Abstract

Super-resolution (SR) fluorescence microscopy that breaks through the diffraction barrier has drawn great interest in biomedical research. However, obtaining a high precision three-dimensional distribution of the specimen in a short time still remains a challenging task for existing techniques. In this paper, we propose a super-resolution fluorescence microscopy with axial localization capability by combining multifocal structured illumination microscopy with a hybrid detection PSF composed of a Gaussian PSF and a double-helix PSF. A modified reconstruction scheme is presented to accommodate the new hybrid PSF. This method can not only recover the lateral super-resolution image of the specimen but also retain the specimen’s depth map within a range of 600 nm with an axial localization precision of 20.8 nm. The performance of this approach is verified by testing fluorescent beads and tubulin in 293-cells. The developed microscope is well suited for observing the precise 3D distribution of thin specimens.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. Sahl, S. W. Hell, and S. Jakobs, “Fluorescence nanoscopy in cell biology,” Nat. Rev. Mol. Cell Biol. 18(11), 685–701 (2017).
    [Crossref]
  2. Y. M. Sigal, R. Zhou, and X. Zhuang, “Visualizing and discovering cellular structures with super-resolution microscopy,” Science 361(6405), 880–887 (2018).
    [Crossref]
  3. R. Gao, S. M. Asano, S. Upadhyayula, I. Pisarev, D. E. Milkie, T.-L. Liu, V. Singh, A. Graves, G. H. Huynh, and Y. Zhao, “Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution,” Science 363(6424), eaau8302 (2019).
    [Crossref]
  4. B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
    [Crossref]
  5. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
    [Crossref]
  6. T. A. Klar and S. W. Hell, “Subdiffraction resolution in far-field fluorescence microscopy,” Opt. Lett. 24(14), 954–956 (1999).
    [Crossref]
  7. M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
    [Crossref]
  8. F. Macias-Garza, A. C. Bovik, K. R. Diller, S. J. Aggarwal, and J. Aggarwal, “The missing cone problem and low-pass distortion in optical serial sectioning microscopy,” in ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing, (IEEE, 1988), 890–893.
  9. M. G. Gustafsson, L. Shao, P. M. Carlton, C. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
    [Crossref]
  10. L. Shao, B. Isaac, S. Uzawa, D. A. Agard, J. W. Sedat, and M. G. Gustafsson, “I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions,” Biophys. J. 94(12), 4971–4983 (2008).
    [Crossref]
  11. C. B. Müller and J. Enderlein, “Image scanning microscopy,” Phys. Rev. Lett. 104(19), 198101 (2010).
    [Crossref]
  12. C. J. Sheppard, S. B. Mehta, and R. Heintzmann, “Superresolution by image scanning microscopy using pixel reassignment,” Opt. Lett. 38(15), 2889 (2013).
    [Crossref]
  13. A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9(7), 749–754 (2012).
    [Crossref]
  14. G. M. De Luca, R. M. Breedijk, R. A. Brandt, C. H. Zeelenberg, B. E. de Jong, W. Timmermans, L. N. Azar, R. A. Hoebe, S. Stallinga, and E. M. Manders, “Re-scan confocal microscopy: scanning twice for better resolution,” Biomed. Opt. Express 4(11), 2644–2656 (2013).
    [Crossref]
  15. S. Roth, C. J. Sheppard, K. Wicker, and R. Heintzmann, “Optical photon reassignment microscopy (OPRA),” Biomed. Opt. Phase Microsc. Nanosc. 2(1), 5 (2013).
    [Crossref]
  16. Y. Wu and H. Shroff, “Faster, sharper, and deeper: structured illumination microscopy for biological imaging,” Nat. Methods 15(12), 1011–1019 (2018).
    [Crossref]
  17. A. Jesacher, M. Ritschmarte, and R. Piestun, “Three-dimensional information from two-dimensional scans: a scanning microscope with postacquisition refocusing capability,” Optica 2(3), 210 (2015).
    [Crossref]
  18. C. Roider, R. Piestun, and A. Jesacher, “3D image scanning microscopy with engineered excitation and detection,” Optica 4(11), 1373–1381 (2017).
    [Crossref]
  19. S. Li, J. Wu, H. Li, D. Lin, B. Yu, and J. Qu, “Rapid 3D image scanning microscopy with multi-spot excitation and double-helix point spread function detection,” Opt. Express 26(18), 23585–23593 (2018).
    [Crossref]
  20. O. Tzang, D. Feldkhun, A. Agrawal, A. Jesacher, and R. Piestun, “Two-photon PSF-engineered image scanning microscopy,” Opt. Lett. 44(4), 895–898 (2019).
    [Crossref]
  21. C. Roider, R. Heintzmann, R. Piestun, and A. Jesacher, “Deconvolution approach for 3D scanning microscopy with helical phase engineering,” Opt. Express 24(14), 15456–15467 (2016).
    [Crossref]
  22. S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. 106(9), 2995–2999 (2009).
    [Crossref]
  23. S. Jia, J. C. Vaughan, and X. Zhuang, “Isotropic three-dimensional super-resolution imaging with a self-bending point spread function,” Nat. Photonics 8(4), 302–306 (2014).
    [Crossref]
  24. Z. Wang, Y. Cai, Y. Liang, X. Zhou, S. Yan, D. Dan, P. R. Bianco, M. Lei, and B. Yao, “Single shot, three-dimensional fluorescence microscopy with a spatially rotating point spread function,” Biomed. Opt. Express 8(12), 5493 (2017).
    [Crossref]
  25. S. R. P. Pavani and R. Piestun, “High-efficiency rotating point spread functions,” Opt. Express 16(5), 3484–3489 (2008).
    [Crossref]
  26. S. Prasad, “Rotating point spread function via pupil-phase engineering,” Opt. Lett. 38(4), 585–587 (2013).
    [Crossref]
  27. M. Baránek and Z. Bouchal, “Optimizing the rotating point spread function by SLM aided spiral phase modulation,” in XIX Polish-Slovak-Czech Optical Conference on Wave and Quantum Aspects of Contemporary Optics, (International Society for Optics and Photonics, 2014), 94410N.
  28. S. R. P. Pavani, J. G. DeLuca, and R. Piestun, “Polarization sensitive, three-dimensional, single-molecule imaging of cells with a double-helix system,” Opt. Express 17(22), 19644–19655 (2009).
    [Crossref]
  29. M. A. Thompson, M. D. Lew, M. Badieirostami, and W. Moerner, “Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function,” Nano Lett. 10(1), 211–218 (2010).
    [Crossref]
  30. S. Quirin, S. R. P. Pavani, and R. Piestun, “Optimal 3D single-molecule localization for superresolution microscopy with aberrations and engineered point spread functions,” Proc. Natl. Acad. Sci. 109(3), 675–679 (2012).
    [Crossref]
  31. Y. Liang, M. Lei, S. Yan, M. Li, Y. Cai, Z. Wang, X. Yu, and B. Yao, “Rotating of low-refractive-index microparticles with a quasi-perfect optical vortex,” Appl. Opt. 57(1), 79–84 (2018).
    [Crossref]

2019 (2)

R. Gao, S. M. Asano, S. Upadhyayula, I. Pisarev, D. E. Milkie, T.-L. Liu, V. Singh, A. Graves, G. H. Huynh, and Y. Zhao, “Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution,” Science 363(6424), eaau8302 (2019).
[Crossref]

O. Tzang, D. Feldkhun, A. Agrawal, A. Jesacher, and R. Piestun, “Two-photon PSF-engineered image scanning microscopy,” Opt. Lett. 44(4), 895–898 (2019).
[Crossref]

2018 (4)

S. Li, J. Wu, H. Li, D. Lin, B. Yu, and J. Qu, “Rapid 3D image scanning microscopy with multi-spot excitation and double-helix point spread function detection,” Opt. Express 26(18), 23585–23593 (2018).
[Crossref]

Y. Liang, M. Lei, S. Yan, M. Li, Y. Cai, Z. Wang, X. Yu, and B. Yao, “Rotating of low-refractive-index microparticles with a quasi-perfect optical vortex,” Appl. Opt. 57(1), 79–84 (2018).
[Crossref]

Y. M. Sigal, R. Zhou, and X. Zhuang, “Visualizing and discovering cellular structures with super-resolution microscopy,” Science 361(6405), 880–887 (2018).
[Crossref]

Y. Wu and H. Shroff, “Faster, sharper, and deeper: structured illumination microscopy for biological imaging,” Nat. Methods 15(12), 1011–1019 (2018).
[Crossref]

2017 (3)

2016 (1)

2015 (1)

2014 (1)

S. Jia, J. C. Vaughan, and X. Zhuang, “Isotropic three-dimensional super-resolution imaging with a self-bending point spread function,” Nat. Photonics 8(4), 302–306 (2014).
[Crossref]

2013 (4)

2012 (2)

A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9(7), 749–754 (2012).
[Crossref]

S. Quirin, S. R. P. Pavani, and R. Piestun, “Optimal 3D single-molecule localization for superresolution microscopy with aberrations and engineered point spread functions,” Proc. Natl. Acad. Sci. 109(3), 675–679 (2012).
[Crossref]

2010 (2)

M. A. Thompson, M. D. Lew, M. Badieirostami, and W. Moerner, “Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function,” Nano Lett. 10(1), 211–218 (2010).
[Crossref]

C. B. Müller and J. Enderlein, “Image scanning microscopy,” Phys. Rev. Lett. 104(19), 198101 (2010).
[Crossref]

2009 (2)

S. R. P. Pavani, J. G. DeLuca, and R. Piestun, “Polarization sensitive, three-dimensional, single-molecule imaging of cells with a double-helix system,” Opt. Express 17(22), 19644–19655 (2009).
[Crossref]

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. 106(9), 2995–2999 (2009).
[Crossref]

2008 (4)

S. R. P. Pavani and R. Piestun, “High-efficiency rotating point spread functions,” Opt. Express 16(5), 3484–3489 (2008).
[Crossref]

M. G. Gustafsson, L. Shao, P. M. Carlton, C. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref]

L. Shao, B. Isaac, S. Uzawa, D. A. Agard, J. W. Sedat, and M. G. Gustafsson, “I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions,” Biophys. J. 94(12), 4971–4983 (2008).
[Crossref]

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
[Crossref]

2006 (1)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

2000 (1)

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref]

1999 (1)

Agard, D. A.

L. Shao, B. Isaac, S. Uzawa, D. A. Agard, J. W. Sedat, and M. G. Gustafsson, “I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions,” Biophys. J. 94(12), 4971–4983 (2008).
[Crossref]

M. G. Gustafsson, L. Shao, P. M. Carlton, C. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref]

Aggarwal, J.

F. Macias-Garza, A. C. Bovik, K. R. Diller, S. J. Aggarwal, and J. Aggarwal, “The missing cone problem and low-pass distortion in optical serial sectioning microscopy,” in ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing, (IEEE, 1988), 890–893.

Aggarwal, S. J.

F. Macias-Garza, A. C. Bovik, K. R. Diller, S. J. Aggarwal, and J. Aggarwal, “The missing cone problem and low-pass distortion in optical serial sectioning microscopy,” in ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing, (IEEE, 1988), 890–893.

Agrawal, A.

Asano, S. M.

R. Gao, S. M. Asano, S. Upadhyayula, I. Pisarev, D. E. Milkie, T.-L. Liu, V. Singh, A. Graves, G. H. Huynh, and Y. Zhao, “Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution,” Science 363(6424), eaau8302 (2019).
[Crossref]

Azar, L. N.

Badieirostami, M.

M. A. Thompson, M. D. Lew, M. Badieirostami, and W. Moerner, “Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function,” Nano Lett. 10(1), 211–218 (2010).
[Crossref]

Baránek, M.

M. Baránek and Z. Bouchal, “Optimizing the rotating point spread function by SLM aided spiral phase modulation,” in XIX Polish-Slovak-Czech Optical Conference on Wave and Quantum Aspects of Contemporary Optics, (International Society for Optics and Photonics, 2014), 94410N.

Bates, M.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
[Crossref]

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Bianco, P. R.

Biteen, J. S.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. 106(9), 2995–2999 (2009).
[Crossref]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Bouchal, Z.

M. Baránek and Z. Bouchal, “Optimizing the rotating point spread function by SLM aided spiral phase modulation,” in XIX Polish-Slovak-Czech Optical Conference on Wave and Quantum Aspects of Contemporary Optics, (International Society for Optics and Photonics, 2014), 94410N.

Bovik, A. C.

F. Macias-Garza, A. C. Bovik, K. R. Diller, S. J. Aggarwal, and J. Aggarwal, “The missing cone problem and low-pass distortion in optical serial sectioning microscopy,” in ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing, (IEEE, 1988), 890–893.

Brandt, R. A.

Breedijk, R. M.

Cai, Y.

Cande, W. Z.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref]

Carlton, P. M.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref]

Chitnis, A. B.

A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9(7), 749–754 (2012).
[Crossref]

Combs, C. A.

A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9(7), 749–754 (2012).
[Crossref]

Dalle Nogare, D.

A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9(7), 749–754 (2012).
[Crossref]

Dan, D.

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

de Jong, B. E.

De Luca, G. M.

DeLuca, J. G.

Diller, K. R.

F. Macias-Garza, A. C. Bovik, K. R. Diller, S. J. Aggarwal, and J. Aggarwal, “The missing cone problem and low-pass distortion in optical serial sectioning microscopy,” in ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing, (IEEE, 1988), 890–893.

Enderlein, J.

C. B. Müller and J. Enderlein, “Image scanning microscopy,” Phys. Rev. Lett. 104(19), 198101 (2010).
[Crossref]

Feldkhun, D.

Fischer, R. S.

A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9(7), 749–754 (2012).
[Crossref]

Gao, R.

R. Gao, S. M. Asano, S. Upadhyayula, I. Pisarev, D. E. Milkie, T.-L. Liu, V. Singh, A. Graves, G. H. Huynh, and Y. Zhao, “Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution,” Science 363(6424), eaau8302 (2019).
[Crossref]

Golubovskaya, I. N.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref]

Graves, A.

R. Gao, S. M. Asano, S. Upadhyayula, I. Pisarev, D. E. Milkie, T.-L. Liu, V. Singh, A. Graves, G. H. Huynh, and Y. Zhao, “Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution,” Science 363(6424), eaau8302 (2019).
[Crossref]

Gustafsson, M. G.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref]

L. Shao, B. Isaac, S. Uzawa, D. A. Agard, J. W. Sedat, and M. G. Gustafsson, “I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions,” Biophys. J. 94(12), 4971–4983 (2008).
[Crossref]

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref]

Heintzmann, R.

Hell, S. W.

S. J. Sahl, S. W. Hell, and S. Jakobs, “Fluorescence nanoscopy in cell biology,” Nat. Rev. Mol. Cell Biol. 18(11), 685–701 (2017).
[Crossref]

T. A. Klar and S. W. Hell, “Subdiffraction resolution in far-field fluorescence microscopy,” Opt. Lett. 24(14), 954–956 (1999).
[Crossref]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Hoebe, R. A.

Huang, B.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
[Crossref]

Huynh, G. H.

R. Gao, S. M. Asano, S. Upadhyayula, I. Pisarev, D. E. Milkie, T.-L. Liu, V. Singh, A. Graves, G. H. Huynh, and Y. Zhao, “Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution,” Science 363(6424), eaau8302 (2019).
[Crossref]

Isaac, B.

L. Shao, B. Isaac, S. Uzawa, D. A. Agard, J. W. Sedat, and M. G. Gustafsson, “I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions,” Biophys. J. 94(12), 4971–4983 (2008).
[Crossref]

Jakobs, S.

S. J. Sahl, S. W. Hell, and S. Jakobs, “Fluorescence nanoscopy in cell biology,” Nat. Rev. Mol. Cell Biol. 18(11), 685–701 (2017).
[Crossref]

Jesacher, A.

Jia, S.

S. Jia, J. C. Vaughan, and X. Zhuang, “Isotropic three-dimensional super-resolution imaging with a self-bending point spread function,” Nat. Photonics 8(4), 302–306 (2014).
[Crossref]

Klar, T. A.

Lei, M.

Lew, M. D.

M. A. Thompson, M. D. Lew, M. Badieirostami, and W. Moerner, “Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function,” Nano Lett. 10(1), 211–218 (2010).
[Crossref]

Li, H.

Li, M.

Li, S.

Liang, Y.

Lin, D.

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Liu, N.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. 106(9), 2995–2999 (2009).
[Crossref]

Liu, T.-L.

R. Gao, S. M. Asano, S. Upadhyayula, I. Pisarev, D. E. Milkie, T.-L. Liu, V. Singh, A. Graves, G. H. Huynh, and Y. Zhao, “Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution,” Science 363(6424), eaau8302 (2019).
[Crossref]

Lord, S. J.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. 106(9), 2995–2999 (2009).
[Crossref]

Macias-Garza, F.

F. Macias-Garza, A. C. Bovik, K. R. Diller, S. J. Aggarwal, and J. Aggarwal, “The missing cone problem and low-pass distortion in optical serial sectioning microscopy,” in ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing, (IEEE, 1988), 890–893.

Manders, E. M.

Mehta, S. B.

Milkie, D. E.

R. Gao, S. M. Asano, S. Upadhyayula, I. Pisarev, D. E. Milkie, T.-L. Liu, V. Singh, A. Graves, G. H. Huynh, and Y. Zhao, “Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution,” Science 363(6424), eaau8302 (2019).
[Crossref]

Mione, M.

A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9(7), 749–754 (2012).
[Crossref]

Moerner, W.

M. A. Thompson, M. D. Lew, M. Badieirostami, and W. Moerner, “Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function,” Nano Lett. 10(1), 211–218 (2010).
[Crossref]

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. 106(9), 2995–2999 (2009).
[Crossref]

Müller, C. B.

C. B. Müller and J. Enderlein, “Image scanning microscopy,” Phys. Rev. Lett. 104(19), 198101 (2010).
[Crossref]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Parekh, S. H.

A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9(7), 749–754 (2012).
[Crossref]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Pavani, S. R. P.

S. Quirin, S. R. P. Pavani, and R. Piestun, “Optimal 3D single-molecule localization for superresolution microscopy with aberrations and engineered point spread functions,” Proc. Natl. Acad. Sci. 109(3), 675–679 (2012).
[Crossref]

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. 106(9), 2995–2999 (2009).
[Crossref]

S. R. P. Pavani, J. G. DeLuca, and R. Piestun, “Polarization sensitive, three-dimensional, single-molecule imaging of cells with a double-helix system,” Opt. Express 17(22), 19644–19655 (2009).
[Crossref]

S. R. P. Pavani and R. Piestun, “High-efficiency rotating point spread functions,” Opt. Express 16(5), 3484–3489 (2008).
[Crossref]

Piestun, R.

O. Tzang, D. Feldkhun, A. Agrawal, A. Jesacher, and R. Piestun, “Two-photon PSF-engineered image scanning microscopy,” Opt. Lett. 44(4), 895–898 (2019).
[Crossref]

C. Roider, R. Piestun, and A. Jesacher, “3D image scanning microscopy with engineered excitation and detection,” Optica 4(11), 1373–1381 (2017).
[Crossref]

C. Roider, R. Heintzmann, R. Piestun, and A. Jesacher, “Deconvolution approach for 3D scanning microscopy with helical phase engineering,” Opt. Express 24(14), 15456–15467 (2016).
[Crossref]

A. Jesacher, M. Ritschmarte, and R. Piestun, “Three-dimensional information from two-dimensional scans: a scanning microscope with postacquisition refocusing capability,” Optica 2(3), 210 (2015).
[Crossref]

S. Quirin, S. R. P. Pavani, and R. Piestun, “Optimal 3D single-molecule localization for superresolution microscopy with aberrations and engineered point spread functions,” Proc. Natl. Acad. Sci. 109(3), 675–679 (2012).
[Crossref]

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. 106(9), 2995–2999 (2009).
[Crossref]

S. R. P. Pavani, J. G. DeLuca, and R. Piestun, “Polarization sensitive, three-dimensional, single-molecule imaging of cells with a double-helix system,” Opt. Express 17(22), 19644–19655 (2009).
[Crossref]

S. R. P. Pavani and R. Piestun, “High-efficiency rotating point spread functions,” Opt. Express 16(5), 3484–3489 (2008).
[Crossref]

Pisarev, I.

R. Gao, S. M. Asano, S. Upadhyayula, I. Pisarev, D. E. Milkie, T.-L. Liu, V. Singh, A. Graves, G. H. Huynh, and Y. Zhao, “Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution,” Science 363(6424), eaau8302 (2019).
[Crossref]

Prasad, S.

Qu, J.

Quirin, S.

S. Quirin, S. R. P. Pavani, and R. Piestun, “Optimal 3D single-molecule localization for superresolution microscopy with aberrations and engineered point spread functions,” Proc. Natl. Acad. Sci. 109(3), 675–679 (2012).
[Crossref]

Ritschmarte, M.

Roider, C.

Roth, S.

S. Roth, C. J. Sheppard, K. Wicker, and R. Heintzmann, “Optical photon reassignment microscopy (OPRA),” Biomed. Opt. Phase Microsc. Nanosc. 2(1), 5 (2013).
[Crossref]

Sahl, S. J.

S. J. Sahl, S. W. Hell, and S. Jakobs, “Fluorescence nanoscopy in cell biology,” Nat. Rev. Mol. Cell Biol. 18(11), 685–701 (2017).
[Crossref]

Sedat, J. W.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref]

L. Shao, B. Isaac, S. Uzawa, D. A. Agard, J. W. Sedat, and M. G. Gustafsson, “I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions,” Biophys. J. 94(12), 4971–4983 (2008).
[Crossref]

Shao, L.

L. Shao, B. Isaac, S. Uzawa, D. A. Agard, J. W. Sedat, and M. G. Gustafsson, “I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions,” Biophys. J. 94(12), 4971–4983 (2008).
[Crossref]

M. G. Gustafsson, L. Shao, P. M. Carlton, C. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref]

Sheppard, C. J.

C. J. Sheppard, S. B. Mehta, and R. Heintzmann, “Superresolution by image scanning microscopy using pixel reassignment,” Opt. Lett. 38(15), 2889 (2013).
[Crossref]

S. Roth, C. J. Sheppard, K. Wicker, and R. Heintzmann, “Optical photon reassignment microscopy (OPRA),” Biomed. Opt. Phase Microsc. Nanosc. 2(1), 5 (2013).
[Crossref]

Shroff, H.

Y. Wu and H. Shroff, “Faster, sharper, and deeper: structured illumination microscopy for biological imaging,” Nat. Methods 15(12), 1011–1019 (2018).
[Crossref]

A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9(7), 749–754 (2012).
[Crossref]

Sigal, Y. M.

Y. M. Sigal, R. Zhou, and X. Zhuang, “Visualizing and discovering cellular structures with super-resolution microscopy,” Science 361(6405), 880–887 (2018).
[Crossref]

Singh, V.

R. Gao, S. M. Asano, S. Upadhyayula, I. Pisarev, D. E. Milkie, T.-L. Liu, V. Singh, A. Graves, G. H. Huynh, and Y. Zhao, “Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution,” Science 363(6424), eaau8302 (2019).
[Crossref]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Stallinga, S.

Temprine, K.

A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9(7), 749–754 (2012).
[Crossref]

Thompson, M. A.

M. A. Thompson, M. D. Lew, M. Badieirostami, and W. Moerner, “Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function,” Nano Lett. 10(1), 211–218 (2010).
[Crossref]

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. 106(9), 2995–2999 (2009).
[Crossref]

Timmermans, W.

Twieg, R. J.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. 106(9), 2995–2999 (2009).
[Crossref]

Tzang, O.

Upadhyayula, S.

R. Gao, S. M. Asano, S. Upadhyayula, I. Pisarev, D. E. Milkie, T.-L. Liu, V. Singh, A. Graves, G. H. Huynh, and Y. Zhao, “Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution,” Science 363(6424), eaau8302 (2019).
[Crossref]

Uzawa, S.

L. Shao, B. Isaac, S. Uzawa, D. A. Agard, J. W. Sedat, and M. G. Gustafsson, “I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions,” Biophys. J. 94(12), 4971–4983 (2008).
[Crossref]

Vaughan, J. C.

S. Jia, J. C. Vaughan, and X. Zhuang, “Isotropic three-dimensional super-resolution imaging with a self-bending point spread function,” Nat. Photonics 8(4), 302–306 (2014).
[Crossref]

Wang, C. R.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref]

Wang, W.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
[Crossref]

Wang, Z.

Wicker, K.

S. Roth, C. J. Sheppard, K. Wicker, and R. Heintzmann, “Optical photon reassignment microscopy (OPRA),” Biomed. Opt. Phase Microsc. Nanosc. 2(1), 5 (2013).
[Crossref]

Wu, J.

Wu, Y.

Y. Wu and H. Shroff, “Faster, sharper, and deeper: structured illumination microscopy for biological imaging,” Nat. Methods 15(12), 1011–1019 (2018).
[Crossref]

Yan, S.

Yao, B.

York, A. G.

A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9(7), 749–754 (2012).
[Crossref]

Yu, B.

Yu, X.

Zeelenberg, C. H.

Zhao, Y.

R. Gao, S. M. Asano, S. Upadhyayula, I. Pisarev, D. E. Milkie, T.-L. Liu, V. Singh, A. Graves, G. H. Huynh, and Y. Zhao, “Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution,” Science 363(6424), eaau8302 (2019).
[Crossref]

Zhou, R.

Y. M. Sigal, R. Zhou, and X. Zhuang, “Visualizing and discovering cellular structures with super-resolution microscopy,” Science 361(6405), 880–887 (2018).
[Crossref]

Zhou, X.

Zhuang, X.

Y. M. Sigal, R. Zhou, and X. Zhuang, “Visualizing and discovering cellular structures with super-resolution microscopy,” Science 361(6405), 880–887 (2018).
[Crossref]

S. Jia, J. C. Vaughan, and X. Zhuang, “Isotropic three-dimensional super-resolution imaging with a self-bending point spread function,” Nat. Photonics 8(4), 302–306 (2014).
[Crossref]

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
[Crossref]

Appl. Opt. (1)

Biomed. Opt. Express (2)

Biomed. Opt. Phase Microsc. Nanosc. (1)

S. Roth, C. J. Sheppard, K. Wicker, and R. Heintzmann, “Optical photon reassignment microscopy (OPRA),” Biomed. Opt. Phase Microsc. Nanosc. 2(1), 5 (2013).
[Crossref]

Biophys. J. (2)

M. G. Gustafsson, L. Shao, P. M. Carlton, C. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref]

L. Shao, B. Isaac, S. Uzawa, D. A. Agard, J. W. Sedat, and M. G. Gustafsson, “I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions,” Biophys. J. 94(12), 4971–4983 (2008).
[Crossref]

J. Microsc. (1)

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref]

Nano Lett. (1)

M. A. Thompson, M. D. Lew, M. Badieirostami, and W. Moerner, “Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function,” Nano Lett. 10(1), 211–218 (2010).
[Crossref]

Nat. Methods (2)

A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9(7), 749–754 (2012).
[Crossref]

Y. Wu and H. Shroff, “Faster, sharper, and deeper: structured illumination microscopy for biological imaging,” Nat. Methods 15(12), 1011–1019 (2018).
[Crossref]

Nat. Photonics (1)

S. Jia, J. C. Vaughan, and X. Zhuang, “Isotropic three-dimensional super-resolution imaging with a self-bending point spread function,” Nat. Photonics 8(4), 302–306 (2014).
[Crossref]

Nat. Rev. Mol. Cell Biol. (1)

S. J. Sahl, S. W. Hell, and S. Jakobs, “Fluorescence nanoscopy in cell biology,” Nat. Rev. Mol. Cell Biol. 18(11), 685–701 (2017).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Optica (2)

Phys. Rev. Lett. (1)

C. B. Müller and J. Enderlein, “Image scanning microscopy,” Phys. Rev. Lett. 104(19), 198101 (2010).
[Crossref]

Proc. Natl. Acad. Sci. (2)

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. 106(9), 2995–2999 (2009).
[Crossref]

S. Quirin, S. R. P. Pavani, and R. Piestun, “Optimal 3D single-molecule localization for superresolution microscopy with aberrations and engineered point spread functions,” Proc. Natl. Acad. Sci. 109(3), 675–679 (2012).
[Crossref]

Science (4)

Y. M. Sigal, R. Zhou, and X. Zhuang, “Visualizing and discovering cellular structures with super-resolution microscopy,” Science 361(6405), 880–887 (2018).
[Crossref]

R. Gao, S. M. Asano, S. Upadhyayula, I. Pisarev, D. E. Milkie, T.-L. Liu, V. Singh, A. Graves, G. H. Huynh, and Y. Zhao, “Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution,” Science 363(6424), eaau8302 (2019).
[Crossref]

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
[Crossref]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Other (2)

F. Macias-Garza, A. C. Bovik, K. R. Diller, S. J. Aggarwal, and J. Aggarwal, “The missing cone problem and low-pass distortion in optical serial sectioning microscopy,” in ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing, (IEEE, 1988), 890–893.

M. Baránek and Z. Bouchal, “Optimizing the rotating point spread function by SLM aided spiral phase modulation,” in XIX Polish-Slovak-Czech Optical Conference on Wave and Quantum Aspects of Contemporary Optics, (International Society for Optics and Photonics, 2014), 94410N.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Optical arrangement to generate the Gaussian PSF and the double-helix PSF simultaneously.
Fig. 2.
Fig. 2. Flowchart of the image recovery process.
Fig. 3.
Fig. 3. Postprocessing of each rodlike subimage.
Fig. 4.
Fig. 4. Simulative results of image formation and restoration. (a) Simulated fluorescent object. (b) Wide-field image. (c) Super-resolution image of MSIM. (d) and (e) The super-resolution image and the depth map, respectively, recovered with the developed HMSIM method.
Fig. 5.
Fig. 5. Schematic of the hybrid multifocal structured illumination microscope (HMSIM). The structured illumination is generated by the DMD-based projection system, while the hybrid PSF in the detection path is produced with the SLM. The proportion of the double-helix PSF and the Gaussian PSF can be easily controlled by adjusting the orientation of the polarizer. CGH: computer-generated-hologram, DM: dichronic mirror.
Fig. 6.
Fig. 6. Illumination pattern and its shift path. (a) Part of the first illumination pattern. (b) Shift path of the illumination patterns. Blue grids represent the on-state pixels of DMD, while white grids remark the off-state pixels.
Fig. 7.
Fig. 7. Imaging results of fluorescent beads in different modalities. (a) Wide-field image. (b) Recovered super-resolution (SR) image with MSIM. (c) Recovered SR image with HMSIM. (d)-(f) are the magnified views of the dash-boxed regions in (a)-(c), respectively. (g) and (h) are respectively the intensity profiles of along the two solid lines in (d)-(f).
Fig. 8.
Fig. 8. Imaging results of tubulin in 293-cells. (a) Wide-field image. (b) Recovered super-resolution (SR) image of MSIM without deconvolution. (c) Recovered SR image of MSIM with deconvolution. (d) Recovered SR image of HMSIM without deconvolution. (e) Recovered SR image of HMSIM with deconvolution. (f) Recovered depth map with HMSIM. (g)-(l) are respectively the magnified view of the dash-boxed region in (a)-(f). (m) The measured calibration curve of the rotation angle as a function of z-position for DH-PSF with N=6. (n) Intensity profiles along the yellow solid lines in (g)-(k).
Fig. 9.
Fig. 9. Statistical result of the axial positions of an identical fluorescent bead.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P N ( ρ , φ ) = { exp [ i ( 2 n 1 ) φ ] , R n 1 N < ρ R n N , n = 1 , 2 , , N 0 , ρ > R
d ( x , y ) = + [ o ( x , y ; z ) h ex ( x , y ; z ) ] h det ( x , y ; z ) d z ,
h d e t ( x , y ; z ) = r o t [ h 0 ( x , y + Δ y / 2 ) + h 0 ( x , y Δ y / 2 ) , k θ ( z ) z ] ,
{ δ ± ( z ) = δ ( ± Δ y 2 cos ( k θ ( z ) z ) , ± Δ y 2 sin ( k θ ( z ) z ) ) h 0 r ( x , y ; z ) = rot ( h 0 ( x , y ) , k θ ( z ) z ) ,
h det ( x , y ; z ) = h DH ( x , y ; z ) = h 0 r ( x , y ; z ) [ δ + ( z ) + δ ( z ) ]
d ( x , y ) = + [ o ( x , y ; z ) h ex ( x , y ; z ) ] h 0 r ( x , y ; z ) [ δ + ( z ) + δ ( z ) ] d z .
D i = | y i ( a x i + b ) | 1 + a 2
S ( a , b ) = i = 1 m [ y i ( a x i + b ) ] 2 1 + a 2 = 1 1 + a 2 i = 1 m [ y i ( a x i + b ) ] 2 .