparison of Time Delay in Three Continuous Glucose Monitors for Adolescents and Adults,” J. Diabetes Sci. Technol. 11(6), 1132–1137 (2017).
[Crossref]

Zisser, H.

L. Huyett, E. Dassau, H. Zisser, and F. Iii, “Glucose Sensor Dynamics and the Artificial Pancreas,” IEEE Control. Syst. Mag. 38(1), 30–46 (2018).
[Crossref]

Zisser, H. C.

L. M. Huyett, R. Mittal, H. C. Zisser, E. S. Luxon, A. Yee, E. Dassau, F. J. Doyle, and D. R. Burnett, “Preliminary Evaluation of a Long-Term Intraperitoneal Glucose Sensor With Flushing Mechanism,” J. Diabetes Sci. Technol. 10(5), 1192–1194 (2016).
[Crossref]

D. R. Burnett, L. M. Huyett, H. C. Zisser, F. J. Doyle, and B. D. Mensh, “Glucose sensing in the peritoneal space offers faster kinetics than sensing in the subcutaneous space,” Diabetes 63(7), 2498–2505 (2014).
[Crossref]

Anal. Chem. (1)

C. Vrančić, N. Kruger, N. Gretz, S. Neudecker, A. Pucci, and W. Petrich, “A quantitative look inside the body: Minimally invasive infrared analysis in vivo,” Anal. Chem. 86(21), 10511–10514 (2014).
[Crossref]

Analyst (1)

M. Brandstetter, T. Sumalowitsch, A. Genner, A. E. Posch, C. Herwig, A. Drolz, V. Fuhrmann, T. Perkmann, and B. Lendl, “Reagent-free monitoring of multiple clinically relevant parameters in human blood plasma using a mid-infrared quantum cascade laser based sensor system,” Analyst 138(14), 4022–4028 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

A. Werth, S. Liakat, A. Dong, C. M. Woods, and C. F. Gmachl, “Implementation of an integrating sphere for the enhancement of noninvasive glucose detection using quantum cascade laser spectroscopy,” Appl. Phys. B 124(5), 75 (2018).
[Crossref]

Appl. Spectrosc. (1)

Appl. Spectrosc. Rev. (1)

I. L. Jernelv, K. Milenko, S. S. Fuglerud, D. R. Hjelme, R. Ellingsen, and A. Aksnes, “A review of optical methods for continuous glucose monitoring,” Appl. Spectrosc. Rev. 54(7), 543–572 (2019).
[Crossref]

Biomed. Opt. Express (1)

BMJ (1)

J. C. Pickup, S. C. Freeman, and A. J. Sutton, “Glycaemic control in type 1 diabetes during real time continuous glucose monitoring compared with self monitoring of blood glucose: meta-analysis of randomised controlled trials using individual patient data,” BMJ 343(jul07 1), d3805 (2011).
[Crossref]

Br. J. Nutr. (1)

L. Dye, M. Mansfield, N. Lasikiewicz, L. Mahawish, R. Schnell, D. Talbot, H. Chauhan, F. Croden, and C. Lawton, “Correspondence of continuous interstitial glucose measurement against arterialised and capillary glucose following an oral glucose tolerance test in healthy volunteers,” Br. J. Nutr. 103(1), 134–140 (2010).
[Crossref]

Chem. Rev. (1)

J. Wang, “Electrochemical glucose biosensors,” Chem. Rev. 108(2), 814–825 (2008).
[Crossref]

Chem. Soc. Rev. (1)

A. Schwaighofer, M. Brandstetter, and B. Lendl, “Quantum cascade lasers (QCLs) in biomedical spectroscopy,” Chem. Soc. Rev. 46(19), 5903–5924 (2017).
[Crossref]

Diabetes (2)

M. S. Boyne, D. M. Silver, J. Kaplan, and C. D. Saudek, “Timing of Changes in Interstitial and Venous Blood Glucose Measured with a Continuous Subcutaneous Glucose Sensor,” Diabetes 52(11), 2790–2794 (2003).
[Crossref]

D. R. Burnett, L. M. Huyett, H. C. Zisser, F. J. Doyle, and B. D. Mensh, “Glucose sensing in the peritoneal space offers faster kinetics than sensing in the subcutaneous space,” Diabetes 63(7), 2498–2505 (2014).
[Crossref]

Diabetes Res. Clin. Pract. (1)

B. M. Frier, “Morbidity of hypoglycemia in type 1 diabetes,” Diabetes Res. Clin. Pract. 65, S47–S52 (2004).
[Crossref]

Diabetes Technol. Ther. (1)

D. Rodbard, “Continuous Glucose Monitoring: A Review of Successes,” Diabetes Technol. Ther. 18(S2), 3–13 (2016).
[Crossref]

Diabetologia (1)

T. Battelino, I. Conget, B. Olsen, I. Schütz-Fuhrmann, E. Hommel, R. Hoogma, U. Schierloh, N. Sulli, and J. Bolinder, “The use and efficacy of continuous glucose monitoring in type 1 diabetes treated with insulin pump therapy: A randomised controlled trial,” Diabetologia 55(12), 3155–3162 (2012).
[Crossref]

IEEE Control. Syst. Mag. (1)

L. Huyett, E. Dassau, H. Zisser, and F. Iii, “Glucose Sensor Dynamics and the Artificial Pancreas,” IEEE Control. Syst. Mag. 38(1), 30–46 (2018).
[Crossref]

IFAC-PapersOnLine (1)

Ø. Stavdahl, A. L. Fougner, K. Kölle, S. C. Christiansen, R. Ellingsen, and S. M. Carlsen, “The Artificial Pancreas: A Dynamic Challenge,” IFAC-PapersOnLine 49(7), 765–772 (2016).
[Crossref]

J. Diabetes Sci. Technol. (4)

M. Sinha, K. M. McKeon, S. Parker, L. G. Goergen, H. Zheng, F. H. El-Khatib, and S. J. Russell, “A Comparison of Time Delay in Three Continuous Glucose Monitors for Adolescents and Adults,” J. Diabetes Sci. Technol. 11(6), 1132–1137 (2017).
[Crossref]

K. L. Helton, B. D. Ratner, and N. A. Wisniewski, “Biomechanics of the sensor-tissue interface - Effects of motion, pressure, and design on sensor performance and foreign body response - Part II: Examples and application,” J. Diabetes Sci. Technol. 5(3), 647–656 (2011).
[Crossref]

L. M. Huyett, R. Mittal, H. C. Zisser, E. S. Luxon, A. Yee, E. Dassau, F. J. Doyle, and D. R. Burnett, “Preliminary Evaluation of a Long-Term Intraperitoneal Glucose Sensor With Flushing Mechanism,” J. Diabetes Sci. Technol. 10(5), 1192–1194 (2016).
[Crossref]

H. Kirchsteiger, L. Heinemann, G. Freckmann, V. Lodwig, G. Schmelzeisen-Redeker, M. Schoemaker, and L. Del Re, “Performance comparison of CGM systems: MARD values are not always a reliable indicator of CGM system accuracy,” J. Diabetes Sci. Technol. 9(5), 1030–1040 (2015).
[Crossref]

Med. Hypotheses (1)

M. K. Åm, A. L. Fougner, R. Ellingsen, D. R. Hjelme, P. C. Bösch, O. Stavdahl, S. M. Carlsen, and S. C. Christiansen, “Why intraperitoneal glucose sensing is sometimes surprisingly rapid and sometimes slow: A hypothesis,” Med. Hypotheses 132, 109318 (2019).
[Crossref]

Model. Identif. Control. (1)

A. L. Fougner, K. Kölle, N. K. Skjærvold, N. A. Elvemo, D. R. Hjelme, R. Ellingsen, S. M. Carlsen, and Ø. Stavdahl, “Intraperitoneal Glucose Sensing is Sometimes Surprisingly Rapid,” Model. Identif. Control. 37(2), 121–131 (2016).
[Crossref]

N. Engl. J. Med. (1)

D. M. Nathan, “Long-Term Complications of Diabetes Mellitus,” N. Engl. J. Med. 328(23), 1676–1685 (1993).
[Crossref]

PLoS One (1)

M. K. Åm, K. Kölle, A. L. Fougner, I. Dirnena-Fusini, P. C. Bösch, R. Ellingsen, D. R. Hjelme, O. Stavdahl, S. M. Carlsen, and S. C. Christiansen, “Effect of sensor location on continuous intraperitoneal glucose sensing in an animal model,” PLoS One 13(10), e0205447 (2018).
[Crossref]

Proc. SPIE (4)

I. L. Jernelv, K. Strøm, D. R. Hjelme, and A. Aksnes, “Mid-infrared spectroscopy with a fiber-coupled tuneable quantum cascade laser for glucose sensing,” Proc. SPIE 1123, 36 (2020).
[Crossref]

K. Iwai, M. Miyagi, Y.-W. Shi, and Y. Matsuura, “Fabrication of silver-coated hollow fiber with an inner diameter of 100 µm or less,” Proc. SPIE 7894, 78940B (2011).
[Crossref]

I. L. Jernelv, J. Høvik, D. R. Hjelme, and A. Aksnes, “Signal enhancement in microstructured silicon attenuated total reflection elements for quantum cascade laser-based spectroscopy,” Proc. SPIE 11359, 9 (2020).
[Crossref]

Y. Matsuura and T. Koyama, “Non-invasive blood glucose measurement using quantum cascade lasers,” Proc. SPIE 39(2), 105–110 (2018).
[Crossref]

Semicond. Sci. Technol. (1)

A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol. 25(8), 083001 (2010).
[Crossref]

Sensors (1)

I. L. Jernelv, K. Strøm, D. R. Hjelme, and A. Aksnes, “Infrared Spectroscopy with a Fiber-Coupled Quantum Cascade Laser for Attenuated Total Reflection Measurements Towards Biomedical Applications,” Sensors 19(23), 5130 (2019).
[Crossref]

Talanta (1)

C. Vigano, J. M. Ruysschaert, and E. Goormaghtigh, “Sensor applications of attenuated total reflection infrared spectroscopy,” Talanta 65(5), 1132–1142 (2005).
[Crossref]

Vet. Rec. (1)

T. Wittek, A. Grosche, L. Locher, A. Alkaassem, and M. Fürll, “Biochemical constituents of peritoneal fluid in cows,” Vet. Rec. 166(1), 15–19 (2010).
[Crossref]

Other (2)

J. J. Kaneko, J. W. Harvey, and M. L. Bruss, Clinical Biochemistry in Domestic Animals, 6th ed (Academic Press, 2008).

M. Laposata, Laposata’s Laboratory Medicine Diagnosis of Disease in Clinical Laboratory, 3rd ed (McGraw-Hill Education/Medical, 2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic illustration of the two experimental setups used for this study. a) Transmission spectroscopy setup. b) ATR spectroscopy setup. The inset illustrates light propagation and total internal reflection in an internal reflection element (IRE), which is the principle for evanescent field sensing.
Fig. 2.
Fig. 2. Transmission spectra of peritoneal fluid (centrifuged and non-centrifuged) and plasma samples with similar glucose concentrations for comparison. The samples are all from different individuals.
Fig. 3.
Fig. 3. Results from multivariate analysis of the transmission spectroscopy data. a) Prediction of glucose concentrations in spiked and unspiked samples of peritoneal fluid from pigs (48 samples for training, 31 samples for validation). b) Result from cross-validation of glucose prediction in spiked and unspiked samples of pig blood plasma (21 samples).
Fig. 4.
Fig. 4. a) Spectrum from ATR spectroscopy of a peritoneal fluid sample before and after Fourier filtering, and b) Filtered ATR spectra of peritoneal fluid samples with different glucose concentration levels.
Fig. 5.
Fig. 5. Results from multivariate analysis of the ATR spectroscopy data. a) Prediction of glucose concentrations in spiked and unspiked samples of peritoneal fluid from pigs (48 samples for training, 31 samples for validation). b) Result from cross-validation of glucose prediction in spiked and unspiked samples of pig blood plasma (21 samples).

Tables (4)

Tables Icon

Table 1. Overview of fluid samples from pigs.

Tables Icon

Table 2. Overview of analyte concentrations in the different fluid types obtained from pig trials.

Tables Icon

Table 3. The following variants of pre-processing methods were tested in this study, and all possible combinations were evaluated.

Tables Icon

Table 4. Overview of various prediction errors obtained for multivariate analysis of glucose levels in peritoneal fluid and blood plasma from pigs.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

MAPE = 1 n t = 1 n y t y ^ t y t