Abstract

Two-photon excitation (2PE) laser scanning microscopy is the imaging modality of choice when one desires to work with thick biological samples. However, its spatial resolution is poor, below confocal laser scanning microscopy. Here, we propose a straightforward implementation of 2PE image scanning microscopy (2PE-ISM) that, by leveraging our recently introduced single-photon avalanche diode (SPAD) array detector and a novel blind image reconstruction method, is shown to enhance the effective resolution, as well as the overall image quality of 2PE microscopy. With our adaptive pixel reassignment procedure ∼1.6 times resolution increase is maintained deep into thick semi-transparent samples. The integration of Fourier ring correlation based semi-blind deconvolution is shown to further enhance the effective resolution by a factor of ∼2 – and automatic background correction is shown to boost the image quality especially in noisy images. Most importantly, our 2PE-ISM implementation requires no calibration measurements or other input from the user, which is an important aspect in terms of day-to-day usability of the technique.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48(44), 443001 (2015).
    [Crossref]
  2. L. Schermelleh, A. Ferrand, T. Huser, C. Eggeling, M. Sauer, O. Biehlmaier, and G. P. C. Drummen, “Super-resolution microscopy demystified,” Nat. Cell Biol. 21(1), 72–84 (2019).
    [Crossref]
  3. M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
    [Crossref]
  4. C. J. R. Sheppard, “Super-resolution in confocal imaging,” Optik 80(2), 53–54 (1988).
  5. G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U. S. A. 106(9), 3125–3130 (2009).
    [Crossref]
  6. F. Huang, G. Sirinakis, E. S. Allgeyer, L. K. Schroeder, W. C. Duim, E. B. Kromann, T. Phan, F. E. Rivera-Molina, J. R. Myers, I. Irnov, M. Lessard, Y. Zhang, M. A. Handel, C. Jacobs-Wagner, C. P. Lusk, J. E. Rothman, D. Toomre, M. J. Booth, and J. Bewersdorf, “Ultra-High resolution 3D imaging of whole cells,” Cell 166(4), 1028–1040 (2016).
    [Crossref]
  7. F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355(6325), 606–612 (2017).
    [Crossref]
  8. F. Ströhl and C. F. Kaminski, “Frontiers in structured illumination microscopy,” Optica 3(6), 667–677 (2016).
    [Crossref]
  9. A. Diaspro, Confocal and Two-Photon Microscopy: Foundations, Applications and Advances, Confocal and Two-Photon Microscopy: Foundations (Wiley, 2001).
  10. I. Gregor and J. Enderlein, “Image scanning microscopy,” Curr. Opin. Chem. Biol. 51, 74–83 (2019).
    [Crossref]
  11. E. N. Ward and R. Pal, “Image scanning microscopy: an overview,” J. Microsc. 266, 221–228 (2017).
    [Crossref]
  12. C. J. R. Sheppard and A. Choudhury, “Image formation in the scanning microscope,” Opt. Acta 24(10), 1051–1073 (1977).
    [Crossref]
  13. C. B. Müller and J. Enderlein, “Image scanning microscopy,” Phys. Rev. Lett. 104(19), 198101 (2010).
    [Crossref]
  14. C. J. R. Sheppard, M. Castello, G. Tortarolo, T. Deguchi, S. V. Koho, G. Vicidomini, and A. Diaspro, “Pixel reassignment in image scanning microscopy: a re-evaluation,” J. Opt. Soc. Am. A 37(1), 154–162 (2020).
    [Crossref]
  15. M. Bertero, C. De Mol, E. R. Pike, and J. G. Walker, “Resolution in diffraction-limited imaging, a singular value analysis,” Opt. Acta 31(8), 923–946 (1984).
    [Crossref]
  16. J. Huff, “The airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio and super-resolution,” Nat. Methods 12(12), i–ii (2015).
    [Crossref]
  17. M. Castello, G. Tortarolo, M. Buttafava, T. Deguchi, F. Villa, S. Koho, L. Pesce, M. Oneto, S. Pelicci, L. Lanzanó, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM,” Nat. Methods 16(2), 175–178 (2019).
    [Crossref]
  18. A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9(7), 749–754 (2012).
    [Crossref]
  19. O. Schulz, C. Pieper, M. Clever, J. Pfaff, A. Ruhlandt, R. H. Kehlenbach, F. S. Wouters, J. Großhans, G. Bunt, and J. Enderlein, “Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy,” Proc. Natl. Acad. Sci. U. S. A. 110(52), 21000–21005 (2013).
    [Crossref]
  20. G. M. R. De Luca, R. M. P. Breedijk, R. A. J. Brandt, C. H. C. Zeelenberg, B. E. de Jong, W. Timmermans, L. N. Azar, R. A. Hoebe, S. Stallinga, and E. M. M. Manders, “Re-scan confocal microscopy: scanning twice for better resolution,” Biomed. Opt. Express 4(11), 2644–2656 (2013).
    [Crossref]
  21. S. Roth, C. Sheppard, J. R. K. Wicker, and R. Heintzmann, “Optical photon reassignment microscopy (OPRA),” Opt. Nanoscopy 2(1), 5 (2013).
    [Crossref]
  22. A. G. York, P. Chandris, D. D. Nogare, J. Head, P. Wawrzusin, R. S. Fischer, A. Chitnis, and H. Shroff, “Instant super-resolution imaging in live cells and embryos via analog image processing,” Nat. Methods 10(11), 1122–1126 (2013).
    [Crossref]
  23. T. Azuma and T. Kei, “Super-resolution spinning-disk confocal microscopy using optical photon reassignment,” Opt. Express 23(11), 15003–15011 (2015).
    [Crossref]
  24. Y. Wu and H. Shroff, “Faster, sharper, and deeper: structured illumination microscopy for biological imaging,” Nat. Methods 15(12), 1011–1019 (2018).
    [Crossref]
  25. M. Žurauskas, I. M. Dobbie, R. M. Parton, M. A. Phillips, A. Göhler, I. Davis, and M. J. Booth, “IsoSense: frequency enhanced sensorless adaptive optics through structured illumination,” Optica 6(3), 370–379 (2019).
    [Crossref]
  26. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [Crossref]
  27. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
    [Crossref]
  28. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
    [Crossref]
  29. A. Diaspro, G. Chirico, and M. Collini, “Two-photon fluorescence excitation and related techniques in biological microscopy,” Q. Rev. Biophys. 38(2), 97–166 (2005).
    [Crossref]
  30. I. Gregor, M. Spiecker, R. Petrovsky, J. Großhans, R. Ros, and J. Enderlein, “Rapid nonlinear image scanning microscopy,” Nat. Methods 14(11), 1087–1089 (2017).
    [Crossref]
  31. W. Zheng, Y. Wu, P. Winter, R. Fischer, D. D. Nogare, A. Hong, C. McCormick, R. Christensen, W. P. Dempsey, D. B. Arnold, J. Zimmerberg, A. Chitnis, J. Sellers, C. Waterman, and H. Shroff, “Adaptive optics improves multiphoton super-resolution imaging,” Nat. Methods 14(9), 869–872 (2017).
    [Crossref]
  32. Zeiss, “Application note: Airyscan detection in multiphoton microscopy: super- resolution and improved signal-to-noise ratio beyond the confocal depth limit,” https://www.nature.com/articles/d42473-018-00102-3 (2018). Accessed: 2020-3-24.
  33. O. Tzang, D. Feldkhun, A. Agrawal, A. Jesacher, and R. Piestun, “Two-photon PSF-engineered image scanning microscopy,” Opt. Lett. 44(4), 895–898 (2019).
    [Crossref]
  34. S. Sun, S. Liu, W. Wang, Z. Zhang, C. Kuang, and X. Liu, “Improving the resolution of two-photon microscopy using pixel reassignment,” Appl. Opt. 57(21), 6181–6187 (2018).
    [Crossref]
  35. P. Theer and W. Denk, “On the fundamental imaging-depth limit in two-photon microscopy,” J. Opt. Soc. Am. A 23(12), 3139–3149 (2006).
    [Crossref]
  36. W. Song, J. Lee, and H.-S. Kwon, “Enhancement of imaging depth of two-photon microscopy using pinholes: analytical simulation and experiments,” Opt. Express 20(18), 20605–20622 (2012).
    [Crossref]
  37. J. E. McGregor, C. A. Mitchell, and N. A. Hartell, “Post-processing strategies in image scanning microscopy,” Methods 88, 28–36 (2015).
    [Crossref]
  38. M. Castello, A. Diaspro, and G. Vicidomini, “Multi-images deconvolution improves signal-to-noise ratio on gated stimulated emission depletion microscopy,” Appl. Phys. Lett. 105(23), 234106 (2014).
    [Crossref]
  39. J. Dreier, M. Castello, G. Coceano, R. Cáceres, J. Plastino, G. Vicidomini, and I. Testa, “Smart scanning for low-illumination and fast RESOLFT nanoscopy in vivo,” Nat. Commun. 10(1), 556 (2019).
    [Crossref]
  40. C. J. R. Sheppard, S. B. Mehta, and R. Heintzmann, “Superresolution by image scanning microscopy using pixel reassignment,” Opt. Lett. 38(15), 2889–2892 (2013).
    [Crossref]
  41. C. J. R. Sheppard, M. Castello, G. Tortarolo, G. Vicidomini, and A. Diaspro, “Image formation in image scanning microscopy, including the case of two-photon excitation,” J. Opt. Soc. Am. A 34(8), 1339–1350 (2017).
    [Crossref]
  42. M. Castello, C. J. R. Sheppard, A. Diaspro, and G. Vicidomini, “Image scanning microscopy with a quadrant detector,” Opt. Lett. 40(22), 5355–5358 (2015).
    [Crossref]
  43. C. Roider, M. Ritsch-Marte, and A. Jesacher, “High-resolution confocal raman microscopy using pixel reassignment,” Opt. Lett. 41(16), 3825–3828 (2016).
    [Crossref]
  44. S. Koho, T. Deguchi, and P. E. Hänninen, “A software tool for tomographic axial superresolution in STED microscopy,” J. Microsc. 260, 208–218 (2015).
    [Crossref]
  45. S. V. Koho, “MIPLIB: Mircoscope image processing library,” https://doi.org/10.5281/zenodo.3786388 (2020).
  46. T. S. Yoo, M. J. Ackerman, W. E. Lorensen, W. Schroeder, V. Chalana, S. Aylward, D. Metaxas, and R. Whitaker, “Engineering and algorithm design for an image processing api: a technical report on ITK–the insight toolkit,” Stud. Health Technol. Inform. 85, 586–592 (2002).
  47. S. Koho, G. Tortarolo, M. Castello, T. Deguchi, A. Diaspro, and G. Vicidomini, “Fourier ring correlation simplifies image restoration in fluorescence microscopy,” Nat. Commun. 10(1), 3103 (2019).
    [Crossref]
  48. S. Koho, E. Fazeli, J. E. Eriksson, and P. E. Hänninen, “Image quality ranking method for microscopy,” Sci. Rep. 6(1), 28962 (2016).
    [Crossref]
  49. K. Wicker, “Super-Resolution fluorescence microscopy using structured illumination,” in Super-Resolution Microscopy Techniques in the Neurosciences, E. F. Fornasiero and S. O. Rizzoli, eds. (Humana Press, 2014), pp. 133–165.
  50. M. Ingaramo, A. G. York, E. Hoogendoorn, M. Postma, H. Shroff, and G. H. Patterson, “Richardson-Lucy deconvolution as a general tool for combining images with complementary strengths,” ChemPhysChem 15(4), 794–800 (2014).
    [Crossref]
  51. G. Tortarolo, M. Castello, A. Diaspro, S. Koho, and G. Vicidomini, “Evaluating image resolution in stimulated emission depletion microscopy,” Optica 5(1), 32–35 (2018).
    [Crossref]
  52. H. Zhang, K. Yarinome, R. Kawakami, K. Otomo, T. Nemoto, and Y. Okamura, “Nanosheet wrapping-assisted coverslip-free imaging for looking deeper into a tissue at high resolution,” PLoS One 15(1), e0227650 (2020).
    [Crossref]
  53. K. Sawada, R. Kawakami, R. Shigemoto, and T. Nemoto, “Super-resolution structural analysis of dendritic spines using three-dimensional structured illumination microscopy in cleared mouse brain slices,” Eur. J. Neurosci. 47, 1033–1042 (2018).
    [Crossref]
  54. T. Wilson, “Resolution and optical sectioning in the confocal microscope,” J. Microsc. 244, 113–121 (2011).
    [Crossref]
  55. S. Culley, D. Albrecht, C. Jacobs, P. M. Pereira, C. Leterrier, J. Mercer, and R. Henriques, “Quantitative mapping and minimization of super-resolution optical imaging artifacts,” Nat. Methods 15(4), 263–266 (2018).
    [Crossref]
  56. K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
    [Crossref]
  57. P. Bianchini and A. Diaspro, “Three-dimensional (3d) backward and forward second harmonic generation (SHG) microscopy of biological tissues,” J. Biophotonics 1, 443–450 (2008).
    [Crossref]
  58. T. B. DuBose, F. LaRocca, S. Farsiu, and J. A. Izatt, “Super-resolution retinal imaging using optically reassigned scanning laser ophthalmoscopy,” Nat. Photonics 13(4), 257–262 (2019).
    [Crossref]
  59. R. Tenne, U. Rossman, B. Rephael, Y. Israel, A. Krupinski-Ptaszek, R. Lapkiewicz, Y. Silberberg, and D. Oron, “Super-resolution enhancement by quantum image scanning microscopy,” Nat. Photonics 13(2), 116–122 (2019).
    [Crossref]
  60. M. Buttafava, F. Villa, M. Castello, G. Tortarolo, E. Conca, M. Sanzaro, S. Piazza, P. Bianchini, A. Diaspro, F. Zappa, G. Vicidomini, and A. Tosi, “SPAD-based asynchronous-readout array detectors for image-scanning microscopy,” arXiv (2020).
  61. M. Sanzaro, A. Ruggeri, A. Peruch, and A. Tosi, “High count rate InGaAs/InP SPAD system with balanced SPAD-dummy approach running up to 1.4 GHz,” in Quantum Technologies 2018, vol. 10674 (International Society for Optics and Photonics, 2018), p. 1067417.
  62. I. Michel Antolovic, A. C. Ulku, E. Kizilkan, S. Lindner, F. Zanella, R. Ferrini, M. Schnieper, E. Charbon, and C. Bruschini, “Optical-stack optimization for improved SPAD photon detection efficiency,” in Quantum Sensing and Nano Electronics and Photonics XVI, vol. 10926 (International Society for Optics and Photonics, 2019), p. 109262T.
  63. M. N. Modi, K. Daie, G. C. Turner, and K. Podgorski, “Two-photon imaging with silicon photomultipliers,” Opt. Express 27(24), 35830–35841 (2019).
    [Crossref]

2020 (2)

C. J. R. Sheppard, M. Castello, G. Tortarolo, T. Deguchi, S. V. Koho, G. Vicidomini, and A. Diaspro, “Pixel reassignment in image scanning microscopy: a re-evaluation,” J. Opt. Soc. Am. A 37(1), 154–162 (2020).
[Crossref]

H. Zhang, K. Yarinome, R. Kawakami, K. Otomo, T. Nemoto, and Y. Okamura, “Nanosheet wrapping-assisted coverslip-free imaging for looking deeper into a tissue at high resolution,” PLoS One 15(1), e0227650 (2020).
[Crossref]

2019 (10)

T. B. DuBose, F. LaRocca, S. Farsiu, and J. A. Izatt, “Super-resolution retinal imaging using optically reassigned scanning laser ophthalmoscopy,” Nat. Photonics 13(4), 257–262 (2019).
[Crossref]

R. Tenne, U. Rossman, B. Rephael, Y. Israel, A. Krupinski-Ptaszek, R. Lapkiewicz, Y. Silberberg, and D. Oron, “Super-resolution enhancement by quantum image scanning microscopy,” Nat. Photonics 13(2), 116–122 (2019).
[Crossref]

M. N. Modi, K. Daie, G. C. Turner, and K. Podgorski, “Two-photon imaging with silicon photomultipliers,” Opt. Express 27(24), 35830–35841 (2019).
[Crossref]

J. Dreier, M. Castello, G. Coceano, R. Cáceres, J. Plastino, G. Vicidomini, and I. Testa, “Smart scanning for low-illumination and fast RESOLFT nanoscopy in vivo,” Nat. Commun. 10(1), 556 (2019).
[Crossref]

S. Koho, G. Tortarolo, M. Castello, T. Deguchi, A. Diaspro, and G. Vicidomini, “Fourier ring correlation simplifies image restoration in fluorescence microscopy,” Nat. Commun. 10(1), 3103 (2019).
[Crossref]

L. Schermelleh, A. Ferrand, T. Huser, C. Eggeling, M. Sauer, O. Biehlmaier, and G. P. C. Drummen, “Super-resolution microscopy demystified,” Nat. Cell Biol. 21(1), 72–84 (2019).
[Crossref]

I. Gregor and J. Enderlein, “Image scanning microscopy,” Curr. Opin. Chem. Biol. 51, 74–83 (2019).
[Crossref]

M. Castello, G. Tortarolo, M. Buttafava, T. Deguchi, F. Villa, S. Koho, L. Pesce, M. Oneto, S. Pelicci, L. Lanzanó, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM,” Nat. Methods 16(2), 175–178 (2019).
[Crossref]

M. Žurauskas, I. M. Dobbie, R. M. Parton, M. A. Phillips, A. Göhler, I. Davis, and M. J. Booth, “IsoSense: frequency enhanced sensorless adaptive optics through structured illumination,” Optica 6(3), 370–379 (2019).
[Crossref]

O. Tzang, D. Feldkhun, A. Agrawal, A. Jesacher, and R. Piestun, “Two-photon PSF-engineered image scanning microscopy,” Opt. Lett. 44(4), 895–898 (2019).
[Crossref]

2018 (5)

S. Sun, S. Liu, W. Wang, Z. Zhang, C. Kuang, and X. Liu, “Improving the resolution of two-photon microscopy using pixel reassignment,” Appl. Opt. 57(21), 6181–6187 (2018).
[Crossref]

Y. Wu and H. Shroff, “Faster, sharper, and deeper: structured illumination microscopy for biological imaging,” Nat. Methods 15(12), 1011–1019 (2018).
[Crossref]

S. Culley, D. Albrecht, C. Jacobs, P. M. Pereira, C. Leterrier, J. Mercer, and R. Henriques, “Quantitative mapping and minimization of super-resolution optical imaging artifacts,” Nat. Methods 15(4), 263–266 (2018).
[Crossref]

K. Sawada, R. Kawakami, R. Shigemoto, and T. Nemoto, “Super-resolution structural analysis of dendritic spines using three-dimensional structured illumination microscopy in cleared mouse brain slices,” Eur. J. Neurosci. 47, 1033–1042 (2018).
[Crossref]

G. Tortarolo, M. Castello, A. Diaspro, S. Koho, and G. Vicidomini, “Evaluating image resolution in stimulated emission depletion microscopy,” Optica 5(1), 32–35 (2018).
[Crossref]

2017 (5)

C. J. R. Sheppard, M. Castello, G. Tortarolo, G. Vicidomini, and A. Diaspro, “Image formation in image scanning microscopy, including the case of two-photon excitation,” J. Opt. Soc. Am. A 34(8), 1339–1350 (2017).
[Crossref]

I. Gregor, M. Spiecker, R. Petrovsky, J. Großhans, R. Ros, and J. Enderlein, “Rapid nonlinear image scanning microscopy,” Nat. Methods 14(11), 1087–1089 (2017).
[Crossref]

W. Zheng, Y. Wu, P. Winter, R. Fischer, D. D. Nogare, A. Hong, C. McCormick, R. Christensen, W. P. Dempsey, D. B. Arnold, J. Zimmerberg, A. Chitnis, J. Sellers, C. Waterman, and H. Shroff, “Adaptive optics improves multiphoton super-resolution imaging,” Nat. Methods 14(9), 869–872 (2017).
[Crossref]

E. N. Ward and R. Pal, “Image scanning microscopy: an overview,” J. Microsc. 266, 221–228 (2017).
[Crossref]

F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355(6325), 606–612 (2017).
[Crossref]

2016 (4)

F. Ströhl and C. F. Kaminski, “Frontiers in structured illumination microscopy,” Optica 3(6), 667–677 (2016).
[Crossref]

F. Huang, G. Sirinakis, E. S. Allgeyer, L. K. Schroeder, W. C. Duim, E. B. Kromann, T. Phan, F. E. Rivera-Molina, J. R. Myers, I. Irnov, M. Lessard, Y. Zhang, M. A. Handel, C. Jacobs-Wagner, C. P. Lusk, J. E. Rothman, D. Toomre, M. J. Booth, and J. Bewersdorf, “Ultra-High resolution 3D imaging of whole cells,” Cell 166(4), 1028–1040 (2016).
[Crossref]

S. Koho, E. Fazeli, J. E. Eriksson, and P. E. Hänninen, “Image quality ranking method for microscopy,” Sci. Rep. 6(1), 28962 (2016).
[Crossref]

C. Roider, M. Ritsch-Marte, and A. Jesacher, “High-resolution confocal raman microscopy using pixel reassignment,” Opt. Lett. 41(16), 3825–3828 (2016).
[Crossref]

2015 (6)

S. Koho, T. Deguchi, and P. E. Hänninen, “A software tool for tomographic axial superresolution in STED microscopy,” J. Microsc. 260, 208–218 (2015).
[Crossref]

M. Castello, C. J. R. Sheppard, A. Diaspro, and G. Vicidomini, “Image scanning microscopy with a quadrant detector,” Opt. Lett. 40(22), 5355–5358 (2015).
[Crossref]

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48(44), 443001 (2015).
[Crossref]

J. E. McGregor, C. A. Mitchell, and N. A. Hartell, “Post-processing strategies in image scanning microscopy,” Methods 88, 28–36 (2015).
[Crossref]

J. Huff, “The airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio and super-resolution,” Nat. Methods 12(12), i–ii (2015).
[Crossref]

T. Azuma and T. Kei, “Super-resolution spinning-disk confocal microscopy using optical photon reassignment,” Opt. Express 23(11), 15003–15011 (2015).
[Crossref]

2014 (3)

M. Castello, A. Diaspro, and G. Vicidomini, “Multi-images deconvolution improves signal-to-noise ratio on gated stimulated emission depletion microscopy,” Appl. Phys. Lett. 105(23), 234106 (2014).
[Crossref]

M. Ingaramo, A. G. York, E. Hoogendoorn, M. Postma, H. Shroff, and G. H. Patterson, “Richardson-Lucy deconvolution as a general tool for combining images with complementary strengths,” ChemPhysChem 15(4), 794–800 (2014).
[Crossref]

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref]

2013 (5)

C. J. R. Sheppard, S. B. Mehta, and R. Heintzmann, “Superresolution by image scanning microscopy using pixel reassignment,” Opt. Lett. 38(15), 2889–2892 (2013).
[Crossref]

O. Schulz, C. Pieper, M. Clever, J. Pfaff, A. Ruhlandt, R. H. Kehlenbach, F. S. Wouters, J. Großhans, G. Bunt, and J. Enderlein, “Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy,” Proc. Natl. Acad. Sci. U. S. A. 110(52), 21000–21005 (2013).
[Crossref]

G. M. R. De Luca, R. M. P. Breedijk, R. A. J. Brandt, C. H. C. Zeelenberg, B. E. de Jong, W. Timmermans, L. N. Azar, R. A. Hoebe, S. Stallinga, and E. M. M. Manders, “Re-scan confocal microscopy: scanning twice for better resolution,” Biomed. Opt. Express 4(11), 2644–2656 (2013).
[Crossref]

S. Roth, C. Sheppard, J. R. K. Wicker, and R. Heintzmann, “Optical photon reassignment microscopy (OPRA),” Opt. Nanoscopy 2(1), 5 (2013).
[Crossref]

A. G. York, P. Chandris, D. D. Nogare, J. Head, P. Wawrzusin, R. S. Fischer, A. Chitnis, and H. Shroff, “Instant super-resolution imaging in live cells and embryos via analog image processing,” Nat. Methods 10(11), 1122–1126 (2013).
[Crossref]

2012 (2)

A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9(7), 749–754 (2012).
[Crossref]

W. Song, J. Lee, and H.-S. Kwon, “Enhancement of imaging depth of two-photon microscopy using pinholes: analytical simulation and experiments,” Opt. Express 20(18), 20605–20622 (2012).
[Crossref]

2011 (1)

T. Wilson, “Resolution and optical sectioning in the confocal microscope,” J. Microsc. 244, 113–121 (2011).
[Crossref]

2010 (1)

C. B. Müller and J. Enderlein, “Image scanning microscopy,” Phys. Rev. Lett. 104(19), 198101 (2010).
[Crossref]

2009 (1)

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U. S. A. 106(9), 3125–3130 (2009).
[Crossref]

2008 (1)

P. Bianchini and A. Diaspro, “Three-dimensional (3d) backward and forward second harmonic generation (SHG) microscopy of biological tissues,” J. Biophotonics 1, 443–450 (2008).
[Crossref]

2006 (1)

2005 (2)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref]

A. Diaspro, G. Chirico, and M. Collini, “Two-photon fluorescence excitation and related techniques in biological microscopy,” Q. Rev. Biophys. 38(2), 97–166 (2005).
[Crossref]

2003 (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref]

2002 (1)

T. S. Yoo, M. J. Ackerman, W. E. Lorensen, W. Schroeder, V. Chalana, S. Aylward, D. Metaxas, and R. Whitaker, “Engineering and algorithm design for an image processing api: a technical report on ITK–the insight toolkit,” Stud. Health Technol. Inform. 85, 586–592 (2002).

2000 (1)

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref]

1988 (1)

C. J. R. Sheppard, “Super-resolution in confocal imaging,” Optik 80(2), 53–54 (1988).

1984 (1)

M. Bertero, C. De Mol, E. R. Pike, and J. G. Walker, “Resolution in diffraction-limited imaging, a singular value analysis,” Opt. Acta 31(8), 923–946 (1984).
[Crossref]

1977 (1)

C. J. R. Sheppard and A. Choudhury, “Image formation in the scanning microscope,” Opt. Acta 24(10), 1051–1073 (1977).
[Crossref]

Ackerman, M. J.

T. S. Yoo, M. J. Ackerman, W. E. Lorensen, W. Schroeder, V. Chalana, S. Aylward, D. Metaxas, and R. Whitaker, “Engineering and algorithm design for an image processing api: a technical report on ITK–the insight toolkit,” Stud. Health Technol. Inform. 85, 586–592 (2002).

Agrawal, A.

Albrecht, D.

S. Culley, D. Albrecht, C. Jacobs, P. M. Pereira, C. Leterrier, J. Mercer, and R. Henriques, “Quantitative mapping and minimization of super-resolution optical imaging artifacts,” Nat. Methods 15(4), 263–266 (2018).
[Crossref]

Allgeyer, E. S.

F. Huang, G. Sirinakis, E. S. Allgeyer, L. K. Schroeder, W. C. Duim, E. B. Kromann, T. Phan, F. E. Rivera-Molina, J. R. Myers, I. Irnov, M. Lessard, Y. Zhang, M. A. Handel, C. Jacobs-Wagner, C. P. Lusk, J. E. Rothman, D. Toomre, M. J. Booth, and J. Bewersdorf, “Ultra-High resolution 3D imaging of whole cells,” Cell 166(4), 1028–1040 (2016).
[Crossref]

Arnold, D. B.

W. Zheng, Y. Wu, P. Winter, R. Fischer, D. D. Nogare, A. Hong, C. McCormick, R. Christensen, W. P. Dempsey, D. B. Arnold, J. Zimmerberg, A. Chitnis, J. Sellers, C. Waterman, and H. Shroff, “Adaptive optics improves multiphoton super-resolution imaging,” Nat. Methods 14(9), 869–872 (2017).
[Crossref]

Aylward, S.

T. S. Yoo, M. J. Ackerman, W. E. Lorensen, W. Schroeder, V. Chalana, S. Aylward, D. Metaxas, and R. Whitaker, “Engineering and algorithm design for an image processing api: a technical report on ITK–the insight toolkit,” Stud. Health Technol. Inform. 85, 586–592 (2002).

Azar, L. N.

Azuma, T.

Balzarotti, F.

F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355(6325), 606–612 (2017).
[Crossref]

Bates, M.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48(44), 443001 (2015).
[Crossref]

Bertero, M.

M. Bertero, C. De Mol, E. R. Pike, and J. G. Walker, “Resolution in diffraction-limited imaging, a singular value analysis,” Opt. Acta 31(8), 923–946 (1984).
[Crossref]

Betzig, E.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref]

Bewersdorf, J.

F. Huang, G. Sirinakis, E. S. Allgeyer, L. K. Schroeder, W. C. Duim, E. B. Kromann, T. Phan, F. E. Rivera-Molina, J. R. Myers, I. Irnov, M. Lessard, Y. Zhang, M. A. Handel, C. Jacobs-Wagner, C. P. Lusk, J. E. Rothman, D. Toomre, M. J. Booth, and J. Bewersdorf, “Ultra-High resolution 3D imaging of whole cells,” Cell 166(4), 1028–1040 (2016).
[Crossref]

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48(44), 443001 (2015).
[Crossref]

Bianchini, P.

M. Castello, G. Tortarolo, M. Buttafava, T. Deguchi, F. Villa, S. Koho, L. Pesce, M. Oneto, S. Pelicci, L. Lanzanó, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM,” Nat. Methods 16(2), 175–178 (2019).
[Crossref]

P. Bianchini and A. Diaspro, “Three-dimensional (3d) backward and forward second harmonic generation (SHG) microscopy of biological tissues,” J. Biophotonics 1, 443–450 (2008).
[Crossref]

M. Buttafava, F. Villa, M. Castello, G. Tortarolo, E. Conca, M. Sanzaro, S. Piazza, P. Bianchini, A. Diaspro, F. Zappa, G. Vicidomini, and A. Tosi, “SPAD-based asynchronous-readout array detectors for image-scanning microscopy,” arXiv (2020).

Biehlmaier, O.

L. Schermelleh, A. Ferrand, T. Huser, C. Eggeling, M. Sauer, O. Biehlmaier, and G. P. C. Drummen, “Super-resolution microscopy demystified,” Nat. Cell Biol. 21(1), 72–84 (2019).
[Crossref]

Booth, M. J.

M. Žurauskas, I. M. Dobbie, R. M. Parton, M. A. Phillips, A. Göhler, I. Davis, and M. J. Booth, “IsoSense: frequency enhanced sensorless adaptive optics through structured illumination,” Optica 6(3), 370–379 (2019).
[Crossref]

F. Huang, G. Sirinakis, E. S. Allgeyer, L. K. Schroeder, W. C. Duim, E. B. Kromann, T. Phan, F. E. Rivera-Molina, J. R. Myers, I. Irnov, M. Lessard, Y. Zhang, M. A. Handel, C. Jacobs-Wagner, C. P. Lusk, J. E. Rothman, D. Toomre, M. J. Booth, and J. Bewersdorf, “Ultra-High resolution 3D imaging of whole cells,” Cell 166(4), 1028–1040 (2016).
[Crossref]

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48(44), 443001 (2015).
[Crossref]

Brandt, R. A. J.

Breedijk, R. M. P.

Bronner, M. E.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref]

Bruschini, C.

I. Michel Antolovic, A. C. Ulku, E. Kizilkan, S. Lindner, F. Zanella, R. Ferrini, M. Schnieper, E. Charbon, and C. Bruschini, “Optical-stack optimization for improved SPAD photon detection efficiency,” in Quantum Sensing and Nano Electronics and Photonics XVI, vol. 10926 (International Society for Optics and Photonics, 2019), p. 109262T.

Bunt, G.

O. Schulz, C. Pieper, M. Clever, J. Pfaff, A. Ruhlandt, R. H. Kehlenbach, F. S. Wouters, J. Großhans, G. Bunt, and J. Enderlein, “Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy,” Proc. Natl. Acad. Sci. U. S. A. 110(52), 21000–21005 (2013).
[Crossref]

Buttafava, M.

M. Castello, G. Tortarolo, M. Buttafava, T. Deguchi, F. Villa, S. Koho, L. Pesce, M. Oneto, S. Pelicci, L. Lanzanó, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM,” Nat. Methods 16(2), 175–178 (2019).
[Crossref]

M. Buttafava, F. Villa, M. Castello, G. Tortarolo, E. Conca, M. Sanzaro, S. Piazza, P. Bianchini, A. Diaspro, F. Zappa, G. Vicidomini, and A. Tosi, “SPAD-based asynchronous-readout array detectors for image-scanning microscopy,” arXiv (2020).

Cáceres, R.

J. Dreier, M. Castello, G. Coceano, R. Cáceres, J. Plastino, G. Vicidomini, and I. Testa, “Smart scanning for low-illumination and fast RESOLFT nanoscopy in vivo,” Nat. Commun. 10(1), 556 (2019).
[Crossref]

Castello, M.

C. J. R. Sheppard, M. Castello, G. Tortarolo, T. Deguchi, S. V. Koho, G. Vicidomini, and A. Diaspro, “Pixel reassignment in image scanning microscopy: a re-evaluation,” J. Opt. Soc. Am. A 37(1), 154–162 (2020).
[Crossref]

M. Castello, G. Tortarolo, M. Buttafava, T. Deguchi, F. Villa, S. Koho, L. Pesce, M. Oneto, S. Pelicci, L. Lanzanó, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM,” Nat. Methods 16(2), 175–178 (2019).
[Crossref]

J. Dreier, M. Castello, G. Coceano, R. Cáceres, J. Plastino, G. Vicidomini, and I. Testa, “Smart scanning for low-illumination and fast RESOLFT nanoscopy in vivo,” Nat. Commun. 10(1), 556 (2019).
[Crossref]

S. Koho, G. Tortarolo, M. Castello, T. Deguchi, A. Diaspro, and G. Vicidomini, “Fourier ring correlation simplifies image restoration in fluorescence microscopy,” Nat. Commun. 10(1), 3103 (2019).
[Crossref]

G. Tortarolo, M. Castello, A. Diaspro, S. Koho, and G. Vicidomini, “Evaluating image resolution in stimulated emission depletion microscopy,” Optica 5(1), 32–35 (2018).
[Crossref]

C. J. R. Sheppard, M. Castello, G. Tortarolo, G. Vicidomini, and A. Diaspro, “Image formation in image scanning microscopy, including the case of two-photon excitation,” J. Opt. Soc. Am. A 34(8), 1339–1350 (2017).
[Crossref]

M. Castello, C. J. R. Sheppard, A. Diaspro, and G. Vicidomini, “Image scanning microscopy with a quadrant detector,” Opt. Lett. 40(22), 5355–5358 (2015).
[Crossref]

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48(44), 443001 (2015).
[Crossref]

M. Castello, A. Diaspro, and G. Vicidomini, “Multi-images deconvolution improves signal-to-noise ratio on gated stimulated emission depletion microscopy,” Appl. Phys. Lett. 105(23), 234106 (2014).
[Crossref]

M. Buttafava, F. Villa, M. Castello, G. Tortarolo, E. Conca, M. Sanzaro, S. Piazza, P. Bianchini, A. Diaspro, F. Zappa, G. Vicidomini, and A. Tosi, “SPAD-based asynchronous-readout array detectors for image-scanning microscopy,” arXiv (2020).

Chalana, V.

T. S. Yoo, M. J. Ackerman, W. E. Lorensen, W. Schroeder, V. Chalana, S. Aylward, D. Metaxas, and R. Whitaker, “Engineering and algorithm design for an image processing api: a technical report on ITK–the insight toolkit,” Stud. Health Technol. Inform. 85, 586–592 (2002).

Chandris, P.

A. G. York, P. Chandris, D. D. Nogare, J. Head, P. Wawrzusin, R. S. Fischer, A. Chitnis, and H. Shroff, “Instant super-resolution imaging in live cells and embryos via analog image processing,” Nat. Methods 10(11), 1122–1126 (2013).
[Crossref]

Charbon, E.

I. Michel Antolovic, A. C. Ulku, E. Kizilkan, S. Lindner, F. Zanella, R. Ferrini, M. Schnieper, E. Charbon, and C. Bruschini, “Optical-stack optimization for improved SPAD photon detection efficiency,” in Quantum Sensing and Nano Electronics and Photonics XVI, vol. 10926 (International Society for Optics and Photonics, 2019), p. 109262T.

Chirico, G.

A. Diaspro, G. Chirico, and M. Collini, “Two-photon fluorescence excitation and related techniques in biological microscopy,” Q. Rev. Biophys. 38(2), 97–166 (2005).
[Crossref]

Chitnis, A.

W. Zheng, Y. Wu, P. Winter, R. Fischer, D. D. Nogare, A. Hong, C. McCormick, R. Christensen, W. P. Dempsey, D. B. Arnold, J. Zimmerberg, A. Chitnis, J. Sellers, C. Waterman, and H. Shroff, “Adaptive optics improves multiphoton super-resolution imaging,” Nat. Methods 14(9), 869–872 (2017).
[Crossref]

A. G. York, P. Chandris, D. D. Nogare, J. Head, P. Wawrzusin, R. S. Fischer, A. Chitnis, and H. Shroff, “Instant super-resolution imaging in live cells and embryos via analog image processing,” Nat. Methods 10(11), 1122–1126 (2013).
[Crossref]

Chitnis, A. B.

A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9(7), 749–754 (2012).
[Crossref]

Choudhury, A.

C. J. R. Sheppard and A. Choudhury, “Image formation in the scanning microscope,” Opt. Acta 24(10), 1051–1073 (1977).
[Crossref]

Christensen, R.

W. Zheng, Y. Wu, P. Winter, R. Fischer, D. D. Nogare, A. Hong, C. McCormick, R. Christensen, W. P. Dempsey, D. B. Arnold, J. Zimmerberg, A. Chitnis, J. Sellers, C. Waterman, and H. Shroff, “Adaptive optics improves multiphoton super-resolution imaging,” Nat. Methods 14(9), 869–872 (2017).
[Crossref]

Clever, M.

O. Schulz, C. Pieper, M. Clever, J. Pfaff, A. Ruhlandt, R. H. Kehlenbach, F. S. Wouters, J. Großhans, G. Bunt, and J. Enderlein, “Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy,” Proc. Natl. Acad. Sci. U. S. A. 110(52), 21000–21005 (2013).
[Crossref]

Coceano, G.

J. Dreier, M. Castello, G. Coceano, R. Cáceres, J. Plastino, G. Vicidomini, and I. Testa, “Smart scanning for low-illumination and fast RESOLFT nanoscopy in vivo,” Nat. Commun. 10(1), 556 (2019).
[Crossref]

Cognet, L.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48(44), 443001 (2015).
[Crossref]

Collini, M.

A. Diaspro, G. Chirico, and M. Collini, “Two-photon fluorescence excitation and related techniques in biological microscopy,” Q. Rev. Biophys. 38(2), 97–166 (2005).
[Crossref]

Combs, C. A.

A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9(7), 749–754 (2012).
[Crossref]

Conca, E.

M. Buttafava, F. Villa, M. Castello, G. Tortarolo, E. Conca, M. Sanzaro, S. Piazza, P. Bianchini, A. Diaspro, F. Zappa, G. Vicidomini, and A. Tosi, “SPAD-based asynchronous-readout array detectors for image-scanning microscopy,” arXiv (2020).

Cordes, T.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48(44), 443001 (2015).
[Crossref]

Culley, S.

S. Culley, D. Albrecht, C. Jacobs, P. M. Pereira, C. Leterrier, J. Mercer, and R. Henriques, “Quantitative mapping and minimization of super-resolution optical imaging artifacts,” Nat. Methods 15(4), 263–266 (2018).
[Crossref]

Daie, K.

Dalle Nogare, D.

A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9(7), 749–754 (2012).
[Crossref]

Davidson, M. W.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U. S. A. 106(9), 3125–3130 (2009).
[Crossref]

Davis, I.

Davis, S. J.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48(44), 443001 (2015).
[Crossref]

de Jong, B. E.

De Luca, G. M. R.

De Mol, C.

M. Bertero, C. De Mol, E. R. Pike, and J. G. Walker, “Resolution in diffraction-limited imaging, a singular value analysis,” Opt. Acta 31(8), 923–946 (1984).
[Crossref]

Deguchi, T.

C. J. R. Sheppard, M. Castello, G. Tortarolo, T. Deguchi, S. V. Koho, G. Vicidomini, and A. Diaspro, “Pixel reassignment in image scanning microscopy: a re-evaluation,” J. Opt. Soc. Am. A 37(1), 154–162 (2020).
[Crossref]

M. Castello, G. Tortarolo, M. Buttafava, T. Deguchi, F. Villa, S. Koho, L. Pesce, M. Oneto, S. Pelicci, L. Lanzanó, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM,” Nat. Methods 16(2), 175–178 (2019).
[Crossref]

S. Koho, G. Tortarolo, M. Castello, T. Deguchi, A. Diaspro, and G. Vicidomini, “Fourier ring correlation simplifies image restoration in fluorescence microscopy,” Nat. Commun. 10(1), 3103 (2019).
[Crossref]

S. Koho, T. Deguchi, and P. E. Hänninen, “A software tool for tomographic axial superresolution in STED microscopy,” J. Microsc. 260, 208–218 (2015).
[Crossref]

Dempsey, W. P.

W. Zheng, Y. Wu, P. Winter, R. Fischer, D. D. Nogare, A. Hong, C. McCormick, R. Christensen, W. P. Dempsey, D. B. Arnold, J. Zimmerberg, A. Chitnis, J. Sellers, C. Waterman, and H. Shroff, “Adaptive optics improves multiphoton super-resolution imaging,” Nat. Methods 14(9), 869–872 (2017).
[Crossref]

Denk, W.

P. Theer and W. Denk, “On the fundamental imaging-depth limit in two-photon microscopy,” J. Opt. Soc. Am. A 23(12), 3139–3149 (2006).
[Crossref]

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref]

Diaspro, A.

C. J. R. Sheppard, M. Castello, G. Tortarolo, T. Deguchi, S. V. Koho, G. Vicidomini, and A. Diaspro, “Pixel reassignment in image scanning microscopy: a re-evaluation,” J. Opt. Soc. Am. A 37(1), 154–162 (2020).
[Crossref]

M. Castello, G. Tortarolo, M. Buttafava, T. Deguchi, F. Villa, S. Koho, L. Pesce, M. Oneto, S. Pelicci, L. Lanzanó, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM,” Nat. Methods 16(2), 175–178 (2019).
[Crossref]

S. Koho, G. Tortarolo, M. Castello, T. Deguchi, A. Diaspro, and G. Vicidomini, “Fourier ring correlation simplifies image restoration in fluorescence microscopy,” Nat. Commun. 10(1), 3103 (2019).
[Crossref]

G. Tortarolo, M. Castello, A. Diaspro, S. Koho, and G. Vicidomini, “Evaluating image resolution in stimulated emission depletion microscopy,” Optica 5(1), 32–35 (2018).
[Crossref]

C. J. R. Sheppard, M. Castello, G. Tortarolo, G. Vicidomini, and A. Diaspro, “Image formation in image scanning microscopy, including the case of two-photon excitation,” J. Opt. Soc. Am. A 34(8), 1339–1350 (2017).
[Crossref]

M. Castello, C. J. R. Sheppard, A. Diaspro, and G. Vicidomini, “Image scanning microscopy with a quadrant detector,” Opt. Lett. 40(22), 5355–5358 (2015).
[Crossref]

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48(44), 443001 (2015).
[Crossref]

M. Castello, A. Diaspro, and G. Vicidomini, “Multi-images deconvolution improves signal-to-noise ratio on gated stimulated emission depletion microscopy,” Appl. Phys. Lett. 105(23), 234106 (2014).
[Crossref]

P. Bianchini and A. Diaspro, “Three-dimensional (3d) backward and forward second harmonic generation (SHG) microscopy of biological tissues,” J. Biophotonics 1, 443–450 (2008).
[Crossref]

A. Diaspro, G. Chirico, and M. Collini, “Two-photon fluorescence excitation and related techniques in biological microscopy,” Q. Rev. Biophys. 38(2), 97–166 (2005).
[Crossref]

A. Diaspro, Confocal and Two-Photon Microscopy: Foundations, Applications and Advances, Confocal and Two-Photon Microscopy: Foundations (Wiley, 2001).

M. Buttafava, F. Villa, M. Castello, G. Tortarolo, E. Conca, M. Sanzaro, S. Piazza, P. Bianchini, A. Diaspro, F. Zappa, G. Vicidomini, and A. Tosi, “SPAD-based asynchronous-readout array detectors for image-scanning microscopy,” arXiv (2020).

Dobbie, I. M.

Dreier, J.

J. Dreier, M. Castello, G. Coceano, R. Cáceres, J. Plastino, G. Vicidomini, and I. Testa, “Smart scanning for low-illumination and fast RESOLFT nanoscopy in vivo,” Nat. Commun. 10(1), 556 (2019).
[Crossref]

Drummen, G. P. C.

L. Schermelleh, A. Ferrand, T. Huser, C. Eggeling, M. Sauer, O. Biehlmaier, and G. P. C. Drummen, “Super-resolution microscopy demystified,” Nat. Cell Biol. 21(1), 72–84 (2019).
[Crossref]

DuBose, T. B.

T. B. DuBose, F. LaRocca, S. Farsiu, and J. A. Izatt, “Super-resolution retinal imaging using optically reassigned scanning laser ophthalmoscopy,” Nat. Photonics 13(4), 257–262 (2019).
[Crossref]

Duim, W. C.

F. Huang, G. Sirinakis, E. S. Allgeyer, L. K. Schroeder, W. C. Duim, E. B. Kromann, T. Phan, F. E. Rivera-Molina, J. R. Myers, I. Irnov, M. Lessard, Y. Zhang, M. A. Handel, C. Jacobs-Wagner, C. P. Lusk, J. E. Rothman, D. Toomre, M. J. Booth, and J. Bewersdorf, “Ultra-High resolution 3D imaging of whole cells,” Cell 166(4), 1028–1040 (2016).
[Crossref]

Eggeling, C.

L. Schermelleh, A. Ferrand, T. Huser, C. Eggeling, M. Sauer, O. Biehlmaier, and G. P. C. Drummen, “Super-resolution microscopy demystified,” Nat. Cell Biol. 21(1), 72–84 (2019).
[Crossref]

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48(44), 443001 (2015).
[Crossref]

Eilers, Y.

F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355(6325), 606–612 (2017).
[Crossref]

Elf, J.

F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355(6325), 606–612 (2017).
[Crossref]

Enderlein, J.

I. Gregor and J. Enderlein, “Image scanning microscopy,” Curr. Opin. Chem. Biol. 51, 74–83 (2019).
[Crossref]

I. Gregor, M. Spiecker, R. Petrovsky, J. Großhans, R. Ros, and J. Enderlein, “Rapid nonlinear image scanning microscopy,” Nat. Methods 14(11), 1087–1089 (2017).
[Crossref]

O. Schulz, C. Pieper, M. Clever, J. Pfaff, A. Ruhlandt, R. H. Kehlenbach, F. S. Wouters, J. Großhans, G. Bunt, and J. Enderlein, “Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy,” Proc. Natl. Acad. Sci. U. S. A. 110(52), 21000–21005 (2013).
[Crossref]

C. B. Müller and J. Enderlein, “Image scanning microscopy,” Phys. Rev. Lett. 104(19), 198101 (2010).
[Crossref]

Engerer, P.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref]

Eriksson, J. E.

S. Koho, E. Fazeli, J. E. Eriksson, and P. E. Hänninen, “Image quality ranking method for microscopy,” Sci. Rep. 6(1), 28962 (2016).
[Crossref]

Ewers, H.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48(44), 443001 (2015).
[Crossref]

Farsiu, S.

T. B. DuBose, F. LaRocca, S. Farsiu, and J. A. Izatt, “Super-resolution retinal imaging using optically reassigned scanning laser ophthalmoscopy,” Nat. Photonics 13(4), 257–262 (2019).
[Crossref]

Fazeli, E.

S. Koho, E. Fazeli, J. E. Eriksson, and P. E. Hänninen, “Image quality ranking method for microscopy,” Sci. Rep. 6(1), 28962 (2016).
[Crossref]

Feldkhun, D.

Ferrand, A.

L. Schermelleh, A. Ferrand, T. Huser, C. Eggeling, M. Sauer, O. Biehlmaier, and G. P. C. Drummen, “Super-resolution microscopy demystified,” Nat. Cell Biol. 21(1), 72–84 (2019).
[Crossref]

Ferrini, R.

I. Michel Antolovic, A. C. Ulku, E. Kizilkan, S. Lindner, F. Zanella, R. Ferrini, M. Schnieper, E. Charbon, and C. Bruschini, “Optical-stack optimization for improved SPAD photon detection efficiency,” in Quantum Sensing and Nano Electronics and Photonics XVI, vol. 10926 (International Society for Optics and Photonics, 2019), p. 109262T.

Fetter, R. D.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U. S. A. 106(9), 3125–3130 (2009).
[Crossref]

Fischer, R.

W. Zheng, Y. Wu, P. Winter, R. Fischer, D. D. Nogare, A. Hong, C. McCormick, R. Christensen, W. P. Dempsey, D. B. Arnold, J. Zimmerberg, A. Chitnis, J. Sellers, C. Waterman, and H. Shroff, “Adaptive optics improves multiphoton super-resolution imaging,” Nat. Methods 14(9), 869–872 (2017).
[Crossref]

Fischer, R. S.

A. G. York, P. Chandris, D. D. Nogare, J. Head, P. Wawrzusin, R. S. Fischer, A. Chitnis, and H. Shroff, “Instant super-resolution imaging in live cells and embryos via analog image processing,” Nat. Methods 10(11), 1122–1126 (2013).
[Crossref]

A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9(7), 749–754 (2012).
[Crossref]

Galbraith, C. G.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U. S. A. 106(9), 3125–3130 (2009).
[Crossref]

Galbraith, J. A.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U. S. A. 106(9), 3125–3130 (2009).
[Crossref]

Gillette, J. M.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U. S. A. 106(9), 3125–3130 (2009).
[Crossref]

Göhler, A.

Gregor, I.

I. Gregor and J. Enderlein, “Image scanning microscopy,” Curr. Opin. Chem. Biol. 51, 74–83 (2019).
[Crossref]

I. Gregor, M. Spiecker, R. Petrovsky, J. Großhans, R. Ros, and J. Enderlein, “Rapid nonlinear image scanning microscopy,” Nat. Methods 14(11), 1087–1089 (2017).
[Crossref]

Großhans, J.

I. Gregor, M. Spiecker, R. Petrovsky, J. Großhans, R. Ros, and J. Enderlein, “Rapid nonlinear image scanning microscopy,” Nat. Methods 14(11), 1087–1089 (2017).
[Crossref]

O. Schulz, C. Pieper, M. Clever, J. Pfaff, A. Ruhlandt, R. H. Kehlenbach, F. S. Wouters, J. Großhans, G. Bunt, and J. Enderlein, “Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy,” Proc. Natl. Acad. Sci. U. S. A. 110(52), 21000–21005 (2013).
[Crossref]

Gustafsson, M. G.

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref]

Gwosch, K. C.

F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355(6325), 606–612 (2017).
[Crossref]

Gynnå, A. H.

F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355(6325), 606–612 (2017).
[Crossref]

Handel, M. A.

F. Huang, G. Sirinakis, E. S. Allgeyer, L. K. Schroeder, W. C. Duim, E. B. Kromann, T. Phan, F. E. Rivera-Molina, J. R. Myers, I. Irnov, M. Lessard, Y. Zhang, M. A. Handel, C. Jacobs-Wagner, C. P. Lusk, J. E. Rothman, D. Toomre, M. J. Booth, and J. Bewersdorf, “Ultra-High resolution 3D imaging of whole cells,” Cell 166(4), 1028–1040 (2016).
[Crossref]

Hänninen, P. E.

S. Koho, E. Fazeli, J. E. Eriksson, and P. E. Hänninen, “Image quality ranking method for microscopy,” Sci. Rep. 6(1), 28962 (2016).
[Crossref]

S. Koho, T. Deguchi, and P. E. Hänninen, “A software tool for tomographic axial superresolution in STED microscopy,” J. Microsc. 260, 208–218 (2015).
[Crossref]

Hartell, N. A.

J. E. McGregor, C. A. Mitchell, and N. A. Hartell, “Post-processing strategies in image scanning microscopy,” Methods 88, 28–36 (2015).
[Crossref]

Head, J.

A. G. York, P. Chandris, D. D. Nogare, J. Head, P. Wawrzusin, R. S. Fischer, A. Chitnis, and H. Shroff, “Instant super-resolution imaging in live cells and embryos via analog image processing,” Nat. Methods 10(11), 1122–1126 (2013).
[Crossref]

Heintzmann, R.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48(44), 443001 (2015).
[Crossref]

S. Roth, C. Sheppard, J. R. K. Wicker, and R. Heintzmann, “Optical photon reassignment microscopy (OPRA),” Opt. Nanoscopy 2(1), 5 (2013).
[Crossref]

C. J. R. Sheppard, S. B. Mehta, and R. Heintzmann, “Superresolution by image scanning microscopy using pixel reassignment,” Opt. Lett. 38(15), 2889–2892 (2013).
[Crossref]

Hell, S. W.

F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355(6325), 606–612 (2017).
[Crossref]

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48(44), 443001 (2015).
[Crossref]

Helmchen, F.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref]

Henriques, R.

S. Culley, D. Albrecht, C. Jacobs, P. M. Pereira, C. Leterrier, J. Mercer, and R. Henriques, “Quantitative mapping and minimization of super-resolution optical imaging artifacts,” Nat. Methods 15(4), 263–266 (2018).
[Crossref]

Hess, H.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48(44), 443001 (2015).
[Crossref]

Hess, H. F.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U. S. A. 106(9), 3125–3130 (2009).
[Crossref]

Hoebe, R. A.

Hong, A.

W. Zheng, Y. Wu, P. Winter, R. Fischer, D. D. Nogare, A. Hong, C. McCormick, R. Christensen, W. P. Dempsey, D. B. Arnold, J. Zimmerberg, A. Chitnis, J. Sellers, C. Waterman, and H. Shroff, “Adaptive optics improves multiphoton super-resolution imaging,” Nat. Methods 14(9), 869–872 (2017).
[Crossref]

Honigmann, A.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48(44), 443001 (2015).
[Crossref]

Hoogendoorn, E.

M. Ingaramo, A. G. York, E. Hoogendoorn, M. Postma, H. Shroff, and G. H. Patterson, “Richardson-Lucy deconvolution as a general tool for combining images with complementary strengths,” ChemPhysChem 15(4), 794–800 (2014).
[Crossref]

Huang, F.

F. Huang, G. Sirinakis, E. S. Allgeyer, L. K. Schroeder, W. C. Duim, E. B. Kromann, T. Phan, F. E. Rivera-Molina, J. R. Myers, I. Irnov, M. Lessard, Y. Zhang, M. A. Handel, C. Jacobs-Wagner, C. P. Lusk, J. E. Rothman, D. Toomre, M. J. Booth, and J. Bewersdorf, “Ultra-High resolution 3D imaging of whole cells,” Cell 166(4), 1028–1040 (2016).
[Crossref]

Huff, J.

J. Huff, “The airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio and super-resolution,” Nat. Methods 12(12), i–ii (2015).
[Crossref]

Huser, T.

L. Schermelleh, A. Ferrand, T. Huser, C. Eggeling, M. Sauer, O. Biehlmaier, and G. P. C. Drummen, “Super-resolution microscopy demystified,” Nat. Cell Biol. 21(1), 72–84 (2019).
[Crossref]

Ingaramo, M.

M. Ingaramo, A. G. York, E. Hoogendoorn, M. Postma, H. Shroff, and G. H. Patterson, “Richardson-Lucy deconvolution as a general tool for combining images with complementary strengths,” ChemPhysChem 15(4), 794–800 (2014).
[Crossref]

Irnov, I.

F. Huang, G. Sirinakis, E. S. Allgeyer, L. K. Schroeder, W. C. Duim, E. B. Kromann, T. Phan, F. E. Rivera-Molina, J. R. Myers, I. Irnov, M. Lessard, Y. Zhang, M. A. Handel, C. Jacobs-Wagner, C. P. Lusk, J. E. Rothman, D. Toomre, M. J. Booth, and J. Bewersdorf, “Ultra-High resolution 3D imaging of whole cells,” Cell 166(4), 1028–1040 (2016).
[Crossref]

Israel, Y.

R. Tenne, U. Rossman, B. Rephael, Y. Israel, A. Krupinski-Ptaszek, R. Lapkiewicz, Y. Silberberg, and D. Oron, “Super-resolution enhancement by quantum image scanning microscopy,” Nat. Photonics 13(2), 116–122 (2019).
[Crossref]

Izatt, J. A.

T. B. DuBose, F. LaRocca, S. Farsiu, and J. A. Izatt, “Super-resolution retinal imaging using optically reassigned scanning laser ophthalmoscopy,” Nat. Photonics 13(4), 257–262 (2019).
[Crossref]

Jacobs, C.

S. Culley, D. Albrecht, C. Jacobs, P. M. Pereira, C. Leterrier, J. Mercer, and R. Henriques, “Quantitative mapping and minimization of super-resolution optical imaging artifacts,” Nat. Methods 15(4), 263–266 (2018).
[Crossref]

Jacobs-Wagner, C.

F. Huang, G. Sirinakis, E. S. Allgeyer, L. K. Schroeder, W. C. Duim, E. B. Kromann, T. Phan, F. E. Rivera-Molina, J. R. Myers, I. Irnov, M. Lessard, Y. Zhang, M. A. Handel, C. Jacobs-Wagner, C. P. Lusk, J. E. Rothman, D. Toomre, M. J. Booth, and J. Bewersdorf, “Ultra-High resolution 3D imaging of whole cells,” Cell 166(4), 1028–1040 (2016).
[Crossref]

Jakobs, S.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48(44), 443001 (2015).
[Crossref]

Jesacher, A.

K. Wicker, J. R.

S. Roth, C. Sheppard, J. R. K. Wicker, and R. Heintzmann, “Optical photon reassignment microscopy (OPRA),” Opt. Nanoscopy 2(1), 5 (2013).
[Crossref]

Kaminski, C. F.

Kanchanawong, P.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U. S. A. 106(9), 3125–3130 (2009).
[Crossref]

Kawakami, R.

H. Zhang, K. Yarinome, R. Kawakami, K. Otomo, T. Nemoto, and Y. Okamura, “Nanosheet wrapping-assisted coverslip-free imaging for looking deeper into a tissue at high resolution,” PLoS One 15(1), e0227650 (2020).
[Crossref]

K. Sawada, R. Kawakami, R. Shigemoto, and T. Nemoto, “Super-resolution structural analysis of dendritic spines using three-dimensional structured illumination microscopy in cleared mouse brain slices,” Eur. J. Neurosci. 47, 1033–1042 (2018).
[Crossref]

Kehlenbach, R. H.

O. Schulz, C. Pieper, M. Clever, J. Pfaff, A. Ruhlandt, R. H. Kehlenbach, F. S. Wouters, J. Großhans, G. Bunt, and J. Enderlein, “Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy,” Proc. Natl. Acad. Sci. U. S. A. 110(52), 21000–21005 (2013).
[Crossref]

Kei, T.

Kizilkan, E.

I. Michel Antolovic, A. C. Ulku, E. Kizilkan, S. Lindner, F. Zanella, R. Ferrini, M. Schnieper, E. Charbon, and C. Bruschini, “Optical-stack optimization for improved SPAD photon detection efficiency,” in Quantum Sensing and Nano Electronics and Photonics XVI, vol. 10926 (International Society for Optics and Photonics, 2019), p. 109262T.

Klenerman, D.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48(44), 443001 (2015).
[Crossref]

Koho, S.

M. Castello, G. Tortarolo, M. Buttafava, T. Deguchi, F. Villa, S. Koho, L. Pesce, M. Oneto, S. Pelicci, L. Lanzanó, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM,” Nat. Methods 16(2), 175–178 (2019).
[Crossref]

S. Koho, G. Tortarolo, M. Castello, T. Deguchi, A. Diaspro, and G. Vicidomini, “Fourier ring correlation simplifies image restoration in fluorescence microscopy,” Nat. Commun. 10(1), 3103 (2019).
[Crossref]

G. Tortarolo, M. Castello, A. Diaspro, S. Koho, and G. Vicidomini, “Evaluating image resolution in stimulated emission depletion microscopy,” Optica 5(1), 32–35 (2018).
[Crossref]

S. Koho, E. Fazeli, J. E. Eriksson, and P. E. Hänninen, “Image quality ranking method for microscopy,” Sci. Rep. 6(1), 28962 (2016).
[Crossref]

S. Koho, T. Deguchi, and P. E. Hänninen, “A software tool for tomographic axial superresolution in STED microscopy,” J. Microsc. 260, 208–218 (2015).
[Crossref]

Koho, S. V.

Kromann, E. B.

F. Huang, G. Sirinakis, E. S. Allgeyer, L. K. Schroeder, W. C. Duim, E. B. Kromann, T. Phan, F. E. Rivera-Molina, J. R. Myers, I. Irnov, M. Lessard, Y. Zhang, M. A. Handel, C. Jacobs-Wagner, C. P. Lusk, J. E. Rothman, D. Toomre, M. J. Booth, and J. Bewersdorf, “Ultra-High resolution 3D imaging of whole cells,” Cell 166(4), 1028–1040 (2016).
[Crossref]

Krupinski-Ptaszek, A.

R. Tenne, U. Rossman, B. Rephael, Y. Israel, A. Krupinski-Ptaszek, R. Lapkiewicz, Y. Silberberg, and D. Oron, “Super-resolution enhancement by quantum image scanning microscopy,” Nat. Photonics 13(2), 116–122 (2019).
[Crossref]

Kuang, C.

Kwon, H.-S.

Lanzanó, L.

M. Castello, G. Tortarolo, M. Buttafava, T. Deguchi, F. Villa, S. Koho, L. Pesce, M. Oneto, S. Pelicci, L. Lanzanó, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM,” Nat. Methods 16(2), 175–178 (2019).
[Crossref]

Lapkiewicz, R.

R. Tenne, U. Rossman, B. Rephael, Y. Israel, A. Krupinski-Ptaszek, R. Lapkiewicz, Y. Silberberg, and D. Oron, “Super-resolution enhancement by quantum image scanning microscopy,” Nat. Photonics 13(2), 116–122 (2019).
[Crossref]

LaRocca, F.

T. B. DuBose, F. LaRocca, S. Farsiu, and J. A. Izatt, “Super-resolution retinal imaging using optically reassigned scanning laser ophthalmoscopy,” Nat. Photonics 13(4), 257–262 (2019).
[Crossref]

Lee, J.

Lessard, M.

F. Huang, G. Sirinakis, E. S. Allgeyer, L. K. Schroeder, W. C. Duim, E. B. Kromann, T. Phan, F. E. Rivera-Molina, J. R. Myers, I. Irnov, M. Lessard, Y. Zhang, M. A. Handel, C. Jacobs-Wagner, C. P. Lusk, J. E. Rothman, D. Toomre, M. J. Booth, and J. Bewersdorf, “Ultra-High resolution 3D imaging of whole cells,” Cell 166(4), 1028–1040 (2016).
[Crossref]

Leterrier, C.

S. Culley, D. Albrecht, C. Jacobs, P. M. Pereira, C. Leterrier, J. Mercer, and R. Henriques, “Quantitative mapping and minimization of super-resolution optical imaging artifacts,” Nat. Methods 15(4), 263–266 (2018).
[Crossref]

Lindner, S.

I. Michel Antolovic, A. C. Ulku, E. Kizilkan, S. Lindner, F. Zanella, R. Ferrini, M. Schnieper, E. Charbon, and C. Bruschini, “Optical-stack optimization for improved SPAD photon detection efficiency,” in Quantum Sensing and Nano Electronics and Photonics XVI, vol. 10926 (International Society for Optics and Photonics, 2019), p. 109262T.

Lippincott-Schwartz, J.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U. S. A. 106(9), 3125–3130 (2009).
[Crossref]

Liu, S.

Liu, X.

Lorensen, W. E.

T. S. Yoo, M. J. Ackerman, W. E. Lorensen, W. Schroeder, V. Chalana, S. Aylward, D. Metaxas, and R. Whitaker, “Engineering and algorithm design for an image processing api: a technical report on ITK–the insight toolkit,” Stud. Health Technol. Inform. 85, 586–592 (2002).

Lounis, B.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48(44), 443001 (2015).
[Crossref]

Lusk, C. P.

F. Huang, G. Sirinakis, E. S. Allgeyer, L. K. Schroeder, W. C. Duim, E. B. Kromann, T. Phan, F. E. Rivera-Molina, J. R. Myers, I. Irnov, M. Lessard, Y. Zhang, M. A. Handel, C. Jacobs-Wagner, C. P. Lusk, J. E. Rothman, D. Toomre, M. J. Booth, and J. Bewersdorf, “Ultra-High resolution 3D imaging of whole cells,” Cell 166(4), 1028–1040 (2016).
[Crossref]

Manders, E. M. M.

Manley, S.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U. S. A. 106(9), 3125–3130 (2009).
[Crossref]

McCormick, C.

W. Zheng, Y. Wu, P. Winter, R. Fischer, D. D. Nogare, A. Hong, C. McCormick, R. Christensen, W. P. Dempsey, D. B. Arnold, J. Zimmerberg, A. Chitnis, J. Sellers, C. Waterman, and H. Shroff, “Adaptive optics improves multiphoton super-resolution imaging,” Nat. Methods 14(9), 869–872 (2017).
[Crossref]

McGregor, J. E.

J. E. McGregor, C. A. Mitchell, and N. A. Hartell, “Post-processing strategies in image scanning microscopy,” Methods 88, 28–36 (2015).
[Crossref]

Mehta, S. B.

Mercer, J.

S. Culley, D. Albrecht, C. Jacobs, P. M. Pereira, C. Leterrier, J. Mercer, and R. Henriques, “Quantitative mapping and minimization of super-resolution optical imaging artifacts,” Nat. Methods 15(4), 263–266 (2018).
[Crossref]

Metaxas, D.

T. S. Yoo, M. J. Ackerman, W. E. Lorensen, W. Schroeder, V. Chalana, S. Aylward, D. Metaxas, and R. Whitaker, “Engineering and algorithm design for an image processing api: a technical report on ITK–the insight toolkit,” Stud. Health Technol. Inform. 85, 586–592 (2002).

Michel Antolovic, I.

I. Michel Antolovic, A. C. Ulku, E. Kizilkan, S. Lindner, F. Zanella, R. Ferrini, M. Schnieper, E. Charbon, and C. Bruschini, “Optical-stack optimization for improved SPAD photon detection efficiency,” in Quantum Sensing and Nano Electronics and Photonics XVI, vol. 10926 (International Society for Optics and Photonics, 2019), p. 109262T.

Milkie, D. E.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref]

Mione, M.

A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9(7), 749–754 (2012).
[Crossref]

Misgeld, T.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref]

Mitchell, C. A.

J. E. McGregor, C. A. Mitchell, and N. A. Hartell, “Post-processing strategies in image scanning microscopy,” Methods 88, 28–36 (2015).
[Crossref]

Modi, M. N.

Müller, C. B.

C. B. Müller and J. Enderlein, “Image scanning microscopy,” Phys. Rev. Lett. 104(19), 198101 (2010).
[Crossref]

Mumm, J.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref]

Myers, J. R.

F. Huang, G. Sirinakis, E. S. Allgeyer, L. K. Schroeder, W. C. Duim, E. B. Kromann, T. Phan, F. E. Rivera-Molina, J. R. Myers, I. Irnov, M. Lessard, Y. Zhang, M. A. Handel, C. Jacobs-Wagner, C. P. Lusk, J. E. Rothman, D. Toomre, M. J. Booth, and J. Bewersdorf, “Ultra-High resolution 3D imaging of whole cells,” Cell 166(4), 1028–1040 (2016).
[Crossref]

Nemoto, T.

H. Zhang, K. Yarinome, R. Kawakami, K. Otomo, T. Nemoto, and Y. Okamura, “Nanosheet wrapping-assisted coverslip-free imaging for looking deeper into a tissue at high resolution,” PLoS One 15(1), e0227650 (2020).
[Crossref]

K. Sawada, R. Kawakami, R. Shigemoto, and T. Nemoto, “Super-resolution structural analysis of dendritic spines using three-dimensional structured illumination microscopy in cleared mouse brain slices,” Eur. J. Neurosci. 47, 1033–1042 (2018).
[Crossref]

Nogare, D. D.

W. Zheng, Y. Wu, P. Winter, R. Fischer, D. D. Nogare, A. Hong, C. McCormick, R. Christensen, W. P. Dempsey, D. B. Arnold, J. Zimmerberg, A. Chitnis, J. Sellers, C. Waterman, and H. Shroff, “Adaptive optics improves multiphoton super-resolution imaging,” Nat. Methods 14(9), 869–872 (2017).
[Crossref]

A. G. York, P. Chandris, D. D. Nogare, J. Head, P. Wawrzusin, R. S. Fischer, A. Chitnis, and H. Shroff, “Instant super-resolution imaging in live cells and embryos via analog image processing,” Nat. Methods 10(11), 1122–1126 (2013).
[Crossref]

Okamura, Y.

H. Zhang, K. Yarinome, R. Kawakami, K. Otomo, T. Nemoto, and Y. Okamura, “Nanosheet wrapping-assisted coverslip-free imaging for looking deeper into a tissue at high resolution,” PLoS One 15(1), e0227650 (2020).
[Crossref]

Oneto, M.

M. Castello, G. Tortarolo, M. Buttafava, T. Deguchi, F. Villa, S. Koho, L. Pesce, M. Oneto, S. Pelicci, L. Lanzanó, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM,” Nat. Methods 16(2), 175–178 (2019).
[Crossref]

Oron, D.

R. Tenne, U. Rossman, B. Rephael, Y. Israel, A. Krupinski-Ptaszek, R. Lapkiewicz, Y. Silberberg, and D. Oron, “Super-resolution enhancement by quantum image scanning microscopy,” Nat. Photonics 13(2), 116–122 (2019).
[Crossref]

Otomo, K.

H. Zhang, K. Yarinome, R. Kawakami, K. Otomo, T. Nemoto, and Y. Okamura, “Nanosheet wrapping-assisted coverslip-free imaging for looking deeper into a tissue at high resolution,” PLoS One 15(1), e0227650 (2020).
[Crossref]

Pal, R.

E. N. Ward and R. Pal, “Image scanning microscopy: an overview,” J. Microsc. 266, 221–228 (2017).
[Crossref]

Parekh, S. H.

A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9(7), 749–754 (2012).
[Crossref]

Parton, R. M.

Patterson, G. H.

M. Ingaramo, A. G. York, E. Hoogendoorn, M. Postma, H. Shroff, and G. H. Patterson, “Richardson-Lucy deconvolution as a general tool for combining images with complementary strengths,” ChemPhysChem 15(4), 794–800 (2014).
[Crossref]

Pelicci, S.

M. Castello, G. Tortarolo, M. Buttafava, T. Deguchi, F. Villa, S. Koho, L. Pesce, M. Oneto, S. Pelicci, L. Lanzanó, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM,” Nat. Methods 16(2), 175–178 (2019).
[Crossref]

Pereira, P. M.

S. Culley, D. Albrecht, C. Jacobs, P. M. Pereira, C. Leterrier, J. Mercer, and R. Henriques, “Quantitative mapping and minimization of super-resolution optical imaging artifacts,” Nat. Methods 15(4), 263–266 (2018).
[Crossref]

Peruch, A.

M. Sanzaro, A. Ruggeri, A. Peruch, and A. Tosi, “High count rate InGaAs/InP SPAD system with balanced SPAD-dummy approach running up to 1.4 GHz,” in Quantum Technologies 2018, vol. 10674 (International Society for Optics and Photonics, 2018), p. 1067417.

Pesce, L.

M. Castello, G. Tortarolo, M. Buttafava, T. Deguchi, F. Villa, S. Koho, L. Pesce, M. Oneto, S. Pelicci, L. Lanzanó, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM,” Nat. Methods 16(2), 175–178 (2019).
[Crossref]

Petrovsky, R.

I. Gregor, M. Spiecker, R. Petrovsky, J. Großhans, R. Ros, and J. Enderlein, “Rapid nonlinear image scanning microscopy,” Nat. Methods 14(11), 1087–1089 (2017).
[Crossref]

Pfaff, J.

O. Schulz, C. Pieper, M. Clever, J. Pfaff, A. Ruhlandt, R. H. Kehlenbach, F. S. Wouters, J. Großhans, G. Bunt, and J. Enderlein, “Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy,” Proc. Natl. Acad. Sci. U. S. A. 110(52), 21000–21005 (2013).
[Crossref]

Phan, T.

F. Huang, G. Sirinakis, E. S. Allgeyer, L. K. Schroeder, W. C. Duim, E. B. Kromann, T. Phan, F. E. Rivera-Molina, J. R. Myers, I. Irnov, M. Lessard, Y. Zhang, M. A. Handel, C. Jacobs-Wagner, C. P. Lusk, J. E. Rothman, D. Toomre, M. J. Booth, and J. Bewersdorf, “Ultra-High resolution 3D imaging of whole cells,” Cell 166(4), 1028–1040 (2016).
[Crossref]

Phillips, M. A.

Piazza, S.

M. Buttafava, F. Villa, M. Castello, G. Tortarolo, E. Conca, M. Sanzaro, S. Piazza, P. Bianchini, A. Diaspro, F. Zappa, G. Vicidomini, and A. Tosi, “SPAD-based asynchronous-readout array detectors for image-scanning microscopy,” arXiv (2020).

Pieper, C.

O. Schulz, C. Pieper, M. Clever, J. Pfaff, A. Ruhlandt, R. H. Kehlenbach, F. S. Wouters, J. Großhans, G. Bunt, and J. Enderlein, “Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy,” Proc. Natl. Acad. Sci. U. S. A. 110(52), 21000–21005 (2013).
[Crossref]

Piestun, R.

Pike, E. R.

M. Bertero, C. De Mol, E. R. Pike, and J. G. Walker, “Resolution in diffraction-limited imaging, a singular value analysis,” Opt. Acta 31(8), 923–946 (1984).
[Crossref]

Plastino, J.

J. Dreier, M. Castello, G. Coceano, R. Cáceres, J. Plastino, G. Vicidomini, and I. Testa, “Smart scanning for low-illumination and fast RESOLFT nanoscopy in vivo,” Nat. Commun. 10(1), 556 (2019).
[Crossref]

Podgorski, K.

Postma, M.

M. Ingaramo, A. G. York, E. Hoogendoorn, M. Postma, H. Shroff, and G. H. Patterson, “Richardson-Lucy deconvolution as a general tool for combining images with complementary strengths,” ChemPhysChem 15(4), 794–800 (2014).
[Crossref]

Rephael, B.

R. Tenne, U. Rossman, B. Rephael, Y. Israel, A. Krupinski-Ptaszek, R. Lapkiewicz, Y. Silberberg, and D. Oron, “Super-resolution enhancement by quantum image scanning microscopy,” Nat. Photonics 13(2), 116–122 (2019).
[Crossref]

Ritsch-Marte, M.

Rivera-Molina, F. E.

F. Huang, G. Sirinakis, E. S. Allgeyer, L. K. Schroeder, W. C. Duim, E. B. Kromann, T. Phan, F. E. Rivera-Molina, J. R. Myers, I. Irnov, M. Lessard, Y. Zhang, M. A. Handel, C. Jacobs-Wagner, C. P. Lusk, J. E. Rothman, D. Toomre, M. J. Booth, and J. Bewersdorf, “Ultra-High resolution 3D imaging of whole cells,” Cell 166(4), 1028–1040 (2016).
[Crossref]

Roider, C.

Ros, R.

I. Gregor, M. Spiecker, R. Petrovsky, J. Großhans, R. Ros, and J. Enderlein, “Rapid nonlinear image scanning microscopy,” Nat. Methods 14(11), 1087–1089 (2017).
[Crossref]

Rossman, U.

R. Tenne, U. Rossman, B. Rephael, Y. Israel, A. Krupinski-Ptaszek, R. Lapkiewicz, Y. Silberberg, and D. Oron, “Super-resolution enhancement by quantum image scanning microscopy,” Nat. Photonics 13(2), 116–122 (2019).
[Crossref]

Roth, S.

S. Roth, C. Sheppard, J. R. K. Wicker, and R. Heintzmann, “Optical photon reassignment microscopy (OPRA),” Opt. Nanoscopy 2(1), 5 (2013).
[Crossref]

Rothman, J. E.

F. Huang, G. Sirinakis, E. S. Allgeyer, L. K. Schroeder, W. C. Duim, E. B. Kromann, T. Phan, F. E. Rivera-Molina, J. R. Myers, I. Irnov, M. Lessard, Y. Zhang, M. A. Handel, C. Jacobs-Wagner, C. P. Lusk, J. E. Rothman, D. Toomre, M. J. Booth, and J. Bewersdorf, “Ultra-High resolution 3D imaging of whole cells,” Cell 166(4), 1028–1040 (2016).
[Crossref]

Ruggeri, A.

M. Sanzaro, A. Ruggeri, A. Peruch, and A. Tosi, “High count rate InGaAs/InP SPAD system with balanced SPAD-dummy approach running up to 1.4 GHz,” in Quantum Technologies 2018, vol. 10674 (International Society for Optics and Photonics, 2018), p. 1067417.

Ruhlandt, A.

O. Schulz, C. Pieper, M. Clever, J. Pfaff, A. Ruhlandt, R. H. Kehlenbach, F. S. Wouters, J. Großhans, G. Bunt, and J. Enderlein, “Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy,” Proc. Natl. Acad. Sci. U. S. A. 110(52), 21000–21005 (2013).
[Crossref]

Sahl, S. J.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48(44), 443001 (2015).
[Crossref]

Sanzaro, M.

M. Sanzaro, A. Ruggeri, A. Peruch, and A. Tosi, “High count rate InGaAs/InP SPAD system with balanced SPAD-dummy approach running up to 1.4 GHz,” in Quantum Technologies 2018, vol. 10674 (International Society for Optics and Photonics, 2018), p. 1067417.

M. Buttafava, F. Villa, M. Castello, G. Tortarolo, E. Conca, M. Sanzaro, S. Piazza, P. Bianchini, A. Diaspro, F. Zappa, G. Vicidomini, and A. Tosi, “SPAD-based asynchronous-readout array detectors for image-scanning microscopy,” arXiv (2020).

Sauer, M.

L. Schermelleh, A. Ferrand, T. Huser, C. Eggeling, M. Sauer, O. Biehlmaier, and G. P. C. Drummen, “Super-resolution microscopy demystified,” Nat. Cell Biol. 21(1), 72–84 (2019).
[Crossref]

Sawada, K.

K. Sawada, R. Kawakami, R. Shigemoto, and T. Nemoto, “Super-resolution structural analysis of dendritic spines using three-dimensional structured illumination microscopy in cleared mouse brain slices,” Eur. J. Neurosci. 47, 1033–1042 (2018).
[Crossref]

Saxena, A.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref]

Schermelleh, L.

L. Schermelleh, A. Ferrand, T. Huser, C. Eggeling, M. Sauer, O. Biehlmaier, and G. P. C. Drummen, “Super-resolution microscopy demystified,” Nat. Cell Biol. 21(1), 72–84 (2019).
[Crossref]

Schnieper, M.

I. Michel Antolovic, A. C. Ulku, E. Kizilkan, S. Lindner, F. Zanella, R. Ferrini, M. Schnieper, E. Charbon, and C. Bruschini, “Optical-stack optimization for improved SPAD photon detection efficiency,” in Quantum Sensing and Nano Electronics and Photonics XVI, vol. 10926 (International Society for Optics and Photonics, 2019), p. 109262T.

Schroeder, L. K.

F. Huang, G. Sirinakis, E. S. Allgeyer, L. K. Schroeder, W. C. Duim, E. B. Kromann, T. Phan, F. E. Rivera-Molina, J. R. Myers, I. Irnov, M. Lessard, Y. Zhang, M. A. Handel, C. Jacobs-Wagner, C. P. Lusk, J. E. Rothman, D. Toomre, M. J. Booth, and J. Bewersdorf, “Ultra-High resolution 3D imaging of whole cells,” Cell 166(4), 1028–1040 (2016).
[Crossref]

Schroeder, W.

T. S. Yoo, M. J. Ackerman, W. E. Lorensen, W. Schroeder, V. Chalana, S. Aylward, D. Metaxas, and R. Whitaker, “Engineering and algorithm design for an image processing api: a technical report on ITK–the insight toolkit,” Stud. Health Technol. Inform. 85, 586–592 (2002).

Schulz, O.

O. Schulz, C. Pieper, M. Clever, J. Pfaff, A. Ruhlandt, R. H. Kehlenbach, F. S. Wouters, J. Großhans, G. Bunt, and J. Enderlein, “Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy,” Proc. Natl. Acad. Sci. U. S. A. 110(52), 21000–21005 (2013).
[Crossref]

Sellers, J.

W. Zheng, Y. Wu, P. Winter, R. Fischer, D. D. Nogare, A. Hong, C. McCormick, R. Christensen, W. P. Dempsey, D. B. Arnold, J. Zimmerberg, A. Chitnis, J. Sellers, C. Waterman, and H. Shroff, “Adaptive optics improves multiphoton super-resolution imaging,” Nat. Methods 14(9), 869–872 (2017).
[Crossref]

Sheppard, C.

S. Roth, C. Sheppard, J. R. K. Wicker, and R. Heintzmann, “Optical photon reassignment microscopy (OPRA),” Opt. Nanoscopy 2(1), 5 (2013).
[Crossref]

Sheppard, C. J. R.

Shigemoto, R.

K. Sawada, R. Kawakami, R. Shigemoto, and T. Nemoto, “Super-resolution structural analysis of dendritic spines using three-dimensional structured illumination microscopy in cleared mouse brain slices,” Eur. J. Neurosci. 47, 1033–1042 (2018).
[Crossref]

Shroff, H.

Y. Wu and H. Shroff, “Faster, sharper, and deeper: structured illumination microscopy for biological imaging,” Nat. Methods 15(12), 1011–1019 (2018).
[Crossref]

W. Zheng, Y. Wu, P. Winter, R. Fischer, D. D. Nogare, A. Hong, C. McCormick, R. Christensen, W. P. Dempsey, D. B. Arnold, J. Zimmerberg, A. Chitnis, J. Sellers, C. Waterman, and H. Shroff, “Adaptive optics improves multiphoton super-resolution imaging,” Nat. Methods 14(9), 869–872 (2017).
[Crossref]

M. Ingaramo, A. G. York, E. Hoogendoorn, M. Postma, H. Shroff, and G. H. Patterson, “Richardson-Lucy deconvolution as a general tool for combining images with complementary strengths,” ChemPhysChem 15(4), 794–800 (2014).
[Crossref]

A. G. York, P. Chandris, D. D. Nogare, J. Head, P. Wawrzusin, R. S. Fischer, A. Chitnis, and H. Shroff, “Instant super-resolution imaging in live cells and embryos via analog image processing,” Nat. Methods 10(11), 1122–1126 (2013).
[Crossref]

A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9(7), 749–754 (2012).
[Crossref]

Shtengel, G.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48(44), 443001 (2015).
[Crossref]

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U. S. A. 106(9), 3125–3130 (2009).
[Crossref]

Silberberg, Y.

R. Tenne, U. Rossman, B. Rephael, Y. Israel, A. Krupinski-Ptaszek, R. Lapkiewicz, Y. Silberberg, and D. Oron, “Super-resolution enhancement by quantum image scanning microscopy,” Nat. Photonics 13(2), 116–122 (2019).
[Crossref]

Sirinakis, G.

F. Huang, G. Sirinakis, E. S. Allgeyer, L. K. Schroeder, W. C. Duim, E. B. Kromann, T. Phan, F. E. Rivera-Molina, J. R. Myers, I. Irnov, M. Lessard, Y. Zhang, M. A. Handel, C. Jacobs-Wagner, C. P. Lusk, J. E. Rothman, D. Toomre, M. J. Booth, and J. Bewersdorf, “Ultra-High resolution 3D imaging of whole cells,” Cell 166(4), 1028–1040 (2016).
[Crossref]

Song, W.

Sougrat, R.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U. S. A. 106(9), 3125–3130 (2009).
[Crossref]

Spiecker, M.

I. Gregor, M. Spiecker, R. Petrovsky, J. Großhans, R. Ros, and J. Enderlein, “Rapid nonlinear image scanning microscopy,” Nat. Methods 14(11), 1087–1089 (2017).
[Crossref]

Stallinga, S.

Stefani, F. D.

F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355(6325), 606–612 (2017).
[Crossref]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref]

Ströhl, F.

Sun, S.

Temprine, K.

A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9(7), 749–754 (2012).
[Crossref]

Tenne, R.

R. Tenne, U. Rossman, B. Rephael, Y. Israel, A. Krupinski-Ptaszek, R. Lapkiewicz, Y. Silberberg, and D. Oron, “Super-resolution enhancement by quantum image scanning microscopy,” Nat. Photonics 13(2), 116–122 (2019).
[Crossref]

Testa, I.

J. Dreier, M. Castello, G. Coceano, R. Cáceres, J. Plastino, G. Vicidomini, and I. Testa, “Smart scanning for low-illumination and fast RESOLFT nanoscopy in vivo,” Nat. Commun. 10(1), 556 (2019).
[Crossref]

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48(44), 443001 (2015).
[Crossref]

Theer, P.

Timmermans, W.

Tinnefeld, P.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48(44), 443001 (2015).
[Crossref]

Toomre, D.

F. Huang, G. Sirinakis, E. S. Allgeyer, L. K. Schroeder, W. C. Duim, E. B. Kromann, T. Phan, F. E. Rivera-Molina, J. R. Myers, I. Irnov, M. Lessard, Y. Zhang, M. A. Handel, C. Jacobs-Wagner, C. P. Lusk, J. E. Rothman, D. Toomre, M. J. Booth, and J. Bewersdorf, “Ultra-High resolution 3D imaging of whole cells,” Cell 166(4), 1028–1040 (2016).
[Crossref]

Tortarolo, G.

C. J. R. Sheppard, M. Castello, G. Tortarolo, T. Deguchi, S. V. Koho, G. Vicidomini, and A. Diaspro, “Pixel reassignment in image scanning microscopy: a re-evaluation,” J. Opt. Soc. Am. A 37(1), 154–162 (2020).
[Crossref]

M. Castello, G. Tortarolo, M. Buttafava, T. Deguchi, F. Villa, S. Koho, L. Pesce, M. Oneto, S. Pelicci, L. Lanzanó, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM,” Nat. Methods 16(2), 175–178 (2019).
[Crossref]

S. Koho, G. Tortarolo, M. Castello, T. Deguchi, A. Diaspro, and G. Vicidomini, “Fourier ring correlation simplifies image restoration in fluorescence microscopy,” Nat. Commun. 10(1), 3103 (2019).
[Crossref]

G. Tortarolo, M. Castello, A. Diaspro, S. Koho, and G. Vicidomini, “Evaluating image resolution in stimulated emission depletion microscopy,” Optica 5(1), 32–35 (2018).
[Crossref]

C. J. R. Sheppard, M. Castello, G. Tortarolo, G. Vicidomini, and A. Diaspro, “Image formation in image scanning microscopy, including the case of two-photon excitation,” J. Opt. Soc. Am. A 34(8), 1339–1350 (2017).
[Crossref]

M. Buttafava, F. Villa, M. Castello, G. Tortarolo, E. Conca, M. Sanzaro, S. Piazza, P. Bianchini, A. Diaspro, F. Zappa, G. Vicidomini, and A. Tosi, “SPAD-based asynchronous-readout array detectors for image-scanning microscopy,” arXiv (2020).

Tosi, A.

M. Castello, G. Tortarolo, M. Buttafava, T. Deguchi, F. Villa, S. Koho, L. Pesce, M. Oneto, S. Pelicci, L. Lanzanó, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM,” Nat. Methods 16(2), 175–178 (2019).
[Crossref]

M. Buttafava, F. Villa, M. Castello, G. Tortarolo, E. Conca, M. Sanzaro, S. Piazza, P. Bianchini, A. Diaspro, F. Zappa, G. Vicidomini, and A. Tosi, “SPAD-based asynchronous-readout array detectors for image-scanning microscopy,” arXiv (2020).

M. Sanzaro, A. Ruggeri, A. Peruch, and A. Tosi, “High count rate InGaAs/InP SPAD system with balanced SPAD-dummy approach running up to 1.4 GHz,” in Quantum Technologies 2018, vol. 10674 (International Society for Optics and Photonics, 2018), p. 1067417.

Turner, G. C.

Tzang, O.

Ulku, A. C.

I. Michel Antolovic, A. C. Ulku, E. Kizilkan, S. Lindner, F. Zanella, R. Ferrini, M. Schnieper, E. Charbon, and C. Bruschini, “Optical-stack optimization for improved SPAD photon detection efficiency,” in Quantum Sensing and Nano Electronics and Photonics XVI, vol. 10926 (International Society for Optics and Photonics, 2019), p. 109262T.

Vicidomini, G.

C. J. R. Sheppard, M. Castello, G. Tortarolo, T. Deguchi, S. V. Koho, G. Vicidomini, and A. Diaspro, “Pixel reassignment in image scanning microscopy: a re-evaluation,” J. Opt. Soc. Am. A 37(1), 154–162 (2020).
[Crossref]

M. Castello, G. Tortarolo, M. Buttafava, T. Deguchi, F. Villa, S. Koho, L. Pesce, M. Oneto, S. Pelicci, L. Lanzanó, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM,” Nat. Methods 16(2), 175–178 (2019).
[Crossref]

J. Dreier, M. Castello, G. Coceano, R. Cáceres, J. Plastino, G. Vicidomini, and I. Testa, “Smart scanning for low-illumination and fast RESOLFT nanoscopy in vivo,” Nat. Commun. 10(1), 556 (2019).
[Crossref]

S. Koho, G. Tortarolo, M. Castello, T. Deguchi, A. Diaspro, and G. Vicidomini, “Fourier ring correlation simplifies image restoration in fluorescence microscopy,” Nat. Commun. 10(1), 3103 (2019).
[Crossref]

G. Tortarolo, M. Castello, A. Diaspro, S. Koho, and G. Vicidomini, “Evaluating image resolution in stimulated emission depletion microscopy,” Optica 5(1), 32–35 (2018).
[Crossref]

C. J. R. Sheppard, M. Castello, G. Tortarolo, G. Vicidomini, and A. Diaspro, “Image formation in image scanning microscopy, including the case of two-photon excitation,” J. Opt. Soc. Am. A 34(8), 1339–1350 (2017).
[Crossref]

M. Castello, C. J. R. Sheppard, A. Diaspro, and G. Vicidomini, “Image scanning microscopy with a quadrant detector,” Opt. Lett. 40(22), 5355–5358 (2015).
[Crossref]

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48(44), 443001 (2015).
[Crossref]

M. Castello, A. Diaspro, and G. Vicidomini, “Multi-images deconvolution improves signal-to-noise ratio on gated stimulated emission depletion microscopy,” Appl. Phys. Lett. 105(23), 234106 (2014).
[Crossref]

M. Buttafava, F. Villa, M. Castello, G. Tortarolo, E. Conca, M. Sanzaro, S. Piazza, P. Bianchini, A. Diaspro, F. Zappa, G. Vicidomini, and A. Tosi, “SPAD-based asynchronous-readout array detectors for image-scanning microscopy,” arXiv (2020).

Villa, F.

M. Castello, G. Tortarolo, M. Buttafava, T. Deguchi, F. Villa, S. Koho, L. Pesce, M. Oneto, S. Pelicci, L. Lanzanó, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM,” Nat. Methods 16(2), 175–178 (2019).
[Crossref]

M. Buttafava, F. Villa, M. Castello, G. Tortarolo, E. Conca, M. Sanzaro, S. Piazza, P. Bianchini, A. Diaspro, F. Zappa, G. Vicidomini, and A. Tosi, “SPAD-based asynchronous-readout array detectors for image-scanning microscopy,” arXiv (2020).

Walker, J. G.

M. Bertero, C. De Mol, E. R. Pike, and J. G. Walker, “Resolution in diffraction-limited imaging, a singular value analysis,” Opt. Acta 31(8), 923–946 (1984).
[Crossref]

Wang, K.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref]

Wang, W.

Ward, E. N.

E. N. Ward and R. Pal, “Image scanning microscopy: an overview,” J. Microsc. 266, 221–228 (2017).
[Crossref]

Waterman, C.

W. Zheng, Y. Wu, P. Winter, R. Fischer, D. D. Nogare, A. Hong, C. McCormick, R. Christensen, W. P. Dempsey, D. B. Arnold, J. Zimmerberg, A. Chitnis, J. Sellers, C. Waterman, and H. Shroff, “Adaptive optics improves multiphoton super-resolution imaging,” Nat. Methods 14(9), 869–872 (2017).
[Crossref]

Waterman, C. M.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U. S. A. 106(9), 3125–3130 (2009).
[Crossref]

Wawrzusin, P.

A. G. York, P. Chandris, D. D. Nogare, J. Head, P. Wawrzusin, R. S. Fischer, A. Chitnis, and H. Shroff, “Instant super-resolution imaging in live cells and embryos via analog image processing,” Nat. Methods 10(11), 1122–1126 (2013).
[Crossref]

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref]

Westphal, V.

F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355(6325), 606–612 (2017).
[Crossref]

Whitaker, R.

T. S. Yoo, M. J. Ackerman, W. E. Lorensen, W. Schroeder, V. Chalana, S. Aylward, D. Metaxas, and R. Whitaker, “Engineering and algorithm design for an image processing api: a technical report on ITK–the insight toolkit,” Stud. Health Technol. Inform. 85, 586–592 (2002).

Wicker, K.

K. Wicker, “Super-Resolution fluorescence microscopy using structured illumination,” in Super-Resolution Microscopy Techniques in the Neurosciences, E. F. Fornasiero and S. O. Rizzoli, eds. (Humana Press, 2014), pp. 133–165.

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref]

Willig, K. I.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48(44), 443001 (2015).
[Crossref]

Wilson, T.

T. Wilson, “Resolution and optical sectioning in the confocal microscope,” J. Microsc. 244, 113–121 (2011).
[Crossref]

Winter, P.

W. Zheng, Y. Wu, P. Winter, R. Fischer, D. D. Nogare, A. Hong, C. McCormick, R. Christensen, W. P. Dempsey, D. B. Arnold, J. Zimmerberg, A. Chitnis, J. Sellers, C. Waterman, and H. Shroff, “Adaptive optics improves multiphoton super-resolution imaging,” Nat. Methods 14(9), 869–872 (2017).
[Crossref]

Wouters, F. S.

O. Schulz, C. Pieper, M. Clever, J. Pfaff, A. Ruhlandt, R. H. Kehlenbach, F. S. Wouters, J. Großhans, G. Bunt, and J. Enderlein, “Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy,” Proc. Natl. Acad. Sci. U. S. A. 110(52), 21000–21005 (2013).
[Crossref]

Wu, Y.

Y. Wu and H. Shroff, “Faster, sharper, and deeper: structured illumination microscopy for biological imaging,” Nat. Methods 15(12), 1011–1019 (2018).
[Crossref]

W. Zheng, Y. Wu, P. Winter, R. Fischer, D. D. Nogare, A. Hong, C. McCormick, R. Christensen, W. P. Dempsey, D. B. Arnold, J. Zimmerberg, A. Chitnis, J. Sellers, C. Waterman, and H. Shroff, “Adaptive optics improves multiphoton super-resolution imaging,” Nat. Methods 14(9), 869–872 (2017).
[Crossref]

Yarinome, K.

H. Zhang, K. Yarinome, R. Kawakami, K. Otomo, T. Nemoto, and Y. Okamura, “Nanosheet wrapping-assisted coverslip-free imaging for looking deeper into a tissue at high resolution,” PLoS One 15(1), e0227650 (2020).
[Crossref]

Yoo, T. S.

T. S. Yoo, M. J. Ackerman, W. E. Lorensen, W. Schroeder, V. Chalana, S. Aylward, D. Metaxas, and R. Whitaker, “Engineering and algorithm design for an image processing api: a technical report on ITK–the insight toolkit,” Stud. Health Technol. Inform. 85, 586–592 (2002).

York, A. G.

M. Ingaramo, A. G. York, E. Hoogendoorn, M. Postma, H. Shroff, and G. H. Patterson, “Richardson-Lucy deconvolution as a general tool for combining images with complementary strengths,” ChemPhysChem 15(4), 794–800 (2014).
[Crossref]

A. G. York, P. Chandris, D. D. Nogare, J. Head, P. Wawrzusin, R. S. Fischer, A. Chitnis, and H. Shroff, “Instant super-resolution imaging in live cells and embryos via analog image processing,” Nat. Methods 10(11), 1122–1126 (2013).
[Crossref]

A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9(7), 749–754 (2012).
[Crossref]

Zanella, F.

I. Michel Antolovic, A. C. Ulku, E. Kizilkan, S. Lindner, F. Zanella, R. Ferrini, M. Schnieper, E. Charbon, and C. Bruschini, “Optical-stack optimization for improved SPAD photon detection efficiency,” in Quantum Sensing and Nano Electronics and Photonics XVI, vol. 10926 (International Society for Optics and Photonics, 2019), p. 109262T.

Zappa, F.

M. Buttafava, F. Villa, M. Castello, G. Tortarolo, E. Conca, M. Sanzaro, S. Piazza, P. Bianchini, A. Diaspro, F. Zappa, G. Vicidomini, and A. Tosi, “SPAD-based asynchronous-readout array detectors for image-scanning microscopy,” arXiv (2020).

Zeelenberg, C. H. C.

Zhang, H.

H. Zhang, K. Yarinome, R. Kawakami, K. Otomo, T. Nemoto, and Y. Okamura, “Nanosheet wrapping-assisted coverslip-free imaging for looking deeper into a tissue at high resolution,” PLoS One 15(1), e0227650 (2020).
[Crossref]

Zhang, Y.

F. Huang, G. Sirinakis, E. S. Allgeyer, L. K. Schroeder, W. C. Duim, E. B. Kromann, T. Phan, F. E. Rivera-Molina, J. R. Myers, I. Irnov, M. Lessard, Y. Zhang, M. A. Handel, C. Jacobs-Wagner, C. P. Lusk, J. E. Rothman, D. Toomre, M. J. Booth, and J. Bewersdorf, “Ultra-High resolution 3D imaging of whole cells,” Cell 166(4), 1028–1040 (2016).
[Crossref]

Zhang, Z.

Zheng, W.

W. Zheng, Y. Wu, P. Winter, R. Fischer, D. D. Nogare, A. Hong, C. McCormick, R. Christensen, W. P. Dempsey, D. B. Arnold, J. Zimmerberg, A. Chitnis, J. Sellers, C. Waterman, and H. Shroff, “Adaptive optics improves multiphoton super-resolution imaging,” Nat. Methods 14(9), 869–872 (2017).
[Crossref]

Zhuang, X.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48(44), 443001 (2015).
[Crossref]

Zimmerberg, J.

W. Zheng, Y. Wu, P. Winter, R. Fischer, D. D. Nogare, A. Hong, C. McCormick, R. Christensen, W. P. Dempsey, D. B. Arnold, J. Zimmerberg, A. Chitnis, J. Sellers, C. Waterman, and H. Shroff, “Adaptive optics improves multiphoton super-resolution imaging,” Nat. Methods 14(9), 869–872 (2017).
[Crossref]

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref]

Žurauskas, M.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Castello, A. Diaspro, and G. Vicidomini, “Multi-images deconvolution improves signal-to-noise ratio on gated stimulated emission depletion microscopy,” Appl. Phys. Lett. 105(23), 234106 (2014).
[Crossref]

Biomed. Opt. Express (1)

Cell (1)

F. Huang, G. Sirinakis, E. S. Allgeyer, L. K. Schroeder, W. C. Duim, E. B. Kromann, T. Phan, F. E. Rivera-Molina, J. R. Myers, I. Irnov, M. Lessard, Y. Zhang, M. A. Handel, C. Jacobs-Wagner, C. P. Lusk, J. E. Rothman, D. Toomre, M. J. Booth, and J. Bewersdorf, “Ultra-High resolution 3D imaging of whole cells,” Cell 166(4), 1028–1040 (2016).
[Crossref]

ChemPhysChem (1)

M. Ingaramo, A. G. York, E. Hoogendoorn, M. Postma, H. Shroff, and G. H. Patterson, “Richardson-Lucy deconvolution as a general tool for combining images with complementary strengths,” ChemPhysChem 15(4), 794–800 (2014).
[Crossref]

Curr. Opin. Chem. Biol. (1)

I. Gregor and J. Enderlein, “Image scanning microscopy,” Curr. Opin. Chem. Biol. 51, 74–83 (2019).
[Crossref]

Eur. J. Neurosci. (1)

K. Sawada, R. Kawakami, R. Shigemoto, and T. Nemoto, “Super-resolution structural analysis of dendritic spines using three-dimensional structured illumination microscopy in cleared mouse brain slices,” Eur. J. Neurosci. 47, 1033–1042 (2018).
[Crossref]

J. Biophotonics (1)

P. Bianchini and A. Diaspro, “Three-dimensional (3d) backward and forward second harmonic generation (SHG) microscopy of biological tissues,” J. Biophotonics 1, 443–450 (2008).
[Crossref]

J. Microsc. (4)

T. Wilson, “Resolution and optical sectioning in the confocal microscope,” J. Microsc. 244, 113–121 (2011).
[Crossref]

E. N. Ward and R. Pal, “Image scanning microscopy: an overview,” J. Microsc. 266, 221–228 (2017).
[Crossref]

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref]

S. Koho, T. Deguchi, and P. E. Hänninen, “A software tool for tomographic axial superresolution in STED microscopy,” J. Microsc. 260, 208–218 (2015).
[Crossref]

J. Opt. Soc. Am. A (3)

J. Phys. D: Appl. Phys. (1)

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48(44), 443001 (2015).
[Crossref]

Methods (1)

J. E. McGregor, C. A. Mitchell, and N. A. Hartell, “Post-processing strategies in image scanning microscopy,” Methods 88, 28–36 (2015).
[Crossref]

Nat. Biotechnol. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref]

Nat. Cell Biol. (1)

L. Schermelleh, A. Ferrand, T. Huser, C. Eggeling, M. Sauer, O. Biehlmaier, and G. P. C. Drummen, “Super-resolution microscopy demystified,” Nat. Cell Biol. 21(1), 72–84 (2019).
[Crossref]

Nat. Commun. (2)

J. Dreier, M. Castello, G. Coceano, R. Cáceres, J. Plastino, G. Vicidomini, and I. Testa, “Smart scanning for low-illumination and fast RESOLFT nanoscopy in vivo,” Nat. Commun. 10(1), 556 (2019).
[Crossref]

S. Koho, G. Tortarolo, M. Castello, T. Deguchi, A. Diaspro, and G. Vicidomini, “Fourier ring correlation simplifies image restoration in fluorescence microscopy,” Nat. Commun. 10(1), 3103 (2019).
[Crossref]

Nat. Methods (10)

I. Gregor, M. Spiecker, R. Petrovsky, J. Großhans, R. Ros, and J. Enderlein, “Rapid nonlinear image scanning microscopy,” Nat. Methods 14(11), 1087–1089 (2017).
[Crossref]

W. Zheng, Y. Wu, P. Winter, R. Fischer, D. D. Nogare, A. Hong, C. McCormick, R. Christensen, W. P. Dempsey, D. B. Arnold, J. Zimmerberg, A. Chitnis, J. Sellers, C. Waterman, and H. Shroff, “Adaptive optics improves multiphoton super-resolution imaging,” Nat. Methods 14(9), 869–872 (2017).
[Crossref]

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref]

A. G. York, P. Chandris, D. D. Nogare, J. Head, P. Wawrzusin, R. S. Fischer, A. Chitnis, and H. Shroff, “Instant super-resolution imaging in live cells and embryos via analog image processing,” Nat. Methods 10(11), 1122–1126 (2013).
[Crossref]

Y. Wu and H. Shroff, “Faster, sharper, and deeper: structured illumination microscopy for biological imaging,” Nat. Methods 15(12), 1011–1019 (2018).
[Crossref]

J. Huff, “The airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio and super-resolution,” Nat. Methods 12(12), i–ii (2015).
[Crossref]

M. Castello, G. Tortarolo, M. Buttafava, T. Deguchi, F. Villa, S. Koho, L. Pesce, M. Oneto, S. Pelicci, L. Lanzanó, P. Bianchini, C. J. R. Sheppard, A. Diaspro, A. Tosi, and G. Vicidomini, “A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM,” Nat. Methods 16(2), 175–178 (2019).
[Crossref]

A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9(7), 749–754 (2012).
[Crossref]

S. Culley, D. Albrecht, C. Jacobs, P. M. Pereira, C. Leterrier, J. Mercer, and R. Henriques, “Quantitative mapping and minimization of super-resolution optical imaging artifacts,” Nat. Methods 15(4), 263–266 (2018).
[Crossref]

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref]

Nat. Photonics (2)

T. B. DuBose, F. LaRocca, S. Farsiu, and J. A. Izatt, “Super-resolution retinal imaging using optically reassigned scanning laser ophthalmoscopy,” Nat. Photonics 13(4), 257–262 (2019).
[Crossref]

R. Tenne, U. Rossman, B. Rephael, Y. Israel, A. Krupinski-Ptaszek, R. Lapkiewicz, Y. Silberberg, and D. Oron, “Super-resolution enhancement by quantum image scanning microscopy,” Nat. Photonics 13(2), 116–122 (2019).
[Crossref]

Opt. Acta (2)

M. Bertero, C. De Mol, E. R. Pike, and J. G. Walker, “Resolution in diffraction-limited imaging, a singular value analysis,” Opt. Acta 31(8), 923–946 (1984).
[Crossref]

C. J. R. Sheppard and A. Choudhury, “Image formation in the scanning microscope,” Opt. Acta 24(10), 1051–1073 (1977).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Opt. Nanoscopy (1)

S. Roth, C. Sheppard, J. R. K. Wicker, and R. Heintzmann, “Optical photon reassignment microscopy (OPRA),” Opt. Nanoscopy 2(1), 5 (2013).
[Crossref]

Optica (3)

Optik (1)

C. J. R. Sheppard, “Super-resolution in confocal imaging,” Optik 80(2), 53–54 (1988).

Phys. Rev. Lett. (1)

C. B. Müller and J. Enderlein, “Image scanning microscopy,” Phys. Rev. Lett. 104(19), 198101 (2010).
[Crossref]

PLoS One (1)

H. Zhang, K. Yarinome, R. Kawakami, K. Otomo, T. Nemoto, and Y. Okamura, “Nanosheet wrapping-assisted coverslip-free imaging for looking deeper into a tissue at high resolution,” PLoS One 15(1), e0227650 (2020).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (2)

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U. S. A. 106(9), 3125–3130 (2009).
[Crossref]

O. Schulz, C. Pieper, M. Clever, J. Pfaff, A. Ruhlandt, R. H. Kehlenbach, F. S. Wouters, J. Großhans, G. Bunt, and J. Enderlein, “Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy,” Proc. Natl. Acad. Sci. U. S. A. 110(52), 21000–21005 (2013).
[Crossref]

Q. Rev. Biophys. (1)

A. Diaspro, G. Chirico, and M. Collini, “Two-photon fluorescence excitation and related techniques in biological microscopy,” Q. Rev. Biophys. 38(2), 97–166 (2005).
[Crossref]

Sci. Rep. (1)

S. Koho, E. Fazeli, J. E. Eriksson, and P. E. Hänninen, “Image quality ranking method for microscopy,” Sci. Rep. 6(1), 28962 (2016).
[Crossref]

Science (2)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref]

F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355(6325), 606–612 (2017).
[Crossref]

Stud. Health Technol. Inform. (1)

T. S. Yoo, M. J. Ackerman, W. E. Lorensen, W. Schroeder, V. Chalana, S. Aylward, D. Metaxas, and R. Whitaker, “Engineering and algorithm design for an image processing api: a technical report on ITK–the insight toolkit,” Stud. Health Technol. Inform. 85, 586–592 (2002).

Other (7)

S. V. Koho, “MIPLIB: Mircoscope image processing library,” https://doi.org/10.5281/zenodo.3786388 (2020).

K. Wicker, “Super-Resolution fluorescence microscopy using structured illumination,” in Super-Resolution Microscopy Techniques in the Neurosciences, E. F. Fornasiero and S. O. Rizzoli, eds. (Humana Press, 2014), pp. 133–165.

Zeiss, “Application note: Airyscan detection in multiphoton microscopy: super- resolution and improved signal-to-noise ratio beyond the confocal depth limit,” https://www.nature.com/articles/d42473-018-00102-3 (2018). Accessed: 2020-3-24.

A. Diaspro, Confocal and Two-Photon Microscopy: Foundations, Applications and Advances, Confocal and Two-Photon Microscopy: Foundations (Wiley, 2001).

M. Buttafava, F. Villa, M. Castello, G. Tortarolo, E. Conca, M. Sanzaro, S. Piazza, P. Bianchini, A. Diaspro, F. Zappa, G. Vicidomini, and A. Tosi, “SPAD-based asynchronous-readout array detectors for image-scanning microscopy,” arXiv (2020).

M. Sanzaro, A. Ruggeri, A. Peruch, and A. Tosi, “High count rate InGaAs/InP SPAD system with balanced SPAD-dummy approach running up to 1.4 GHz,” in Quantum Technologies 2018, vol. 10674 (International Society for Optics and Photonics, 2018), p. 1067417.

I. Michel Antolovic, A. C. Ulku, E. Kizilkan, S. Lindner, F. Zanella, R. Ferrini, M. Schnieper, E. Charbon, and C. Bruschini, “Optical-stack optimization for improved SPAD photon detection efficiency,” in Quantum Sensing and Nano Electronics and Photonics XVI, vol. 10926 (International Society for Optics and Photonics, 2019), p. 109262T.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic of the 2PE-ISM setup. Our 2PE-ISM setup is basically a regular confocal/2PE system, with the addition of a SPAD array detector. (a) Only three additional lenses (L3-L5) and a dichroic mirror (DM*2) are needed to convert a confocal/2PE system into a ISM super-resolution microscope. The dichroic mirrors DM*1 and DM*2 can be reconfigured to enable ISM imaging with the visible excitation lines. (b) The DM*3 can be added to enable imaging with the non-descanned photomultiplier detector (NDD). This made it possible to directly compare the results obtained with the SPAD and NDD on the same system.
Fig. 2.
Fig. 2. ISM image reconstruction methods at a glance. (a) At every scan, 25 images, somewhat shifted with respect to each other, are obtained. By summing the 25 images, the regular 2PE image (in our case, with $\sim$1.5 AU pinhole) is obtained. (b) For pixel reassignment ISM image reconstruction, one first needs to determine the image shifts. Shifts s for the static reassignment (PR-ISM) are obtained by scaling the 5 $\times$ 5 meshgrid gr representing the SPAD array with the pixel pitch $p_{p}$ = 75 $\mu m$, the magnification of the microscope $M$ = 500, and the pixel-reassignment factor $\alpha$: $\textbf {s}=\textbf {gr}*p_{p}*\alpha /M$. Shifts for the adaptive pixel reassignment (APR-ISM) are obtained with an iterative image registration method, in which all the 25 images are aligned with the image from the central detector element (12). The ISM reconstruction is obtained by shifting and summing the 25 scanned images. (c) After pixel reassignment, blind deconvolution, either Wiener (APR-ISM$^{\mathrm {bW}}$) or RL ((APR-ISM$^{\mathrm {bRL}}$) is applied to the reassignment result; the FWHM falue for the PSF is obtained from the ISM reassignment result image with FRC. The background value for APR-ISM$^{\mathrm {bRL}}$ is estimated as the mean intensity value of sparse (few details) image regions.
Fig. 3.
Fig. 3. Point-Spread-Function simulation for 2PE-ISM. (a) Schematic representation of the simulation to calculate the PSFs of ISM based on the pixel-reassignment method. The effective detector size depends on the magnification of the microscope system and is usually expressed in Airy units (1 AU = 0.61$\times \lambda _{em}/NA$, where $\lambda _{em}$ is the wavelength of the fluorescence light and NA is the objective numerical aperture). In this simulation we used: NA = 1.4, $\lambda _{em}$ = 525 nm. Each element of the detector array acts as a shifted pinhole, thus 25 PSFs have been calculated using a rigorous model for the focused emission/excitation light intensity distribution ($\lambda _{exc-2PE}$ = 950 nm, $\lambda _{exc-1PE}$ = 488 nm, oil objective lens). The shift-vectors for the simulation are calculated by assuming that an optimal shift should co-align all PSFs at their maximum intensity. Finally, all the registered PSFs are summed to produce the PSF of ISM (PR image). (b, top) Optical resolution (i.e, FWHM of the PSF) comparison between confocal (i.e.,the PSFs are summed without any shift) and ISM as a function of the detector size, for both the 1PE and 2PE case. (b, middle). Gain in SNR (i.e., the ratio between the peak intensities of the ISM and the confocal PSFs) as a function of the detector size, for both the 1PE and 2PE case. (b, bottom) Fraction of fluorescence recorded – with respect to the total emission – as a function of the detector size; as expected, there is no difference between 1PE and 2PE, neither confocal nor ISM. (c) Side-by-side comparison of the PSFs for the different imaging configurations. Here, 1 AU is assumed as detector size. Both intensity normalized and un-normalized versions are reported. (d) Radial intensity profiles for the PSF shown in c). Scale bars: 1 $\mu m$
Fig. 4.
Fig. 4. 2PE-ISM imaging with simple test samples Side-by-side comparison of open pinhole 2PE, closed pinhole 2PE (2PE ph.), APR-ISM, and APR-ISM$^{\mathrm {bW}}$) images of 100 nm sized fluorescent nanoparticles (a) and HeLa cells (b). Insets show the magnified views of the regions inside the white dashed boxes. Peak intensities for the fluorescent nanoparticles highlighted in the white circle are reported. (c) The FRC measures show a nearly three-fold resolution improvement in APR-ISM$^{\mathrm {bW}}$ with respect to 2PE. (d) Line profile measurements across an aggregate of two beads, shown in (a) support the FRC cut-off values. (e) The shift-vectors are very similar for experiments, and form a somewhat tilted grid. The shifts are a bit smaller for the cell image, suggesting a larger PSF size, which is consistent with the FRC resolution measurements. All images and insets are normalized to the respective maximum intensity values. Scale bars: 2 $\mu m$ (a); 4 $\mu m$ (b)
Fig. 5.
Fig. 5. 2PE-ISM imaging of a mouse brain. In a) images are shown at different penetration depths (45 $\mu m$ – 140m $\mu m$). In b) a magnified section is shown of the results at 45 $\mu m$ depth. In c) a line profile plot across the structure highlighted in b) is shown. In d) FRC measures for the different types of images are shown as a function of imaging depth. The PR-ISM ($\alpha$=0.5) results were generated with purely theoretical shift-vectors. The APR-ISM$^{\mathrm {bRL}}$ results are shown with slight gamma correction ($\gamma = 0.8$), for easier viewing of the shadow details, and to further highlight the quality of the background removal. Scale bars: 2 $\mu m$
Fig. 6.
Fig. 6. Deep brain imaging with 2PE-ISM. Examples are shown of 2PE-ISM imaging deep inside a mouse brain slice. The APR-ISM$^{\mathrm {bRL}}$ results are shown with slight gamma correction ($\gamma = 0.8$), for easier viewing of the shadow details. Scale bar 4 $\mu m$.
Fig. 7.
Fig. 7. Comparing 2PE-ISM and with a non-descanned detector. Images recorded with the SPAD array and a regular non-descanned photomultiplier (NDD) are compared. The images were taken at a depth of 500$~\mu m$ in the same mouse brain slice that was used in Fig. 6. All the array detector images (2PE, APR-ISM and APR-ISM$^{\mathrm {bRL}}$) have dramatically superior contrast and details, with respect to the NDD. Scale bar 4 $\mu m$.
Fig. 8.
Fig. 8. Calibrating static ISM. The process to calibrate the PR-ISM shift-vectors with the APR-ISM results from the HeLa cell (Fig. 4). After correcting for the observed rotation and changing into optimized reassignment factor ($\alpha =2/3$), PR-ISM and APR-ISM produce identical results, which confirms our previous theoretical calculations [14].

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

h i ( x , y ) = h e x c ( x , y ) n × ( p i ( x , y ) h e m ( x , y ) )
O ( u , v , w ) = I ( u , v , w ) H ( u , v , w )
O ( u , v , w ) = [ 1 H ( u , v , w ) | H ( u , v , w ) | 2 | H ( u , v , w ) | 2 + β ] I ( u , v , w )
o k + 1 = { i h o k + b h } o k

Metrics