Abstract

Intra and post-operative blood flow monitoring of tissue has been shown to be effective in the improvement of patient outcomes. Diffuse correlation spectroscopy (DCS) has been shown to be effective in measuring blood flow at the bedside, and is a useful technique in measuring cerebral blood flow (CBF) in many clinical settings. However, DCS suffers from reduced sensitivity to blood flow changes at larger tissue depths, making measurements of CBF in adults difficult. This issue can be addressed with acousto-optic modulated diffuse correlation spectroscopy (AOM-DCS), which is a hybrid technique that combines the sensitivity of DCS to blood flow with ultrasound resolution to allow for improved spatial resolution of the optical signal based on knowledge of the area which is insonified by ultrasound. We present a quantitative model for perfusion estimation based on AOM-DCS in the presence of continuous wave ultrasound, supported by theoretical derivations, Monte Carlo simulations, and phantom and human subject experiments. Quantification of the influence of individual mechanisms that contribute to the temporal fluctuations of the optical intensity due to ultrasound is shown to agree with previously derived results. By using this model, the recovery of blood-flow induced scatterer dynamics based on ultrasound-modulated light is shown to deviate by less than one percent from the standard DCS measurement of scatterer dynamics over a range of optical scattering values and scatterer motion conditions. This work provides an important step towards future implementation of AOM-DCS setups with more complex spatio-temporal distributions of ultrasound pressure, which are needed to enhance the DCS spatial resolution.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Donati, S. Loggi, J. C. Preiser, G. Orsetti, C. Münch, V. Gabbanelli, P. Pelaia, and P. Pietropaoli, “Goal-directed intraoperative therapy reduces morbidity and length of hospital stay in high-risk surgical patients,” Chest 132(6), 1817–1824 (2007).
    [Crossref]
  2. P. Farzam, Z. Starkweather, and M. A. Franceschini, “Validation of a novel wearable, wireless technology to estimate oxygen levels and lactate threshold power in the exercising muscle,” Physiol. Rep. 6(7), e13664 (2018).
    [Crossref]
  3. D. Tamborini, P. Farzam, B. Zimmermann, K.-C. Wu, D. A. Boas, and M. A. Franceschini, “Development and characterization of a multidistance and multiwavelength diffuse correlation spectroscopy system,” Neurophotonics 5(01), 1 (2018).
    [Crossref]
  4. S. A. Carp, P. Farzam, N. Redes, D. M. Hueber, and M. A. Franceschini, “Combined multi-distance frequency domain and diffuse correlation spectroscopy system with simultaneous data acquisition and real-time analysis,” Biomed. Opt. Express 8(9), 3993–4006 (2017).
    [Crossref]
  5. D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A 14(1), 192 (1997).
    [Crossref]
  6. E. M. Buckley, A. B. Parthasarathy, P. E. Grant, A. G. Yodh, and M. A. Franceschini, “Diffuse correlation spectroscopy for measurement of cerebral blood flow: future prospects,” Neurophotonics 1(1), 011009 (2014).
    [Crossref]
  7. J. Selb, D. A. Boas, S.-T. Chan, K. C. Evans, E. M. Buckley, and S. A. Carp, “Sensitivity of near-infrared spectroscopy and diffuse correlation spectroscopy to brain hemodynamics: simulations and experimental findings during hypercapnia,” Neurophotonics 1(1), 015005 (2014).
    [Crossref]
  8. A. Tsalach, Z. Schiffer, E. Ratner, I. Breskin, R. Zeitak, R. Shechter, and M. Balberg, “Depth selective acousto-optic flow measurement,” Biomed. Opt. Express 6(12), 4871–4886 (2015).
    [Crossref]
  9. R. Sriram Chandran, G. Devaraj, R. Kanhirodan, D. Roy, and R. M. Vasu, “Detection and estimation of liquid flow through a pipe in a tissue-like object with ultrasound-assisted diffuse correlation spectroscopy,” J. Opt. Soc. Am. A 32(10), 1888 (2015).
    [Crossref]
  10. H. Ling, Z. Gui, H. Hao, and Y. Shang, “Enhancement of diffuse correlation spectroscopy tissue blood flow measurement by acoustic radiation force,” Biomed. Opt. Express 11(1), 301 (2020).
    [Crossref]
  11. R. Bonner and R. Nossal, “Model for laser Doppler measurements of blood flow in tissue,” Appl. Opt. 20(12), 2097 (1981).
    [Crossref]
  12. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
    [Crossref]
  13. U. Frisch, “Wave Propagation In Random Media In Probabilistic Methods in Applied Mathematics,” Acad. Press. New York75–198 (1968).
  14. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
    [Crossref]
  15. G. Maret and P. E. Wolf, “Multiple light scattering from disordered media. The effect of brownian motion of scatterers,” Z. Phys. B: Condens. Matter 65(4), 409–413 (1987).
    [Crossref]
  16. A. J. F. Siegert, On the Fluctuations in Signals Returned by Many Independently Moving Scatterers (Radiation Laboratory, Massachusetts Institute of Technology, 1943).
  17. S. A. Carp, N. Roche-Labarbe, M.-A. Franceschini, V. J. Srinivasan, S. Sakadžić, and D. A. Boas, “Due to intravascular multiple sequential scattering, Diffuse Correlation Spectroscopy of tissue primarily measures relative red blood cell motion within vessels,” Biomed. Opt. Express 2(7), 2047 (2011).
    [Crossref]
  18. K. Verdecchia, M. Diop, L. B. Morrison, T.-Y. Lee, and K. St Lawrence, “Assessment of the best flow model to characterize diffuse correlation spectroscopy data acquired directly on the brain,” Biomed. Opt. Express 6(11), 4288–4301 (2015).
    [Crossref]
  19. G. Yu, T. F. Floyd, T. Durduran, C. Zhou, J. Wang, J. A. Detre, and A. G. Yodh, “Validation of diffuse correlation spectroscopy for muscle blood flow with concurrent arterial spin labeled perfusion MRI,” Opt. Express 15(3), 1064 (2007).
    [Crossref]
  20. E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express 17(15), 12571 (2009).
    [Crossref]
  21. C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14(3), 034015 (2009).
    [Crossref]
  22. M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
    [Crossref]
  23. M. Giovannella, B. Andresen, J. B. Andersen, S. El-Mahdaoui, D. Contini, L. Spinelli, A. Torricelli, G. Greisen, T. Durduran, U. M. Weigel, and I. Law, “Validation of diffuse correlation spectroscopy against 15O-water PET for regional cerebral blood flow measurement in neonatal piglets,” J. Cereb. Blood Flow Metab.0271678X1988375 (2019).
  24. W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Phys. B (Amsterdam, Neth.) 204(1-4), 14–19 (1995).
    [Crossref]
  25. L. V. Wang, “Mechanisms of Ultrasonic Modulation of Multiply Scattered Coherent Light: An Analytic Model,” Phys. Rev. Lett. 87(4), 043903 (2001).
    [Crossref]
  26. S. Sakadžić and L. V. Wang, “Modulation of multiply scattered coherent light by ultrasonic pulses: An analytical model,” Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 72(3), 036620 (2005).
    [Crossref]
  27. S. Sakadžić and L. V. Wang, “Correlation transfer and diffusion of ultrasound-modulated multiply scattered light,” Phys. Rev. Lett. 96(16), 163902 (2006).
    [Crossref]
  28. S. Sakadžić and L. V. Wang, “Ultrasonic modulation of multiply scattered coherent light: An analytical model for anisotropically scattering media,” Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 66(2), 026603 (2002).
    [Crossref]
  29. S. Sakadžic, D. A. Boas, and S. A. Carp, “Theoretical model of blood flow measurement by diffuse correlation spectroscopy,” J. Biomed. Opt. 22(2), 027006 (2017).
    [Crossref]
  30. D. R. Wyman, M. S. Patterson, and B. C. Wilson, “Similarity relations for the interaction parameters in radiation transport,” Appl. Opt. 28(24), 5243 (1989).
    [Crossref]
  31. Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17(22), 20178–20190 (2009).
    [Crossref]
  32. R. L. Johnston, F. Dunn, and S. A. Goss, “Compilation of empirical ultrasonic properties of mammalian tissues. ll,” J. Acoust. Soc. Am. 68(1), 93–108 (1980).
    [Crossref]

2020 (1)

2018 (2)

P. Farzam, Z. Starkweather, and M. A. Franceschini, “Validation of a novel wearable, wireless technology to estimate oxygen levels and lactate threshold power in the exercising muscle,” Physiol. Rep. 6(7), e13664 (2018).
[Crossref]

D. Tamborini, P. Farzam, B. Zimmermann, K.-C. Wu, D. A. Boas, and M. A. Franceschini, “Development and characterization of a multidistance and multiwavelength diffuse correlation spectroscopy system,” Neurophotonics 5(01), 1 (2018).
[Crossref]

2017 (2)

2015 (3)

2014 (2)

E. M. Buckley, A. B. Parthasarathy, P. E. Grant, A. G. Yodh, and M. A. Franceschini, “Diffuse correlation spectroscopy for measurement of cerebral blood flow: future prospects,” Neurophotonics 1(1), 011009 (2014).
[Crossref]

J. Selb, D. A. Boas, S.-T. Chan, K. C. Evans, E. M. Buckley, and S. A. Carp, “Sensitivity of near-infrared spectroscopy and diffuse correlation spectroscopy to brain hemodynamics: simulations and experimental findings during hypercapnia,” Neurophotonics 1(1), 015005 (2014).
[Crossref]

2011 (1)

2010 (2)

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref]

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref]

2009 (3)

2007 (2)

A. Donati, S. Loggi, J. C. Preiser, G. Orsetti, C. Münch, V. Gabbanelli, P. Pelaia, and P. Pietropaoli, “Goal-directed intraoperative therapy reduces morbidity and length of hospital stay in high-risk surgical patients,” Chest 132(6), 1817–1824 (2007).
[Crossref]

G. Yu, T. F. Floyd, T. Durduran, C. Zhou, J. Wang, J. A. Detre, and A. G. Yodh, “Validation of diffuse correlation spectroscopy for muscle blood flow with concurrent arterial spin labeled perfusion MRI,” Opt. Express 15(3), 1064 (2007).
[Crossref]

2006 (1)

S. Sakadžić and L. V. Wang, “Correlation transfer and diffusion of ultrasound-modulated multiply scattered light,” Phys. Rev. Lett. 96(16), 163902 (2006).
[Crossref]

2005 (1)

S. Sakadžić and L. V. Wang, “Modulation of multiply scattered coherent light by ultrasonic pulses: An analytical model,” Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 72(3), 036620 (2005).
[Crossref]

2002 (1)

S. Sakadžić and L. V. Wang, “Ultrasonic modulation of multiply scattered coherent light: An analytical model for anisotropically scattering media,” Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 66(2), 026603 (2002).
[Crossref]

2001 (1)

L. V. Wang, “Mechanisms of Ultrasonic Modulation of Multiply Scattered Coherent Light: An Analytic Model,” Phys. Rev. Lett. 87(4), 043903 (2001).
[Crossref]

1997 (1)

1995 (1)

W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Phys. B (Amsterdam, Neth.) 204(1-4), 14–19 (1995).
[Crossref]

1989 (1)

1988 (1)

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[Crossref]

1987 (1)

G. Maret and P. E. Wolf, “Multiple light scattering from disordered media. The effect of brownian motion of scatterers,” Z. Phys. B: Condens. Matter 65(4), 409–413 (1987).
[Crossref]

1981 (1)

1980 (1)

R. L. Johnston, F. Dunn, and S. A. Goss, “Compilation of empirical ultrasonic properties of mammalian tissues. ll,” J. Acoust. Soc. Am. 68(1), 93–108 (1980).
[Crossref]

Andersen, J. B.

M. Giovannella, B. Andresen, J. B. Andersen, S. El-Mahdaoui, D. Contini, L. Spinelli, A. Torricelli, G. Greisen, T. Durduran, U. M. Weigel, and I. Law, “Validation of diffuse correlation spectroscopy against 15O-water PET for regional cerebral blood flow measurement in neonatal piglets,” J. Cereb. Blood Flow Metab.0271678X1988375 (2019).

Andresen, B.

M. Giovannella, B. Andresen, J. B. Andersen, S. El-Mahdaoui, D. Contini, L. Spinelli, A. Torricelli, G. Greisen, T. Durduran, U. M. Weigel, and I. Law, “Validation of diffuse correlation spectroscopy against 15O-water PET for regional cerebral blood flow measurement in neonatal piglets,” J. Cereb. Blood Flow Metab.0271678X1988375 (2019).

Arger, P. H.

Baker, W. B.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref]

Balberg, M.

Boas, D. A.

D. Tamborini, P. Farzam, B. Zimmermann, K.-C. Wu, D. A. Boas, and M. A. Franceschini, “Development and characterization of a multidistance and multiwavelength diffuse correlation spectroscopy system,” Neurophotonics 5(01), 1 (2018).
[Crossref]

S. Sakadžic, D. A. Boas, and S. A. Carp, “Theoretical model of blood flow measurement by diffuse correlation spectroscopy,” J. Biomed. Opt. 22(2), 027006 (2017).
[Crossref]

J. Selb, D. A. Boas, S.-T. Chan, K. C. Evans, E. M. Buckley, and S. A. Carp, “Sensitivity of near-infrared spectroscopy and diffuse correlation spectroscopy to brain hemodynamics: simulations and experimental findings during hypercapnia,” Neurophotonics 1(1), 015005 (2014).
[Crossref]

S. A. Carp, N. Roche-Labarbe, M.-A. Franceschini, V. J. Srinivasan, S. Sakadžić, and D. A. Boas, “Due to intravascular multiple sequential scattering, Diffuse Correlation Spectroscopy of tissue primarily measures relative red blood cell motion within vessels,” Biomed. Opt. Express 2(7), 2047 (2011).
[Crossref]

Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17(22), 20178–20190 (2009).
[Crossref]

D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A 14(1), 192 (1997).
[Crossref]

Bonner, R.

Breskin, I.

Buckley, E. M.

J. Selb, D. A. Boas, S.-T. Chan, K. C. Evans, E. M. Buckley, and S. A. Carp, “Sensitivity of near-infrared spectroscopy and diffuse correlation spectroscopy to brain hemodynamics: simulations and experimental findings during hypercapnia,” Neurophotonics 1(1), 015005 (2014).
[Crossref]

E. M. Buckley, A. B. Parthasarathy, P. E. Grant, A. G. Yodh, and M. A. Franceschini, “Diffuse correlation spectroscopy for measurement of cerebral blood flow: future prospects,” Neurophotonics 1(1), 011009 (2014).
[Crossref]

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref]

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express 17(15), 12571 (2009).
[Crossref]

Carp, S. A.

S. A. Carp, P. Farzam, N. Redes, D. M. Hueber, and M. A. Franceschini, “Combined multi-distance frequency domain and diffuse correlation spectroscopy system with simultaneous data acquisition and real-time analysis,” Biomed. Opt. Express 8(9), 3993–4006 (2017).
[Crossref]

S. Sakadžic, D. A. Boas, and S. A. Carp, “Theoretical model of blood flow measurement by diffuse correlation spectroscopy,” J. Biomed. Opt. 22(2), 027006 (2017).
[Crossref]

J. Selb, D. A. Boas, S.-T. Chan, K. C. Evans, E. M. Buckley, and S. A. Carp, “Sensitivity of near-infrared spectroscopy and diffuse correlation spectroscopy to brain hemodynamics: simulations and experimental findings during hypercapnia,” Neurophotonics 1(1), 015005 (2014).
[Crossref]

S. A. Carp, N. Roche-Labarbe, M.-A. Franceschini, V. J. Srinivasan, S. Sakadžić, and D. A. Boas, “Due to intravascular multiple sequential scattering, Diffuse Correlation Spectroscopy of tissue primarily measures relative red blood cell motion within vessels,” Biomed. Opt. Express 2(7), 2047 (2011).
[Crossref]

Chaikin, P. M.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[Crossref]

Chan, S.-T.

J. Selb, D. A. Boas, S.-T. Chan, K. C. Evans, E. M. Buckley, and S. A. Carp, “Sensitivity of near-infrared spectroscopy and diffuse correlation spectroscopy to brain hemodynamics: simulations and experimental findings during hypercapnia,” Neurophotonics 1(1), 015005 (2014).
[Crossref]

Choe, R.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref]

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express 17(15), 12571 (2009).
[Crossref]

Contini, D.

M. Giovannella, B. Andresen, J. B. Andersen, S. El-Mahdaoui, D. Contini, L. Spinelli, A. Torricelli, G. Greisen, T. Durduran, U. M. Weigel, and I. Law, “Validation of diffuse correlation spectroscopy against 15O-water PET for regional cerebral blood flow measurement in neonatal piglets,” J. Cereb. Blood Flow Metab.0271678X1988375 (2019).

Cook, N. M.

Detre, J. A.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref]

G. Yu, T. F. Floyd, T. Durduran, C. Zhou, J. Wang, J. A. Detre, and A. G. Yodh, “Validation of diffuse correlation spectroscopy for muscle blood flow with concurrent arterial spin labeled perfusion MRI,” Opt. Express 15(3), 1064 (2007).
[Crossref]

Devaraj, G.

Diop, M.

Donati, A.

A. Donati, S. Loggi, J. C. Preiser, G. Orsetti, C. Münch, V. Gabbanelli, P. Pelaia, and P. Pietropaoli, “Goal-directed intraoperative therapy reduces morbidity and length of hospital stay in high-risk surgical patients,” Chest 132(6), 1817–1824 (2007).
[Crossref]

Dunn, F.

R. L. Johnston, F. Dunn, and S. A. Goss, “Compilation of empirical ultrasonic properties of mammalian tissues. ll,” J. Acoust. Soc. Am. 68(1), 93–108 (1980).
[Crossref]

Durduran, T.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref]

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express 17(15), 12571 (2009).
[Crossref]

C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14(3), 034015 (2009).
[Crossref]

G. Yu, T. F. Floyd, T. Durduran, C. Zhou, J. Wang, J. A. Detre, and A. G. Yodh, “Validation of diffuse correlation spectroscopy for muscle blood flow with concurrent arterial spin labeled perfusion MRI,” Opt. Express 15(3), 1064 (2007).
[Crossref]

M. Giovannella, B. Andresen, J. B. Andersen, S. El-Mahdaoui, D. Contini, L. Spinelli, A. Torricelli, G. Greisen, T. Durduran, U. M. Weigel, and I. Law, “Validation of diffuse correlation spectroscopy against 15O-water PET for regional cerebral blood flow measurement in neonatal piglets,” J. Cereb. Blood Flow Metab.0271678X1988375 (2019).

Edlow, B. L.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref]

El-Mahdaoui, S.

M. Giovannella, B. Andresen, J. B. Andersen, S. El-Mahdaoui, D. Contini, L. Spinelli, A. Torricelli, G. Greisen, T. Durduran, U. M. Weigel, and I. Law, “Validation of diffuse correlation spectroscopy against 15O-water PET for regional cerebral blood flow measurement in neonatal piglets,” J. Cereb. Blood Flow Metab.0271678X1988375 (2019).

Eucker, S. A.

C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14(3), 034015 (2009).
[Crossref]

Evans, K. C.

J. Selb, D. A. Boas, S.-T. Chan, K. C. Evans, E. M. Buckley, and S. A. Carp, “Sensitivity of near-infrared spectroscopy and diffuse correlation spectroscopy to brain hemodynamics: simulations and experimental findings during hypercapnia,” Neurophotonics 1(1), 015005 (2014).
[Crossref]

Fang, Q.

Farzam, P.

D. Tamborini, P. Farzam, B. Zimmermann, K.-C. Wu, D. A. Boas, and M. A. Franceschini, “Development and characterization of a multidistance and multiwavelength diffuse correlation spectroscopy system,” Neurophotonics 5(01), 1 (2018).
[Crossref]

P. Farzam, Z. Starkweather, and M. A. Franceschini, “Validation of a novel wearable, wireless technology to estimate oxygen levels and lactate threshold power in the exercising muscle,” Physiol. Rep. 6(7), e13664 (2018).
[Crossref]

S. A. Carp, P. Farzam, N. Redes, D. M. Hueber, and M. A. Franceschini, “Combined multi-distance frequency domain and diffuse correlation spectroscopy system with simultaneous data acquisition and real-time analysis,” Biomed. Opt. Express 8(9), 3993–4006 (2017).
[Crossref]

Floyd, T. F.

Franceschini, M. A.

D. Tamborini, P. Farzam, B. Zimmermann, K.-C. Wu, D. A. Boas, and M. A. Franceschini, “Development and characterization of a multidistance and multiwavelength diffuse correlation spectroscopy system,” Neurophotonics 5(01), 1 (2018).
[Crossref]

P. Farzam, Z. Starkweather, and M. A. Franceschini, “Validation of a novel wearable, wireless technology to estimate oxygen levels and lactate threshold power in the exercising muscle,” Physiol. Rep. 6(7), e13664 (2018).
[Crossref]

S. A. Carp, P. Farzam, N. Redes, D. M. Hueber, and M. A. Franceschini, “Combined multi-distance frequency domain and diffuse correlation spectroscopy system with simultaneous data acquisition and real-time analysis,” Biomed. Opt. Express 8(9), 3993–4006 (2017).
[Crossref]

E. M. Buckley, A. B. Parthasarathy, P. E. Grant, A. G. Yodh, and M. A. Franceschini, “Diffuse correlation spectroscopy for measurement of cerebral blood flow: future prospects,” Neurophotonics 1(1), 011009 (2014).
[Crossref]

Franceschini, M.-A.

Frangos, S.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref]

Friess, S. H.

C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14(3), 034015 (2009).
[Crossref]

Frisch, U.

U. Frisch, “Wave Propagation In Random Media In Probabilistic Methods in Applied Mathematics,” Acad. Press. New York75–198 (1968).

Gabbanelli, V.

A. Donati, S. Loggi, J. C. Preiser, G. Orsetti, C. Münch, V. Gabbanelli, P. Pelaia, and P. Pietropaoli, “Goal-directed intraoperative therapy reduces morbidity and length of hospital stay in high-risk surgical patients,” Chest 132(6), 1817–1824 (2007).
[Crossref]

Giovannella, M.

M. Giovannella, B. Andresen, J. B. Andersen, S. El-Mahdaoui, D. Contini, L. Spinelli, A. Torricelli, G. Greisen, T. Durduran, U. M. Weigel, and I. Law, “Validation of diffuse correlation spectroscopy against 15O-water PET for regional cerebral blood flow measurement in neonatal piglets,” J. Cereb. Blood Flow Metab.0271678X1988375 (2019).

Goss, S. A.

R. L. Johnston, F. Dunn, and S. A. Goss, “Compilation of empirical ultrasonic properties of mammalian tissues. ll,” J. Acoust. Soc. Am. 68(1), 93–108 (1980).
[Crossref]

Grady, M. S.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref]

Grant, P. E.

E. M. Buckley, A. B. Parthasarathy, P. E. Grant, A. G. Yodh, and M. A. Franceschini, “Diffuse correlation spectroscopy for measurement of cerebral blood flow: future prospects,” Neurophotonics 1(1), 011009 (2014).
[Crossref]

Greenberg, J. H.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref]

Greisen, G.

M. Giovannella, B. Andresen, J. B. Andersen, S. El-Mahdaoui, D. Contini, L. Spinelli, A. Torricelli, G. Greisen, T. Durduran, U. M. Weigel, and I. Law, “Validation of diffuse correlation spectroscopy against 15O-water PET for regional cerebral blood flow measurement in neonatal piglets,” J. Cereb. Blood Flow Metab.0271678X1988375 (2019).

Gui, Z.

Hao, H.

Herbolzheimer, E.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[Crossref]

Hueber, D. M.

Hurt, H. H.

Ichord, R. N.

C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14(3), 034015 (2009).
[Crossref]

Johnston, R. L.

R. L. Johnston, F. Dunn, and S. A. Goss, “Compilation of empirical ultrasonic properties of mammalian tissues. ll,” J. Acoust. Soc. Am. 68(1), 93–108 (1980).
[Crossref]

Kanhirodan, R.

Kim, M. N.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref]

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express 17(15), 12571 (2009).
[Crossref]

Kofke, W. A.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref]

Law, I.

M. Giovannella, B. Andresen, J. B. Andersen, S. El-Mahdaoui, D. Contini, L. Spinelli, A. Torricelli, G. Greisen, T. Durduran, U. M. Weigel, and I. Law, “Validation of diffuse correlation spectroscopy against 15O-water PET for regional cerebral blood flow measurement in neonatal piglets,” J. Cereb. Blood Flow Metab.0271678X1988375 (2019).

Lee, T.-Y.

Leutz, W.

W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Phys. B (Amsterdam, Neth.) 204(1-4), 14–19 (1995).
[Crossref]

Levine, J. M.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref]

Licht, D. J.

Ling, H.

Loggi, S.

A. Donati, S. Loggi, J. C. Preiser, G. Orsetti, C. Münch, V. Gabbanelli, P. Pelaia, and P. Pietropaoli, “Goal-directed intraoperative therapy reduces morbidity and length of hospital stay in high-risk surgical patients,” Chest 132(6), 1817–1824 (2007).
[Crossref]

Maloney-Wilensky, E.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref]

Maret, G.

W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Phys. B (Amsterdam, Neth.) 204(1-4), 14–19 (1995).
[Crossref]

G. Maret and P. E. Wolf, “Multiple light scattering from disordered media. The effect of brownian motion of scatterers,” Z. Phys. B: Condens. Matter 65(4), 409–413 (1987).
[Crossref]

Margulies, S. S.

C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14(3), 034015 (2009).
[Crossref]

Morrison, L. B.

Moss, H. E.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref]

Münch, C.

A. Donati, S. Loggi, J. C. Preiser, G. Orsetti, C. Münch, V. Gabbanelli, P. Pelaia, and P. Pietropaoli, “Goal-directed intraoperative therapy reduces morbidity and length of hospital stay in high-risk surgical patients,” Chest 132(6), 1817–1824 (2007).
[Crossref]

Nossal, R.

Orsetti, G.

A. Donati, S. Loggi, J. C. Preiser, G. Orsetti, C. Münch, V. Gabbanelli, P. Pelaia, and P. Pietropaoli, “Goal-directed intraoperative therapy reduces morbidity and length of hospital stay in high-risk surgical patients,” Chest 132(6), 1817–1824 (2007).
[Crossref]

Parthasarathy, A. B.

E. M. Buckley, A. B. Parthasarathy, P. E. Grant, A. G. Yodh, and M. A. Franceschini, “Diffuse correlation spectroscopy for measurement of cerebral blood flow: future prospects,” Neurophotonics 1(1), 011009 (2014).
[Crossref]

Patterson, M. S.

Pelaia, P.

A. Donati, S. Loggi, J. C. Preiser, G. Orsetti, C. Münch, V. Gabbanelli, P. Pelaia, and P. Pietropaoli, “Goal-directed intraoperative therapy reduces morbidity and length of hospital stay in high-risk surgical patients,” Chest 132(6), 1817–1824 (2007).
[Crossref]

Pietropaoli, P.

A. Donati, S. Loggi, J. C. Preiser, G. Orsetti, C. Münch, V. Gabbanelli, P. Pelaia, and P. Pietropaoli, “Goal-directed intraoperative therapy reduces morbidity and length of hospital stay in high-risk surgical patients,” Chest 132(6), 1817–1824 (2007).
[Crossref]

Pine, D. J.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[Crossref]

Preiser, J. C.

A. Donati, S. Loggi, J. C. Preiser, G. Orsetti, C. Münch, V. Gabbanelli, P. Pelaia, and P. Pietropaoli, “Goal-directed intraoperative therapy reduces morbidity and length of hospital stay in high-risk surgical patients,” Chest 132(6), 1817–1824 (2007).
[Crossref]

Putt, M. E.

Ralston, J.

C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14(3), 034015 (2009).
[Crossref]

Ratner, E.

Redes, N.

Roche-Labarbe, N.

Roy, D.

Sakadžic, S.

S. Sakadžic, D. A. Boas, and S. A. Carp, “Theoretical model of blood flow measurement by diffuse correlation spectroscopy,” J. Biomed. Opt. 22(2), 027006 (2017).
[Crossref]

S. A. Carp, N. Roche-Labarbe, M.-A. Franceschini, V. J. Srinivasan, S. Sakadžić, and D. A. Boas, “Due to intravascular multiple sequential scattering, Diffuse Correlation Spectroscopy of tissue primarily measures relative red blood cell motion within vessels,” Biomed. Opt. Express 2(7), 2047 (2011).
[Crossref]

S. Sakadžić and L. V. Wang, “Correlation transfer and diffusion of ultrasound-modulated multiply scattered light,” Phys. Rev. Lett. 96(16), 163902 (2006).
[Crossref]

S. Sakadžić and L. V. Wang, “Modulation of multiply scattered coherent light by ultrasonic pulses: An analytical model,” Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 72(3), 036620 (2005).
[Crossref]

S. Sakadžić and L. V. Wang, “Ultrasonic modulation of multiply scattered coherent light: An analytical model for anisotropically scattering media,” Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 66(2), 026603 (2002).
[Crossref]

Schiffer, Z.

Schultz, S.

Sehgal, C. M.

Selb, J.

J. Selb, D. A. Boas, S.-T. Chan, K. C. Evans, E. M. Buckley, and S. A. Carp, “Sensitivity of near-infrared spectroscopy and diffuse correlation spectroscopy to brain hemodynamics: simulations and experimental findings during hypercapnia,” Neurophotonics 1(1), 015005 (2014).
[Crossref]

Shang, Y.

Shechter, R.

Siegert, A. J. F.

A. J. F. Siegert, On the Fluctuations in Signals Returned by Many Independently Moving Scatterers (Radiation Laboratory, Massachusetts Institute of Technology, 1943).

Spinelli, L.

M. Giovannella, B. Andresen, J. B. Andersen, S. El-Mahdaoui, D. Contini, L. Spinelli, A. Torricelli, G. Greisen, T. Durduran, U. M. Weigel, and I. Law, “Validation of diffuse correlation spectroscopy against 15O-water PET for regional cerebral blood flow measurement in neonatal piglets,” J. Cereb. Blood Flow Metab.0271678X1988375 (2019).

Srinivasan, V. J.

Sriram Chandran, R.

St Lawrence, K.

Starkweather, Z.

P. Farzam, Z. Starkweather, and M. A. Franceschini, “Validation of a novel wearable, wireless technology to estimate oxygen levels and lactate threshold power in the exercising muscle,” Physiol. Rep. 6(7), e13664 (2018).
[Crossref]

Tamborini, D.

D. Tamborini, P. Farzam, B. Zimmermann, K.-C. Wu, D. A. Boas, and M. A. Franceschini, “Development and characterization of a multidistance and multiwavelength diffuse correlation spectroscopy system,” Neurophotonics 5(01), 1 (2018).
[Crossref]

Torricelli, A.

M. Giovannella, B. Andresen, J. B. Andersen, S. El-Mahdaoui, D. Contini, L. Spinelli, A. Torricelli, G. Greisen, T. Durduran, U. M. Weigel, and I. Law, “Validation of diffuse correlation spectroscopy against 15O-water PET for regional cerebral blood flow measurement in neonatal piglets,” J. Cereb. Blood Flow Metab.0271678X1988375 (2019).

Tsalach, A.

Vasu, R. M.

Verdecchia, K.

Wang, J.

Wang, L. V.

S. Sakadžić and L. V. Wang, “Correlation transfer and diffusion of ultrasound-modulated multiply scattered light,” Phys. Rev. Lett. 96(16), 163902 (2006).
[Crossref]

S. Sakadžić and L. V. Wang, “Modulation of multiply scattered coherent light by ultrasonic pulses: An analytical model,” Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 72(3), 036620 (2005).
[Crossref]

S. Sakadžić and L. V. Wang, “Ultrasonic modulation of multiply scattered coherent light: An analytical model for anisotropically scattering media,” Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 66(2), 026603 (2002).
[Crossref]

L. V. Wang, “Mechanisms of Ultrasonic Modulation of Multiply Scattered Coherent Light: An Analytic Model,” Phys. Rev. Lett. 87(4), 043903 (2001).
[Crossref]

Weigel, U. M.

M. Giovannella, B. Andresen, J. B. Andersen, S. El-Mahdaoui, D. Contini, L. Spinelli, A. Torricelli, G. Greisen, T. Durduran, U. M. Weigel, and I. Law, “Validation of diffuse correlation spectroscopy against 15O-water PET for regional cerebral blood flow measurement in neonatal piglets,” J. Cereb. Blood Flow Metab.0271678X1988375 (2019).

Weitz, D. A.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[Crossref]

Wilson, B. C.

Wolf, P. E.

G. Maret and P. E. Wolf, “Multiple light scattering from disordered media. The effect of brownian motion of scatterers,” Z. Phys. B: Condens. Matter 65(4), 409–413 (1987).
[Crossref]

Wolf, R. L.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref]

Wu, K.-C.

D. Tamborini, P. Farzam, B. Zimmermann, K.-C. Wu, D. A. Boas, and M. A. Franceschini, “Development and characterization of a multidistance and multiwavelength diffuse correlation spectroscopy system,” Neurophotonics 5(01), 1 (2018).
[Crossref]

Wyman, D. R.

Yodh, A. G.

E. M. Buckley, A. B. Parthasarathy, P. E. Grant, A. G. Yodh, and M. A. Franceschini, “Diffuse correlation spectroscopy for measurement of cerebral blood flow: future prospects,” Neurophotonics 1(1), 011009 (2014).
[Crossref]

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref]

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express 17(15), 12571 (2009).
[Crossref]

C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14(3), 034015 (2009).
[Crossref]

G. Yu, T. F. Floyd, T. Durduran, C. Zhou, J. Wang, J. A. Detre, and A. G. Yodh, “Validation of diffuse correlation spectroscopy for muscle blood flow with concurrent arterial spin labeled perfusion MRI,” Opt. Express 15(3), 1064 (2007).
[Crossref]

D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A 14(1), 192 (1997).
[Crossref]

Yu, G.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref]

C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14(3), 034015 (2009).
[Crossref]

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express 17(15), 12571 (2009).
[Crossref]

G. Yu, T. F. Floyd, T. Durduran, C. Zhou, J. Wang, J. A. Detre, and A. G. Yodh, “Validation of diffuse correlation spectroscopy for muscle blood flow with concurrent arterial spin labeled perfusion MRI,” Opt. Express 15(3), 1064 (2007).
[Crossref]

Zeitak, R.

Zhou, C.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref]

C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14(3), 034015 (2009).
[Crossref]

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express 17(15), 12571 (2009).
[Crossref]

G. Yu, T. F. Floyd, T. Durduran, C. Zhou, J. Wang, J. A. Detre, and A. G. Yodh, “Validation of diffuse correlation spectroscopy for muscle blood flow with concurrent arterial spin labeled perfusion MRI,” Opt. Express 15(3), 1064 (2007).
[Crossref]

Zimmermann, B.

D. Tamborini, P. Farzam, B. Zimmermann, K.-C. Wu, D. A. Boas, and M. A. Franceschini, “Development and characterization of a multidistance and multiwavelength diffuse correlation spectroscopy system,” Neurophotonics 5(01), 1 (2018).
[Crossref]

Appl. Opt. (2)

Biomed. Opt. Express (5)

Chest (1)

A. Donati, S. Loggi, J. C. Preiser, G. Orsetti, C. Münch, V. Gabbanelli, P. Pelaia, and P. Pietropaoli, “Goal-directed intraoperative therapy reduces morbidity and length of hospital stay in high-risk surgical patients,” Chest 132(6), 1817–1824 (2007).
[Crossref]

J. Acoust. Soc. Am. (1)

R. L. Johnston, F. Dunn, and S. A. Goss, “Compilation of empirical ultrasonic properties of mammalian tissues. ll,” J. Acoust. Soc. Am. 68(1), 93–108 (1980).
[Crossref]

J. Biomed. Opt. (2)

S. Sakadžic, D. A. Boas, and S. A. Carp, “Theoretical model of blood flow measurement by diffuse correlation spectroscopy,” J. Biomed. Opt. 22(2), 027006 (2017).
[Crossref]

C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14(3), 034015 (2009).
[Crossref]

J. Opt. Soc. Am. A (2)

Neurocrit. Care (1)

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref]

Neurophotonics (3)

E. M. Buckley, A. B. Parthasarathy, P. E. Grant, A. G. Yodh, and M. A. Franceschini, “Diffuse correlation spectroscopy for measurement of cerebral blood flow: future prospects,” Neurophotonics 1(1), 011009 (2014).
[Crossref]

J. Selb, D. A. Boas, S.-T. Chan, K. C. Evans, E. M. Buckley, and S. A. Carp, “Sensitivity of near-infrared spectroscopy and diffuse correlation spectroscopy to brain hemodynamics: simulations and experimental findings during hypercapnia,” Neurophotonics 1(1), 015005 (2014).
[Crossref]

D. Tamborini, P. Farzam, B. Zimmermann, K.-C. Wu, D. A. Boas, and M. A. Franceschini, “Development and characterization of a multidistance and multiwavelength diffuse correlation spectroscopy system,” Neurophotonics 5(01), 1 (2018).
[Crossref]

Opt. Express (3)

Phys. B (Amsterdam, Neth.) (1)

W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Phys. B (Amsterdam, Neth.) 204(1-4), 14–19 (1995).
[Crossref]

Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. (1)

S. Sakadžić and L. V. Wang, “Ultrasonic modulation of multiply scattered coherent light: An analytical model for anisotropically scattering media,” Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 66(2), 026603 (2002).
[Crossref]

Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. (1)

S. Sakadžić and L. V. Wang, “Modulation of multiply scattered coherent light by ultrasonic pulses: An analytical model,” Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 72(3), 036620 (2005).
[Crossref]

Phys. Rev. Lett. (3)

S. Sakadžić and L. V. Wang, “Correlation transfer and diffusion of ultrasound-modulated multiply scattered light,” Phys. Rev. Lett. 96(16), 163902 (2006).
[Crossref]

L. V. Wang, “Mechanisms of Ultrasonic Modulation of Multiply Scattered Coherent Light: An Analytic Model,” Phys. Rev. Lett. 87(4), 043903 (2001).
[Crossref]

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[Crossref]

Physiol. Rep. (1)

P. Farzam, Z. Starkweather, and M. A. Franceschini, “Validation of a novel wearable, wireless technology to estimate oxygen levels and lactate threshold power in the exercising muscle,” Physiol. Rep. 6(7), e13664 (2018).
[Crossref]

Rep. Prog. Phys. (1)

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref]

Z. Phys. B: Condens. Matter (1)

G. Maret and P. E. Wolf, “Multiple light scattering from disordered media. The effect of brownian motion of scatterers,” Z. Phys. B: Condens. Matter 65(4), 409–413 (1987).
[Crossref]

Other (3)

A. J. F. Siegert, On the Fluctuations in Signals Returned by Many Independently Moving Scatterers (Radiation Laboratory, Massachusetts Institute of Technology, 1943).

M. Giovannella, B. Andresen, J. B. Andersen, S. El-Mahdaoui, D. Contini, L. Spinelli, A. Torricelli, G. Greisen, T. Durduran, U. M. Weigel, and I. Law, “Validation of diffuse correlation spectroscopy against 15O-water PET for regional cerebral blood flow measurement in neonatal piglets,” J. Cereb. Blood Flow Metab.0271678X1988375 (2019).

U. Frisch, “Wave Propagation In Random Media In Probabilistic Methods in Applied Mathematics,” Acad. Press. New York75–198 (1968).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) The AOM-DCS setup. A long coherence length laser is coupled to the tissue through a multi-mode fiber in the center of the piezoelectric transducer and the multiply scattered light is collected by single mode fibers and sent to single photon avalanche diodes (SPADs) for detection. (b) Simulated g2(τ) curves with different combinations of Brownian motion and mechanisms of ultrasound modulation of light. (c) The extracted M0(τ) from the g2(τ) curves presented in (b), showing the relative amplitudes of the different modulation mechanisms. (d) Min-max normalized g2(τ) and M0(τ) for the different modulation mechanisms, showing the differences in their rates of decorrelation.
Fig. 2.
Fig. 2. (a) Comparison of the BFi values extracted from the simulated intensity autocorrelations and their modulation depths, using the correlation diffusion equation for a range of reduced scattering that could be seen in vivo. (b) Pathlength distributions of the autocorrelation and modulation depths of individual mechanisms, the increased BFi measured from the modulation depth can be explained by the increased influence of longer pathlengths for both ultrasound mechanisms for modulation. (c) Comparison of the mean squared phase accumulation as a function of pathlength for both mechanisms of ultrasound modulation showing index of refraction modulation contributing to a larger degree than that of ultrasound scatterer displacement. (d) Comparison of the ratio of the modulation depth from each mechanism at zero lag compared to previously derived results as a function of scattering property.
Fig. 3.
Fig. 3. For an MC simulation with µa = 0.05 cm−1, µs’ = 6.00 cm−1, and a source-detector separation of 1.8 cm, (a) the corresponding spatial sensitivity maps for standard DCS and AOM-DCS. Averaging the percent difference in the X direction between the two maps gives the results seen in (b), which indicates that AOM-DCS is less sensitive to changes in the more superficial layers and more sensitive to changes in the deeper layers than is standard DCS. The errorbars represent the standard deviation of the percent difference along the X direction.
Fig. 4.
Fig. 4. (a) Experimental measurement of g2(τ), g2,0(τ), and M0(τ) in a gelatin phantom for µa = 0.05 cm−1 and µs’ = 6.00 cm−1 at a source-detector separation of 1.8 cm (b) Comparison of the BFi estimates from the g2,0(τ) and M0(τ) measurements in the gelatin phantoms with different scattering properties (b) and at different phantom temperatures (c). The black dotted line represents a linear fit of the BFi estimated based on g2,0(τ) measurements. (d) Comparison of the SNR of the g2,0(τ) and M0(τ) as a function of lag time. SNR of M0(τ) is also calculated for different ultrasound pressures to show the dependence of SNR on the ultrasound pressure used.
Fig. 5.
Fig. 5. (a) Comparison between the autocorrelation BFi fit and the naïvely fit BFi from the modulation depth, showing an-average overestimation of the BFi from the modulation depth, (b) though when the ultrasound influence on the pathlength distribution is taken into account the fit of the modulation depth on-average is equal to that of the autocorrelation BFi.
Fig. 6.
Fig. 6. Electric field temporal autocorrelation function computed directly from the phase of the electric field (solid lines) for three photon pathlengths compared to the electric field temporal autocorrelation function computed as given in Eq. (5) in the main text (circles), with the inset showing the initial portion of the ${g_1}(\tau )$ decay. The correspondence between the two over the large majority of ${g_1}(\tau )$ indicates that this approximation should allow for accurate characterization of the ultrasound induced phase using this model.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

g 1 ( τ ) = 0 P ( s ) exp ( 1 3 μ s k 2 Δ r 2 ( τ ) s ) d s
g 2 ( τ ) = 1 + β | g 1 ( τ ) | 2 .
Δ ϕ d ( t ) = i = 2 N 1 q i Δ r i ( t ) ,
Δ ϕ n ( t ) = i = 1 N 1 r i r i + 1 k 0 Δ n ( r , t ) d r
g 1 ( τ , s ) = exp [ 1 2 F s ( τ ) ] ,
F s ( τ ) = F U S , s ( τ ) + F B , s ( τ ) ,
W U S , s = ( 2 n 0 k 0 P 0 k u ρ ν u 2 ) 2 s l t r [ η 2 ( k u l t r ) 2 G 1 G + S u 2 3 2 η S u cos ( ϕ u ) ] .
g 1 , U S ( τ ) = 0 [ P ( s ) 1 2 F U S , S ( τ ) ] g 1 , 0 ( τ , s ) d s
g 1 ( τ ) = g 1 , 0 ( τ ) + g 1 , U S ¯ ( τ ) cos ( ω u τ ) ,
g 2 ( τ ) = g 2 , 0 ( τ ) + M 0 ( τ ) cos ( ω u τ ) ,
M 0 ( τ ) = 2 β g 1 , U S ¯ ( τ ) g 1 , 0 ( τ ) .
g 1 ( τ ) = a l l p a t h s , i w i g 1 , i ( τ ) ,
Δ r s ( t ) = P 0 S u k u ρ ν u 2 sin ( ω u t k u r s + ϕ ϕ u ) Ω ^ u
n ( r , t ) = n 0 [ 1 + η ρ ν u 2 P ( r , t ) ] .
Δ ϕ n ( t ) = k 0 n 0 η P 0 ρ v u 2 i = 1 N 1 r i r i + 1 cos ( ω u t k u r + ϕ ) d r
Δ ϕ U S ( t ) = k 0 n 0 η P 0 ρ ν u 2 i = 1 N 1 r i r i + 1 cos ( ϕ P ( t , r ) ) d r + P 0 S u k u ρ ν u 2 j = 2 N 1 q j Ω ^ u sin ( ϕ P ( t , r ) ϕ u ) ,
Δ ϕ U S ( t ) = k 0 n 0 P 0 k u ρ ν u 2 [ η k u i = 1 N 1 l i cos ( ω u t k u ( z i + 1 + z i ) 2 ) × sinc ( k u ( z i + 1 z i ) 2 ) + j = 2 N 1 q z , j k 0 n 0 sin ( ω u t k u z j ) ]
Δ ϕ U S ( t ) = k 0 n 0 P 0 k u ρ ν u 2 [ η k u i = 1 N 1 l i cos ( ω u t k u ( z i + 1 + z i ) 2 ) × sinc ( k u ( z i + 1 z i ) 2 ) + j = 2 N 1 ( z j z j 1 l j 1 z j + 1 z j l j ) sin ( ω u t k u z j ) ] .
Δ ϕ T ( t , τ ) = k 0 n 0 P 0 k u ρ ν u 2 [ 2 η k u i = 1 N 1 l i sinc ( k u ( z i + 1 z i ) 2 ) sin ( ω u τ 2 ) × sin ( ω u t + ω u τ 2 k u ( z i + 1 + z i ) 2 ) + 2 j = 2 N 1 ( z j + 1 z j l j z j z j 1 l j 1 ) cos ( ω u t + ω u τ 2 k u z j ) sin ( ω u τ 2 ) ] + j = 2 N 1 q j Δ r B ( τ ) .
g 1 ( τ ) = 0 P ( s ) g 1 , s ( τ ) d s
g 1 ( τ ) = 0 P ( s ) ( 1 1 2 F U S , s ( τ ) ) exp ( 1 2 F B , s ( τ ) ) d s .
g 1 ( τ ) = 0 P ( s ) exp ( 1 2 F B , s ( τ ) ) d s 1 2 0 P ( s ) W U S , s ( τ ) sin 2 ( 1 2 ω u τ ) exp ( 1 2 F B , s ( τ ) ) d s .
g 1 ( τ ) = 0 P ( s ) exp ( 1 2 F B , s ( τ ) ) d s 0 P ( s ) W U S , s ( τ ) 4 exp ( 1 2 F B , s ( τ ) ) d s + 0 P ( s ) W U S , s ( τ ) 4 cos ( ω u τ ) exp ( 1 2 F B , s ( τ ) ) d s
g 2 ( τ ) = 1 + β ( g 1 , 0 ( τ ) g 1 , U S ¯ ( τ ) ) 2 + 2 β cos ( ω u τ ) g 1 , U S ¯ ( τ ) ( g 1 , 0 ( τ ) g 1 , U S ¯ ( τ ) ) + β cos 2 ( ω τ ) ( g 1 , U S ¯ ( τ ) ) 2
Δ ϕ U S 2 ( s k s < s k + 1 ) = 1 N i = 1 N Δ ϕ U S , i 2 ( t , τ ) ,