Abstract

We have developed a novel dual-angle open field wavefront sensor. This device captures real-time foveal and peripheral Zernike aberrations, while providing natural binocular viewing conditions for the subjects. The simultaneous data recording enables accurate analysis of changes in ocular optics with accommodation overcoming any uncertainties caused by accommodative lag or lead. The instrument will be used in myopia research to study central and peripheral ocular optics during near work and to investigate the effects of optical myopia control interventions. Proof of concept measurements, performed on an artificial eye model and on 3 volunteers, showed good repeatability with foveal-peripheral data synchronization of 65 msec or better. The deviations from subjective cycloplegic refractions were not more than 0.31 D. Furthermore, we tested the dual-angle wavefront sensor in two novel measurement schemes: (1) focusing on a close target, and (2) accommodation step change.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Wood and R. Troutbeck, “Effect of restriction of the binocular visual field on driving performance,” Ophthalmic Physiol. Opt. 12(3), 291–298 (1992).
    [Crossref]
  2. M. A. Wetton, M. S. Horswill, C. Hatherly, J. M. Wood, N. A. Pachana, and K. J. Anstey, “The development and validation of two complementary measures of drivers’ hazard perception ability,” Accid. Analysis & Prev. 42(4), 1232–1239 (2010).
    [Crossref]
  3. C. Owsley and G. McGwin Jr, “Vision impairment and driving,” Surv. Ophthalmol. 43(6), 535–550 (1999).
    [Crossref]
  4. C. M. Patino, R. McKean-Cowdin, S. P. Azen, J. C. Allison, F. Choudhury, R. Varma, and L. A. L. E. S. Group, “Central and peripheral visual impairment and the risk of falls and falls with injury,” Ophthalmology 117(2), 199–206.e1 (2010).
    [Crossref]
  5. A. Berencsi, M. Ishihara, and K. Imanaka, “The functional role of central and peripheral vision in the control of posture,” Hum. Mov. Sci. 24(5-6), 689–709 (2005).
    [Crossref]
  6. E. W. Wiecek, L. R. Pasquale, J. Fiser, S. Dakin, and P. J. Bex, “Effects of peripheral visual field loss on eye movements during visual search,” Front. Psychol. 3, 472 (2012).
    [Crossref]
  7. B. A. Holden, S. P. Mariotti, I. Kocur, S. Resnikoff, H. Mingguang, K. Naidoo, and M. Jong, “The impact of myopia and high myopia. Report of the Joint World Health Organization–Brien Holden Vision Institute Global Scientific Meeting on Myopia,” (2015).
  8. G. Smith, M. Millodot, and N. McBrien, “The effect of accommodation on oblique astigmatism and field curvature of the human eye,” Clin. Exp. Optom. 71(4), 119–125 (1988).
    [Crossref]
  9. T. W. Walker and D. O. Mutti, “The effect of accommodation on ocular shape,” Optom. Vis. Sci. 79(7), 424–430 (2002).
    [Crossref]
  10. L. Lundström, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vis. 9(6), 17 (2009).
    [Crossref]
  11. A. Mathur, D. A. Atchison, and W. N. Charman, “Effect of accommodation on peripheral ocular aberrations,” J. Vis. 9(12), 20 (2009).
    [Crossref]
  12. A. Whatham, F. Zimmermann, A. Martinez, S. Delgado, P. L. de la Jara, P. Sankaridurg, and A. Ho, “Influence of accommodation on off-axis refractive errors in myopic eyes,” J. Vis. 9(3), 14 (2009).
    [Crossref]
  13. B. Holden, P. Sankaridurg, E. Smith, T. Aller, M. Jong, and M. He, “Myopia, an underrated global challenge to vision: where the current data takes us on myopia control,” Eye 28(2), 142–146 (2014).
    [Crossref]
  14. P. K. Verkicharla, K. Ohno-Matsui, and S. M. Saw, “Current and predicted demographics of high myopia and an update of its associated pathological changes,” Ophthalmic Physiol. Opt. 35(5), 465–475 (2015).
    [Crossref]
  15. K. M. Williams, G. Bertelsen, P. Cumberland, C. Wolfram, V. J. M. Verhoeven, E. Anastasopoulos, G. H. S. Buitendijk, A. Cougnard-Grégoire, C. Creuzot-Garcher, M. G. Erke, R. Hogg, R. Höhn, P. Hysi, A. P. Khawaja, J.-F. Korobelnik, J. Ried, J. R. Vingerling, A. Bron, J.-F. Dartigues, A. Fletcher, A. Hofman, R. W. A. M. Kuijpers, R. N. Luben, K. Oxele, F. Topouzis, T. von Hanno, A. Mirshahi, P. J. Foster, C. M. van Duijn, N. Pfeiffer, C. Delcourt, C. C. W. Klaver, J. Rahi, C. J. Hammond, and E. E. E. Consortium, “Increasing prevalence of myopia in Europe and the impact of education,” Ophthalmology 122(7), 1489–1497 (2015).
    [Crossref]
  16. J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43(4), 447–468 (2004).
    [Crossref]
  17. E. Goldschmidt and N. Jacobsen, “Genetic and environmental effects on myopia development and progression,” Eye 28(2), 126–133 (2014).
    [Crossref]
  18. D. I. Flitcroft, “The complex interactions of retinal, optical and environmental factors in myopia aetiology,” Prog. Retinal Eye Res. 31(6), 622–660 (2012).
    [Crossref]
  19. H.-M. Huang, D. S.-T. Chang, and P.-C. Wu, “The association between near work activities and myopia in children–a systematic review and meta-analysis,” PLoS One 10(10), e0140419 (2015).
    [Crossref]
  20. L. Deng and Y. Pang, “Effect of outdoor activities in myopia control: meta-analysis of clinical studies,” Optom. Vis. Sci. 96(4), 276–282 (2019).
    [Crossref]
  21. P.-C. Huang, Y.-C. Hsiao, C.-Y. Tsai, D.-C. Tsai, C.-W. Chen, C.-C. Hsu, S.-C. Huang, M.-H. Lin, and Y.-M. Liou, “Protective behaviours of near work and time outdoors in myopia prevalence and progression in myopic children: a 2-year prospective population study,” Br. J. Ophthalmol. (2019).
  22. G. Lingham, D. A. Mackey, R. Lucas, and S. Yazar, “How does spending time outdoors protect against myopia? A review,” Br. J. Ophthalmol. 104(5), 593–599 (2020).
    [Crossref]
  23. S. A. McFadden, M. H. Howlett, and J. R. Mertz, “Retinoic acid signals the direction of ocular elongation in the guinea pig eye,” Vision Res. 44(7), 643–653 (2004).
    [Crossref]
  24. L.-F. Hung, M. L. J. Crawford, and E. L. Smith, “Spectacle lenses alter eye growth and the refractive status of young monkeys,” Nat. Med. 1(8), 761–765 (1995).
    [Crossref]
  25. A. R. Whatham and S. J. Judge, “Compensatory changes in eye growth and refraction induced by daily wear of soft contact lenses in young marmosets,” Vision Res. 41(3), 267–273 (2001).
    [Crossref]
  26. E. L. Smith, C.-s. Kee, R. Ramamirtham, Y. Qiao-Grider, and L.-F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Visual Sci. 46(11), 3965–3972 (2005).
    [Crossref]
  27. A. Benavente-Pérez, A. Nour, and D. Troilo, “Axial eye growth and refractive error development can be modified by exposing the peripheral retina to relative myopic or hyperopic defocus,” Invest. Ophthalmol. Visual Sci. 55(10), 6765–6773 (2014).
    [Crossref]
  28. F. Schaeffel, A. Glasser, and H. C. Howland, “Accommodation, refractive error and eye growth in chickens,” Vision Res. 28(5), 639–657 (1988).
    [Crossref]
  29. E. L. Irving, J. G. Sivak, and M. G. Callender, “Refractive plasticity of the developing chick eye: a summary and update,” Ophthalmic Physiol. Opt. 35(6), 600–606 (2015).
    [Crossref]
  30. E. L. Smith III, M. C. W. Campbell, and E. Irving, “Does peripheral retinal input explain the promising myopia control effects of corneal reshaping therapy (CRT or ortho-K) & multifocal soft contact lenses?” Ophthalmic Physiol. Opt. 33(3), 379–384 (2013).
    [Crossref]
  31. J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: a network meta-analysis,” Ophthalmology 123(4), 697–708 (2016).
    [Crossref]
  32. C. S. Y. Lam, W. C. Tang, D. Y.-y. Tse, R. P. K. Lee, R. K. M. Chun, K. Hasegawa, H. Qi, T. Hatanaka, and C. H. To, “Defocus Incorporated Multiple Segments (DIMS) spectacle lenses slow myopia progression: a 2-year randomised clinical trial,” Br. J. Ophthalmol. 104(3), 363–368 (2020).
    [Crossref]
  33. A. Mathur and D. A. Atchison, “Effect of orthokeratology on peripheral aberrations of the eye,” Optom. Vis. Sci. 86(5), E476–E484 (2009).
    [Crossref]
  34. J. M. González-Méijome, M. A. Faria-Ribeiro, D. P. Lopes-Ferreira, P. Fernandes, G. Carracedo, and A. Queiros, “Changes in peripheral refractive profile after orthokeratology for different degrees of myopia,” Curr. Eye Res. 41(2), 199–207 (2016).
    [Crossref]
  35. R. Calver, H. Radhakrishnan, E. Osuobeni, and D. O’Leary, “Peripheral refraction for distance and near vision in emmetropes and myopes,” Ophthalmic Physiol. Opt. 27(6), 584–593 (2007).
    [Crossref]
  36. L. N. Davies and E. A. H. Mallen, “Influence of accommodation and refractive status on the peripheral refractive profile,” Br. J. Ophthalmol. 93(9), 1186–1190 (2009).
    [Crossref]
  37. J. Tabernero and F. Schaeffel, “Fast scanning photoretinoscope for measuring peripheral refraction as a function of accommodation,” J. Opt. Soc. Am. A 26(10), 2206–2210 (2009).
    [Crossref]
  38. W. N. Charman and G. Heron, “Microfluctuations in accommodation: an update on their characteristics and possible role,” Ophthalmic Physiol. Opt. 35(5), 476–499 (2015).
    [Crossref]
  39. D. Seidel, L. S. Gray, and G. Heron, “Retinotopic accommodation responses in myopia,” Invest. Ophthalmol. Visual Sci. 44(3), 1035–1041 (2003).
    [Crossref]
  40. M. Day, N. C. Strang, D. Seidel, L. S. Gray, and E. A. H. Mallen, “Refractive group differences in accommodation microfluctuations with changing accommodation stimulus,” Ophthalmic Physiol. Opt. 26(1), 88–96 (2006).
    [Crossref]
  41. E. Harb, F. Thorn, and D. Troilo, “Characteristics of accommodative behavior during sustained reading in emmetropes and myopes,” Vision Res. 46(16), 2581–2592 (2006).
    [Crossref]
  42. T. Langaas, P. M. Riddell, E. Svarverud, A. E. Ystenaes, I. Langeggen, and J. R. Bruenech, “Variability of the accommodation response in early onset myopia,” Optom. Vis. Sci. 85(1), 37–48 (2008).
    [Crossref]
  43. V. Sreenivasan, E. L. Irving, and W. R. Bobier, “Effect of near adds on the variability of accommodative response in myopic children,” Ophthalmic Physiol. Opt. 31(2), 145–154 (2011).
    [Crossref]
  44. Artificiell optisk strålning (2019), p. 30.
  45. F. Delori, R. Webb, and D. Sliney, “Maximum permissible exposures for ocular safety (ansi 2000), with emphasis on ophthalmic devices,” J. Opt. Soc. Am. A 24(5), 1250–1265 (2007).
    [Crossref]
  46. T. O. Salmon, R. W. West, W. Gasser, and T. Kenmore, “Measurement of refractive errors in young myopes using the COAS Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(1), 6–14 (2003).
    [Crossref]
  47. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31(19), 3594–3600 (1992).
    [Crossref]
  48. A. Mathur, D. A. Atchison, and W. N. Charman, “Myopia and peripheral ocular aberrations,” J. Vis. 9(10), 15 (2009).
    [Crossref]
  49. L. Lundström, J. Gustafsson, and P. Unsbo, “Population distribution of wavefront aberrations in the peripheral human eye,” J. Opt. Soc. Am. A 26(10), 2192–2198 (2009).
    [Crossref]
  50. K. Baskaran, P. Unsbo, and J. Gustafsson, “Influence of age on peripheral ocular aberrations,” Optom. Vis. Sci. 88(9), 1088–1098 (2011).
    [Crossref]
  51. B. Jaeken and P. Artal, “Optical quality of emmetropic and myopic eyes in the periphery measured with high-angular resolution,” Invest. Ophthalmol. Visual Sci. 53(7), 3405–3413 (2012).
    [Crossref]
  52. P. Artal, ed., Handbook of Visual Optics, vol. 1 (CRC Press, 2017).
  53. D. Romashchenko, R. Rosén, and L. Lundström, “Peripheral refraction and higher order aberrations,” Clin. Exp. Optom. 103(1), 86–94 (2020).
    [Crossref]
  54. B. Jaeken, L. Lundström, and P. Artal, “Fast scanning peripheral wave-front sensor for the human eye,” Opt. Express 19(8), 7903–7913 (2011).
    [Crossref]
  55. C. Fedtke, K. Ehrmann, D. Falk, R. C. Bakaraju, and B. A. Holden, “The BHVI-EyeMapper: peripheral refraction and aberration profiles,” Optom. Vis. Sci. 91(10), 1199–1207 (2014).
    [Crossref]
  56. X. Wei and L. Thibos, “Design and validation of a scanning Shack Hartmann aberrometer for measurements of the eye over a wide field of view,” Opt. Express 18(2), 1134–1143 (2010).
    [Crossref]

2020 (3)

G. Lingham, D. A. Mackey, R. Lucas, and S. Yazar, “How does spending time outdoors protect against myopia? A review,” Br. J. Ophthalmol. 104(5), 593–599 (2020).
[Crossref]

C. S. Y. Lam, W. C. Tang, D. Y.-y. Tse, R. P. K. Lee, R. K. M. Chun, K. Hasegawa, H. Qi, T. Hatanaka, and C. H. To, “Defocus Incorporated Multiple Segments (DIMS) spectacle lenses slow myopia progression: a 2-year randomised clinical trial,” Br. J. Ophthalmol. 104(3), 363–368 (2020).
[Crossref]

D. Romashchenko, R. Rosén, and L. Lundström, “Peripheral refraction and higher order aberrations,” Clin. Exp. Optom. 103(1), 86–94 (2020).
[Crossref]

2019 (1)

L. Deng and Y. Pang, “Effect of outdoor activities in myopia control: meta-analysis of clinical studies,” Optom. Vis. Sci. 96(4), 276–282 (2019).
[Crossref]

2016 (2)

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: a network meta-analysis,” Ophthalmology 123(4), 697–708 (2016).
[Crossref]

J. M. González-Méijome, M. A. Faria-Ribeiro, D. P. Lopes-Ferreira, P. Fernandes, G. Carracedo, and A. Queiros, “Changes in peripheral refractive profile after orthokeratology for different degrees of myopia,” Curr. Eye Res. 41(2), 199–207 (2016).
[Crossref]

2015 (5)

E. L. Irving, J. G. Sivak, and M. G. Callender, “Refractive plasticity of the developing chick eye: a summary and update,” Ophthalmic Physiol. Opt. 35(6), 600–606 (2015).
[Crossref]

P. K. Verkicharla, K. Ohno-Matsui, and S. M. Saw, “Current and predicted demographics of high myopia and an update of its associated pathological changes,” Ophthalmic Physiol. Opt. 35(5), 465–475 (2015).
[Crossref]

K. M. Williams, G. Bertelsen, P. Cumberland, C. Wolfram, V. J. M. Verhoeven, E. Anastasopoulos, G. H. S. Buitendijk, A. Cougnard-Grégoire, C. Creuzot-Garcher, M. G. Erke, R. Hogg, R. Höhn, P. Hysi, A. P. Khawaja, J.-F. Korobelnik, J. Ried, J. R. Vingerling, A. Bron, J.-F. Dartigues, A. Fletcher, A. Hofman, R. W. A. M. Kuijpers, R. N. Luben, K. Oxele, F. Topouzis, T. von Hanno, A. Mirshahi, P. J. Foster, C. M. van Duijn, N. Pfeiffer, C. Delcourt, C. C. W. Klaver, J. Rahi, C. J. Hammond, and E. E. E. Consortium, “Increasing prevalence of myopia in Europe and the impact of education,” Ophthalmology 122(7), 1489–1497 (2015).
[Crossref]

H.-M. Huang, D. S.-T. Chang, and P.-C. Wu, “The association between near work activities and myopia in children–a systematic review and meta-analysis,” PLoS One 10(10), e0140419 (2015).
[Crossref]

W. N. Charman and G. Heron, “Microfluctuations in accommodation: an update on their characteristics and possible role,” Ophthalmic Physiol. Opt. 35(5), 476–499 (2015).
[Crossref]

2014 (4)

C. Fedtke, K. Ehrmann, D. Falk, R. C. Bakaraju, and B. A. Holden, “The BHVI-EyeMapper: peripheral refraction and aberration profiles,” Optom. Vis. Sci. 91(10), 1199–1207 (2014).
[Crossref]

B. Holden, P. Sankaridurg, E. Smith, T. Aller, M. Jong, and M. He, “Myopia, an underrated global challenge to vision: where the current data takes us on myopia control,” Eye 28(2), 142–146 (2014).
[Crossref]

E. Goldschmidt and N. Jacobsen, “Genetic and environmental effects on myopia development and progression,” Eye 28(2), 126–133 (2014).
[Crossref]

A. Benavente-Pérez, A. Nour, and D. Troilo, “Axial eye growth and refractive error development can be modified by exposing the peripheral retina to relative myopic or hyperopic defocus,” Invest. Ophthalmol. Visual Sci. 55(10), 6765–6773 (2014).
[Crossref]

2013 (1)

E. L. Smith III, M. C. W. Campbell, and E. Irving, “Does peripheral retinal input explain the promising myopia control effects of corneal reshaping therapy (CRT or ortho-K) & multifocal soft contact lenses?” Ophthalmic Physiol. Opt. 33(3), 379–384 (2013).
[Crossref]

2012 (3)

D. I. Flitcroft, “The complex interactions of retinal, optical and environmental factors in myopia aetiology,” Prog. Retinal Eye Res. 31(6), 622–660 (2012).
[Crossref]

E. W. Wiecek, L. R. Pasquale, J. Fiser, S. Dakin, and P. J. Bex, “Effects of peripheral visual field loss on eye movements during visual search,” Front. Psychol. 3, 472 (2012).
[Crossref]

B. Jaeken and P. Artal, “Optical quality of emmetropic and myopic eyes in the periphery measured with high-angular resolution,” Invest. Ophthalmol. Visual Sci. 53(7), 3405–3413 (2012).
[Crossref]

2011 (3)

B. Jaeken, L. Lundström, and P. Artal, “Fast scanning peripheral wave-front sensor for the human eye,” Opt. Express 19(8), 7903–7913 (2011).
[Crossref]

K. Baskaran, P. Unsbo, and J. Gustafsson, “Influence of age on peripheral ocular aberrations,” Optom. Vis. Sci. 88(9), 1088–1098 (2011).
[Crossref]

V. Sreenivasan, E. L. Irving, and W. R. Bobier, “Effect of near adds on the variability of accommodative response in myopic children,” Ophthalmic Physiol. Opt. 31(2), 145–154 (2011).
[Crossref]

2010 (3)

X. Wei and L. Thibos, “Design and validation of a scanning Shack Hartmann aberrometer for measurements of the eye over a wide field of view,” Opt. Express 18(2), 1134–1143 (2010).
[Crossref]

M. A. Wetton, M. S. Horswill, C. Hatherly, J. M. Wood, N. A. Pachana, and K. J. Anstey, “The development and validation of two complementary measures of drivers’ hazard perception ability,” Accid. Analysis & Prev. 42(4), 1232–1239 (2010).
[Crossref]

C. M. Patino, R. McKean-Cowdin, S. P. Azen, J. C. Allison, F. Choudhury, R. Varma, and L. A. L. E. S. Group, “Central and peripheral visual impairment and the risk of falls and falls with injury,” Ophthalmology 117(2), 199–206.e1 (2010).
[Crossref]

2009 (8)

L. Lundström, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vis. 9(6), 17 (2009).
[Crossref]

A. Mathur, D. A. Atchison, and W. N. Charman, “Effect of accommodation on peripheral ocular aberrations,” J. Vis. 9(12), 20 (2009).
[Crossref]

A. Whatham, F. Zimmermann, A. Martinez, S. Delgado, P. L. de la Jara, P. Sankaridurg, and A. Ho, “Influence of accommodation on off-axis refractive errors in myopic eyes,” J. Vis. 9(3), 14 (2009).
[Crossref]

L. N. Davies and E. A. H. Mallen, “Influence of accommodation and refractive status on the peripheral refractive profile,” Br. J. Ophthalmol. 93(9), 1186–1190 (2009).
[Crossref]

J. Tabernero and F. Schaeffel, “Fast scanning photoretinoscope for measuring peripheral refraction as a function of accommodation,” J. Opt. Soc. Am. A 26(10), 2206–2210 (2009).
[Crossref]

A. Mathur and D. A. Atchison, “Effect of orthokeratology on peripheral aberrations of the eye,” Optom. Vis. Sci. 86(5), E476–E484 (2009).
[Crossref]

A. Mathur, D. A. Atchison, and W. N. Charman, “Myopia and peripheral ocular aberrations,” J. Vis. 9(10), 15 (2009).
[Crossref]

L. Lundström, J. Gustafsson, and P. Unsbo, “Population distribution of wavefront aberrations in the peripheral human eye,” J. Opt. Soc. Am. A 26(10), 2192–2198 (2009).
[Crossref]

2008 (1)

T. Langaas, P. M. Riddell, E. Svarverud, A. E. Ystenaes, I. Langeggen, and J. R. Bruenech, “Variability of the accommodation response in early onset myopia,” Optom. Vis. Sci. 85(1), 37–48 (2008).
[Crossref]

2007 (2)

F. Delori, R. Webb, and D. Sliney, “Maximum permissible exposures for ocular safety (ansi 2000), with emphasis on ophthalmic devices,” J. Opt. Soc. Am. A 24(5), 1250–1265 (2007).
[Crossref]

R. Calver, H. Radhakrishnan, E. Osuobeni, and D. O’Leary, “Peripheral refraction for distance and near vision in emmetropes and myopes,” Ophthalmic Physiol. Opt. 27(6), 584–593 (2007).
[Crossref]

2006 (2)

M. Day, N. C. Strang, D. Seidel, L. S. Gray, and E. A. H. Mallen, “Refractive group differences in accommodation microfluctuations with changing accommodation stimulus,” Ophthalmic Physiol. Opt. 26(1), 88–96 (2006).
[Crossref]

E. Harb, F. Thorn, and D. Troilo, “Characteristics of accommodative behavior during sustained reading in emmetropes and myopes,” Vision Res. 46(16), 2581–2592 (2006).
[Crossref]

2005 (2)

E. L. Smith, C.-s. Kee, R. Ramamirtham, Y. Qiao-Grider, and L.-F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Visual Sci. 46(11), 3965–3972 (2005).
[Crossref]

A. Berencsi, M. Ishihara, and K. Imanaka, “The functional role of central and peripheral vision in the control of posture,” Hum. Mov. Sci. 24(5-6), 689–709 (2005).
[Crossref]

2004 (2)

J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43(4), 447–468 (2004).
[Crossref]

S. A. McFadden, M. H. Howlett, and J. R. Mertz, “Retinoic acid signals the direction of ocular elongation in the guinea pig eye,” Vision Res. 44(7), 643–653 (2004).
[Crossref]

2003 (2)

D. Seidel, L. S. Gray, and G. Heron, “Retinotopic accommodation responses in myopia,” Invest. Ophthalmol. Visual Sci. 44(3), 1035–1041 (2003).
[Crossref]

T. O. Salmon, R. W. West, W. Gasser, and T. Kenmore, “Measurement of refractive errors in young myopes using the COAS Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(1), 6–14 (2003).
[Crossref]

2002 (1)

T. W. Walker and D. O. Mutti, “The effect of accommodation on ocular shape,” Optom. Vis. Sci. 79(7), 424–430 (2002).
[Crossref]

2001 (1)

A. R. Whatham and S. J. Judge, “Compensatory changes in eye growth and refraction induced by daily wear of soft contact lenses in young marmosets,” Vision Res. 41(3), 267–273 (2001).
[Crossref]

1999 (1)

C. Owsley and G. McGwin Jr, “Vision impairment and driving,” Surv. Ophthalmol. 43(6), 535–550 (1999).
[Crossref]

1995 (1)

L.-F. Hung, M. L. J. Crawford, and E. L. Smith, “Spectacle lenses alter eye growth and the refractive status of young monkeys,” Nat. Med. 1(8), 761–765 (1995).
[Crossref]

1992 (2)

J. M. Wood and R. Troutbeck, “Effect of restriction of the binocular visual field on driving performance,” Ophthalmic Physiol. Opt. 12(3), 291–298 (1992).
[Crossref]

L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31(19), 3594–3600 (1992).
[Crossref]

1988 (2)

G. Smith, M. Millodot, and N. McBrien, “The effect of accommodation on oblique astigmatism and field curvature of the human eye,” Clin. Exp. Optom. 71(4), 119–125 (1988).
[Crossref]

F. Schaeffel, A. Glasser, and H. C. Howland, “Accommodation, refractive error and eye growth in chickens,” Vision Res. 28(5), 639–657 (1988).
[Crossref]

Aller, T.

B. Holden, P. Sankaridurg, E. Smith, T. Aller, M. Jong, and M. He, “Myopia, an underrated global challenge to vision: where the current data takes us on myopia control,” Eye 28(2), 142–146 (2014).
[Crossref]

Allison, J. C.

C. M. Patino, R. McKean-Cowdin, S. P. Azen, J. C. Allison, F. Choudhury, R. Varma, and L. A. L. E. S. Group, “Central and peripheral visual impairment and the risk of falls and falls with injury,” Ophthalmology 117(2), 199–206.e1 (2010).
[Crossref]

Anastasopoulos, E.

K. M. Williams, G. Bertelsen, P. Cumberland, C. Wolfram, V. J. M. Verhoeven, E. Anastasopoulos, G. H. S. Buitendijk, A. Cougnard-Grégoire, C. Creuzot-Garcher, M. G. Erke, R. Hogg, R. Höhn, P. Hysi, A. P. Khawaja, J.-F. Korobelnik, J. Ried, J. R. Vingerling, A. Bron, J.-F. Dartigues, A. Fletcher, A. Hofman, R. W. A. M. Kuijpers, R. N. Luben, K. Oxele, F. Topouzis, T. von Hanno, A. Mirshahi, P. J. Foster, C. M. van Duijn, N. Pfeiffer, C. Delcourt, C. C. W. Klaver, J. Rahi, C. J. Hammond, and E. E. E. Consortium, “Increasing prevalence of myopia in Europe and the impact of education,” Ophthalmology 122(7), 1489–1497 (2015).
[Crossref]

Anstey, K. J.

M. A. Wetton, M. S. Horswill, C. Hatherly, J. M. Wood, N. A. Pachana, and K. J. Anstey, “The development and validation of two complementary measures of drivers’ hazard perception ability,” Accid. Analysis & Prev. 42(4), 1232–1239 (2010).
[Crossref]

Artal, P.

B. Jaeken and P. Artal, “Optical quality of emmetropic and myopic eyes in the periphery measured with high-angular resolution,” Invest. Ophthalmol. Visual Sci. 53(7), 3405–3413 (2012).
[Crossref]

B. Jaeken, L. Lundström, and P. Artal, “Fast scanning peripheral wave-front sensor for the human eye,” Opt. Express 19(8), 7903–7913 (2011).
[Crossref]

L. Lundström, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vis. 9(6), 17 (2009).
[Crossref]

Atchison, D. A.

A. Mathur, D. A. Atchison, and W. N. Charman, “Effect of accommodation on peripheral ocular aberrations,” J. Vis. 9(12), 20 (2009).
[Crossref]

A. Mathur, D. A. Atchison, and W. N. Charman, “Myopia and peripheral ocular aberrations,” J. Vis. 9(10), 15 (2009).
[Crossref]

A. Mathur and D. A. Atchison, “Effect of orthokeratology on peripheral aberrations of the eye,” Optom. Vis. Sci. 86(5), E476–E484 (2009).
[Crossref]

Azen, S. P.

C. M. Patino, R. McKean-Cowdin, S. P. Azen, J. C. Allison, F. Choudhury, R. Varma, and L. A. L. E. S. Group, “Central and peripheral visual impairment and the risk of falls and falls with injury,” Ophthalmology 117(2), 199–206.e1 (2010).
[Crossref]

Bakaraju, R. C.

C. Fedtke, K. Ehrmann, D. Falk, R. C. Bakaraju, and B. A. Holden, “The BHVI-EyeMapper: peripheral refraction and aberration profiles,” Optom. Vis. Sci. 91(10), 1199–1207 (2014).
[Crossref]

Bao, F.

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: a network meta-analysis,” Ophthalmology 123(4), 697–708 (2016).
[Crossref]

Baskaran, K.

K. Baskaran, P. Unsbo, and J. Gustafsson, “Influence of age on peripheral ocular aberrations,” Optom. Vis. Sci. 88(9), 1088–1098 (2011).
[Crossref]

Benavente-Pérez, A.

A. Benavente-Pérez, A. Nour, and D. Troilo, “Axial eye growth and refractive error development can be modified by exposing the peripheral retina to relative myopic or hyperopic defocus,” Invest. Ophthalmol. Visual Sci. 55(10), 6765–6773 (2014).
[Crossref]

Berencsi, A.

A. Berencsi, M. Ishihara, and K. Imanaka, “The functional role of central and peripheral vision in the control of posture,” Hum. Mov. Sci. 24(5-6), 689–709 (2005).
[Crossref]

Bertelsen, G.

K. M. Williams, G. Bertelsen, P. Cumberland, C. Wolfram, V. J. M. Verhoeven, E. Anastasopoulos, G. H. S. Buitendijk, A. Cougnard-Grégoire, C. Creuzot-Garcher, M. G. Erke, R. Hogg, R. Höhn, P. Hysi, A. P. Khawaja, J.-F. Korobelnik, J. Ried, J. R. Vingerling, A. Bron, J.-F. Dartigues, A. Fletcher, A. Hofman, R. W. A. M. Kuijpers, R. N. Luben, K. Oxele, F. Topouzis, T. von Hanno, A. Mirshahi, P. J. Foster, C. M. van Duijn, N. Pfeiffer, C. Delcourt, C. C. W. Klaver, J. Rahi, C. J. Hammond, and E. E. E. Consortium, “Increasing prevalence of myopia in Europe and the impact of education,” Ophthalmology 122(7), 1489–1497 (2015).
[Crossref]

Bex, P. J.

E. W. Wiecek, L. R. Pasquale, J. Fiser, S. Dakin, and P. J. Bex, “Effects of peripheral visual field loss on eye movements during visual search,” Front. Psychol. 3, 472 (2012).
[Crossref]

Bobier, W. R.

V. Sreenivasan, E. L. Irving, and W. R. Bobier, “Effect of near adds on the variability of accommodative response in myopic children,” Ophthalmic Physiol. Opt. 31(2), 145–154 (2011).
[Crossref]

Bradley, A.

Bron, A.

K. M. Williams, G. Bertelsen, P. Cumberland, C. Wolfram, V. J. M. Verhoeven, E. Anastasopoulos, G. H. S. Buitendijk, A. Cougnard-Grégoire, C. Creuzot-Garcher, M. G. Erke, R. Hogg, R. Höhn, P. Hysi, A. P. Khawaja, J.-F. Korobelnik, J. Ried, J. R. Vingerling, A. Bron, J.-F. Dartigues, A. Fletcher, A. Hofman, R. W. A. M. Kuijpers, R. N. Luben, K. Oxele, F. Topouzis, T. von Hanno, A. Mirshahi, P. J. Foster, C. M. van Duijn, N. Pfeiffer, C. Delcourt, C. C. W. Klaver, J. Rahi, C. J. Hammond, and E. E. E. Consortium, “Increasing prevalence of myopia in Europe and the impact of education,” Ophthalmology 122(7), 1489–1497 (2015).
[Crossref]

Bruenech, J. R.

T. Langaas, P. M. Riddell, E. Svarverud, A. E. Ystenaes, I. Langeggen, and J. R. Bruenech, “Variability of the accommodation response in early onset myopia,” Optom. Vis. Sci. 85(1), 37–48 (2008).
[Crossref]

Buitendijk, G. H. S.

K. M. Williams, G. Bertelsen, P. Cumberland, C. Wolfram, V. J. M. Verhoeven, E. Anastasopoulos, G. H. S. Buitendijk, A. Cougnard-Grégoire, C. Creuzot-Garcher, M. G. Erke, R. Hogg, R. Höhn, P. Hysi, A. P. Khawaja, J.-F. Korobelnik, J. Ried, J. R. Vingerling, A. Bron, J.-F. Dartigues, A. Fletcher, A. Hofman, R. W. A. M. Kuijpers, R. N. Luben, K. Oxele, F. Topouzis, T. von Hanno, A. Mirshahi, P. J. Foster, C. M. van Duijn, N. Pfeiffer, C. Delcourt, C. C. W. Klaver, J. Rahi, C. J. Hammond, and E. E. E. Consortium, “Increasing prevalence of myopia in Europe and the impact of education,” Ophthalmology 122(7), 1489–1497 (2015).
[Crossref]

Callender, M. G.

E. L. Irving, J. G. Sivak, and M. G. Callender, “Refractive plasticity of the developing chick eye: a summary and update,” Ophthalmic Physiol. Opt. 35(6), 600–606 (2015).
[Crossref]

Calver, R.

R. Calver, H. Radhakrishnan, E. Osuobeni, and D. O’Leary, “Peripheral refraction for distance and near vision in emmetropes and myopes,” Ophthalmic Physiol. Opt. 27(6), 584–593 (2007).
[Crossref]

Campbell, M. C. W.

E. L. Smith III, M. C. W. Campbell, and E. Irving, “Does peripheral retinal input explain the promising myopia control effects of corneal reshaping therapy (CRT or ortho-K) & multifocal soft contact lenses?” Ophthalmic Physiol. Opt. 33(3), 379–384 (2013).
[Crossref]

Carracedo, G.

J. M. González-Méijome, M. A. Faria-Ribeiro, D. P. Lopes-Ferreira, P. Fernandes, G. Carracedo, and A. Queiros, “Changes in peripheral refractive profile after orthokeratology for different degrees of myopia,” Curr. Eye Res. 41(2), 199–207 (2016).
[Crossref]

Chang, D. S.-T.

H.-M. Huang, D. S.-T. Chang, and P.-C. Wu, “The association between near work activities and myopia in children–a systematic review and meta-analysis,” PLoS One 10(10), e0140419 (2015).
[Crossref]

Charman, W. N.

W. N. Charman and G. Heron, “Microfluctuations in accommodation: an update on their characteristics and possible role,” Ophthalmic Physiol. Opt. 35(5), 476–499 (2015).
[Crossref]

A. Mathur, D. A. Atchison, and W. N. Charman, “Myopia and peripheral ocular aberrations,” J. Vis. 9(10), 15 (2009).
[Crossref]

A. Mathur, D. A. Atchison, and W. N. Charman, “Effect of accommodation on peripheral ocular aberrations,” J. Vis. 9(12), 20 (2009).
[Crossref]

Chen, C.-W.

P.-C. Huang, Y.-C. Hsiao, C.-Y. Tsai, D.-C. Tsai, C.-W. Chen, C.-C. Hsu, S.-C. Huang, M.-H. Lin, and Y.-M. Liou, “Protective behaviours of near work and time outdoors in myopia prevalence and progression in myopic children: a 2-year prospective population study,” Br. J. Ophthalmol. (2019).

Chen, H.

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: a network meta-analysis,” Ophthalmology 123(4), 697–708 (2016).
[Crossref]

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: a network meta-analysis,” Ophthalmology 123(4), 697–708 (2016).
[Crossref]

Choudhury, F.

C. M. Patino, R. McKean-Cowdin, S. P. Azen, J. C. Allison, F. Choudhury, R. Varma, and L. A. L. E. S. Group, “Central and peripheral visual impairment and the risk of falls and falls with injury,” Ophthalmology 117(2), 199–206.e1 (2010).
[Crossref]

Chun, R. K. M.

C. S. Y. Lam, W. C. Tang, D. Y.-y. Tse, R. P. K. Lee, R. K. M. Chun, K. Hasegawa, H. Qi, T. Hatanaka, and C. H. To, “Defocus Incorporated Multiple Segments (DIMS) spectacle lenses slow myopia progression: a 2-year randomised clinical trial,” Br. J. Ophthalmol. 104(3), 363–368 (2020).
[Crossref]

Consortium, E. E. E.

K. M. Williams, G. Bertelsen, P. Cumberland, C. Wolfram, V. J. M. Verhoeven, E. Anastasopoulos, G. H. S. Buitendijk, A. Cougnard-Grégoire, C. Creuzot-Garcher, M. G. Erke, R. Hogg, R. Höhn, P. Hysi, A. P. Khawaja, J.-F. Korobelnik, J. Ried, J. R. Vingerling, A. Bron, J.-F. Dartigues, A. Fletcher, A. Hofman, R. W. A. M. Kuijpers, R. N. Luben, K. Oxele, F. Topouzis, T. von Hanno, A. Mirshahi, P. J. Foster, C. M. van Duijn, N. Pfeiffer, C. Delcourt, C. C. W. Klaver, J. Rahi, C. J. Hammond, and E. E. E. Consortium, “Increasing prevalence of myopia in Europe and the impact of education,” Ophthalmology 122(7), 1489–1497 (2015).
[Crossref]

Cougnard-Grégoire, A.

K. M. Williams, G. Bertelsen, P. Cumberland, C. Wolfram, V. J. M. Verhoeven, E. Anastasopoulos, G. H. S. Buitendijk, A. Cougnard-Grégoire, C. Creuzot-Garcher, M. G. Erke, R. Hogg, R. Höhn, P. Hysi, A. P. Khawaja, J.-F. Korobelnik, J. Ried, J. R. Vingerling, A. Bron, J.-F. Dartigues, A. Fletcher, A. Hofman, R. W. A. M. Kuijpers, R. N. Luben, K. Oxele, F. Topouzis, T. von Hanno, A. Mirshahi, P. J. Foster, C. M. van Duijn, N. Pfeiffer, C. Delcourt, C. C. W. Klaver, J. Rahi, C. J. Hammond, and E. E. E. Consortium, “Increasing prevalence of myopia in Europe and the impact of education,” Ophthalmology 122(7), 1489–1497 (2015).
[Crossref]

Crawford, M. L. J.

L.-F. Hung, M. L. J. Crawford, and E. L. Smith, “Spectacle lenses alter eye growth and the refractive status of young monkeys,” Nat. Med. 1(8), 761–765 (1995).
[Crossref]

Creuzot-Garcher, C.

K. M. Williams, G. Bertelsen, P. Cumberland, C. Wolfram, V. J. M. Verhoeven, E. Anastasopoulos, G. H. S. Buitendijk, A. Cougnard-Grégoire, C. Creuzot-Garcher, M. G. Erke, R. Hogg, R. Höhn, P. Hysi, A. P. Khawaja, J.-F. Korobelnik, J. Ried, J. R. Vingerling, A. Bron, J.-F. Dartigues, A. Fletcher, A. Hofman, R. W. A. M. Kuijpers, R. N. Luben, K. Oxele, F. Topouzis, T. von Hanno, A. Mirshahi, P. J. Foster, C. M. van Duijn, N. Pfeiffer, C. Delcourt, C. C. W. Klaver, J. Rahi, C. J. Hammond, and E. E. E. Consortium, “Increasing prevalence of myopia in Europe and the impact of education,” Ophthalmology 122(7), 1489–1497 (2015).
[Crossref]

Cumberland, P.

K. M. Williams, G. Bertelsen, P. Cumberland, C. Wolfram, V. J. M. Verhoeven, E. Anastasopoulos, G. H. S. Buitendijk, A. Cougnard-Grégoire, C. Creuzot-Garcher, M. G. Erke, R. Hogg, R. Höhn, P. Hysi, A. P. Khawaja, J.-F. Korobelnik, J. Ried, J. R. Vingerling, A. Bron, J.-F. Dartigues, A. Fletcher, A. Hofman, R. W. A. M. Kuijpers, R. N. Luben, K. Oxele, F. Topouzis, T. von Hanno, A. Mirshahi, P. J. Foster, C. M. van Duijn, N. Pfeiffer, C. Delcourt, C. C. W. Klaver, J. Rahi, C. J. Hammond, and E. E. E. Consortium, “Increasing prevalence of myopia in Europe and the impact of education,” Ophthalmology 122(7), 1489–1497 (2015).
[Crossref]

Dakin, S.

E. W. Wiecek, L. R. Pasquale, J. Fiser, S. Dakin, and P. J. Bex, “Effects of peripheral visual field loss on eye movements during visual search,” Front. Psychol. 3, 472 (2012).
[Crossref]

Dartigues, J.-F.

K. M. Williams, G. Bertelsen, P. Cumberland, C. Wolfram, V. J. M. Verhoeven, E. Anastasopoulos, G. H. S. Buitendijk, A. Cougnard-Grégoire, C. Creuzot-Garcher, M. G. Erke, R. Hogg, R. Höhn, P. Hysi, A. P. Khawaja, J.-F. Korobelnik, J. Ried, J. R. Vingerling, A. Bron, J.-F. Dartigues, A. Fletcher, A. Hofman, R. W. A. M. Kuijpers, R. N. Luben, K. Oxele, F. Topouzis, T. von Hanno, A. Mirshahi, P. J. Foster, C. M. van Duijn, N. Pfeiffer, C. Delcourt, C. C. W. Klaver, J. Rahi, C. J. Hammond, and E. E. E. Consortium, “Increasing prevalence of myopia in Europe and the impact of education,” Ophthalmology 122(7), 1489–1497 (2015).
[Crossref]

Davies, L. N.

L. N. Davies and E. A. H. Mallen, “Influence of accommodation and refractive status on the peripheral refractive profile,” Br. J. Ophthalmol. 93(9), 1186–1190 (2009).
[Crossref]

Day, M.

M. Day, N. C. Strang, D. Seidel, L. S. Gray, and E. A. H. Mallen, “Refractive group differences in accommodation microfluctuations with changing accommodation stimulus,” Ophthalmic Physiol. Opt. 26(1), 88–96 (2006).
[Crossref]

de la Jara, P. L.

A. Whatham, F. Zimmermann, A. Martinez, S. Delgado, P. L. de la Jara, P. Sankaridurg, and A. Ho, “Influence of accommodation on off-axis refractive errors in myopic eyes,” J. Vis. 9(3), 14 (2009).
[Crossref]

Delcourt, C.

K. M. Williams, G. Bertelsen, P. Cumberland, C. Wolfram, V. J. M. Verhoeven, E. Anastasopoulos, G. H. S. Buitendijk, A. Cougnard-Grégoire, C. Creuzot-Garcher, M. G. Erke, R. Hogg, R. Höhn, P. Hysi, A. P. Khawaja, J.-F. Korobelnik, J. Ried, J. R. Vingerling, A. Bron, J.-F. Dartigues, A. Fletcher, A. Hofman, R. W. A. M. Kuijpers, R. N. Luben, K. Oxele, F. Topouzis, T. von Hanno, A. Mirshahi, P. J. Foster, C. M. van Duijn, N. Pfeiffer, C. Delcourt, C. C. W. Klaver, J. Rahi, C. J. Hammond, and E. E. E. Consortium, “Increasing prevalence of myopia in Europe and the impact of education,” Ophthalmology 122(7), 1489–1497 (2015).
[Crossref]

Delgado, S.

A. Whatham, F. Zimmermann, A. Martinez, S. Delgado, P. L. de la Jara, P. Sankaridurg, and A. Ho, “Influence of accommodation on off-axis refractive errors in myopic eyes,” J. Vis. 9(3), 14 (2009).
[Crossref]

Delori, F.

Deng, L.

L. Deng and Y. Pang, “Effect of outdoor activities in myopia control: meta-analysis of clinical studies,” Optom. Vis. Sci. 96(4), 276–282 (2019).
[Crossref]

Du, Y.

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: a network meta-analysis,” Ophthalmology 123(4), 697–708 (2016).
[Crossref]

E. S. Group, L. A. L.

C. M. Patino, R. McKean-Cowdin, S. P. Azen, J. C. Allison, F. Choudhury, R. Varma, and L. A. L. E. S. Group, “Central and peripheral visual impairment and the risk of falls and falls with injury,” Ophthalmology 117(2), 199–206.e1 (2010).
[Crossref]

Ehrmann, K.

C. Fedtke, K. Ehrmann, D. Falk, R. C. Bakaraju, and B. A. Holden, “The BHVI-EyeMapper: peripheral refraction and aberration profiles,” Optom. Vis. Sci. 91(10), 1199–1207 (2014).
[Crossref]

Erke, M. G.

K. M. Williams, G. Bertelsen, P. Cumberland, C. Wolfram, V. J. M. Verhoeven, E. Anastasopoulos, G. H. S. Buitendijk, A. Cougnard-Grégoire, C. Creuzot-Garcher, M. G. Erke, R. Hogg, R. Höhn, P. Hysi, A. P. Khawaja, J.-F. Korobelnik, J. Ried, J. R. Vingerling, A. Bron, J.-F. Dartigues, A. Fletcher, A. Hofman, R. W. A. M. Kuijpers, R. N. Luben, K. Oxele, F. Topouzis, T. von Hanno, A. Mirshahi, P. J. Foster, C. M. van Duijn, N. Pfeiffer, C. Delcourt, C. C. W. Klaver, J. Rahi, C. J. Hammond, and E. E. E. Consortium, “Increasing prevalence of myopia in Europe and the impact of education,” Ophthalmology 122(7), 1489–1497 (2015).
[Crossref]

Falk, D.

C. Fedtke, K. Ehrmann, D. Falk, R. C. Bakaraju, and B. A. Holden, “The BHVI-EyeMapper: peripheral refraction and aberration profiles,” Optom. Vis. Sci. 91(10), 1199–1207 (2014).
[Crossref]

Faria-Ribeiro, M. A.

J. M. González-Méijome, M. A. Faria-Ribeiro, D. P. Lopes-Ferreira, P. Fernandes, G. Carracedo, and A. Queiros, “Changes in peripheral refractive profile after orthokeratology for different degrees of myopia,” Curr. Eye Res. 41(2), 199–207 (2016).
[Crossref]

Fedtke, C.

C. Fedtke, K. Ehrmann, D. Falk, R. C. Bakaraju, and B. A. Holden, “The BHVI-EyeMapper: peripheral refraction and aberration profiles,” Optom. Vis. Sci. 91(10), 1199–1207 (2014).
[Crossref]

Fernandes, P.

J. M. González-Méijome, M. A. Faria-Ribeiro, D. P. Lopes-Ferreira, P. Fernandes, G. Carracedo, and A. Queiros, “Changes in peripheral refractive profile after orthokeratology for different degrees of myopia,” Curr. Eye Res. 41(2), 199–207 (2016).
[Crossref]

Fiser, J.

E. W. Wiecek, L. R. Pasquale, J. Fiser, S. Dakin, and P. J. Bex, “Effects of peripheral visual field loss on eye movements during visual search,” Front. Psychol. 3, 472 (2012).
[Crossref]

Fletcher, A.

K. M. Williams, G. Bertelsen, P. Cumberland, C. Wolfram, V. J. M. Verhoeven, E. Anastasopoulos, G. H. S. Buitendijk, A. Cougnard-Grégoire, C. Creuzot-Garcher, M. G. Erke, R. Hogg, R. Höhn, P. Hysi, A. P. Khawaja, J.-F. Korobelnik, J. Ried, J. R. Vingerling, A. Bron, J.-F. Dartigues, A. Fletcher, A. Hofman, R. W. A. M. Kuijpers, R. N. Luben, K. Oxele, F. Topouzis, T. von Hanno, A. Mirshahi, P. J. Foster, C. M. van Duijn, N. Pfeiffer, C. Delcourt, C. C. W. Klaver, J. Rahi, C. J. Hammond, and E. E. E. Consortium, “Increasing prevalence of myopia in Europe and the impact of education,” Ophthalmology 122(7), 1489–1497 (2015).
[Crossref]

Flitcroft, D. I.

D. I. Flitcroft, “The complex interactions of retinal, optical and environmental factors in myopia aetiology,” Prog. Retinal Eye Res. 31(6), 622–660 (2012).
[Crossref]

Flitcroft, I.

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: a network meta-analysis,” Ophthalmology 123(4), 697–708 (2016).
[Crossref]

Foster, P. J.

K. M. Williams, G. Bertelsen, P. Cumberland, C. Wolfram, V. J. M. Verhoeven, E. Anastasopoulos, G. H. S. Buitendijk, A. Cougnard-Grégoire, C. Creuzot-Garcher, M. G. Erke, R. Hogg, R. Höhn, P. Hysi, A. P. Khawaja, J.-F. Korobelnik, J. Ried, J. R. Vingerling, A. Bron, J.-F. Dartigues, A. Fletcher, A. Hofman, R. W. A. M. Kuijpers, R. N. Luben, K. Oxele, F. Topouzis, T. von Hanno, A. Mirshahi, P. J. Foster, C. M. van Duijn, N. Pfeiffer, C. Delcourt, C. C. W. Klaver, J. Rahi, C. J. Hammond, and E. E. E. Consortium, “Increasing prevalence of myopia in Europe and the impact of education,” Ophthalmology 122(7), 1489–1497 (2015).
[Crossref]

Gao, R.

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: a network meta-analysis,” Ophthalmology 123(4), 697–708 (2016).
[Crossref]

Gasser, W.

T. O. Salmon, R. W. West, W. Gasser, and T. Kenmore, “Measurement of refractive errors in young myopes using the COAS Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(1), 6–14 (2003).
[Crossref]

Glasser, A.

F. Schaeffel, A. Glasser, and H. C. Howland, “Accommodation, refractive error and eye growth in chickens,” Vision Res. 28(5), 639–657 (1988).
[Crossref]

Goldschmidt, E.

E. Goldschmidt and N. Jacobsen, “Genetic and environmental effects on myopia development and progression,” Eye 28(2), 126–133 (2014).
[Crossref]

González-Méijome, J. M.

J. M. González-Méijome, M. A. Faria-Ribeiro, D. P. Lopes-Ferreira, P. Fernandes, G. Carracedo, and A. Queiros, “Changes in peripheral refractive profile after orthokeratology for different degrees of myopia,” Curr. Eye Res. 41(2), 199–207 (2016).
[Crossref]

Gray, L. S.

M. Day, N. C. Strang, D. Seidel, L. S. Gray, and E. A. H. Mallen, “Refractive group differences in accommodation microfluctuations with changing accommodation stimulus,” Ophthalmic Physiol. Opt. 26(1), 88–96 (2006).
[Crossref]

D. Seidel, L. S. Gray, and G. Heron, “Retinotopic accommodation responses in myopia,” Invest. Ophthalmol. Visual Sci. 44(3), 1035–1041 (2003).
[Crossref]

Gustafsson, J.

K. Baskaran, P. Unsbo, and J. Gustafsson, “Influence of age on peripheral ocular aberrations,” Optom. Vis. Sci. 88(9), 1088–1098 (2011).
[Crossref]

L. Lundström, J. Gustafsson, and P. Unsbo, “Population distribution of wavefront aberrations in the peripheral human eye,” J. Opt. Soc. Am. A 26(10), 2192–2198 (2009).
[Crossref]

Hammond, C. J.

K. M. Williams, G. Bertelsen, P. Cumberland, C. Wolfram, V. J. M. Verhoeven, E. Anastasopoulos, G. H. S. Buitendijk, A. Cougnard-Grégoire, C. Creuzot-Garcher, M. G. Erke, R. Hogg, R. Höhn, P. Hysi, A. P. Khawaja, J.-F. Korobelnik, J. Ried, J. R. Vingerling, A. Bron, J.-F. Dartigues, A. Fletcher, A. Hofman, R. W. A. M. Kuijpers, R. N. Luben, K. Oxele, F. Topouzis, T. von Hanno, A. Mirshahi, P. J. Foster, C. M. van Duijn, N. Pfeiffer, C. Delcourt, C. C. W. Klaver, J. Rahi, C. J. Hammond, and E. E. E. Consortium, “Increasing prevalence of myopia in Europe and the impact of education,” Ophthalmology 122(7), 1489–1497 (2015).
[Crossref]

Harb, E.

E. Harb, F. Thorn, and D. Troilo, “Characteristics of accommodative behavior during sustained reading in emmetropes and myopes,” Vision Res. 46(16), 2581–2592 (2006).
[Crossref]

Hasegawa, K.

C. S. Y. Lam, W. C. Tang, D. Y.-y. Tse, R. P. K. Lee, R. K. M. Chun, K. Hasegawa, H. Qi, T. Hatanaka, and C. H. To, “Defocus Incorporated Multiple Segments (DIMS) spectacle lenses slow myopia progression: a 2-year randomised clinical trial,” Br. J. Ophthalmol. 104(3), 363–368 (2020).
[Crossref]

Hatanaka, T.

C. S. Y. Lam, W. C. Tang, D. Y.-y. Tse, R. P. K. Lee, R. K. M. Chun, K. Hasegawa, H. Qi, T. Hatanaka, and C. H. To, “Defocus Incorporated Multiple Segments (DIMS) spectacle lenses slow myopia progression: a 2-year randomised clinical trial,” Br. J. Ophthalmol. 104(3), 363–368 (2020).
[Crossref]

Hatherly, C.

M. A. Wetton, M. S. Horswill, C. Hatherly, J. M. Wood, N. A. Pachana, and K. J. Anstey, “The development and validation of two complementary measures of drivers’ hazard perception ability,” Accid. Analysis & Prev. 42(4), 1232–1239 (2010).
[Crossref]

He, M.

B. Holden, P. Sankaridurg, E. Smith, T. Aller, M. Jong, and M. He, “Myopia, an underrated global challenge to vision: where the current data takes us on myopia control,” Eye 28(2), 142–146 (2014).
[Crossref]

Heron, G.

W. N. Charman and G. Heron, “Microfluctuations in accommodation: an update on their characteristics and possible role,” Ophthalmic Physiol. Opt. 35(5), 476–499 (2015).
[Crossref]

D. Seidel, L. S. Gray, and G. Heron, “Retinotopic accommodation responses in myopia,” Invest. Ophthalmol. Visual Sci. 44(3), 1035–1041 (2003).
[Crossref]

Ho, A.

A. Whatham, F. Zimmermann, A. Martinez, S. Delgado, P. L. de la Jara, P. Sankaridurg, and A. Ho, “Influence of accommodation on off-axis refractive errors in myopic eyes,” J. Vis. 9(3), 14 (2009).
[Crossref]

Hofman, A.

K. M. Williams, G. Bertelsen, P. Cumberland, C. Wolfram, V. J. M. Verhoeven, E. Anastasopoulos, G. H. S. Buitendijk, A. Cougnard-Grégoire, C. Creuzot-Garcher, M. G. Erke, R. Hogg, R. Höhn, P. Hysi, A. P. Khawaja, J.-F. Korobelnik, J. Ried, J. R. Vingerling, A. Bron, J.-F. Dartigues, A. Fletcher, A. Hofman, R. W. A. M. Kuijpers, R. N. Luben, K. Oxele, F. Topouzis, T. von Hanno, A. Mirshahi, P. J. Foster, C. M. van Duijn, N. Pfeiffer, C. Delcourt, C. C. W. Klaver, J. Rahi, C. J. Hammond, and E. E. E. Consortium, “Increasing prevalence of myopia in Europe and the impact of education,” Ophthalmology 122(7), 1489–1497 (2015).
[Crossref]

Hogg, R.

K. M. Williams, G. Bertelsen, P. Cumberland, C. Wolfram, V. J. M. Verhoeven, E. Anastasopoulos, G. H. S. Buitendijk, A. Cougnard-Grégoire, C. Creuzot-Garcher, M. G. Erke, R. Hogg, R. Höhn, P. Hysi, A. P. Khawaja, J.-F. Korobelnik, J. Ried, J. R. Vingerling, A. Bron, J.-F. Dartigues, A. Fletcher, A. Hofman, R. W. A. M. Kuijpers, R. N. Luben, K. Oxele, F. Topouzis, T. von Hanno, A. Mirshahi, P. J. Foster, C. M. van Duijn, N. Pfeiffer, C. Delcourt, C. C. W. Klaver, J. Rahi, C. J. Hammond, and E. E. E. Consortium, “Increasing prevalence of myopia in Europe and the impact of education,” Ophthalmology 122(7), 1489–1497 (2015).
[Crossref]

Höhn, R.

K. M. Williams, G. Bertelsen, P. Cumberland, C. Wolfram, V. J. M. Verhoeven, E. Anastasopoulos, G. H. S. Buitendijk, A. Cougnard-Grégoire, C. Creuzot-Garcher, M. G. Erke, R. Hogg, R. Höhn, P. Hysi, A. P. Khawaja, J.-F. Korobelnik, J. Ried, J. R. Vingerling, A. Bron, J.-F. Dartigues, A. Fletcher, A. Hofman, R. W. A. M. Kuijpers, R. N. Luben, K. Oxele, F. Topouzis, T. von Hanno, A. Mirshahi, P. J. Foster, C. M. van Duijn, N. Pfeiffer, C. Delcourt, C. C. W. Klaver, J. Rahi, C. J. Hammond, and E. E. E. Consortium, “Increasing prevalence of myopia in Europe and the impact of education,” Ophthalmology 122(7), 1489–1497 (2015).
[Crossref]

Holden, B.

B. Holden, P. Sankaridurg, E. Smith, T. Aller, M. Jong, and M. He, “Myopia, an underrated global challenge to vision: where the current data takes us on myopia control,” Eye 28(2), 142–146 (2014).
[Crossref]

Holden, B. A.

C. Fedtke, K. Ehrmann, D. Falk, R. C. Bakaraju, and B. A. Holden, “The BHVI-EyeMapper: peripheral refraction and aberration profiles,” Optom. Vis. Sci. 91(10), 1199–1207 (2014).
[Crossref]

B. A. Holden, S. P. Mariotti, I. Kocur, S. Resnikoff, H. Mingguang, K. Naidoo, and M. Jong, “The impact of myopia and high myopia. Report of the Joint World Health Organization–Brien Holden Vision Institute Global Scientific Meeting on Myopia,” (2015).

Horswill, M. S.

M. A. Wetton, M. S. Horswill, C. Hatherly, J. M. Wood, N. A. Pachana, and K. J. Anstey, “The development and validation of two complementary measures of drivers’ hazard perception ability,” Accid. Analysis & Prev. 42(4), 1232–1239 (2010).
[Crossref]

Howland, H. C.

F. Schaeffel, A. Glasser, and H. C. Howland, “Accommodation, refractive error and eye growth in chickens,” Vision Res. 28(5), 639–657 (1988).
[Crossref]

Howlett, M. H.

S. A. McFadden, M. H. Howlett, and J. R. Mertz, “Retinoic acid signals the direction of ocular elongation in the guinea pig eye,” Vision Res. 44(7), 643–653 (2004).
[Crossref]

Hsiao, Y.-C.

P.-C. Huang, Y.-C. Hsiao, C.-Y. Tsai, D.-C. Tsai, C.-W. Chen, C.-C. Hsu, S.-C. Huang, M.-H. Lin, and Y.-M. Liou, “Protective behaviours of near work and time outdoors in myopia prevalence and progression in myopic children: a 2-year prospective population study,” Br. J. Ophthalmol. (2019).

Hsu, C.-C.

P.-C. Huang, Y.-C. Hsiao, C.-Y. Tsai, D.-C. Tsai, C.-W. Chen, C.-C. Hsu, S.-C. Huang, M.-H. Lin, and Y.-M. Liou, “Protective behaviours of near work and time outdoors in myopia prevalence and progression in myopic children: a 2-year prospective population study,” Br. J. Ophthalmol. (2019).

Hu, L.

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: a network meta-analysis,” Ophthalmology 123(4), 697–708 (2016).
[Crossref]

Huang, H.-M.

H.-M. Huang, D. S.-T. Chang, and P.-C. Wu, “The association between near work activities and myopia in children–a systematic review and meta-analysis,” PLoS One 10(10), e0140419 (2015).
[Crossref]

Huang, J.

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: a network meta-analysis,” Ophthalmology 123(4), 697–708 (2016).
[Crossref]

Huang, P.-C.

P.-C. Huang, Y.-C. Hsiao, C.-Y. Tsai, D.-C. Tsai, C.-W. Chen, C.-C. Hsu, S.-C. Huang, M.-H. Lin, and Y.-M. Liou, “Protective behaviours of near work and time outdoors in myopia prevalence and progression in myopic children: a 2-year prospective population study,” Br. J. Ophthalmol. (2019).

Huang, S.-C.

P.-C. Huang, Y.-C. Hsiao, C.-Y. Tsai, D.-C. Tsai, C.-W. Chen, C.-C. Hsu, S.-C. Huang, M.-H. Lin, and Y.-M. Liou, “Protective behaviours of near work and time outdoors in myopia prevalence and progression in myopic children: a 2-year prospective population study,” Br. J. Ophthalmol. (2019).

Hung, L.-F.

E. L. Smith, C.-s. Kee, R. Ramamirtham, Y. Qiao-Grider, and L.-F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Visual Sci. 46(11), 3965–3972 (2005).
[Crossref]

L.-F. Hung, M. L. J. Crawford, and E. L. Smith, “Spectacle lenses alter eye growth and the refractive status of young monkeys,” Nat. Med. 1(8), 761–765 (1995).
[Crossref]

Hysi, P.

K. M. Williams, G. Bertelsen, P. Cumberland, C. Wolfram, V. J. M. Verhoeven, E. Anastasopoulos, G. H. S. Buitendijk, A. Cougnard-Grégoire, C. Creuzot-Garcher, M. G. Erke, R. Hogg, R. Höhn, P. Hysi, A. P. Khawaja, J.-F. Korobelnik, J. Ried, J. R. Vingerling, A. Bron, J.-F. Dartigues, A. Fletcher, A. Hofman, R. W. A. M. Kuijpers, R. N. Luben, K. Oxele, F. Topouzis, T. von Hanno, A. Mirshahi, P. J. Foster, C. M. van Duijn, N. Pfeiffer, C. Delcourt, C. C. W. Klaver, J. Rahi, C. J. Hammond, and E. E. E. Consortium, “Increasing prevalence of myopia in Europe and the impact of education,” Ophthalmology 122(7), 1489–1497 (2015).
[Crossref]

Imanaka, K.

A. Berencsi, M. Ishihara, and K. Imanaka, “The functional role of central and peripheral vision in the control of posture,” Hum. Mov. Sci. 24(5-6), 689–709 (2005).
[Crossref]

Irving, E.

E. L. Smith III, M. C. W. Campbell, and E. Irving, “Does peripheral retinal input explain the promising myopia control effects of corneal reshaping therapy (CRT or ortho-K) & multifocal soft contact lenses?” Ophthalmic Physiol. Opt. 33(3), 379–384 (2013).
[Crossref]

Irving, E. L.

E. L. Irving, J. G. Sivak, and M. G. Callender, “Refractive plasticity of the developing chick eye: a summary and update,” Ophthalmic Physiol. Opt. 35(6), 600–606 (2015).
[Crossref]

V. Sreenivasan, E. L. Irving, and W. R. Bobier, “Effect of near adds on the variability of accommodative response in myopic children,” Ophthalmic Physiol. Opt. 31(2), 145–154 (2011).
[Crossref]

Ishihara, M.

A. Berencsi, M. Ishihara, and K. Imanaka, “The functional role of central and peripheral vision in the control of posture,” Hum. Mov. Sci. 24(5-6), 689–709 (2005).
[Crossref]

Jacobsen, N.

E. Goldschmidt and N. Jacobsen, “Genetic and environmental effects on myopia development and progression,” Eye 28(2), 126–133 (2014).
[Crossref]

Jaeken, B.

B. Jaeken and P. Artal, “Optical quality of emmetropic and myopic eyes in the periphery measured with high-angular resolution,” Invest. Ophthalmol. Visual Sci. 53(7), 3405–3413 (2012).
[Crossref]

B. Jaeken, L. Lundström, and P. Artal, “Fast scanning peripheral wave-front sensor for the human eye,” Opt. Express 19(8), 7903–7913 (2011).
[Crossref]

Jiang, Q.

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: a network meta-analysis,” Ophthalmology 123(4), 697–708 (2016).
[Crossref]

Jinag, Z.

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: a network meta-analysis,” Ophthalmology 123(4), 697–708 (2016).
[Crossref]

Jong, M.

B. Holden, P. Sankaridurg, E. Smith, T. Aller, M. Jong, and M. He, “Myopia, an underrated global challenge to vision: where the current data takes us on myopia control,” Eye 28(2), 142–146 (2014).
[Crossref]

B. A. Holden, S. P. Mariotti, I. Kocur, S. Resnikoff, H. Mingguang, K. Naidoo, and M. Jong, “The impact of myopia and high myopia. Report of the Joint World Health Organization–Brien Holden Vision Institute Global Scientific Meeting on Myopia,” (2015).

Judge, S. J.

A. R. Whatham and S. J. Judge, “Compensatory changes in eye growth and refraction induced by daily wear of soft contact lenses in young marmosets,” Vision Res. 41(3), 267–273 (2001).
[Crossref]

Kee, C.-s.

E. L. Smith, C.-s. Kee, R. Ramamirtham, Y. Qiao-Grider, and L.-F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Visual Sci. 46(11), 3965–3972 (2005).
[Crossref]

Kenmore, T.

T. O. Salmon, R. W. West, W. Gasser, and T. Kenmore, “Measurement of refractive errors in young myopes using the COAS Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(1), 6–14 (2003).
[Crossref]

Khawaja, A. P.

K. M. Williams, G. Bertelsen, P. Cumberland, C. Wolfram, V. J. M. Verhoeven, E. Anastasopoulos, G. H. S. Buitendijk, A. Cougnard-Grégoire, C. Creuzot-Garcher, M. G. Erke, R. Hogg, R. Höhn, P. Hysi, A. P. Khawaja, J.-F. Korobelnik, J. Ried, J. R. Vingerling, A. Bron, J.-F. Dartigues, A. Fletcher, A. Hofman, R. W. A. M. Kuijpers, R. N. Luben, K. Oxele, F. Topouzis, T. von Hanno, A. Mirshahi, P. J. Foster, C. M. van Duijn, N. Pfeiffer, C. Delcourt, C. C. W. Klaver, J. Rahi, C. J. Hammond, and E. E. E. Consortium, “Increasing prevalence of myopia in Europe and the impact of education,” Ophthalmology 122(7), 1489–1497 (2015).
[Crossref]

Klaver, C. C. W.

K. M. Williams, G. Bertelsen, P. Cumberland, C. Wolfram, V. J. M. Verhoeven, E. Anastasopoulos, G. H. S. Buitendijk, A. Cougnard-Grégoire, C. Creuzot-Garcher, M. G. Erke, R. Hogg, R. Höhn, P. Hysi, A. P. Khawaja, J.-F. Korobelnik, J. Ried, J. R. Vingerling, A. Bron, J.-F. Dartigues, A. Fletcher, A. Hofman, R. W. A. M. Kuijpers, R. N. Luben, K. Oxele, F. Topouzis, T. von Hanno, A. Mirshahi, P. J. Foster, C. M. van Duijn, N. Pfeiffer, C. Delcourt, C. C. W. Klaver, J. Rahi, C. J. Hammond, and E. E. E. Consortium, “Increasing prevalence of myopia in Europe and the impact of education,” Ophthalmology 122(7), 1489–1497 (2015).
[Crossref]

Kocur, I.

B. A. Holden, S. P. Mariotti, I. Kocur, S. Resnikoff, H. Mingguang, K. Naidoo, and M. Jong, “The impact of myopia and high myopia. Report of the Joint World Health Organization–Brien Holden Vision Institute Global Scientific Meeting on Myopia,” (2015).

Korobelnik, J.-F.

K. M. Williams, G. Bertelsen, P. Cumberland, C. Wolfram, V. J. M. Verhoeven, E. Anastasopoulos, G. H. S. Buitendijk, A. Cougnard-Grégoire, C. Creuzot-Garcher, M. G. Erke, R. Hogg, R. Höhn, P. Hysi, A. P. Khawaja, J.-F. Korobelnik, J. Ried, J. R. Vingerling, A. Bron, J.-F. Dartigues, A. Fletcher, A. Hofman, R. W. A. M. Kuijpers, R. N. Luben, K. Oxele, F. Topouzis, T. von Hanno, A. Mirshahi, P. J. Foster, C. M. van Duijn, N. Pfeiffer, C. Delcourt, C. C. W. Klaver, J. Rahi, C. J. Hammond, and E. E. E. Consortium, “Increasing prevalence of myopia in Europe and the impact of education,” Ophthalmology 122(7), 1489–1497 (2015).
[Crossref]

Kuijpers, R. W. A. M.

K. M. Williams, G. Bertelsen, P. Cumberland, C. Wolfram, V. J. M. Verhoeven, E. Anastasopoulos, G. H. S. Buitendijk, A. Cougnard-Grégoire, C. Creuzot-Garcher, M. G. Erke, R. Hogg, R. Höhn, P. Hysi, A. P. Khawaja, J.-F. Korobelnik, J. Ried, J. R. Vingerling, A. Bron, J.-F. Dartigues, A. Fletcher, A. Hofman, R. W. A. M. Kuijpers, R. N. Luben, K. Oxele, F. Topouzis, T. von Hanno, A. Mirshahi, P. J. Foster, C. M. van Duijn, N. Pfeiffer, C. Delcourt, C. C. W. Klaver, J. Rahi, C. J. Hammond, and E. E. E. Consortium, “Increasing prevalence of myopia in Europe and the impact of education,” Ophthalmology 122(7), 1489–1497 (2015).
[Crossref]

Lam, C. S. Y.

C. S. Y. Lam, W. C. Tang, D. Y.-y. Tse, R. P. K. Lee, R. K. M. Chun, K. Hasegawa, H. Qi, T. Hatanaka, and C. H. To, “Defocus Incorporated Multiple Segments (DIMS) spectacle lenses slow myopia progression: a 2-year randomised clinical trial,” Br. J. Ophthalmol. 104(3), 363–368 (2020).
[Crossref]

Langaas, T.

T. Langaas, P. M. Riddell, E. Svarverud, A. E. Ystenaes, I. Langeggen, and J. R. Bruenech, “Variability of the accommodation response in early onset myopia,” Optom. Vis. Sci. 85(1), 37–48 (2008).
[Crossref]

Langeggen, I.

T. Langaas, P. M. Riddell, E. Svarverud, A. E. Ystenaes, I. Langeggen, and J. R. Bruenech, “Variability of the accommodation response in early onset myopia,” Optom. Vis. Sci. 85(1), 37–48 (2008).
[Crossref]

Lee, R. P. K.

C. S. Y. Lam, W. C. Tang, D. Y.-y. Tse, R. P. K. Lee, R. K. M. Chun, K. Hasegawa, H. Qi, T. Hatanaka, and C. H. To, “Defocus Incorporated Multiple Segments (DIMS) spectacle lenses slow myopia progression: a 2-year randomised clinical trial,” Br. J. Ophthalmol. 104(3), 363–368 (2020).
[Crossref]

Li, X.

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: a network meta-analysis,” Ophthalmology 123(4), 697–708 (2016).
[Crossref]

Lian, H.

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: a network meta-analysis,” Ophthalmology 123(4), 697–708 (2016).
[Crossref]

Lin, M.-H.

P.-C. Huang, Y.-C. Hsiao, C.-Y. Tsai, D.-C. Tsai, C.-W. Chen, C.-C. Hsu, S.-C. Huang, M.-H. Lin, and Y.-M. Liou, “Protective behaviours of near work and time outdoors in myopia prevalence and progression in myopic children: a 2-year prospective population study,” Br. J. Ophthalmol. (2019).

Lingham, G.

G. Lingham, D. A. Mackey, R. Lucas, and S. Yazar, “How does spending time outdoors protect against myopia? A review,” Br. J. Ophthalmol. 104(5), 593–599 (2020).
[Crossref]

Liou, Y.-M.

P.-C. Huang, Y.-C. Hsiao, C.-Y. Tsai, D.-C. Tsai, C.-W. Chen, C.-C. Hsu, S.-C. Huang, M.-H. Lin, and Y.-M. Liou, “Protective behaviours of near work and time outdoors in myopia prevalence and progression in myopic children: a 2-year prospective population study,” Br. J. Ophthalmol. (2019).

Lopes-Ferreira, D. P.

J. M. González-Méijome, M. A. Faria-Ribeiro, D. P. Lopes-Ferreira, P. Fernandes, G. Carracedo, and A. Queiros, “Changes in peripheral refractive profile after orthokeratology for different degrees of myopia,” Curr. Eye Res. 41(2), 199–207 (2016).
[Crossref]

Lu, W.

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: a network meta-analysis,” Ophthalmology 123(4), 697–708 (2016).
[Crossref]

Luben, R. N.

K. M. Williams, G. Bertelsen, P. Cumberland, C. Wolfram, V. J. M. Verhoeven, E. Anastasopoulos, G. H. S. Buitendijk, A. Cougnard-Grégoire, C. Creuzot-Garcher, M. G. Erke, R. Hogg, R. Höhn, P. Hysi, A. P. Khawaja, J.-F. Korobelnik, J. Ried, J. R. Vingerling, A. Bron, J.-F. Dartigues, A. Fletcher, A. Hofman, R. W. A. M. Kuijpers, R. N. Luben, K. Oxele, F. Topouzis, T. von Hanno, A. Mirshahi, P. J. Foster, C. M. van Duijn, N. Pfeiffer, C. Delcourt, C. C. W. Klaver, J. Rahi, C. J. Hammond, and E. E. E. Consortium, “Increasing prevalence of myopia in Europe and the impact of education,” Ophthalmology 122(7), 1489–1497 (2015).
[Crossref]

Lucas, R.

G. Lingham, D. A. Mackey, R. Lucas, and S. Yazar, “How does spending time outdoors protect against myopia? A review,” Br. J. Ophthalmol. 104(5), 593–599 (2020).
[Crossref]

Lundström, L.

D. Romashchenko, R. Rosén, and L. Lundström, “Peripheral refraction and higher order aberrations,” Clin. Exp. Optom. 103(1), 86–94 (2020).
[Crossref]

B. Jaeken, L. Lundström, and P. Artal, “Fast scanning peripheral wave-front sensor for the human eye,” Opt. Express 19(8), 7903–7913 (2011).
[Crossref]

L. Lundström, J. Gustafsson, and P. Unsbo, “Population distribution of wavefront aberrations in the peripheral human eye,” J. Opt. Soc. Am. A 26(10), 2192–2198 (2009).
[Crossref]

L. Lundström, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vis. 9(6), 17 (2009).
[Crossref]

Mackey, D. A.

G. Lingham, D. A. Mackey, R. Lucas, and S. Yazar, “How does spending time outdoors protect against myopia? A review,” Br. J. Ophthalmol. 104(5), 593–599 (2020).
[Crossref]

Mallen, E. A. H.

L. N. Davies and E. A. H. Mallen, “Influence of accommodation and refractive status on the peripheral refractive profile,” Br. J. Ophthalmol. 93(9), 1186–1190 (2009).
[Crossref]

M. Day, N. C. Strang, D. Seidel, L. S. Gray, and E. A. H. Mallen, “Refractive group differences in accommodation microfluctuations with changing accommodation stimulus,” Ophthalmic Physiol. Opt. 26(1), 88–96 (2006).
[Crossref]

Mariotti, S. P.

B. A. Holden, S. P. Mariotti, I. Kocur, S. Resnikoff, H. Mingguang, K. Naidoo, and M. Jong, “The impact of myopia and high myopia. Report of the Joint World Health Organization–Brien Holden Vision Institute Global Scientific Meeting on Myopia,” (2015).

Martinez, A.

A. Whatham, F. Zimmermann, A. Martinez, S. Delgado, P. L. de la Jara, P. Sankaridurg, and A. Ho, “Influence of accommodation on off-axis refractive errors in myopic eyes,” J. Vis. 9(3), 14 (2009).
[Crossref]

Mathur, A.

A. Mathur, D. A. Atchison, and W. N. Charman, “Effect of accommodation on peripheral ocular aberrations,” J. Vis. 9(12), 20 (2009).
[Crossref]

A. Mathur and D. A. Atchison, “Effect of orthokeratology on peripheral aberrations of the eye,” Optom. Vis. Sci. 86(5), E476–E484 (2009).
[Crossref]

A. Mathur, D. A. Atchison, and W. N. Charman, “Myopia and peripheral ocular aberrations,” J. Vis. 9(10), 15 (2009).
[Crossref]

McAlinden, C.

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: a network meta-analysis,” Ophthalmology 123(4), 697–708 (2016).
[Crossref]

McBrien, N.

G. Smith, M. Millodot, and N. McBrien, “The effect of accommodation on oblique astigmatism and field curvature of the human eye,” Clin. Exp. Optom. 71(4), 119–125 (1988).
[Crossref]

McFadden, S. A.

S. A. McFadden, M. H. Howlett, and J. R. Mertz, “Retinoic acid signals the direction of ocular elongation in the guinea pig eye,” Vision Res. 44(7), 643–653 (2004).
[Crossref]

McGwin Jr, G.

C. Owsley and G. McGwin Jr, “Vision impairment and driving,” Surv. Ophthalmol. 43(6), 535–550 (1999).
[Crossref]

McKean-Cowdin, R.

C. M. Patino, R. McKean-Cowdin, S. P. Azen, J. C. Allison, F. Choudhury, R. Varma, and L. A. L. E. S. Group, “Central and peripheral visual impairment and the risk of falls and falls with injury,” Ophthalmology 117(2), 199–206.e1 (2010).
[Crossref]

Mertz, J. R.

S. A. McFadden, M. H. Howlett, and J. R. Mertz, “Retinoic acid signals the direction of ocular elongation in the guinea pig eye,” Vision Res. 44(7), 643–653 (2004).
[Crossref]

Millodot, M.

G. Smith, M. Millodot, and N. McBrien, “The effect of accommodation on oblique astigmatism and field curvature of the human eye,” Clin. Exp. Optom. 71(4), 119–125 (1988).
[Crossref]

Mingguang, H.

B. A. Holden, S. P. Mariotti, I. Kocur, S. Resnikoff, H. Mingguang, K. Naidoo, and M. Jong, “The impact of myopia and high myopia. Report of the Joint World Health Organization–Brien Holden Vision Institute Global Scientific Meeting on Myopia,” (2015).

Mira-Agudelo, A.

L. Lundström, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vis. 9(6), 17 (2009).
[Crossref]

Mirshahi, A.

K. M. Williams, G. Bertelsen, P. Cumberland, C. Wolfram, V. J. M. Verhoeven, E. Anastasopoulos, G. H. S. Buitendijk, A. Cougnard-Grégoire, C. Creuzot-Garcher, M. G. Erke, R. Hogg, R. Höhn, P. Hysi, A. P. Khawaja, J.-F. Korobelnik, J. Ried, J. R. Vingerling, A. Bron, J.-F. Dartigues, A. Fletcher, A. Hofman, R. W. A. M. Kuijpers, R. N. Luben, K. Oxele, F. Topouzis, T. von Hanno, A. Mirshahi, P. J. Foster, C. M. van Duijn, N. Pfeiffer, C. Delcourt, C. C. W. Klaver, J. Rahi, C. J. Hammond, and E. E. E. Consortium, “Increasing prevalence of myopia in Europe and the impact of education,” Ophthalmology 122(7), 1489–1497 (2015).
[Crossref]

Mutti, D. O.

T. W. Walker and D. O. Mutti, “The effect of accommodation on ocular shape,” Optom. Vis. Sci. 79(7), 424–430 (2002).
[Crossref]

Naidoo, K.

B. A. Holden, S. P. Mariotti, I. Kocur, S. Resnikoff, H. Mingguang, K. Naidoo, and M. Jong, “The impact of myopia and high myopia. Report of the Joint World Health Organization–Brien Holden Vision Institute Global Scientific Meeting on Myopia,” (2015).

Nour, A.

A. Benavente-Pérez, A. Nour, and D. Troilo, “Axial eye growth and refractive error development can be modified by exposing the peripheral retina to relative myopic or hyperopic defocus,” Invest. Ophthalmol. Visual Sci. 55(10), 6765–6773 (2014).
[Crossref]

O’Leary, D.

R. Calver, H. Radhakrishnan, E. Osuobeni, and D. O’Leary, “Peripheral refraction for distance and near vision in emmetropes and myopes,” Ophthalmic Physiol. Opt. 27(6), 584–593 (2007).
[Crossref]

Ohno-Matsui, K.

P. K. Verkicharla, K. Ohno-Matsui, and S. M. Saw, “Current and predicted demographics of high myopia and an update of its associated pathological changes,” Ophthalmic Physiol. Opt. 35(5), 465–475 (2015).
[Crossref]

Osuobeni, E.

R. Calver, H. Radhakrishnan, E. Osuobeni, and D. O’Leary, “Peripheral refraction for distance and near vision in emmetropes and myopes,” Ophthalmic Physiol. Opt. 27(6), 584–593 (2007).
[Crossref]

Owsley, C.

C. Owsley and G. McGwin Jr, “Vision impairment and driving,” Surv. Ophthalmol. 43(6), 535–550 (1999).
[Crossref]

Oxele, K.

K. M. Williams, G. Bertelsen, P. Cumberland, C. Wolfram, V. J. M. Verhoeven, E. Anastasopoulos, G. H. S. Buitendijk, A. Cougnard-Grégoire, C. Creuzot-Garcher, M. G. Erke, R. Hogg, R. Höhn, P. Hysi, A. P. Khawaja, J.-F. Korobelnik, J. Ried, J. R. Vingerling, A. Bron, J.-F. Dartigues, A. Fletcher, A. Hofman, R. W. A. M. Kuijpers, R. N. Luben, K. Oxele, F. Topouzis, T. von Hanno, A. Mirshahi, P. J. Foster, C. M. van Duijn, N. Pfeiffer, C. Delcourt, C. C. W. Klaver, J. Rahi, C. J. Hammond, and E. E. E. Consortium, “Increasing prevalence of myopia in Europe and the impact of education,” Ophthalmology 122(7), 1489–1497 (2015).
[Crossref]

Pachana, N. A.

M. A. Wetton, M. S. Horswill, C. Hatherly, J. M. Wood, N. A. Pachana, and K. J. Anstey, “The development and validation of two complementary measures of drivers’ hazard perception ability,” Accid. Analysis & Prev. 42(4), 1232–1239 (2010).
[Crossref]

Pang, Y.

L. Deng and Y. Pang, “Effect of outdoor activities in myopia control: meta-analysis of clinical studies,” Optom. Vis. Sci. 96(4), 276–282 (2019).
[Crossref]

Pasquale, L. R.

E. W. Wiecek, L. R. Pasquale, J. Fiser, S. Dakin, and P. J. Bex, “Effects of peripheral visual field loss on eye movements during visual search,” Front. Psychol. 3, 472 (2012).
[Crossref]

Patino, C. M.

C. M. Patino, R. McKean-Cowdin, S. P. Azen, J. C. Allison, F. Choudhury, R. Varma, and L. A. L. E. S. Group, “Central and peripheral visual impairment and the risk of falls and falls with injury,” Ophthalmology 117(2), 199–206.e1 (2010).
[Crossref]

Pfeiffer, N.

K. M. Williams, G. Bertelsen, P. Cumberland, C. Wolfram, V. J. M. Verhoeven, E. Anastasopoulos, G. H. S. Buitendijk, A. Cougnard-Grégoire, C. Creuzot-Garcher, M. G. Erke, R. Hogg, R. Höhn, P. Hysi, A. P. Khawaja, J.-F. Korobelnik, J. Ried, J. R. Vingerling, A. Bron, J.-F. Dartigues, A. Fletcher, A. Hofman, R. W. A. M. Kuijpers, R. N. Luben, K. Oxele, F. Topouzis, T. von Hanno, A. Mirshahi, P. J. Foster, C. M. van Duijn, N. Pfeiffer, C. Delcourt, C. C. W. Klaver, J. Rahi, C. J. Hammond, and E. E. E. Consortium, “Increasing prevalence of myopia in Europe and the impact of education,” Ophthalmology 122(7), 1489–1497 (2015).
[Crossref]

Qi, H.

C. S. Y. Lam, W. C. Tang, D. Y.-y. Tse, R. P. K. Lee, R. K. M. Chun, K. Hasegawa, H. Qi, T. Hatanaka, and C. H. To, “Defocus Incorporated Multiple Segments (DIMS) spectacle lenses slow myopia progression: a 2-year randomised clinical trial,” Br. J. Ophthalmol. 104(3), 363–368 (2020).
[Crossref]

Qiao-Grider, Y.

E. L. Smith, C.-s. Kee, R. Ramamirtham, Y. Qiao-Grider, and L.-F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Visual Sci. 46(11), 3965–3972 (2005).
[Crossref]

Qu, J.

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: a network meta-analysis,” Ophthalmology 123(4), 697–708 (2016).
[Crossref]

Queiros, A.

J. M. González-Méijome, M. A. Faria-Ribeiro, D. P. Lopes-Ferreira, P. Fernandes, G. Carracedo, and A. Queiros, “Changes in peripheral refractive profile after orthokeratology for different degrees of myopia,” Curr. Eye Res. 41(2), 199–207 (2016).
[Crossref]

Radhakrishnan, H.

R. Calver, H. Radhakrishnan, E. Osuobeni, and D. O’Leary, “Peripheral refraction for distance and near vision in emmetropes and myopes,” Ophthalmic Physiol. Opt. 27(6), 584–593 (2007).
[Crossref]

Rahi, J.

K. M. Williams, G. Bertelsen, P. Cumberland, C. Wolfram, V. J. M. Verhoeven, E. Anastasopoulos, G. H. S. Buitendijk, A. Cougnard-Grégoire, C. Creuzot-Garcher, M. G. Erke, R. Hogg, R. Höhn, P. Hysi, A. P. Khawaja, J.-F. Korobelnik, J. Ried, J. R. Vingerling, A. Bron, J.-F. Dartigues, A. Fletcher, A. Hofman, R. W. A. M. Kuijpers, R. N. Luben, K. Oxele, F. Topouzis, T. von Hanno, A. Mirshahi, P. J. Foster, C. M. van Duijn, N. Pfeiffer, C. Delcourt, C. C. W. Klaver, J. Rahi, C. J. Hammond, and E. E. E. Consortium, “Increasing prevalence of myopia in Europe and the impact of education,” Ophthalmology 122(7), 1489–1497 (2015).
[Crossref]

Ramamirtham, R.

E. L. Smith, C.-s. Kee, R. Ramamirtham, Y. Qiao-Grider, and L.-F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Visual Sci. 46(11), 3965–3972 (2005).
[Crossref]

Resnikoff, S.

B. A. Holden, S. P. Mariotti, I. Kocur, S. Resnikoff, H. Mingguang, K. Naidoo, and M. Jong, “The impact of myopia and high myopia. Report of the Joint World Health Organization–Brien Holden Vision Institute Global Scientific Meeting on Myopia,” (2015).

Riddell, P. M.

T. Langaas, P. M. Riddell, E. Svarverud, A. E. Ystenaes, I. Langeggen, and J. R. Bruenech, “Variability of the accommodation response in early onset myopia,” Optom. Vis. Sci. 85(1), 37–48 (2008).
[Crossref]

Ried, J.

K. M. Williams, G. Bertelsen, P. Cumberland, C. Wolfram, V. J. M. Verhoeven, E. Anastasopoulos, G. H. S. Buitendijk, A. Cougnard-Grégoire, C. Creuzot-Garcher, M. G. Erke, R. Hogg, R. Höhn, P. Hysi, A. P. Khawaja, J.-F. Korobelnik, J. Ried, J. R. Vingerling, A. Bron, J.-F. Dartigues, A. Fletcher, A. Hofman, R. W. A. M. Kuijpers, R. N. Luben, K. Oxele, F. Topouzis, T. von Hanno, A. Mirshahi, P. J. Foster, C. M. van Duijn, N. Pfeiffer, C. Delcourt, C. C. W. Klaver, J. Rahi, C. J. Hammond, and E. E. E. Consortium, “Increasing prevalence of myopia in Europe and the impact of education,” Ophthalmology 122(7), 1489–1497 (2015).
[Crossref]

Romashchenko, D.

D. Romashchenko, R. Rosén, and L. Lundström, “Peripheral refraction and higher order aberrations,” Clin. Exp. Optom. 103(1), 86–94 (2020).
[Crossref]

Rosén, R.

D. Romashchenko, R. Rosén, and L. Lundström, “Peripheral refraction and higher order aberrations,” Clin. Exp. Optom. 103(1), 86–94 (2020).
[Crossref]

Salmon, T. O.

T. O. Salmon, R. W. West, W. Gasser, and T. Kenmore, “Measurement of refractive errors in young myopes using the COAS Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(1), 6–14 (2003).
[Crossref]

Sankaridurg, P.

B. Holden, P. Sankaridurg, E. Smith, T. Aller, M. Jong, and M. He, “Myopia, an underrated global challenge to vision: where the current data takes us on myopia control,” Eye 28(2), 142–146 (2014).
[Crossref]

A. Whatham, F. Zimmermann, A. Martinez, S. Delgado, P. L. de la Jara, P. Sankaridurg, and A. Ho, “Influence of accommodation on off-axis refractive errors in myopic eyes,” J. Vis. 9(3), 14 (2009).
[Crossref]

Saw, S. M.

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: a network meta-analysis,” Ophthalmology 123(4), 697–708 (2016).
[Crossref]

P. K. Verkicharla, K. Ohno-Matsui, and S. M. Saw, “Current and predicted demographics of high myopia and an update of its associated pathological changes,” Ophthalmic Physiol. Opt. 35(5), 465–475 (2015).
[Crossref]

Schaeffel, F.

J. Tabernero and F. Schaeffel, “Fast scanning photoretinoscope for measuring peripheral refraction as a function of accommodation,” J. Opt. Soc. Am. A 26(10), 2206–2210 (2009).
[Crossref]

F. Schaeffel, A. Glasser, and H. C. Howland, “Accommodation, refractive error and eye growth in chickens,” Vision Res. 28(5), 639–657 (1988).
[Crossref]

Seidel, D.

M. Day, N. C. Strang, D. Seidel, L. S. Gray, and E. A. H. Mallen, “Refractive group differences in accommodation microfluctuations with changing accommodation stimulus,” Ophthalmic Physiol. Opt. 26(1), 88–96 (2006).
[Crossref]

D. Seidel, L. S. Gray, and G. Heron, “Retinotopic accommodation responses in myopia,” Invest. Ophthalmol. Visual Sci. 44(3), 1035–1041 (2003).
[Crossref]

Sivak, J. G.

E. L. Irving, J. G. Sivak, and M. G. Callender, “Refractive plasticity of the developing chick eye: a summary and update,” Ophthalmic Physiol. Opt. 35(6), 600–606 (2015).
[Crossref]

Sliney, D.

Smith, E.

B. Holden, P. Sankaridurg, E. Smith, T. Aller, M. Jong, and M. He, “Myopia, an underrated global challenge to vision: where the current data takes us on myopia control,” Eye 28(2), 142–146 (2014).
[Crossref]

Smith, E. L.

E. L. Smith, C.-s. Kee, R. Ramamirtham, Y. Qiao-Grider, and L.-F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Visual Sci. 46(11), 3965–3972 (2005).
[Crossref]

L.-F. Hung, M. L. J. Crawford, and E. L. Smith, “Spectacle lenses alter eye growth and the refractive status of young monkeys,” Nat. Med. 1(8), 761–765 (1995).
[Crossref]

Smith, G.

G. Smith, M. Millodot, and N. McBrien, “The effect of accommodation on oblique astigmatism and field curvature of the human eye,” Clin. Exp. Optom. 71(4), 119–125 (1988).
[Crossref]

Smith III, E. L.

E. L. Smith III, M. C. W. Campbell, and E. Irving, “Does peripheral retinal input explain the promising myopia control effects of corneal reshaping therapy (CRT or ortho-K) & multifocal soft contact lenses?” Ophthalmic Physiol. Opt. 33(3), 379–384 (2013).
[Crossref]

Sreenivasan, V.

V. Sreenivasan, E. L. Irving, and W. R. Bobier, “Effect of near adds on the variability of accommodative response in myopic children,” Ophthalmic Physiol. Opt. 31(2), 145–154 (2011).
[Crossref]

Strang, N. C.

M. Day, N. C. Strang, D. Seidel, L. S. Gray, and E. A. H. Mallen, “Refractive group differences in accommodation microfluctuations with changing accommodation stimulus,” Ophthalmic Physiol. Opt. 26(1), 88–96 (2006).
[Crossref]

Svarverud, E.

T. Langaas, P. M. Riddell, E. Svarverud, A. E. Ystenaes, I. Langeggen, and J. R. Bruenech, “Variability of the accommodation response in early onset myopia,” Optom. Vis. Sci. 85(1), 37–48 (2008).
[Crossref]

Tabernero, J.

Tang, W. C.

C. S. Y. Lam, W. C. Tang, D. Y.-y. Tse, R. P. K. Lee, R. K. M. Chun, K. Hasegawa, H. Qi, T. Hatanaka, and C. H. To, “Defocus Incorporated Multiple Segments (DIMS) spectacle lenses slow myopia progression: a 2-year randomised clinical trial,” Br. J. Ophthalmol. 104(3), 363–368 (2020).
[Crossref]

Thibos, L.

Thibos, L. N.

Thorn, F.

E. Harb, F. Thorn, and D. Troilo, “Characteristics of accommodative behavior during sustained reading in emmetropes and myopes,” Vision Res. 46(16), 2581–2592 (2006).
[Crossref]

To, C. H.

C. S. Y. Lam, W. C. Tang, D. Y.-y. Tse, R. P. K. Lee, R. K. M. Chun, K. Hasegawa, H. Qi, T. Hatanaka, and C. H. To, “Defocus Incorporated Multiple Segments (DIMS) spectacle lenses slow myopia progression: a 2-year randomised clinical trial,” Br. J. Ophthalmol. 104(3), 363–368 (2020).
[Crossref]

Topouzis, F.

K. M. Williams, G. Bertelsen, P. Cumberland, C. Wolfram, V. J. M. Verhoeven, E. Anastasopoulos, G. H. S. Buitendijk, A. Cougnard-Grégoire, C. Creuzot-Garcher, M. G. Erke, R. Hogg, R. Höhn, P. Hysi, A. P. Khawaja, J.-F. Korobelnik, J. Ried, J. R. Vingerling, A. Bron, J.-F. Dartigues, A. Fletcher, A. Hofman, R. W. A. M. Kuijpers, R. N. Luben, K. Oxele, F. Topouzis, T. von Hanno, A. Mirshahi, P. J. Foster, C. M. van Duijn, N. Pfeiffer, C. Delcourt, C. C. W. Klaver, J. Rahi, C. J. Hammond, and E. E. E. Consortium, “Increasing prevalence of myopia in Europe and the impact of education,” Ophthalmology 122(7), 1489–1497 (2015).
[Crossref]

Troilo, D.

A. Benavente-Pérez, A. Nour, and D. Troilo, “Axial eye growth and refractive error development can be modified by exposing the peripheral retina to relative myopic or hyperopic defocus,” Invest. Ophthalmol. Visual Sci. 55(10), 6765–6773 (2014).
[Crossref]

E. Harb, F. Thorn, and D. Troilo, “Characteristics of accommodative behavior during sustained reading in emmetropes and myopes,” Vision Res. 46(16), 2581–2592 (2006).
[Crossref]

Troutbeck, R.

J. M. Wood and R. Troutbeck, “Effect of restriction of the binocular visual field on driving performance,” Ophthalmic Physiol. Opt. 12(3), 291–298 (1992).
[Crossref]

Tsai, C.-Y.

P.-C. Huang, Y.-C. Hsiao, C.-Y. Tsai, D.-C. Tsai, C.-W. Chen, C.-C. Hsu, S.-C. Huang, M.-H. Lin, and Y.-M. Liou, “Protective behaviours of near work and time outdoors in myopia prevalence and progression in myopic children: a 2-year prospective population study,” Br. J. Ophthalmol. (2019).

Tsai, D.-C.

P.-C. Huang, Y.-C. Hsiao, C.-Y. Tsai, D.-C. Tsai, C.-W. Chen, C.-C. Hsu, S.-C. Huang, M.-H. Lin, and Y.-M. Liou, “Protective behaviours of near work and time outdoors in myopia prevalence and progression in myopic children: a 2-year prospective population study,” Br. J. Ophthalmol. (2019).

Unsbo, P.

K. Baskaran, P. Unsbo, and J. Gustafsson, “Influence of age on peripheral ocular aberrations,” Optom. Vis. Sci. 88(9), 1088–1098 (2011).
[Crossref]

L. Lundström, J. Gustafsson, and P. Unsbo, “Population distribution of wavefront aberrations in the peripheral human eye,” J. Opt. Soc. Am. A 26(10), 2192–2198 (2009).
[Crossref]

van Duijn, C. M.

K. M. Williams, G. Bertelsen, P. Cumberland, C. Wolfram, V. J. M. Verhoeven, E. Anastasopoulos, G. H. S. Buitendijk, A. Cougnard-Grégoire, C. Creuzot-Garcher, M. G. Erke, R. Hogg, R. Höhn, P. Hysi, A. P. Khawaja, J.-F. Korobelnik, J. Ried, J. R. Vingerling, A. Bron, J.-F. Dartigues, A. Fletcher, A. Hofman, R. W. A. M. Kuijpers, R. N. Luben, K. Oxele, F. Topouzis, T. von Hanno, A. Mirshahi, P. J. Foster, C. M. van Duijn, N. Pfeiffer, C. Delcourt, C. C. W. Klaver, J. Rahi, C. J. Hammond, and E. E. E. Consortium, “Increasing prevalence of myopia in Europe and the impact of education,” Ophthalmology 122(7), 1489–1497 (2015).
[Crossref]

Varma, R.

C. M. Patino, R. McKean-Cowdin, S. P. Azen, J. C. Allison, F. Choudhury, R. Varma, and L. A. L. E. S. Group, “Central and peripheral visual impairment and the risk of falls and falls with injury,” Ophthalmology 117(2), 199–206.e1 (2010).
[Crossref]

Verhoeven, V. J. M.

K. M. Williams, G. Bertelsen, P. Cumberland, C. Wolfram, V. J. M. Verhoeven, E. Anastasopoulos, G. H. S. Buitendijk, A. Cougnard-Grégoire, C. Creuzot-Garcher, M. G. Erke, R. Hogg, R. Höhn, P. Hysi, A. P. Khawaja, J.-F. Korobelnik, J. Ried, J. R. Vingerling, A. Bron, J.-F. Dartigues, A. Fletcher, A. Hofman, R. W. A. M. Kuijpers, R. N. Luben, K. Oxele, F. Topouzis, T. von Hanno, A. Mirshahi, P. J. Foster, C. M. van Duijn, N. Pfeiffer, C. Delcourt, C. C. W. Klaver, J. Rahi, C. J. Hammond, and E. E. E. Consortium, “Increasing prevalence of myopia in Europe and the impact of education,” Ophthalmology 122(7), 1489–1497 (2015).
[Crossref]

Verkicharla, P. K.

P. K. Verkicharla, K. Ohno-Matsui, and S. M. Saw, “Current and predicted demographics of high myopia and an update of its associated pathological changes,” Ophthalmic Physiol. Opt. 35(5), 465–475 (2015).
[Crossref]

Vingerling, J. R.

K. M. Williams, G. Bertelsen, P. Cumberland, C. Wolfram, V. J. M. Verhoeven, E. Anastasopoulos, G. H. S. Buitendijk, A. Cougnard-Grégoire, C. Creuzot-Garcher, M. G. Erke, R. Hogg, R. Höhn, P. Hysi, A. P. Khawaja, J.-F. Korobelnik, J. Ried, J. R. Vingerling, A. Bron, J.-F. Dartigues, A. Fletcher, A. Hofman, R. W. A. M. Kuijpers, R. N. Luben, K. Oxele, F. Topouzis, T. von Hanno, A. Mirshahi, P. J. Foster, C. M. van Duijn, N. Pfeiffer, C. Delcourt, C. C. W. Klaver, J. Rahi, C. J. Hammond, and E. E. E. Consortium, “Increasing prevalence of myopia in Europe and the impact of education,” Ophthalmology 122(7), 1489–1497 (2015).
[Crossref]

von Hanno, T.

K. M. Williams, G. Bertelsen, P. Cumberland, C. Wolfram, V. J. M. Verhoeven, E. Anastasopoulos, G. H. S. Buitendijk, A. Cougnard-Grégoire, C. Creuzot-Garcher, M. G. Erke, R. Hogg, R. Höhn, P. Hysi, A. P. Khawaja, J.-F. Korobelnik, J. Ried, J. R. Vingerling, A. Bron, J.-F. Dartigues, A. Fletcher, A. Hofman, R. W. A. M. Kuijpers, R. N. Luben, K. Oxele, F. Topouzis, T. von Hanno, A. Mirshahi, P. J. Foster, C. M. van Duijn, N. Pfeiffer, C. Delcourt, C. C. W. Klaver, J. Rahi, C. J. Hammond, and E. E. E. Consortium, “Increasing prevalence of myopia in Europe and the impact of education,” Ophthalmology 122(7), 1489–1497 (2015).
[Crossref]

Walker, T. W.

T. W. Walker and D. O. Mutti, “The effect of accommodation on ocular shape,” Optom. Vis. Sci. 79(7), 424–430 (2002).
[Crossref]

Wallman, J.

J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43(4), 447–468 (2004).
[Crossref]

Wang, Q.

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: a network meta-analysis,” Ophthalmology 123(4), 697–708 (2016).
[Crossref]

Webb, R.

Wei, X.

Wen, D.

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: a network meta-analysis,” Ophthalmology 123(4), 697–708 (2016).
[Crossref]

West, R. W.

T. O. Salmon, R. W. West, W. Gasser, and T. Kenmore, “Measurement of refractive errors in young myopes using the COAS Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(1), 6–14 (2003).
[Crossref]

Wetton, M. A.

M. A. Wetton, M. S. Horswill, C. Hatherly, J. M. Wood, N. A. Pachana, and K. J. Anstey, “The development and validation of two complementary measures of drivers’ hazard perception ability,” Accid. Analysis & Prev. 42(4), 1232–1239 (2010).
[Crossref]

Whatham, A.

A. Whatham, F. Zimmermann, A. Martinez, S. Delgado, P. L. de la Jara, P. Sankaridurg, and A. Ho, “Influence of accommodation on off-axis refractive errors in myopic eyes,” J. Vis. 9(3), 14 (2009).
[Crossref]

Whatham, A. R.

A. R. Whatham and S. J. Judge, “Compensatory changes in eye growth and refraction induced by daily wear of soft contact lenses in young marmosets,” Vision Res. 41(3), 267–273 (2001).
[Crossref]

Wiecek, E. W.

E. W. Wiecek, L. R. Pasquale, J. Fiser, S. Dakin, and P. J. Bex, “Effects of peripheral visual field loss on eye movements during visual search,” Front. Psychol. 3, 472 (2012).
[Crossref]

Williams, K. M.

K. M. Williams, G. Bertelsen, P. Cumberland, C. Wolfram, V. J. M. Verhoeven, E. Anastasopoulos, G. H. S. Buitendijk, A. Cougnard-Grégoire, C. Creuzot-Garcher, M. G. Erke, R. Hogg, R. Höhn, P. Hysi, A. P. Khawaja, J.-F. Korobelnik, J. Ried, J. R. Vingerling, A. Bron, J.-F. Dartigues, A. Fletcher, A. Hofman, R. W. A. M. Kuijpers, R. N. Luben, K. Oxele, F. Topouzis, T. von Hanno, A. Mirshahi, P. J. Foster, C. M. van Duijn, N. Pfeiffer, C. Delcourt, C. C. W. Klaver, J. Rahi, C. J. Hammond, and E. E. E. Consortium, “Increasing prevalence of myopia in Europe and the impact of education,” Ophthalmology 122(7), 1489–1497 (2015).
[Crossref]

Winawer, J.

J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43(4), 447–468 (2004).
[Crossref]

Wolfram, C.

K. M. Williams, G. Bertelsen, P. Cumberland, C. Wolfram, V. J. M. Verhoeven, E. Anastasopoulos, G. H. S. Buitendijk, A. Cougnard-Grégoire, C. Creuzot-Garcher, M. G. Erke, R. Hogg, R. Höhn, P. Hysi, A. P. Khawaja, J.-F. Korobelnik, J. Ried, J. R. Vingerling, A. Bron, J.-F. Dartigues, A. Fletcher, A. Hofman, R. W. A. M. Kuijpers, R. N. Luben, K. Oxele, F. Topouzis, T. von Hanno, A. Mirshahi, P. J. Foster, C. M. van Duijn, N. Pfeiffer, C. Delcourt, C. C. W. Klaver, J. Rahi, C. J. Hammond, and E. E. E. Consortium, “Increasing prevalence of myopia in Europe and the impact of education,” Ophthalmology 122(7), 1489–1497 (2015).
[Crossref]

Wood, J. M.

M. A. Wetton, M. S. Horswill, C. Hatherly, J. M. Wood, N. A. Pachana, and K. J. Anstey, “The development and validation of two complementary measures of drivers’ hazard perception ability,” Accid. Analysis & Prev. 42(4), 1232–1239 (2010).
[Crossref]

J. M. Wood and R. Troutbeck, “Effect of restriction of the binocular visual field on driving performance,” Ophthalmic Physiol. Opt. 12(3), 291–298 (1992).
[Crossref]

Wu, P.-C.

H.-M. Huang, D. S.-T. Chang, and P.-C. Wu, “The association between near work activities and myopia in children–a systematic review and meta-analysis,” PLoS One 10(10), e0140419 (2015).
[Crossref]

Y.-y. Tse, D.

C. S. Y. Lam, W. C. Tang, D. Y.-y. Tse, R. P. K. Lee, R. K. M. Chun, K. Hasegawa, H. Qi, T. Hatanaka, and C. H. To, “Defocus Incorporated Multiple Segments (DIMS) spectacle lenses slow myopia progression: a 2-year randomised clinical trial,” Br. J. Ophthalmol. 104(3), 363–368 (2020).
[Crossref]

Yazar, S.

G. Lingham, D. A. Mackey, R. Lucas, and S. Yazar, “How does spending time outdoors protect against myopia? A review,” Br. J. Ophthalmol. 104(5), 593–599 (2020).
[Crossref]

Ye, M.

Ystenaes, A. E.

T. Langaas, P. M. Riddell, E. Svarverud, A. E. Ystenaes, I. Langeggen, and J. R. Bruenech, “Variability of the accommodation response in early onset myopia,” Optom. Vis. Sci. 85(1), 37–48 (2008).
[Crossref]

Yu, A.

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: a network meta-analysis,” Ophthalmology 123(4), 697–708 (2016).
[Crossref]

Yu, Y.

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: a network meta-analysis,” Ophthalmology 123(4), 697–708 (2016).
[Crossref]

Zhang, X.

Zhao, Y.

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: a network meta-analysis,” Ophthalmology 123(4), 697–708 (2016).
[Crossref]

Zimmermann, F.

A. Whatham, F. Zimmermann, A. Martinez, S. Delgado, P. L. de la Jara, P. Sankaridurg, and A. Ho, “Influence of accommodation on off-axis refractive errors in myopic eyes,” J. Vis. 9(3), 14 (2009).
[Crossref]

Accid. Analysis & Prev. (1)

M. A. Wetton, M. S. Horswill, C. Hatherly, J. M. Wood, N. A. Pachana, and K. J. Anstey, “The development and validation of two complementary measures of drivers’ hazard perception ability,” Accid. Analysis & Prev. 42(4), 1232–1239 (2010).
[Crossref]

Appl. Opt. (1)

Br. J. Ophthalmol. (3)

G. Lingham, D. A. Mackey, R. Lucas, and S. Yazar, “How does spending time outdoors protect against myopia? A review,” Br. J. Ophthalmol. 104(5), 593–599 (2020).
[Crossref]

C. S. Y. Lam, W. C. Tang, D. Y.-y. Tse, R. P. K. Lee, R. K. M. Chun, K. Hasegawa, H. Qi, T. Hatanaka, and C. H. To, “Defocus Incorporated Multiple Segments (DIMS) spectacle lenses slow myopia progression: a 2-year randomised clinical trial,” Br. J. Ophthalmol. 104(3), 363–368 (2020).
[Crossref]

L. N. Davies and E. A. H. Mallen, “Influence of accommodation and refractive status on the peripheral refractive profile,” Br. J. Ophthalmol. 93(9), 1186–1190 (2009).
[Crossref]

Clin. Exp. Optom. (2)

G. Smith, M. Millodot, and N. McBrien, “The effect of accommodation on oblique astigmatism and field curvature of the human eye,” Clin. Exp. Optom. 71(4), 119–125 (1988).
[Crossref]

D. Romashchenko, R. Rosén, and L. Lundström, “Peripheral refraction and higher order aberrations,” Clin. Exp. Optom. 103(1), 86–94 (2020).
[Crossref]

Curr. Eye Res. (1)

J. M. González-Méijome, M. A. Faria-Ribeiro, D. P. Lopes-Ferreira, P. Fernandes, G. Carracedo, and A. Queiros, “Changes in peripheral refractive profile after orthokeratology for different degrees of myopia,” Curr. Eye Res. 41(2), 199–207 (2016).
[Crossref]

Eye (2)

B. Holden, P. Sankaridurg, E. Smith, T. Aller, M. Jong, and M. He, “Myopia, an underrated global challenge to vision: where the current data takes us on myopia control,” Eye 28(2), 142–146 (2014).
[Crossref]

E. Goldschmidt and N. Jacobsen, “Genetic and environmental effects on myopia development and progression,” Eye 28(2), 126–133 (2014).
[Crossref]

Front. Psychol. (1)

E. W. Wiecek, L. R. Pasquale, J. Fiser, S. Dakin, and P. J. Bex, “Effects of peripheral visual field loss on eye movements during visual search,” Front. Psychol. 3, 472 (2012).
[Crossref]

Hum. Mov. Sci. (1)

A. Berencsi, M. Ishihara, and K. Imanaka, “The functional role of central and peripheral vision in the control of posture,” Hum. Mov. Sci. 24(5-6), 689–709 (2005).
[Crossref]

Invest. Ophthalmol. Visual Sci. (4)

E. L. Smith, C.-s. Kee, R. Ramamirtham, Y. Qiao-Grider, and L.-F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Visual Sci. 46(11), 3965–3972 (2005).
[Crossref]

A. Benavente-Pérez, A. Nour, and D. Troilo, “Axial eye growth and refractive error development can be modified by exposing the peripheral retina to relative myopic or hyperopic defocus,” Invest. Ophthalmol. Visual Sci. 55(10), 6765–6773 (2014).
[Crossref]

B. Jaeken and P. Artal, “Optical quality of emmetropic and myopic eyes in the periphery measured with high-angular resolution,” Invest. Ophthalmol. Visual Sci. 53(7), 3405–3413 (2012).
[Crossref]

D. Seidel, L. S. Gray, and G. Heron, “Retinotopic accommodation responses in myopia,” Invest. Ophthalmol. Visual Sci. 44(3), 1035–1041 (2003).
[Crossref]

J. Opt. Soc. Am. A (3)

J. Vis. (4)

L. Lundström, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vis. 9(6), 17 (2009).
[Crossref]

A. Mathur, D. A. Atchison, and W. N. Charman, “Effect of accommodation on peripheral ocular aberrations,” J. Vis. 9(12), 20 (2009).
[Crossref]

A. Whatham, F. Zimmermann, A. Martinez, S. Delgado, P. L. de la Jara, P. Sankaridurg, and A. Ho, “Influence of accommodation on off-axis refractive errors in myopic eyes,” J. Vis. 9(3), 14 (2009).
[Crossref]

A. Mathur, D. A. Atchison, and W. N. Charman, “Myopia and peripheral ocular aberrations,” J. Vis. 9(10), 15 (2009).
[Crossref]

Nat. Med. (1)

L.-F. Hung, M. L. J. Crawford, and E. L. Smith, “Spectacle lenses alter eye growth and the refractive status of young monkeys,” Nat. Med. 1(8), 761–765 (1995).
[Crossref]

Neuron (1)

J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43(4), 447–468 (2004).
[Crossref]

Ophthalmic Physiol. Opt. (8)

P. K. Verkicharla, K. Ohno-Matsui, and S. M. Saw, “Current and predicted demographics of high myopia and an update of its associated pathological changes,” Ophthalmic Physiol. Opt. 35(5), 465–475 (2015).
[Crossref]

J. M. Wood and R. Troutbeck, “Effect of restriction of the binocular visual field on driving performance,” Ophthalmic Physiol. Opt. 12(3), 291–298 (1992).
[Crossref]

W. N. Charman and G. Heron, “Microfluctuations in accommodation: an update on their characteristics and possible role,” Ophthalmic Physiol. Opt. 35(5), 476–499 (2015).
[Crossref]

R. Calver, H. Radhakrishnan, E. Osuobeni, and D. O’Leary, “Peripheral refraction for distance and near vision in emmetropes and myopes,” Ophthalmic Physiol. Opt. 27(6), 584–593 (2007).
[Crossref]

E. L. Irving, J. G. Sivak, and M. G. Callender, “Refractive plasticity of the developing chick eye: a summary and update,” Ophthalmic Physiol. Opt. 35(6), 600–606 (2015).
[Crossref]

E. L. Smith III, M. C. W. Campbell, and E. Irving, “Does peripheral retinal input explain the promising myopia control effects of corneal reshaping therapy (CRT or ortho-K) & multifocal soft contact lenses?” Ophthalmic Physiol. Opt. 33(3), 379–384 (2013).
[Crossref]

V. Sreenivasan, E. L. Irving, and W. R. Bobier, “Effect of near adds on the variability of accommodative response in myopic children,” Ophthalmic Physiol. Opt. 31(2), 145–154 (2011).
[Crossref]

M. Day, N. C. Strang, D. Seidel, L. S. Gray, and E. A. H. Mallen, “Refractive group differences in accommodation microfluctuations with changing accommodation stimulus,” Ophthalmic Physiol. Opt. 26(1), 88–96 (2006).
[Crossref]

Ophthalmology (3)

J. Huang, D. Wen, Q. Wang, C. McAlinden, I. Flitcroft, H. Chen, S. M. Saw, H. Chen, F. Bao, Y. Zhao, L. Hu, X. Li, R. Gao, W. Lu, Y. Du, Z. Jinag, A. Yu, H. Lian, Q. Jiang, Y. Yu, and J. Qu, “Efficacy comparison of 16 interventions for myopia control in children: a network meta-analysis,” Ophthalmology 123(4), 697–708 (2016).
[Crossref]

C. M. Patino, R. McKean-Cowdin, S. P. Azen, J. C. Allison, F. Choudhury, R. Varma, and L. A. L. E. S. Group, “Central and peripheral visual impairment and the risk of falls and falls with injury,” Ophthalmology 117(2), 199–206.e1 (2010).
[Crossref]

K. M. Williams, G. Bertelsen, P. Cumberland, C. Wolfram, V. J. M. Verhoeven, E. Anastasopoulos, G. H. S. Buitendijk, A. Cougnard-Grégoire, C. Creuzot-Garcher, M. G. Erke, R. Hogg, R. Höhn, P. Hysi, A. P. Khawaja, J.-F. Korobelnik, J. Ried, J. R. Vingerling, A. Bron, J.-F. Dartigues, A. Fletcher, A. Hofman, R. W. A. M. Kuijpers, R. N. Luben, K. Oxele, F. Topouzis, T. von Hanno, A. Mirshahi, P. J. Foster, C. M. van Duijn, N. Pfeiffer, C. Delcourt, C. C. W. Klaver, J. Rahi, C. J. Hammond, and E. E. E. Consortium, “Increasing prevalence of myopia in Europe and the impact of education,” Ophthalmology 122(7), 1489–1497 (2015).
[Crossref]

Opt. Express (2)

Optom. Vis. Sci. (7)

C. Fedtke, K. Ehrmann, D. Falk, R. C. Bakaraju, and B. A. Holden, “The BHVI-EyeMapper: peripheral refraction and aberration profiles,” Optom. Vis. Sci. 91(10), 1199–1207 (2014).
[Crossref]

K. Baskaran, P. Unsbo, and J. Gustafsson, “Influence of age on peripheral ocular aberrations,” Optom. Vis. Sci. 88(9), 1088–1098 (2011).
[Crossref]

T. Langaas, P. M. Riddell, E. Svarverud, A. E. Ystenaes, I. Langeggen, and J. R. Bruenech, “Variability of the accommodation response in early onset myopia,” Optom. Vis. Sci. 85(1), 37–48 (2008).
[Crossref]

T. O. Salmon, R. W. West, W. Gasser, and T. Kenmore, “Measurement of refractive errors in young myopes using the COAS Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(1), 6–14 (2003).
[Crossref]

T. W. Walker and D. O. Mutti, “The effect of accommodation on ocular shape,” Optom. Vis. Sci. 79(7), 424–430 (2002).
[Crossref]

A. Mathur and D. A. Atchison, “Effect of orthokeratology on peripheral aberrations of the eye,” Optom. Vis. Sci. 86(5), E476–E484 (2009).
[Crossref]

L. Deng and Y. Pang, “Effect of outdoor activities in myopia control: meta-analysis of clinical studies,” Optom. Vis. Sci. 96(4), 276–282 (2019).
[Crossref]

PLoS One (1)

H.-M. Huang, D. S.-T. Chang, and P.-C. Wu, “The association between near work activities and myopia in children–a systematic review and meta-analysis,” PLoS One 10(10), e0140419 (2015).
[Crossref]

Prog. Retinal Eye Res. (1)

D. I. Flitcroft, “The complex interactions of retinal, optical and environmental factors in myopia aetiology,” Prog. Retinal Eye Res. 31(6), 622–660 (2012).
[Crossref]

Surv. Ophthalmol. (1)

C. Owsley and G. McGwin Jr, “Vision impairment and driving,” Surv. Ophthalmol. 43(6), 535–550 (1999).
[Crossref]

Vision Res. (4)

S. A. McFadden, M. H. Howlett, and J. R. Mertz, “Retinoic acid signals the direction of ocular elongation in the guinea pig eye,” Vision Res. 44(7), 643–653 (2004).
[Crossref]

A. R. Whatham and S. J. Judge, “Compensatory changes in eye growth and refraction induced by daily wear of soft contact lenses in young marmosets,” Vision Res. 41(3), 267–273 (2001).
[Crossref]

F. Schaeffel, A. Glasser, and H. C. Howland, “Accommodation, refractive error and eye growth in chickens,” Vision Res. 28(5), 639–657 (1988).
[Crossref]

E. Harb, F. Thorn, and D. Troilo, “Characteristics of accommodative behavior during sustained reading in emmetropes and myopes,” Vision Res. 46(16), 2581–2592 (2006).
[Crossref]

Other (4)

Artificiell optisk strålning (2019), p. 30.

P. Artal, ed., Handbook of Visual Optics, vol. 1 (CRC Press, 2017).

P.-C. Huang, Y.-C. Hsiao, C.-Y. Tsai, D.-C. Tsai, C.-W. Chen, C.-C. Hsu, S.-C. Huang, M.-H. Lin, and Y.-M. Liou, “Protective behaviours of near work and time outdoors in myopia prevalence and progression in myopic children: a 2-year prospective population study,” Br. J. Ophthalmol. (2019).

B. A. Holden, S. P. Mariotti, I. Kocur, S. Resnikoff, H. Mingguang, K. Naidoo, and M. Jong, “The impact of myopia and high myopia. Report of the Joint World Health Organization–Brien Holden Vision Institute Global Scientific Meeting on Myopia,” (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic drawing of the designed dual-angle wavefront sensor. Abbreviations: PC - pupil camera; LD - laser diode; L - lens; BS - beam splitter; HM - hot mirror; HSWS - Hartmann-Shack wavefront sensor.
Fig. 2.
Fig. 2. An example of mean sphere and pupil diameter dynamics for fovea and 20$^\circ$ of the nasal visual field before and after implementation of the filtering algorithm. Dashed red line shows raw data and solid green line shows the data after filtering. The data are from measurements on Subject 2 (spherical equivalent -2,75/-0,25 x 175).
Fig. 3.
Fig. 3. An example of the dynamic wavefront measurements from the dual-angle open field wavefront sensor for fovea and 20$^\circ$ nasal visual field. The dynamics are described as the standard deviations of Zernike coefficients during one set of measurements (30 sec). The Zernike coefficients are given for 3 mm pupil diameter at $\lambda$ = 550 nm. The subject was fixating at a far-away target (0.31 D of accommodation demand). The data is given for Subject 1 (spherical equivalent +0.25/-0.25 x 165)
Fig. 4.
Fig. 4. Data from the dual-angle wavefront sensor for the accommodation demand step-change between 0.31 D and 4.00 D. Top: mean sphere dynamics for the fovea and 20$^\circ$ of the nasal visual field. Bottom: relative peripheral refraction for the 20$^\circ$ of the nasal visual field. The data is given for Subject 1 (spherical equivalent +0.25/-0.25 x 165).
Fig. 5.
Fig. 5. Sources of the spotfield image decentration on the Hartmann-Shack wavefront sensor. Dashed lines show the reference light coming into the eye, and solid lines show the back-scattered light, captured by the wavefront sensor. Left: an ideal case when the subject is placed so that the exit pupil of the eye is centered with the wavefront sensor. The line of sight of the eye coincides with the optical axis of the wavefront sensor. In this case the spotfield image is perfectly centered on the wavefront sensor. Middle: the eye of the subject is laterally decentered by $\Delta$ with respect to the optical axis of the wavefront sensor. The line of sight is parallel to the optical axis of the wavefront sensor. The corresponding decentration of the spotfield image will be $\Delta \cdot M$, where $M$ is the magnification between the exit pupil of the subject and the lenslet array of the wavefront sensor. Right: the eye of the subject is rotated by the angle $\alpha$ without lateral decentration. In this case the displacement of the spotfield image can be found from the triangle ABZ: $M\cdot \Delta = M\cdot AZ\cdot tan(\alpha )$, where AZ — distance from the cornea to the centre of rotation of the eye, and $\alpha$ — rotation angle.

Tables (4)

Tables Icon

Table 1. Repeatability of the on-axis measurements on a hypermetropic artificial eye model. The measurements were repeated 5 times; for each repetition the average Zernike coefficients were calculated. The table represents mean $\pm$ standard deviation between these 5 sets of averaged Zernike coefficients. The coefficients are given for 4 mm pupil diameter at $\lambda$ = 550 nm.

Tables Icon

Table 2. Average Zernike coefficients for fovea and 20$^\circ$ of the nasal visual field for 0.31 D accommodation demand. Subject 1: 28 years old, spherical equivalent +0.25/-0.25 x 165; Subject 2: 30 years old, spherical equivalent -2,75/-0,25 x 175; Subject 3: 41 years old, spherical equivalent -1.75/-0.50 x 140). Zernike coefficients are given for a 3 mm pupil diameter at $\lambda$ = 550 nm.

Tables Icon

Table 3. Cross-validation of the foveal measurements from the dual-angle wavefront sensor. Subject 1: 28 years old, spherical equivalent +0.25/-0.25 x 165; Subject 2: 30 years old, spherical equivalent -2,75/-0,25 x 175; Subject 3: 41 years old, spherical equivalent -1.75/-0.50 x 140). Foveal Zernike coefficients are given for 3 mm pupil diameter at $\lambda$ = 550 nm.

Tables Icon

Table 4. Foveal and peripheral (20$^\circ$ nasal visual field) Zernike coefficients dynamics for an accommodating eye of Subject 1 (28 years, spherical equivalent +0.25/-0.25 x 165). Zernike coefficients are given for a 2.5 mm pupil diameter at $\lambda$ = 550 nm. The values for 0.31 D of accommodation demand are calculated using data from Table 3.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

$$\begin{gathered} Mean \, Sphere [D] = \frac{-4\sqrt{3}c_2^0}{radius_{pupil}^2} + \frac{12\sqrt{5}c_4^0}{radius_{pupil}^2} - \frac{24\sqrt{7}c_6^0}{radius_{pupil}^2},\\ J_0 [D] = \frac{-2\sqrt{6}c_2^2}{radius_{pupil}^2} + \frac{6\sqrt{10}c_4^2}{radius_{pupil}^2} - \frac{12\sqrt{14} c_6^2}{radius_{pupil}^2},\\ J_{45} [D] = \frac{-2\sqrt{6}c_2^{{-}2}}{radius_{pupil}^2} + \frac{6\sqrt{10}c_4^{{-}2}}{radius_{pupil}^2} - \frac{12\sqrt{14}c_6^{{-}2}}{radius_{pupil}^2},\\ \end{gathered}$$
$$y_n = \frac{1}{5}(x_{n-2} + x_{n-1} + x_n + x_{n+1} + x_{n+2})$$