Abstract

Imaging specimens over large scales and with a sub-micron resolution is instrumental to biomedical research. Yet, the number of pixels to form such an image usually exceeds the number of pixels provided by conventional cameras. Although most microscopes are equipped with a motorized stage to displace the specimen and acquire the image tile-by-tile, we propose an alternative strategy that does not require to move any part in the sample plane. We propose to add a scanning mechanism in the detection unit of the microscope to collect sequentially different sub-areas of the field of view. Our approach, called remote scanning, is compatible with all camera-based microscopes. We evaluate the performances in both wide-field microscopy and full-field optical coherence tomography and we show that a field of view of 2.2 × 2.2 mm2 with a 1.1 μm resolution can be acquired. We finally demonstrate that the method is especially suited to image motion-sensitive samples and large biological samples such as millimetric engineered tissues.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dual-mode line-field confocal optical coherence tomography for ultrahigh-resolution vertical and horizontal section imaging of human skin in vivo

Jonas Ogien, Olivier Levecq, Hicham Azimani, and Arnaud Dubois
Biomed. Opt. Express 11(3) 1327-1335 (2020)

Ultrahigh speed spectral-domain optical coherence microscopy

Hsiang-Chieh Lee, Jonathan J. Liu, Yuri Sheikine, Aaron D. Aguirre, James L. Connolly, and James G. Fujimoto
Biomed. Opt. Express 4(8) 1236-1254 (2013)

Scalable wide-field optical coherence tomography-based angiography for in vivo imaging applications

Jingjiang Xu, Wei Wei, Shaozhen Song, Xiaoli Qi, and Ruikang K. Wang
Biomed. Opt. Express 7(5) 1905-1919 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. W. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevsky, and C. Ferreira, “Space-bandwidth product of optical signals and systems,” J. Opt. Soc. Am. A 13(3), 470–473 (1996).
    [Crossref]
  2. W. Lukosz, “Optical systems with resolving powers exceeding the classical limit,” J. Opt. Soc. Am. 56(11), 1463–1471 (1966).
    [Crossref]
  3. G. McConnell, “Video-rate gigapixel imaging of the brain,” Nat. Photonics 13(11), 732–734 (2019).
    [Crossref]
  4. K. Alessandri, B. R. Sarangi, V. V. Gurchenkov, B. Sinha, T. R. Kießling, L. Fetler, F. Rico, S. Scheuring, C. Lamaze, A. Simon, S. Geraldo, D. Vignjević, H. Doméjan, L. Rolland, L. Funfak, J. Bibette, N. Bremond, and P. Nassoy, “Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro,” Proc. Natl. Acad. Sci. 110(37), 14843–14848 (2013).
    [Crossref]
  5. K. Alessandri, M. Feyeux, B. Gurchenkov, C. Delgado, A. Trushko, K.-H. Krause, D. Vignjević, P. Nassoy, and A. Roux, “A 3d printed microfluidic device for production of functionalized hydrogel microcapsules for culture and differentiation of human neuronal stem cells (HNSC),” Lab Chip 16(9), 1593–1604 (2016).
    [Crossref]
  6. P. Van Liedekerke, J. Neitsch, T. Johann, K. Alessandri, P. Nassoy, and D. Drasdo, “Quantitative agent-based modeling reveals mechanical stress response of growing tumor spheroids is predictable over various growth conditions and cell lines,” PLoS Comput. Biol. 15(3), e1006273 (2019).
    [Crossref]
  7. B. Potsaid, Y. Bellouard, and J. T. Wen, “Scanning optical mosaic scope for micro-manipulation,” in Int. Workshop on Micro-Factories (IWMF02), (Citeseer, 2002), pp. 85–88.
  8. B. Potsaid, Y. Bellouard, and J. T. Wen, “Adaptive scanning optical microscope (asom): a multidisciplinary optical microscope design for large field of view and high resolution imaging,” Opt. Express 13(17), 6504–6518 (2005).
    [Crossref]
  9. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23(4), 244–246 (1998).
    [Crossref]
  10. A. Dubois, L. Vabre, A.-C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a linnik microscope,” Appl. Opt. 41(4), 805–812 (2002).
    [Crossref]
  11. E. J. Botcherby, R. Juskaitis, M. J. Booth, and T. Wilson, “Aberration-free optical refocusing in high numerical aperture microscopy,” Opt. Lett. 32(14), 2007 (2007).
    [Crossref]
  12. J. Scholler, K. Groux, O. Goureau, J.-A. Sahel, M. Fink, S. Reichman, C. Boccara, and K. Grieve, “Dynamic full-field optical coherence tomography: 3d live-imaging of retinal organoids,” arXiv preprint arXiv:1912.04052 (2019).
  13. L. Andrique, G. Recher, K. Alessandri, N. Pujol, M. Feyeux, P. Bon, L. Cognet, P. Nassoy, and A. Bikfalvi, “A model of guided cell self-organization for rapid and spontaneous formation of functional vessels,” Sci. Adv. 5(6), eaau6562 (2019).
    [Crossref]
  14. A. Badon, A. C. Boccara, G. Lerosey, M. Fink, and A. Aubry, “Multiple scattering limit in optical microscopy,” Opt. Express 25(23), 28914–28934 (2017).
    [Crossref]
  15. J. R. Bumstead, J. J. Park, I. A. Rosen, A. W. Kraft, P. W. Wright, M. D. Reisman, D. C. Côté, and J. P. Culver, “Designing a large field-of-view two-photon microscope using optical invariant analysis,” Neurophotonics 5(2), 025001 (2018).
    [Crossref]
  16. A. Singh, J. D. McMullen, E. A. Doris, and W. R. Zipfel, “Comparison of objective lenses for multiphoton microscopy in turbid samples,” Biomed. Opt. Express 6(8), 3113–3127 (2015).
    [Crossref]
  17. J. Fan, J. Suo, J. Wu, H. Xie, Y. Shen, F. Chen, G. Wang, L. Cao, G. Jin, Q. He, T. Li, G. Luan, L. Kong, Z. Zheng, and Q. Dai, “Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution,” Nat. Photonics 13(11), 809–816 (2019).
    [Crossref]
  18. L. Tian, Z. Liu, L.-H. Yeh, M. Chen, J. Zhong, and L. Waller, “Computational illumination for high-speed in vitro fourier ptychographic microscopy,” Optica 2(10), 904–911 (2015).
    [Crossref]
  19. G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
    [Crossref]
  20. R. Salome, Y. Kremer, S. Dieudonne, J.-F. Léger, O. Krichevsky, C. Wyart, D. Chatenay, and L. Bourdieu, “Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors,” J. Neurosci. Methods 154(1-2), 161–174 (2006).
    [Crossref]
  21. N. T. Shaked, Z. Zalevsky, and L. L. Satterwhite, Biomedical Optical Phase Microscopy and Nanoscopy (Academic Press, 2012).
  22. A. I. Mohammed, H. J. Gritton, H.-a. Tseng, M. E. Bucklin, Z. Yao, and X. Han, “An integrative approach for analyzing hundreds of neurons in task performing mice using wide-field calcium imaging,” Sci. Rep. 6(1), 20986 (2016).
    [Crossref]
  23. A. Federici, H. S. G. da Costa, J. Ogien, A. K. Ellerbee, and A. Dubois, “Wide-field, full-field optical coherence microscopy for high-axial-resolution phase and amplitude imaging,” Appl. Opt. 54(27), 8212–8220 (2015).
    [Crossref]
  24. O. Thouvenin, “Optical 3d imaging of subcellular dynamics in biological cultures and tissues: applications to ophthalmology and neuroscience,” Ph.D. thesis, Université Sorbonne Paris Cité (2017).
  25. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
    [Crossref]
  26. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett. 33(2), 156–158 (2008).
    [Crossref]

2019 (4)

G. McConnell, “Video-rate gigapixel imaging of the brain,” Nat. Photonics 13(11), 732–734 (2019).
[Crossref]

P. Van Liedekerke, J. Neitsch, T. Johann, K. Alessandri, P. Nassoy, and D. Drasdo, “Quantitative agent-based modeling reveals mechanical stress response of growing tumor spheroids is predictable over various growth conditions and cell lines,” PLoS Comput. Biol. 15(3), e1006273 (2019).
[Crossref]

L. Andrique, G. Recher, K. Alessandri, N. Pujol, M. Feyeux, P. Bon, L. Cognet, P. Nassoy, and A. Bikfalvi, “A model of guided cell self-organization for rapid and spontaneous formation of functional vessels,” Sci. Adv. 5(6), eaau6562 (2019).
[Crossref]

J. Fan, J. Suo, J. Wu, H. Xie, Y. Shen, F. Chen, G. Wang, L. Cao, G. Jin, Q. He, T. Li, G. Luan, L. Kong, Z. Zheng, and Q. Dai, “Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution,” Nat. Photonics 13(11), 809–816 (2019).
[Crossref]

2018 (1)

J. R. Bumstead, J. J. Park, I. A. Rosen, A. W. Kraft, P. W. Wright, M. D. Reisman, D. C. Côté, and J. P. Culver, “Designing a large field-of-view two-photon microscope using optical invariant analysis,” Neurophotonics 5(2), 025001 (2018).
[Crossref]

2017 (1)

2016 (2)

K. Alessandri, M. Feyeux, B. Gurchenkov, C. Delgado, A. Trushko, K.-H. Krause, D. Vignjević, P. Nassoy, and A. Roux, “A 3d printed microfluidic device for production of functionalized hydrogel microcapsules for culture and differentiation of human neuronal stem cells (HNSC),” Lab Chip 16(9), 1593–1604 (2016).
[Crossref]

A. I. Mohammed, H. J. Gritton, H.-a. Tseng, M. E. Bucklin, Z. Yao, and X. Han, “An integrative approach for analyzing hundreds of neurons in task performing mice using wide-field calcium imaging,” Sci. Rep. 6(1), 20986 (2016).
[Crossref]

2015 (3)

2013 (2)

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref]

K. Alessandri, B. R. Sarangi, V. V. Gurchenkov, B. Sinha, T. R. Kießling, L. Fetler, F. Rico, S. Scheuring, C. Lamaze, A. Simon, S. Geraldo, D. Vignjević, H. Doméjan, L. Rolland, L. Funfak, J. Bibette, N. Bremond, and P. Nassoy, “Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro,” Proc. Natl. Acad. Sci. 110(37), 14843–14848 (2013).
[Crossref]

2012 (1)

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

2008 (1)

2007 (1)

2006 (1)

R. Salome, Y. Kremer, S. Dieudonne, J.-F. Léger, O. Krichevsky, C. Wyart, D. Chatenay, and L. Bourdieu, “Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors,” J. Neurosci. Methods 154(1-2), 161–174 (2006).
[Crossref]

2005 (1)

2002 (1)

1998 (1)

1996 (1)

1966 (1)

Alessandri, K.

P. Van Liedekerke, J. Neitsch, T. Johann, K. Alessandri, P. Nassoy, and D. Drasdo, “Quantitative agent-based modeling reveals mechanical stress response of growing tumor spheroids is predictable over various growth conditions and cell lines,” PLoS Comput. Biol. 15(3), e1006273 (2019).
[Crossref]

L. Andrique, G. Recher, K. Alessandri, N. Pujol, M. Feyeux, P. Bon, L. Cognet, P. Nassoy, and A. Bikfalvi, “A model of guided cell self-organization for rapid and spontaneous formation of functional vessels,” Sci. Adv. 5(6), eaau6562 (2019).
[Crossref]

K. Alessandri, M. Feyeux, B. Gurchenkov, C. Delgado, A. Trushko, K.-H. Krause, D. Vignjević, P. Nassoy, and A. Roux, “A 3d printed microfluidic device for production of functionalized hydrogel microcapsules for culture and differentiation of human neuronal stem cells (HNSC),” Lab Chip 16(9), 1593–1604 (2016).
[Crossref]

K. Alessandri, B. R. Sarangi, V. V. Gurchenkov, B. Sinha, T. R. Kießling, L. Fetler, F. Rico, S. Scheuring, C. Lamaze, A. Simon, S. Geraldo, D. Vignjević, H. Doméjan, L. Rolland, L. Funfak, J. Bibette, N. Bremond, and P. Nassoy, “Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro,” Proc. Natl. Acad. Sci. 110(37), 14843–14848 (2013).
[Crossref]

Andrique, L.

L. Andrique, G. Recher, K. Alessandri, N. Pujol, M. Feyeux, P. Bon, L. Cognet, P. Nassoy, and A. Bikfalvi, “A model of guided cell self-organization for rapid and spontaneous formation of functional vessels,” Sci. Adv. 5(6), eaau6562 (2019).
[Crossref]

Arganda-Carreras, I.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Aubry, A.

Badon, A.

Beaurepaire, E.

Bellouard, Y.

B. Potsaid, Y. Bellouard, and J. T. Wen, “Adaptive scanning optical microscope (asom): a multidisciplinary optical microscope design for large field of view and high resolution imaging,” Opt. Express 13(17), 6504–6518 (2005).
[Crossref]

B. Potsaid, Y. Bellouard, and J. T. Wen, “Scanning optical mosaic scope for micro-manipulation,” in Int. Workshop on Micro-Factories (IWMF02), (Citeseer, 2002), pp. 85–88.

Bibette, J.

K. Alessandri, B. R. Sarangi, V. V. Gurchenkov, B. Sinha, T. R. Kießling, L. Fetler, F. Rico, S. Scheuring, C. Lamaze, A. Simon, S. Geraldo, D. Vignjević, H. Doméjan, L. Rolland, L. Funfak, J. Bibette, N. Bremond, and P. Nassoy, “Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro,” Proc. Natl. Acad. Sci. 110(37), 14843–14848 (2013).
[Crossref]

Bikfalvi, A.

L. Andrique, G. Recher, K. Alessandri, N. Pujol, M. Feyeux, P. Bon, L. Cognet, P. Nassoy, and A. Bikfalvi, “A model of guided cell self-organization for rapid and spontaneous formation of functional vessels,” Sci. Adv. 5(6), eaau6562 (2019).
[Crossref]

Blanchot, L.

Boccara, A. C.

Boccara, A.-C.

Boccara, C.

J. Scholler, K. Groux, O. Goureau, J.-A. Sahel, M. Fink, S. Reichman, C. Boccara, and K. Grieve, “Dynamic full-field optical coherence tomography: 3d live-imaging of retinal organoids,” arXiv preprint arXiv:1912.04052 (2019).

Bon, P.

L. Andrique, G. Recher, K. Alessandri, N. Pujol, M. Feyeux, P. Bon, L. Cognet, P. Nassoy, and A. Bikfalvi, “A model of guided cell self-organization for rapid and spontaneous formation of functional vessels,” Sci. Adv. 5(6), eaau6562 (2019).
[Crossref]

Booth, M. J.

Botcherby, E. J.

Bourdieu, L.

R. Salome, Y. Kremer, S. Dieudonne, J.-F. Léger, O. Krichevsky, C. Wyart, D. Chatenay, and L. Bourdieu, “Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors,” J. Neurosci. Methods 154(1-2), 161–174 (2006).
[Crossref]

Bremond, N.

K. Alessandri, B. R. Sarangi, V. V. Gurchenkov, B. Sinha, T. R. Kießling, L. Fetler, F. Rico, S. Scheuring, C. Lamaze, A. Simon, S. Geraldo, D. Vignjević, H. Doméjan, L. Rolland, L. Funfak, J. Bibette, N. Bremond, and P. Nassoy, “Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro,” Proc. Natl. Acad. Sci. 110(37), 14843–14848 (2013).
[Crossref]

Bucklin, M. E.

A. I. Mohammed, H. J. Gritton, H.-a. Tseng, M. E. Bucklin, Z. Yao, and X. Han, “An integrative approach for analyzing hundreds of neurons in task performing mice using wide-field calcium imaging,” Sci. Rep. 6(1), 20986 (2016).
[Crossref]

Bumstead, J. R.

J. R. Bumstead, J. J. Park, I. A. Rosen, A. W. Kraft, P. W. Wright, M. D. Reisman, D. C. Côté, and J. P. Culver, “Designing a large field-of-view two-photon microscope using optical invariant analysis,” Neurophotonics 5(2), 025001 (2018).
[Crossref]

Cao, L.

J. Fan, J. Suo, J. Wu, H. Xie, Y. Shen, F. Chen, G. Wang, L. Cao, G. Jin, Q. He, T. Li, G. Luan, L. Kong, Z. Zheng, and Q. Dai, “Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution,” Nat. Photonics 13(11), 809–816 (2019).
[Crossref]

Cardona, A.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Chatenay, D.

R. Salome, Y. Kremer, S. Dieudonne, J.-F. Léger, O. Krichevsky, C. Wyart, D. Chatenay, and L. Bourdieu, “Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors,” J. Neurosci. Methods 154(1-2), 161–174 (2006).
[Crossref]

Chen, F.

J. Fan, J. Suo, J. Wu, H. Xie, Y. Shen, F. Chen, G. Wang, L. Cao, G. Jin, Q. He, T. Li, G. Luan, L. Kong, Z. Zheng, and Q. Dai, “Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution,” Nat. Photonics 13(11), 809–816 (2019).
[Crossref]

Chen, M.

Cognet, L.

L. Andrique, G. Recher, K. Alessandri, N. Pujol, M. Feyeux, P. Bon, L. Cognet, P. Nassoy, and A. Bikfalvi, “A model of guided cell self-organization for rapid and spontaneous formation of functional vessels,” Sci. Adv. 5(6), eaau6562 (2019).
[Crossref]

Côté, D. C.

J. R. Bumstead, J. J. Park, I. A. Rosen, A. W. Kraft, P. W. Wright, M. D. Reisman, D. C. Côté, and J. P. Culver, “Designing a large field-of-view two-photon microscope using optical invariant analysis,” Neurophotonics 5(2), 025001 (2018).
[Crossref]

Culver, J. P.

J. R. Bumstead, J. J. Park, I. A. Rosen, A. W. Kraft, P. W. Wright, M. D. Reisman, D. C. Côté, and J. P. Culver, “Designing a large field-of-view two-photon microscope using optical invariant analysis,” Neurophotonics 5(2), 025001 (2018).
[Crossref]

da Costa, H. S. G.

Dai, Q.

J. Fan, J. Suo, J. Wu, H. Xie, Y. Shen, F. Chen, G. Wang, L. Cao, G. Jin, Q. He, T. Li, G. Luan, L. Kong, Z. Zheng, and Q. Dai, “Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution,” Nat. Photonics 13(11), 809–816 (2019).
[Crossref]

Delgado, C.

K. Alessandri, M. Feyeux, B. Gurchenkov, C. Delgado, A. Trushko, K.-H. Krause, D. Vignjević, P. Nassoy, and A. Roux, “A 3d printed microfluidic device for production of functionalized hydrogel microcapsules for culture and differentiation of human neuronal stem cells (HNSC),” Lab Chip 16(9), 1593–1604 (2016).
[Crossref]

Dieudonne, S.

R. Salome, Y. Kremer, S. Dieudonne, J.-F. Léger, O. Krichevsky, C. Wyart, D. Chatenay, and L. Bourdieu, “Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors,” J. Neurosci. Methods 154(1-2), 161–174 (2006).
[Crossref]

Doméjan, H.

K. Alessandri, B. R. Sarangi, V. V. Gurchenkov, B. Sinha, T. R. Kießling, L. Fetler, F. Rico, S. Scheuring, C. Lamaze, A. Simon, S. Geraldo, D. Vignjević, H. Doméjan, L. Rolland, L. Funfak, J. Bibette, N. Bremond, and P. Nassoy, “Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro,” Proc. Natl. Acad. Sci. 110(37), 14843–14848 (2013).
[Crossref]

Doris, E. A.

Dorsch, R. G.

Drasdo, D.

P. Van Liedekerke, J. Neitsch, T. Johann, K. Alessandri, P. Nassoy, and D. Drasdo, “Quantitative agent-based modeling reveals mechanical stress response of growing tumor spheroids is predictable over various growth conditions and cell lines,” PLoS Comput. Biol. 15(3), e1006273 (2019).
[Crossref]

Dubois, A.

Eliceiri, K.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Ellerbee, A. K.

Fan, J.

J. Fan, J. Suo, J. Wu, H. Xie, Y. Shen, F. Chen, G. Wang, L. Cao, G. Jin, Q. He, T. Li, G. Luan, L. Kong, Z. Zheng, and Q. Dai, “Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution,” Nat. Photonics 13(11), 809–816 (2019).
[Crossref]

Federici, A.

Ferreira, C.

Fetler, L.

K. Alessandri, B. R. Sarangi, V. V. Gurchenkov, B. Sinha, T. R. Kießling, L. Fetler, F. Rico, S. Scheuring, C. Lamaze, A. Simon, S. Geraldo, D. Vignjević, H. Doméjan, L. Rolland, L. Funfak, J. Bibette, N. Bremond, and P. Nassoy, “Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro,” Proc. Natl. Acad. Sci. 110(37), 14843–14848 (2013).
[Crossref]

Feyeux, M.

L. Andrique, G. Recher, K. Alessandri, N. Pujol, M. Feyeux, P. Bon, L. Cognet, P. Nassoy, and A. Bikfalvi, “A model of guided cell self-organization for rapid and spontaneous formation of functional vessels,” Sci. Adv. 5(6), eaau6562 (2019).
[Crossref]

K. Alessandri, M. Feyeux, B. Gurchenkov, C. Delgado, A. Trushko, K.-H. Krause, D. Vignjević, P. Nassoy, and A. Roux, “A 3d printed microfluidic device for production of functionalized hydrogel microcapsules for culture and differentiation of human neuronal stem cells (HNSC),” Lab Chip 16(9), 1593–1604 (2016).
[Crossref]

Fienup, J. R.

Fink, M.

A. Badon, A. C. Boccara, G. Lerosey, M. Fink, and A. Aubry, “Multiple scattering limit in optical microscopy,” Opt. Express 25(23), 28914–28934 (2017).
[Crossref]

J. Scholler, K. Groux, O. Goureau, J.-A. Sahel, M. Fink, S. Reichman, C. Boccara, and K. Grieve, “Dynamic full-field optical coherence tomography: 3d live-imaging of retinal organoids,” arXiv preprint arXiv:1912.04052 (2019).

Frise, E.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Funfak, L.

K. Alessandri, B. R. Sarangi, V. V. Gurchenkov, B. Sinha, T. R. Kießling, L. Fetler, F. Rico, S. Scheuring, C. Lamaze, A. Simon, S. Geraldo, D. Vignjević, H. Doméjan, L. Rolland, L. Funfak, J. Bibette, N. Bremond, and P. Nassoy, “Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro,” Proc. Natl. Acad. Sci. 110(37), 14843–14848 (2013).
[Crossref]

Geraldo, S.

K. Alessandri, B. R. Sarangi, V. V. Gurchenkov, B. Sinha, T. R. Kießling, L. Fetler, F. Rico, S. Scheuring, C. Lamaze, A. Simon, S. Geraldo, D. Vignjević, H. Doméjan, L. Rolland, L. Funfak, J. Bibette, N. Bremond, and P. Nassoy, “Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro,” Proc. Natl. Acad. Sci. 110(37), 14843–14848 (2013).
[Crossref]

Goureau, O.

J. Scholler, K. Groux, O. Goureau, J.-A. Sahel, M. Fink, S. Reichman, C. Boccara, and K. Grieve, “Dynamic full-field optical coherence tomography: 3d live-imaging of retinal organoids,” arXiv preprint arXiv:1912.04052 (2019).

Grieve, K.

J. Scholler, K. Groux, O. Goureau, J.-A. Sahel, M. Fink, S. Reichman, C. Boccara, and K. Grieve, “Dynamic full-field optical coherence tomography: 3d live-imaging of retinal organoids,” arXiv preprint arXiv:1912.04052 (2019).

Gritton, H. J.

A. I. Mohammed, H. J. Gritton, H.-a. Tseng, M. E. Bucklin, Z. Yao, and X. Han, “An integrative approach for analyzing hundreds of neurons in task performing mice using wide-field calcium imaging,” Sci. Rep. 6(1), 20986 (2016).
[Crossref]

Groux, K.

J. Scholler, K. Groux, O. Goureau, J.-A. Sahel, M. Fink, S. Reichman, C. Boccara, and K. Grieve, “Dynamic full-field optical coherence tomography: 3d live-imaging of retinal organoids,” arXiv preprint arXiv:1912.04052 (2019).

Guizar-Sicairos, M.

Gurchenkov, B.

K. Alessandri, M. Feyeux, B. Gurchenkov, C. Delgado, A. Trushko, K.-H. Krause, D. Vignjević, P. Nassoy, and A. Roux, “A 3d printed microfluidic device for production of functionalized hydrogel microcapsules for culture and differentiation of human neuronal stem cells (HNSC),” Lab Chip 16(9), 1593–1604 (2016).
[Crossref]

Gurchenkov, V. V.

K. Alessandri, B. R. Sarangi, V. V. Gurchenkov, B. Sinha, T. R. Kießling, L. Fetler, F. Rico, S. Scheuring, C. Lamaze, A. Simon, S. Geraldo, D. Vignjević, H. Doméjan, L. Rolland, L. Funfak, J. Bibette, N. Bremond, and P. Nassoy, “Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro,” Proc. Natl. Acad. Sci. 110(37), 14843–14848 (2013).
[Crossref]

Han, X.

A. I. Mohammed, H. J. Gritton, H.-a. Tseng, M. E. Bucklin, Z. Yao, and X. Han, “An integrative approach for analyzing hundreds of neurons in task performing mice using wide-field calcium imaging,” Sci. Rep. 6(1), 20986 (2016).
[Crossref]

Hartenstein, V.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

He, Q.

J. Fan, J. Suo, J. Wu, H. Xie, Y. Shen, F. Chen, G. Wang, L. Cao, G. Jin, Q. He, T. Li, G. Luan, L. Kong, Z. Zheng, and Q. Dai, “Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution,” Nat. Photonics 13(11), 809–816 (2019).
[Crossref]

Horstmeyer, R.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref]

Jin, G.

J. Fan, J. Suo, J. Wu, H. Xie, Y. Shen, F. Chen, G. Wang, L. Cao, G. Jin, Q. He, T. Li, G. Luan, L. Kong, Z. Zheng, and Q. Dai, “Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution,” Nat. Photonics 13(11), 809–816 (2019).
[Crossref]

Johann, T.

P. Van Liedekerke, J. Neitsch, T. Johann, K. Alessandri, P. Nassoy, and D. Drasdo, “Quantitative agent-based modeling reveals mechanical stress response of growing tumor spheroids is predictable over various growth conditions and cell lines,” PLoS Comput. Biol. 15(3), e1006273 (2019).
[Crossref]

Juskaitis, R.

Kaynig, V.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Kießling, T. R.

K. Alessandri, B. R. Sarangi, V. V. Gurchenkov, B. Sinha, T. R. Kießling, L. Fetler, F. Rico, S. Scheuring, C. Lamaze, A. Simon, S. Geraldo, D. Vignjević, H. Doméjan, L. Rolland, L. Funfak, J. Bibette, N. Bremond, and P. Nassoy, “Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro,” Proc. Natl. Acad. Sci. 110(37), 14843–14848 (2013).
[Crossref]

Kong, L.

J. Fan, J. Suo, J. Wu, H. Xie, Y. Shen, F. Chen, G. Wang, L. Cao, G. Jin, Q. He, T. Li, G. Luan, L. Kong, Z. Zheng, and Q. Dai, “Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution,” Nat. Photonics 13(11), 809–816 (2019).
[Crossref]

Kraft, A. W.

J. R. Bumstead, J. J. Park, I. A. Rosen, A. W. Kraft, P. W. Wright, M. D. Reisman, D. C. Côté, and J. P. Culver, “Designing a large field-of-view two-photon microscope using optical invariant analysis,” Neurophotonics 5(2), 025001 (2018).
[Crossref]

Krause, K.-H.

K. Alessandri, M. Feyeux, B. Gurchenkov, C. Delgado, A. Trushko, K.-H. Krause, D. Vignjević, P. Nassoy, and A. Roux, “A 3d printed microfluidic device for production of functionalized hydrogel microcapsules for culture and differentiation of human neuronal stem cells (HNSC),” Lab Chip 16(9), 1593–1604 (2016).
[Crossref]

Kremer, Y.

R. Salome, Y. Kremer, S. Dieudonne, J.-F. Léger, O. Krichevsky, C. Wyart, D. Chatenay, and L. Bourdieu, “Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors,” J. Neurosci. Methods 154(1-2), 161–174 (2006).
[Crossref]

Krichevsky, O.

R. Salome, Y. Kremer, S. Dieudonne, J.-F. Léger, O. Krichevsky, C. Wyart, D. Chatenay, and L. Bourdieu, “Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors,” J. Neurosci. Methods 154(1-2), 161–174 (2006).
[Crossref]

Lamaze, C.

K. Alessandri, B. R. Sarangi, V. V. Gurchenkov, B. Sinha, T. R. Kießling, L. Fetler, F. Rico, S. Scheuring, C. Lamaze, A. Simon, S. Geraldo, D. Vignjević, H. Doméjan, L. Rolland, L. Funfak, J. Bibette, N. Bremond, and P. Nassoy, “Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro,” Proc. Natl. Acad. Sci. 110(37), 14843–14848 (2013).
[Crossref]

Lebec, M.

Léger, J.-F.

R. Salome, Y. Kremer, S. Dieudonne, J.-F. Léger, O. Krichevsky, C. Wyart, D. Chatenay, and L. Bourdieu, “Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors,” J. Neurosci. Methods 154(1-2), 161–174 (2006).
[Crossref]

Lerosey, G.

Li, T.

J. Fan, J. Suo, J. Wu, H. Xie, Y. Shen, F. Chen, G. Wang, L. Cao, G. Jin, Q. He, T. Li, G. Luan, L. Kong, Z. Zheng, and Q. Dai, “Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution,” Nat. Photonics 13(11), 809–816 (2019).
[Crossref]

Liu, Z.

Lohmann, A. W.

Longair, M.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Luan, G.

J. Fan, J. Suo, J. Wu, H. Xie, Y. Shen, F. Chen, G. Wang, L. Cao, G. Jin, Q. He, T. Li, G. Luan, L. Kong, Z. Zheng, and Q. Dai, “Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution,” Nat. Photonics 13(11), 809–816 (2019).
[Crossref]

Lukosz, W.

McConnell, G.

G. McConnell, “Video-rate gigapixel imaging of the brain,” Nat. Photonics 13(11), 732–734 (2019).
[Crossref]

McMullen, J. D.

Mendlovic, D.

Mohammed, A. I.

A. I. Mohammed, H. J. Gritton, H.-a. Tseng, M. E. Bucklin, Z. Yao, and X. Han, “An integrative approach for analyzing hundreds of neurons in task performing mice using wide-field calcium imaging,” Sci. Rep. 6(1), 20986 (2016).
[Crossref]

Nassoy, P.

P. Van Liedekerke, J. Neitsch, T. Johann, K. Alessandri, P. Nassoy, and D. Drasdo, “Quantitative agent-based modeling reveals mechanical stress response of growing tumor spheroids is predictable over various growth conditions and cell lines,” PLoS Comput. Biol. 15(3), e1006273 (2019).
[Crossref]

L. Andrique, G. Recher, K. Alessandri, N. Pujol, M. Feyeux, P. Bon, L. Cognet, P. Nassoy, and A. Bikfalvi, “A model of guided cell self-organization for rapid and spontaneous formation of functional vessels,” Sci. Adv. 5(6), eaau6562 (2019).
[Crossref]

K. Alessandri, M. Feyeux, B. Gurchenkov, C. Delgado, A. Trushko, K.-H. Krause, D. Vignjević, P. Nassoy, and A. Roux, “A 3d printed microfluidic device for production of functionalized hydrogel microcapsules for culture and differentiation of human neuronal stem cells (HNSC),” Lab Chip 16(9), 1593–1604 (2016).
[Crossref]

K. Alessandri, B. R. Sarangi, V. V. Gurchenkov, B. Sinha, T. R. Kießling, L. Fetler, F. Rico, S. Scheuring, C. Lamaze, A. Simon, S. Geraldo, D. Vignjević, H. Doméjan, L. Rolland, L. Funfak, J. Bibette, N. Bremond, and P. Nassoy, “Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro,” Proc. Natl. Acad. Sci. 110(37), 14843–14848 (2013).
[Crossref]

Neitsch, J.

P. Van Liedekerke, J. Neitsch, T. Johann, K. Alessandri, P. Nassoy, and D. Drasdo, “Quantitative agent-based modeling reveals mechanical stress response of growing tumor spheroids is predictable over various growth conditions and cell lines,” PLoS Comput. Biol. 15(3), e1006273 (2019).
[Crossref]

Ogien, J.

Park, J. J.

J. R. Bumstead, J. J. Park, I. A. Rosen, A. W. Kraft, P. W. Wright, M. D. Reisman, D. C. Côté, and J. P. Culver, “Designing a large field-of-view two-photon microscope using optical invariant analysis,” Neurophotonics 5(2), 025001 (2018).
[Crossref]

Pietzsch, T.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Potsaid, B.

B. Potsaid, Y. Bellouard, and J. T. Wen, “Adaptive scanning optical microscope (asom): a multidisciplinary optical microscope design for large field of view and high resolution imaging,” Opt. Express 13(17), 6504–6518 (2005).
[Crossref]

B. Potsaid, Y. Bellouard, and J. T. Wen, “Scanning optical mosaic scope for micro-manipulation,” in Int. Workshop on Micro-Factories (IWMF02), (Citeseer, 2002), pp. 85–88.

Preibisch, S.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Pujol, N.

L. Andrique, G. Recher, K. Alessandri, N. Pujol, M. Feyeux, P. Bon, L. Cognet, P. Nassoy, and A. Bikfalvi, “A model of guided cell self-organization for rapid and spontaneous formation of functional vessels,” Sci. Adv. 5(6), eaau6562 (2019).
[Crossref]

Recher, G.

L. Andrique, G. Recher, K. Alessandri, N. Pujol, M. Feyeux, P. Bon, L. Cognet, P. Nassoy, and A. Bikfalvi, “A model of guided cell self-organization for rapid and spontaneous formation of functional vessels,” Sci. Adv. 5(6), eaau6562 (2019).
[Crossref]

Reichman, S.

J. Scholler, K. Groux, O. Goureau, J.-A. Sahel, M. Fink, S. Reichman, C. Boccara, and K. Grieve, “Dynamic full-field optical coherence tomography: 3d live-imaging of retinal organoids,” arXiv preprint arXiv:1912.04052 (2019).

Reisman, M. D.

J. R. Bumstead, J. J. Park, I. A. Rosen, A. W. Kraft, P. W. Wright, M. D. Reisman, D. C. Côté, and J. P. Culver, “Designing a large field-of-view two-photon microscope using optical invariant analysis,” Neurophotonics 5(2), 025001 (2018).
[Crossref]

Rico, F.

K. Alessandri, B. R. Sarangi, V. V. Gurchenkov, B. Sinha, T. R. Kießling, L. Fetler, F. Rico, S. Scheuring, C. Lamaze, A. Simon, S. Geraldo, D. Vignjević, H. Doméjan, L. Rolland, L. Funfak, J. Bibette, N. Bremond, and P. Nassoy, “Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro,” Proc. Natl. Acad. Sci. 110(37), 14843–14848 (2013).
[Crossref]

Rolland, L.

K. Alessandri, B. R. Sarangi, V. V. Gurchenkov, B. Sinha, T. R. Kießling, L. Fetler, F. Rico, S. Scheuring, C. Lamaze, A. Simon, S. Geraldo, D. Vignjević, H. Doméjan, L. Rolland, L. Funfak, J. Bibette, N. Bremond, and P. Nassoy, “Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro,” Proc. Natl. Acad. Sci. 110(37), 14843–14848 (2013).
[Crossref]

Rosen, I. A.

J. R. Bumstead, J. J. Park, I. A. Rosen, A. W. Kraft, P. W. Wright, M. D. Reisman, D. C. Côté, and J. P. Culver, “Designing a large field-of-view two-photon microscope using optical invariant analysis,” Neurophotonics 5(2), 025001 (2018).
[Crossref]

Roux, A.

K. Alessandri, M. Feyeux, B. Gurchenkov, C. Delgado, A. Trushko, K.-H. Krause, D. Vignjević, P. Nassoy, and A. Roux, “A 3d printed microfluidic device for production of functionalized hydrogel microcapsules for culture and differentiation of human neuronal stem cells (HNSC),” Lab Chip 16(9), 1593–1604 (2016).
[Crossref]

Rueden, C.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Saalfeld, S.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Sahel, J.-A.

J. Scholler, K. Groux, O. Goureau, J.-A. Sahel, M. Fink, S. Reichman, C. Boccara, and K. Grieve, “Dynamic full-field optical coherence tomography: 3d live-imaging of retinal organoids,” arXiv preprint arXiv:1912.04052 (2019).

Saint-Jalmes, H.

Salome, R.

R. Salome, Y. Kremer, S. Dieudonne, J.-F. Léger, O. Krichevsky, C. Wyart, D. Chatenay, and L. Bourdieu, “Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors,” J. Neurosci. Methods 154(1-2), 161–174 (2006).
[Crossref]

Sarangi, B. R.

K. Alessandri, B. R. Sarangi, V. V. Gurchenkov, B. Sinha, T. R. Kießling, L. Fetler, F. Rico, S. Scheuring, C. Lamaze, A. Simon, S. Geraldo, D. Vignjević, H. Doméjan, L. Rolland, L. Funfak, J. Bibette, N. Bremond, and P. Nassoy, “Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro,” Proc. Natl. Acad. Sci. 110(37), 14843–14848 (2013).
[Crossref]

Satterwhite, L. L.

N. T. Shaked, Z. Zalevsky, and L. L. Satterwhite, Biomedical Optical Phase Microscopy and Nanoscopy (Academic Press, 2012).

Scheuring, S.

K. Alessandri, B. R. Sarangi, V. V. Gurchenkov, B. Sinha, T. R. Kießling, L. Fetler, F. Rico, S. Scheuring, C. Lamaze, A. Simon, S. Geraldo, D. Vignjević, H. Doméjan, L. Rolland, L. Funfak, J. Bibette, N. Bremond, and P. Nassoy, “Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro,” Proc. Natl. Acad. Sci. 110(37), 14843–14848 (2013).
[Crossref]

Schindelin, J.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Schmid, B.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Scholler, J.

J. Scholler, K. Groux, O. Goureau, J.-A. Sahel, M. Fink, S. Reichman, C. Boccara, and K. Grieve, “Dynamic full-field optical coherence tomography: 3d live-imaging of retinal organoids,” arXiv preprint arXiv:1912.04052 (2019).

Shaked, N. T.

N. T. Shaked, Z. Zalevsky, and L. L. Satterwhite, Biomedical Optical Phase Microscopy and Nanoscopy (Academic Press, 2012).

Shen, Y.

J. Fan, J. Suo, J. Wu, H. Xie, Y. Shen, F. Chen, G. Wang, L. Cao, G. Jin, Q. He, T. Li, G. Luan, L. Kong, Z. Zheng, and Q. Dai, “Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution,” Nat. Photonics 13(11), 809–816 (2019).
[Crossref]

Simon, A.

K. Alessandri, B. R. Sarangi, V. V. Gurchenkov, B. Sinha, T. R. Kießling, L. Fetler, F. Rico, S. Scheuring, C. Lamaze, A. Simon, S. Geraldo, D. Vignjević, H. Doméjan, L. Rolland, L. Funfak, J. Bibette, N. Bremond, and P. Nassoy, “Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro,” Proc. Natl. Acad. Sci. 110(37), 14843–14848 (2013).
[Crossref]

Singh, A.

Sinha, B.

K. Alessandri, B. R. Sarangi, V. V. Gurchenkov, B. Sinha, T. R. Kießling, L. Fetler, F. Rico, S. Scheuring, C. Lamaze, A. Simon, S. Geraldo, D. Vignjević, H. Doméjan, L. Rolland, L. Funfak, J. Bibette, N. Bremond, and P. Nassoy, “Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro,” Proc. Natl. Acad. Sci. 110(37), 14843–14848 (2013).
[Crossref]

Suo, J.

J. Fan, J. Suo, J. Wu, H. Xie, Y. Shen, F. Chen, G. Wang, L. Cao, G. Jin, Q. He, T. Li, G. Luan, L. Kong, Z. Zheng, and Q. Dai, “Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution,” Nat. Photonics 13(11), 809–816 (2019).
[Crossref]

Thouvenin, O.

O. Thouvenin, “Optical 3d imaging of subcellular dynamics in biological cultures and tissues: applications to ophthalmology and neuroscience,” Ph.D. thesis, Université Sorbonne Paris Cité (2017).

Thurman, S. T.

Tian, L.

Tinevez, J.-Y.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Tomancak, P.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Trushko, A.

K. Alessandri, M. Feyeux, B. Gurchenkov, C. Delgado, A. Trushko, K.-H. Krause, D. Vignjević, P. Nassoy, and A. Roux, “A 3d printed microfluidic device for production of functionalized hydrogel microcapsules for culture and differentiation of human neuronal stem cells (HNSC),” Lab Chip 16(9), 1593–1604 (2016).
[Crossref]

Tseng, H.-a.

A. I. Mohammed, H. J. Gritton, H.-a. Tseng, M. E. Bucklin, Z. Yao, and X. Han, “An integrative approach for analyzing hundreds of neurons in task performing mice using wide-field calcium imaging,” Sci. Rep. 6(1), 20986 (2016).
[Crossref]

Vabre, L.

Van Liedekerke, P.

P. Van Liedekerke, J. Neitsch, T. Johann, K. Alessandri, P. Nassoy, and D. Drasdo, “Quantitative agent-based modeling reveals mechanical stress response of growing tumor spheroids is predictable over various growth conditions and cell lines,” PLoS Comput. Biol. 15(3), e1006273 (2019).
[Crossref]

Vignjevic, D.

K. Alessandri, M. Feyeux, B. Gurchenkov, C. Delgado, A. Trushko, K.-H. Krause, D. Vignjević, P. Nassoy, and A. Roux, “A 3d printed microfluidic device for production of functionalized hydrogel microcapsules for culture and differentiation of human neuronal stem cells (HNSC),” Lab Chip 16(9), 1593–1604 (2016).
[Crossref]

K. Alessandri, B. R. Sarangi, V. V. Gurchenkov, B. Sinha, T. R. Kießling, L. Fetler, F. Rico, S. Scheuring, C. Lamaze, A. Simon, S. Geraldo, D. Vignjević, H. Doméjan, L. Rolland, L. Funfak, J. Bibette, N. Bremond, and P. Nassoy, “Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro,” Proc. Natl. Acad. Sci. 110(37), 14843–14848 (2013).
[Crossref]

Waller, L.

Wang, G.

J. Fan, J. Suo, J. Wu, H. Xie, Y. Shen, F. Chen, G. Wang, L. Cao, G. Jin, Q. He, T. Li, G. Luan, L. Kong, Z. Zheng, and Q. Dai, “Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution,” Nat. Photonics 13(11), 809–816 (2019).
[Crossref]

Wen, J. T.

B. Potsaid, Y. Bellouard, and J. T. Wen, “Adaptive scanning optical microscope (asom): a multidisciplinary optical microscope design for large field of view and high resolution imaging,” Opt. Express 13(17), 6504–6518 (2005).
[Crossref]

B. Potsaid, Y. Bellouard, and J. T. Wen, “Scanning optical mosaic scope for micro-manipulation,” in Int. Workshop on Micro-Factories (IWMF02), (Citeseer, 2002), pp. 85–88.

White, D. J.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Wilson, T.

Wright, P. W.

J. R. Bumstead, J. J. Park, I. A. Rosen, A. W. Kraft, P. W. Wright, M. D. Reisman, D. C. Côté, and J. P. Culver, “Designing a large field-of-view two-photon microscope using optical invariant analysis,” Neurophotonics 5(2), 025001 (2018).
[Crossref]

Wu, J.

J. Fan, J. Suo, J. Wu, H. Xie, Y. Shen, F. Chen, G. Wang, L. Cao, G. Jin, Q. He, T. Li, G. Luan, L. Kong, Z. Zheng, and Q. Dai, “Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution,” Nat. Photonics 13(11), 809–816 (2019).
[Crossref]

Wyart, C.

R. Salome, Y. Kremer, S. Dieudonne, J.-F. Léger, O. Krichevsky, C. Wyart, D. Chatenay, and L. Bourdieu, “Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors,” J. Neurosci. Methods 154(1-2), 161–174 (2006).
[Crossref]

Xie, H.

J. Fan, J. Suo, J. Wu, H. Xie, Y. Shen, F. Chen, G. Wang, L. Cao, G. Jin, Q. He, T. Li, G. Luan, L. Kong, Z. Zheng, and Q. Dai, “Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution,” Nat. Photonics 13(11), 809–816 (2019).
[Crossref]

Yang, C.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref]

Yao, Z.

A. I. Mohammed, H. J. Gritton, H.-a. Tseng, M. E. Bucklin, Z. Yao, and X. Han, “An integrative approach for analyzing hundreds of neurons in task performing mice using wide-field calcium imaging,” Sci. Rep. 6(1), 20986 (2016).
[Crossref]

Yeh, L.-H.

Zalevsky, Z.

A. W. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevsky, and C. Ferreira, “Space-bandwidth product of optical signals and systems,” J. Opt. Soc. Am. A 13(3), 470–473 (1996).
[Crossref]

N. T. Shaked, Z. Zalevsky, and L. L. Satterwhite, Biomedical Optical Phase Microscopy and Nanoscopy (Academic Press, 2012).

Zheng, G.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref]

Zheng, Z.

J. Fan, J. Suo, J. Wu, H. Xie, Y. Shen, F. Chen, G. Wang, L. Cao, G. Jin, Q. He, T. Li, G. Luan, L. Kong, Z. Zheng, and Q. Dai, “Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution,” Nat. Photonics 13(11), 809–816 (2019).
[Crossref]

Zhong, J.

Zipfel, W. R.

Appl. Opt. (2)

Biomed. Opt. Express (1)

J. Neurosci. Methods (1)

R. Salome, Y. Kremer, S. Dieudonne, J.-F. Léger, O. Krichevsky, C. Wyart, D. Chatenay, and L. Bourdieu, “Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors,” J. Neurosci. Methods 154(1-2), 161–174 (2006).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Lab Chip (1)

K. Alessandri, M. Feyeux, B. Gurchenkov, C. Delgado, A. Trushko, K.-H. Krause, D. Vignjević, P. Nassoy, and A. Roux, “A 3d printed microfluidic device for production of functionalized hydrogel microcapsules for culture and differentiation of human neuronal stem cells (HNSC),” Lab Chip 16(9), 1593–1604 (2016).
[Crossref]

Nat. Methods (1)

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Nat. Photonics (3)

J. Fan, J. Suo, J. Wu, H. Xie, Y. Shen, F. Chen, G. Wang, L. Cao, G. Jin, Q. He, T. Li, G. Luan, L. Kong, Z. Zheng, and Q. Dai, “Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution,” Nat. Photonics 13(11), 809–816 (2019).
[Crossref]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref]

G. McConnell, “Video-rate gigapixel imaging of the brain,” Nat. Photonics 13(11), 732–734 (2019).
[Crossref]

Neurophotonics (1)

J. R. Bumstead, J. J. Park, I. A. Rosen, A. W. Kraft, P. W. Wright, M. D. Reisman, D. C. Côté, and J. P. Culver, “Designing a large field-of-view two-photon microscope using optical invariant analysis,” Neurophotonics 5(2), 025001 (2018).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Optica (1)

PLoS Comput. Biol. (1)

P. Van Liedekerke, J. Neitsch, T. Johann, K. Alessandri, P. Nassoy, and D. Drasdo, “Quantitative agent-based modeling reveals mechanical stress response of growing tumor spheroids is predictable over various growth conditions and cell lines,” PLoS Comput. Biol. 15(3), e1006273 (2019).
[Crossref]

Proc. Natl. Acad. Sci. (1)

K. Alessandri, B. R. Sarangi, V. V. Gurchenkov, B. Sinha, T. R. Kießling, L. Fetler, F. Rico, S. Scheuring, C. Lamaze, A. Simon, S. Geraldo, D. Vignjević, H. Doméjan, L. Rolland, L. Funfak, J. Bibette, N. Bremond, and P. Nassoy, “Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro,” Proc. Natl. Acad. Sci. 110(37), 14843–14848 (2013).
[Crossref]

Sci. Adv. (1)

L. Andrique, G. Recher, K. Alessandri, N. Pujol, M. Feyeux, P. Bon, L. Cognet, P. Nassoy, and A. Bikfalvi, “A model of guided cell self-organization for rapid and spontaneous formation of functional vessels,” Sci. Adv. 5(6), eaau6562 (2019).
[Crossref]

Sci. Rep. (1)

A. I. Mohammed, H. J. Gritton, H.-a. Tseng, M. E. Bucklin, Z. Yao, and X. Han, “An integrative approach for analyzing hundreds of neurons in task performing mice using wide-field calcium imaging,” Sci. Rep. 6(1), 20986 (2016).
[Crossref]

Other (4)

O. Thouvenin, “Optical 3d imaging of subcellular dynamics in biological cultures and tissues: applications to ophthalmology and neuroscience,” Ph.D. thesis, Université Sorbonne Paris Cité (2017).

N. T. Shaked, Z. Zalevsky, and L. L. Satterwhite, Biomedical Optical Phase Microscopy and Nanoscopy (Academic Press, 2012).

B. Potsaid, Y. Bellouard, and J. T. Wen, “Scanning optical mosaic scope for micro-manipulation,” in Int. Workshop on Micro-Factories (IWMF02), (Citeseer, 2002), pp. 85–88.

J. Scholler, K. Groux, O. Goureau, J.-A. Sahel, M. Fink, S. Reichman, C. Boccara, and K. Grieve, “Dynamic full-field optical coherence tomography: 3d live-imaging of retinal organoids,” arXiv preprint arXiv:1912.04052 (2019).

Supplementary Material (1)

NameDescription
» Visualization 1       Effect of mechanical scanning when imaging capsules with wide-field microscopy. After going back to its initial position, the capsules slowly rotates in the immersion medium.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Imaging capsules with wide-field microscopy and full-field optical coherence tomography. (a) Optical setup. MO, microscope objective; BS, beam splitter; M, mirror; PZT, piezoelectric transducer. (b) Wide-field image of a capsule containing liver cells. (c-e) FF-OCT images of the same capsule for depths equal to 30, 0 and -30 $\mu$m respectively. Scale bar, 100 $\mu$m
Fig. 2.
Fig. 2. Effect of mechanical scanning when imaging capsules with wide-field microscopy. (a) The sample is mechanically scanned to the left with a motorized stage. After going back to its initial position, the capsules slowly rotates in the immersion medium. (b) Zoom in of the area corresponding to the red square in (a). In addition of the global motion of the capsule, the inner supracellular structure is also affected. As indicated by the blue arrow, a cell splits off the central cell aggregate.
Fig. 3.
Fig. 3. Principle of the remote scanning approach. (a) With a conventional microscope, the recorded FOV is limited by the detected area which is usually much smaller than the accessible FOV of the MO. (b) The simplest solution to enlarge the FOV consists in moving the specimen and keeping the detection still. (c) Alternatively, access to a larger FOV can be obtained by scanning the detected area across the FOV accessible by the MO, the specimen remaining stationary. (d) Optical setup. A motorized mirror placed in the Fourier space in the detection unit allows to scan different regions in the accessible FOV. (e,f) A stack of images is rearranged as a mosaic to obtain a large FOV. Scale bar, 500 $\mu$m
Fig. 4.
Fig. 4. Optical performances of the remote scanning unit applied on FF-OCT. (a) OCT mosaic image obtained by stitching 49 images. (b) Amplitude of the interferometric signal as a function of the optical path difference for blue square in (a). From these curve, the axial focus position and the axial resolution is measured. (c,d) 2D map of the axial focus shift and the axial resolution respectively. Scale bar, 500 $\mu$m.
Fig. 5.
Fig. 5. Remote scanning applied to a large sample made of a vessel surrounded by spheroids.(a) Ultra-large FOV in wide-field microscopy obtained by stitching 7$\times 7$ images. (b) Single wide-field image corresponding to the red square in (a). Cellular information is clearly visible on the vesseloid. (c) Cross section image obtained with full-field OCT. It corresponds to the red dotted line in (b). (d,e) En face OCT image of the vessel obtained at depth z=70 and z=130 $\mu$m respectively. (f) Wide-field image corresponding to the blue square in (a). (g) Cross section image corresponding to the blue dotted line in (g). (h,i) En face OCT images of the same area at depth z=150 and 270 $\mu$m respectively. Scale bar, 100 $\mu$m.
Fig. 6.
Fig. 6. (a) 2D map of the collection efficiency of the system measured with a mirror as a sample. (b) Plot profile of the collection efficiency corresponding to the white dashed line in (a).
Fig. 7.
Fig. 7. Spatial resolution of the system depending on the location inside the microscope FOV. Measurements were performed using 1 $\mu$m latex beads dispersed in agarose.
Fig. 8.
Fig. 8. (a) Sketch of the microscope objective and the scanning mirror and the corresponding angles and distances. (b) Reproducibility of the angular scanning method for both directions.

Tables (1)

Tables Icon

Table 1. Spatial bandwidth product for various microscope objectives used in wide-field microscopy and FF-OCT.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

S B P = 4 × ( F N M a g ) 2 ( λ 2 N A ) 2
A = 4 ( I 2 I 4 ) 2 + ( I 1 2 I 3 I 5 ) 2
ϕ = atan ( 2 ( I 2 I 4 ) I 1 2 I 3 I 5 ) .
tan ( θ F O V ) = Δ X F 0 V f
tan ( θ m ) = tan ( θ F O V ) 2 = X m L
X m = Δ X F O V × L 2 f

Metrics