Abstract

Photoacoustic microscopy and macroscopy (PAM) using focused detector scanning are emerging imaging methods for biological tissue, providing high resolution and high sensitivity for structures with optical absorption contrast. However, achieving a constant lateral resolution over a large depth of field for deeply penetrating photoacoustic macroscopy is still a challenge. In this work, a detector design for scanning photoacoustic macroscopy is presented. Based on simulation results, a sensor array geometry is developed and fabricated that consists of concentric ring elements made of polyvinylidene fluoride (PVDF) film in a geometry that combines a centered planar ring with several inclined outer ring elements. The reconstruction algorithm, which uses dynamic focusing and coherence weighting, is explained and its capability to reduce artefacts occurring for single element conical sensors is demonstrated. Several phantoms are manufactured to evaluate the performance of the array in experimental measurements. The sensor array provides a constant axial and lateral resolution of 95 µm and 285 µm, respectively, over a depth of field of 20 mm. The depth of field corresponds approximately to the maximum imaging depth in biological tissue, estimated from the sensitivity of the array. With its ability to achieve the maximum resolution even with a very small scanning range, the array is believed to have applications in the imaging of limited regions of interest buried in biological tissue.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Piezoelectric annular array for large depth of field photoacoustic imaging

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf
Biomed. Opt. Express 2(9) 2655-2664 (2011)

Scanning acoustic-photoacoustic microscopy using axicon transducers

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, T. Berer, and G. Paltauf
Biomed. Opt. Express 1(1) 318-323 (2010)

Photoacoustics and speed-of-sound dual mode imaging with a long depth-of-field by using annular ultrasound array

Qiuning Ding, Chao Tao, and Xiaojun Liu
Opt. Express 25(6) 6141-6150 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
    [Crossref]
  2. X. Cai, Y. S. Zhang, Y. Xia, and L. V. Wang, “Photoacoustic Microscopy in Tissue Engineering,” Mater. Today 16(3), 67–77 (2013).
    [Crossref]
  3. J. Yao and L. V. Wang, “Photoacoustic Microscopy,” Laser Photonics Rev. 7(5), 758–778 (2013).
    [Crossref]
  4. J. Yao and L. V. Wang, “Sensitivity of photoacoustic microscopy,” J. Photoacoust. 2(2), 87–101 (2014).
    [Crossref]
  5. A. M. Winkler, K. Maslov, and L. V. Wang, “Noise-equivalent sensitivity of J. Photoacoust.,” J. Biomed. Opt. 18(9), 097003 (2013).
    [Crossref]
  6. M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt. Lett. 31(4), 474 (2006).
    [Crossref]
  7. MÁ Araque Caballero, A. Rosenthal, J. Gateau, D. Razansky, and V. Ntziachristos, “Model-based optoacoustic imaging using focused detector scanning,” Opt. Lett. 37(19), 4080–4082 (2012).
    [Crossref]
  8. S. Gratt, K. Passler, R. Nuster, and G. Paltauf, “Photoacoustic imaging using a conical axicon detector,” in SPIE Proceedings (SPIE, 2009), 73710W.
  9. R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture,” J. Biomed. Opt. 9(6), 1327–1335 (2004).
    [Crossref]
  10. Q. Ding, C. Tao, and X. Liu, “J. Photoacoust. and speed-of-sound dual mode imaging with a long depth-of-field by using annular ultrasound array,” Opt. Express 25(6), 6141–6150 (2017).
    [Crossref]
  11. K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Piezoelectric annular array for large depth of field photoacoustic imaging,” Biomed. Opt. Express 2(9), 2655–2664 (2011).
    [Crossref]
  12. J. A. Brown, C. E. M. Démoré, and G. R. Lockwood, “Design and fabrication of annular arrays for high-frequency ultrasound,” IEEE Trans. Sonics Ultrason. 51(8), 1010–1017 (2004).
    [Crossref]
  13. E. J. Gottlieb, J. M. Cannata, C.-H. Hu, and K. K. Shung, “Development of a high-frequency (50 mhz) copolymer annular-array, ultrasound transducer,” IEEE Trans. Sonics Ultrason. 53(5), 1037–1045 (2006).
    [Crossref]
  14. H. R. Chabok, J. M. Cannata, H. H. Kim, J. A. Williams, J. Park, and K. K. Shung, “A high-frequency annular-array transducer using an interdigital bonded 1-3 composite,” IEEE Trans. Sonics Ultrason. 58(1), 206–214 (2011).
    [Crossref]
  15. J. A. Ketterling, O. Aristizabal, D. H. Turnbull, and F. L. Lizzi, “Design and fabrication of a 40-MHz annular array transducer,” IEEE Trans. Sonics Ultrason. 52(4), 672–681 (2005).
    [Crossref]
  16. E. Grüneisen, “Theorie des festen Zustandes einatomiger Elemente,” Ann. Phys. 344(12), 257–306 (1912).
    [Crossref]
  17. L. V. Wang, ed., Photoacoustic Imaging and Spectroscopy (CRC Press, 2009).
  18. K. Wang, S. A. Ermilov, R. Su, H.-P. Brecht, A. A. Oraevsky, and M. A. Anastasio, “An imaging model incorporating ultrasonic transducer properties for three-dimensional optoacoustic tomography,” IEEE Trans. Med. Imaging 30(2), 203–214 (2011).
    [Crossref]
  19. G. Paltauf, P. R. Torke, and R. Nuster, “Modeling photoacoustic imaging with a scanning focused detector using Monte Carlo simulation of energy deposition,” J. Biomed. Opt. 23(12), 1 (2018).
    [Crossref]
  20. C.-K. Liao, M.-L. Li, and P.-C. Li, “Optoacoustic imaging with synthetic aperture focusing and coherence weighting,” Opt. Lett. 29(21), 2506 (2004).
    [Crossref]
  21. J. Y. Lu and J. F. Greenleaf, “Nondiffracting X waves-exact solutions to free-space scalar wave equation and their finite aperture realizations,” IEEE Trans. Sonics Ultrason. 39(1), 19–31 (1992).
    [Crossref]
  22. K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Laser-generation of ultrasonic X-waves using axicon transducers,” Appl. Phys. Lett. 94(6), 064108 (2009).
    [Crossref]
  23. K. G. Held, M. Jaeger, J. Rička, M. Frenz, and H. G. Akarçay, “Multiple irradiation sensing of the optical effective attenuation coefficient for spectral correction in handheld OA imaging,” J. Photoacoust. 4(2), 70–80 (2016).
    [Crossref]
  24. R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16(8), 5907 (2008).
    [Crossref]
  25. L. Wang and S. L. Jacques, “Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid medium,” Appl. Opt. 34(13), 2362–2366 (1995).
    [Crossref]
  26. J. R. Cook, R. R. Bouchard, and S. Y. Emelianov, “Tissue-mimicking phantoms for photoacoustic and ultrasonic imaging,” Biomed. Opt. Express 2(11), 3193–3206 (2011).
    [Crossref]
  27. M. B. Reinhart, C. R. Huntington, L. J. Blair, B. T. Heniford, and V. A. Augenstein, “Indocyanine Green. Historical Context, Current Applications, and Future Considerations,” Surg Innov 23(2), 166–175 (2016).
    [Crossref]
  28. F. Spadin, M. Jaeger, R. Nuster, P. Subochev, and M. Frenz, “Quantitative comparison of frequency-domain and delay-and-sum optoacoustic image reconstruction including the effect of coherence factor weighting,” J. Photoacoust. 17, 100149 (2020).
    [Crossref]
  29. S. L. Jacques, “Optical properties of biological tissues. A review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref]
  30. D.-K. Yao, C. Zhang, K. Maslov, and L. V. Wang, “Photoacoustic measurement of the Grüneisen parameter of tissue,” J. Biomed. Opt. 19(1), 017007 (2014).
    [Crossref]

2020 (1)

F. Spadin, M. Jaeger, R. Nuster, P. Subochev, and M. Frenz, “Quantitative comparison of frequency-domain and delay-and-sum optoacoustic image reconstruction including the effect of coherence factor weighting,” J. Photoacoust. 17, 100149 (2020).
[Crossref]

2018 (1)

G. Paltauf, P. R. Torke, and R. Nuster, “Modeling photoacoustic imaging with a scanning focused detector using Monte Carlo simulation of energy deposition,” J. Biomed. Opt. 23(12), 1 (2018).
[Crossref]

2017 (1)

2016 (2)

K. G. Held, M. Jaeger, J. Rička, M. Frenz, and H. G. Akarçay, “Multiple irradiation sensing of the optical effective attenuation coefficient for spectral correction in handheld OA imaging,” J. Photoacoust. 4(2), 70–80 (2016).
[Crossref]

M. B. Reinhart, C. R. Huntington, L. J. Blair, B. T. Heniford, and V. A. Augenstein, “Indocyanine Green. Historical Context, Current Applications, and Future Considerations,” Surg Innov 23(2), 166–175 (2016).
[Crossref]

2014 (2)

D.-K. Yao, C. Zhang, K. Maslov, and L. V. Wang, “Photoacoustic measurement of the Grüneisen parameter of tissue,” J. Biomed. Opt. 19(1), 017007 (2014).
[Crossref]

J. Yao and L. V. Wang, “Sensitivity of photoacoustic microscopy,” J. Photoacoust. 2(2), 87–101 (2014).
[Crossref]

2013 (4)

A. M. Winkler, K. Maslov, and L. V. Wang, “Noise-equivalent sensitivity of J. Photoacoust.,” J. Biomed. Opt. 18(9), 097003 (2013).
[Crossref]

X. Cai, Y. S. Zhang, Y. Xia, and L. V. Wang, “Photoacoustic Microscopy in Tissue Engineering,” Mater. Today 16(3), 67–77 (2013).
[Crossref]

J. Yao and L. V. Wang, “Photoacoustic Microscopy,” Laser Photonics Rev. 7(5), 758–778 (2013).
[Crossref]

S. L. Jacques, “Optical properties of biological tissues. A review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref]

2012 (1)

2011 (4)

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Piezoelectric annular array for large depth of field photoacoustic imaging,” Biomed. Opt. Express 2(9), 2655–2664 (2011).
[Crossref]

K. Wang, S. A. Ermilov, R. Su, H.-P. Brecht, A. A. Oraevsky, and M. A. Anastasio, “An imaging model incorporating ultrasonic transducer properties for three-dimensional optoacoustic tomography,” IEEE Trans. Med. Imaging 30(2), 203–214 (2011).
[Crossref]

H. R. Chabok, J. M. Cannata, H. H. Kim, J. A. Williams, J. Park, and K. K. Shung, “A high-frequency annular-array transducer using an interdigital bonded 1-3 composite,” IEEE Trans. Sonics Ultrason. 58(1), 206–214 (2011).
[Crossref]

J. R. Cook, R. R. Bouchard, and S. Y. Emelianov, “Tissue-mimicking phantoms for photoacoustic and ultrasonic imaging,” Biomed. Opt. Express 2(11), 3193–3206 (2011).
[Crossref]

2009 (1)

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Laser-generation of ultrasonic X-waves using axicon transducers,” Appl. Phys. Lett. 94(6), 064108 (2009).
[Crossref]

2008 (1)

2006 (3)

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]

E. J. Gottlieb, J. M. Cannata, C.-H. Hu, and K. K. Shung, “Development of a high-frequency (50 mhz) copolymer annular-array, ultrasound transducer,” IEEE Trans. Sonics Ultrason. 53(5), 1037–1045 (2006).
[Crossref]

M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt. Lett. 31(4), 474 (2006).
[Crossref]

2005 (1)

J. A. Ketterling, O. Aristizabal, D. H. Turnbull, and F. L. Lizzi, “Design and fabrication of a 40-MHz annular array transducer,” IEEE Trans. Sonics Ultrason. 52(4), 672–681 (2005).
[Crossref]

2004 (3)

C.-K. Liao, M.-L. Li, and P.-C. Li, “Optoacoustic imaging with synthetic aperture focusing and coherence weighting,” Opt. Lett. 29(21), 2506 (2004).
[Crossref]

J. A. Brown, C. E. M. Démoré, and G. R. Lockwood, “Design and fabrication of annular arrays for high-frequency ultrasound,” IEEE Trans. Sonics Ultrason. 51(8), 1010–1017 (2004).
[Crossref]

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture,” J. Biomed. Opt. 9(6), 1327–1335 (2004).
[Crossref]

1995 (1)

1992 (1)

J. Y. Lu and J. F. Greenleaf, “Nondiffracting X waves-exact solutions to free-space scalar wave equation and their finite aperture realizations,” IEEE Trans. Sonics Ultrason. 39(1), 19–31 (1992).
[Crossref]

1912 (1)

E. Grüneisen, “Theorie des festen Zustandes einatomiger Elemente,” Ann. Phys. 344(12), 257–306 (1912).
[Crossref]

Akarçay, H. G.

K. G. Held, M. Jaeger, J. Rička, M. Frenz, and H. G. Akarçay, “Multiple irradiation sensing of the optical effective attenuation coefficient for spectral correction in handheld OA imaging,” J. Photoacoust. 4(2), 70–80 (2016).
[Crossref]

Anastasio, M. A.

K. Wang, S. A. Ermilov, R. Su, H.-P. Brecht, A. A. Oraevsky, and M. A. Anastasio, “An imaging model incorporating ultrasonic transducer properties for three-dimensional optoacoustic tomography,” IEEE Trans. Med. Imaging 30(2), 203–214 (2011).
[Crossref]

Araque Caballero, MÁ

Aristizabal, O.

J. A. Ketterling, O. Aristizabal, D. H. Turnbull, and F. L. Lizzi, “Design and fabrication of a 40-MHz annular array transducer,” IEEE Trans. Sonics Ultrason. 52(4), 672–681 (2005).
[Crossref]

Augenstein, V. A.

M. B. Reinhart, C. R. Huntington, L. J. Blair, B. T. Heniford, and V. A. Augenstein, “Indocyanine Green. Historical Context, Current Applications, and Future Considerations,” Surg Innov 23(2), 166–175 (2016).
[Crossref]

Blair, L. J.

M. B. Reinhart, C. R. Huntington, L. J. Blair, B. T. Heniford, and V. A. Augenstein, “Indocyanine Green. Historical Context, Current Applications, and Future Considerations,” Surg Innov 23(2), 166–175 (2016).
[Crossref]

Bouchard, R. R.

Brecht, H.-P.

K. Wang, S. A. Ermilov, R. Su, H.-P. Brecht, A. A. Oraevsky, and M. A. Anastasio, “An imaging model incorporating ultrasonic transducer properties for three-dimensional optoacoustic tomography,” IEEE Trans. Med. Imaging 30(2), 203–214 (2011).
[Crossref]

Brown, J. A.

J. A. Brown, C. E. M. Démoré, and G. R. Lockwood, “Design and fabrication of annular arrays for high-frequency ultrasound,” IEEE Trans. Sonics Ultrason. 51(8), 1010–1017 (2004).
[Crossref]

Burgholzer, P.

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Piezoelectric annular array for large depth of field photoacoustic imaging,” Biomed. Opt. Express 2(9), 2655–2664 (2011).
[Crossref]

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Laser-generation of ultrasonic X-waves using axicon transducers,” Appl. Phys. Lett. 94(6), 064108 (2009).
[Crossref]

Cai, X.

X. Cai, Y. S. Zhang, Y. Xia, and L. V. Wang, “Photoacoustic Microscopy in Tissue Engineering,” Mater. Today 16(3), 67–77 (2013).
[Crossref]

Cannata, J. M.

H. R. Chabok, J. M. Cannata, H. H. Kim, J. A. Williams, J. Park, and K. K. Shung, “A high-frequency annular-array transducer using an interdigital bonded 1-3 composite,” IEEE Trans. Sonics Ultrason. 58(1), 206–214 (2011).
[Crossref]

E. J. Gottlieb, J. M. Cannata, C.-H. Hu, and K. K. Shung, “Development of a high-frequency (50 mhz) copolymer annular-array, ultrasound transducer,” IEEE Trans. Sonics Ultrason. 53(5), 1037–1045 (2006).
[Crossref]

Chabok, H. R.

H. R. Chabok, J. M. Cannata, H. H. Kim, J. A. Williams, J. Park, and K. K. Shung, “A high-frequency annular-array transducer using an interdigital bonded 1-3 composite,” IEEE Trans. Sonics Ultrason. 58(1), 206–214 (2011).
[Crossref]

Cook, J. R.

de Mul, F. F. M.

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture,” J. Biomed. Opt. 9(6), 1327–1335 (2004).
[Crossref]

Démoré, C. E. M.

J. A. Brown, C. E. M. Démoré, and G. R. Lockwood, “Design and fabrication of annular arrays for high-frequency ultrasound,” IEEE Trans. Sonics Ultrason. 51(8), 1010–1017 (2004).
[Crossref]

Ding, Q.

Emelianov, S. Y.

Ermilov, S. A.

K. Wang, S. A. Ermilov, R. Su, H.-P. Brecht, A. A. Oraevsky, and M. A. Anastasio, “An imaging model incorporating ultrasonic transducer properties for three-dimensional optoacoustic tomography,” IEEE Trans. Med. Imaging 30(2), 203–214 (2011).
[Crossref]

Foschum, F.

Frenz, M.

F. Spadin, M. Jaeger, R. Nuster, P. Subochev, and M. Frenz, “Quantitative comparison of frequency-domain and delay-and-sum optoacoustic image reconstruction including the effect of coherence factor weighting,” J. Photoacoust. 17, 100149 (2020).
[Crossref]

K. G. Held, M. Jaeger, J. Rička, M. Frenz, and H. G. Akarçay, “Multiple irradiation sensing of the optical effective attenuation coefficient for spectral correction in handheld OA imaging,” J. Photoacoust. 4(2), 70–80 (2016).
[Crossref]

Gateau, J.

Gottlieb, E. J.

E. J. Gottlieb, J. M. Cannata, C.-H. Hu, and K. K. Shung, “Development of a high-frequency (50 mhz) copolymer annular-array, ultrasound transducer,” IEEE Trans. Sonics Ultrason. 53(5), 1037–1045 (2006).
[Crossref]

Gratt, S.

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Piezoelectric annular array for large depth of field photoacoustic imaging,” Biomed. Opt. Express 2(9), 2655–2664 (2011).
[Crossref]

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Laser-generation of ultrasonic X-waves using axicon transducers,” Appl. Phys. Lett. 94(6), 064108 (2009).
[Crossref]

S. Gratt, K. Passler, R. Nuster, and G. Paltauf, “Photoacoustic imaging using a conical axicon detector,” in SPIE Proceedings (SPIE, 2009), 73710W.

Greenleaf, J. F.

J. Y. Lu and J. F. Greenleaf, “Nondiffracting X waves-exact solutions to free-space scalar wave equation and their finite aperture realizations,” IEEE Trans. Sonics Ultrason. 39(1), 19–31 (1992).
[Crossref]

Grüneisen, E.

E. Grüneisen, “Theorie des festen Zustandes einatomiger Elemente,” Ann. Phys. 344(12), 257–306 (1912).
[Crossref]

Held, K. G.

K. G. Held, M. Jaeger, J. Rička, M. Frenz, and H. G. Akarçay, “Multiple irradiation sensing of the optical effective attenuation coefficient for spectral correction in handheld OA imaging,” J. Photoacoust. 4(2), 70–80 (2016).
[Crossref]

Heniford, B. T.

M. B. Reinhart, C. R. Huntington, L. J. Blair, B. T. Heniford, and V. A. Augenstein, “Indocyanine Green. Historical Context, Current Applications, and Future Considerations,” Surg Innov 23(2), 166–175 (2016).
[Crossref]

Hondebrink, E.

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture,” J. Biomed. Opt. 9(6), 1327–1335 (2004).
[Crossref]

Hu, C.-H.

E. J. Gottlieb, J. M. Cannata, C.-H. Hu, and K. K. Shung, “Development of a high-frequency (50 mhz) copolymer annular-array, ultrasound transducer,” IEEE Trans. Sonics Ultrason. 53(5), 1037–1045 (2006).
[Crossref]

Huntington, C. R.

M. B. Reinhart, C. R. Huntington, L. J. Blair, B. T. Heniford, and V. A. Augenstein, “Indocyanine Green. Historical Context, Current Applications, and Future Considerations,” Surg Innov 23(2), 166–175 (2016).
[Crossref]

Jacques, S. L.

Jaeger, M.

F. Spadin, M. Jaeger, R. Nuster, P. Subochev, and M. Frenz, “Quantitative comparison of frequency-domain and delay-and-sum optoacoustic image reconstruction including the effect of coherence factor weighting,” J. Photoacoust. 17, 100149 (2020).
[Crossref]

K. G. Held, M. Jaeger, J. Rička, M. Frenz, and H. G. Akarçay, “Multiple irradiation sensing of the optical effective attenuation coefficient for spectral correction in handheld OA imaging,” J. Photoacoust. 4(2), 70–80 (2016).
[Crossref]

Ketterling, J. A.

J. A. Ketterling, O. Aristizabal, D. H. Turnbull, and F. L. Lizzi, “Design and fabrication of a 40-MHz annular array transducer,” IEEE Trans. Sonics Ultrason. 52(4), 672–681 (2005).
[Crossref]

Kienle, A.

Kim, H. H.

H. R. Chabok, J. M. Cannata, H. H. Kim, J. A. Williams, J. Park, and K. K. Shung, “A high-frequency annular-array transducer using an interdigital bonded 1-3 composite,” IEEE Trans. Sonics Ultrason. 58(1), 206–214 (2011).
[Crossref]

Kolkman, R. G. M.

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture,” J. Biomed. Opt. 9(6), 1327–1335 (2004).
[Crossref]

Li, M.-L.

Li, P.-C.

Liao, C.-K.

Liu, X.

Lizzi, F. L.

J. A. Ketterling, O. Aristizabal, D. H. Turnbull, and F. L. Lizzi, “Design and fabrication of a 40-MHz annular array transducer,” IEEE Trans. Sonics Ultrason. 52(4), 672–681 (2005).
[Crossref]

Lockwood, G. R.

J. A. Brown, C. E. M. Démoré, and G. R. Lockwood, “Design and fabrication of annular arrays for high-frequency ultrasound,” IEEE Trans. Sonics Ultrason. 51(8), 1010–1017 (2004).
[Crossref]

Lu, J. Y.

J. Y. Lu and J. F. Greenleaf, “Nondiffracting X waves-exact solutions to free-space scalar wave equation and their finite aperture realizations,” IEEE Trans. Sonics Ultrason. 39(1), 19–31 (1992).
[Crossref]

Maslov, K.

D.-K. Yao, C. Zhang, K. Maslov, and L. V. Wang, “Photoacoustic measurement of the Grüneisen parameter of tissue,” J. Biomed. Opt. 19(1), 017007 (2014).
[Crossref]

A. M. Winkler, K. Maslov, and L. V. Wang, “Noise-equivalent sensitivity of J. Photoacoust.,” J. Biomed. Opt. 18(9), 097003 (2013).
[Crossref]

M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt. Lett. 31(4), 474 (2006).
[Crossref]

Michels, R.

Ntziachristos, V.

Nuster, R.

F. Spadin, M. Jaeger, R. Nuster, P. Subochev, and M. Frenz, “Quantitative comparison of frequency-domain and delay-and-sum optoacoustic image reconstruction including the effect of coherence factor weighting,” J. Photoacoust. 17, 100149 (2020).
[Crossref]

G. Paltauf, P. R. Torke, and R. Nuster, “Modeling photoacoustic imaging with a scanning focused detector using Monte Carlo simulation of energy deposition,” J. Biomed. Opt. 23(12), 1 (2018).
[Crossref]

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Piezoelectric annular array for large depth of field photoacoustic imaging,” Biomed. Opt. Express 2(9), 2655–2664 (2011).
[Crossref]

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Laser-generation of ultrasonic X-waves using axicon transducers,” Appl. Phys. Lett. 94(6), 064108 (2009).
[Crossref]

S. Gratt, K. Passler, R. Nuster, and G. Paltauf, “Photoacoustic imaging using a conical axicon detector,” in SPIE Proceedings (SPIE, 2009), 73710W.

Oraevsky, A. A.

K. Wang, S. A. Ermilov, R. Su, H.-P. Brecht, A. A. Oraevsky, and M. A. Anastasio, “An imaging model incorporating ultrasonic transducer properties for three-dimensional optoacoustic tomography,” IEEE Trans. Med. Imaging 30(2), 203–214 (2011).
[Crossref]

Paltauf, G.

G. Paltauf, P. R. Torke, and R. Nuster, “Modeling photoacoustic imaging with a scanning focused detector using Monte Carlo simulation of energy deposition,” J. Biomed. Opt. 23(12), 1 (2018).
[Crossref]

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Piezoelectric annular array for large depth of field photoacoustic imaging,” Biomed. Opt. Express 2(9), 2655–2664 (2011).
[Crossref]

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Laser-generation of ultrasonic X-waves using axicon transducers,” Appl. Phys. Lett. 94(6), 064108 (2009).
[Crossref]

S. Gratt, K. Passler, R. Nuster, and G. Paltauf, “Photoacoustic imaging using a conical axicon detector,” in SPIE Proceedings (SPIE, 2009), 73710W.

Park, J.

H. R. Chabok, J. M. Cannata, H. H. Kim, J. A. Williams, J. Park, and K. K. Shung, “A high-frequency annular-array transducer using an interdigital bonded 1-3 composite,” IEEE Trans. Sonics Ultrason. 58(1), 206–214 (2011).
[Crossref]

Passler, K.

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Piezoelectric annular array for large depth of field photoacoustic imaging,” Biomed. Opt. Express 2(9), 2655–2664 (2011).
[Crossref]

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Laser-generation of ultrasonic X-waves using axicon transducers,” Appl. Phys. Lett. 94(6), 064108 (2009).
[Crossref]

S. Gratt, K. Passler, R. Nuster, and G. Paltauf, “Photoacoustic imaging using a conical axicon detector,” in SPIE Proceedings (SPIE, 2009), 73710W.

Razansky, D.

Reinhart, M. B.

M. B. Reinhart, C. R. Huntington, L. J. Blair, B. T. Heniford, and V. A. Augenstein, “Indocyanine Green. Historical Context, Current Applications, and Future Considerations,” Surg Innov 23(2), 166–175 (2016).
[Crossref]

Ricka, J.

K. G. Held, M. Jaeger, J. Rička, M. Frenz, and H. G. Akarçay, “Multiple irradiation sensing of the optical effective attenuation coefficient for spectral correction in handheld OA imaging,” J. Photoacoust. 4(2), 70–80 (2016).
[Crossref]

Rosenthal, A.

Shung, K. K.

H. R. Chabok, J. M. Cannata, H. H. Kim, J. A. Williams, J. Park, and K. K. Shung, “A high-frequency annular-array transducer using an interdigital bonded 1-3 composite,” IEEE Trans. Sonics Ultrason. 58(1), 206–214 (2011).
[Crossref]

E. J. Gottlieb, J. M. Cannata, C.-H. Hu, and K. K. Shung, “Development of a high-frequency (50 mhz) copolymer annular-array, ultrasound transducer,” IEEE Trans. Sonics Ultrason. 53(5), 1037–1045 (2006).
[Crossref]

Spadin, F.

F. Spadin, M. Jaeger, R. Nuster, P. Subochev, and M. Frenz, “Quantitative comparison of frequency-domain and delay-and-sum optoacoustic image reconstruction including the effect of coherence factor weighting,” J. Photoacoust. 17, 100149 (2020).
[Crossref]

Steenbergen, W.

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture,” J. Biomed. Opt. 9(6), 1327–1335 (2004).
[Crossref]

Stoica, G.

Su, R.

K. Wang, S. A. Ermilov, R. Su, H.-P. Brecht, A. A. Oraevsky, and M. A. Anastasio, “An imaging model incorporating ultrasonic transducer properties for three-dimensional optoacoustic tomography,” IEEE Trans. Med. Imaging 30(2), 203–214 (2011).
[Crossref]

Subochev, P.

F. Spadin, M. Jaeger, R. Nuster, P. Subochev, and M. Frenz, “Quantitative comparison of frequency-domain and delay-and-sum optoacoustic image reconstruction including the effect of coherence factor weighting,” J. Photoacoust. 17, 100149 (2020).
[Crossref]

Tao, C.

Torke, P. R.

G. Paltauf, P. R. Torke, and R. Nuster, “Modeling photoacoustic imaging with a scanning focused detector using Monte Carlo simulation of energy deposition,” J. Biomed. Opt. 23(12), 1 (2018).
[Crossref]

Turnbull, D. H.

J. A. Ketterling, O. Aristizabal, D. H. Turnbull, and F. L. Lizzi, “Design and fabrication of a 40-MHz annular array transducer,” IEEE Trans. Sonics Ultrason. 52(4), 672–681 (2005).
[Crossref]

van Leeuwen, T. G.

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture,” J. Biomed. Opt. 9(6), 1327–1335 (2004).
[Crossref]

Wang, K.

K. Wang, S. A. Ermilov, R. Su, H.-P. Brecht, A. A. Oraevsky, and M. A. Anastasio, “An imaging model incorporating ultrasonic transducer properties for three-dimensional optoacoustic tomography,” IEEE Trans. Med. Imaging 30(2), 203–214 (2011).
[Crossref]

Wang, L.

Wang, L. V.

D.-K. Yao, C. Zhang, K. Maslov, and L. V. Wang, “Photoacoustic measurement of the Grüneisen parameter of tissue,” J. Biomed. Opt. 19(1), 017007 (2014).
[Crossref]

J. Yao and L. V. Wang, “Sensitivity of photoacoustic microscopy,” J. Photoacoust. 2(2), 87–101 (2014).
[Crossref]

A. M. Winkler, K. Maslov, and L. V. Wang, “Noise-equivalent sensitivity of J. Photoacoust.,” J. Biomed. Opt. 18(9), 097003 (2013).
[Crossref]

X. Cai, Y. S. Zhang, Y. Xia, and L. V. Wang, “Photoacoustic Microscopy in Tissue Engineering,” Mater. Today 16(3), 67–77 (2013).
[Crossref]

J. Yao and L. V. Wang, “Photoacoustic Microscopy,” Laser Photonics Rev. 7(5), 758–778 (2013).
[Crossref]

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]

M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt. Lett. 31(4), 474 (2006).
[Crossref]

Williams, J. A.

H. R. Chabok, J. M. Cannata, H. H. Kim, J. A. Williams, J. Park, and K. K. Shung, “A high-frequency annular-array transducer using an interdigital bonded 1-3 composite,” IEEE Trans. Sonics Ultrason. 58(1), 206–214 (2011).
[Crossref]

Winkler, A. M.

A. M. Winkler, K. Maslov, and L. V. Wang, “Noise-equivalent sensitivity of J. Photoacoust.,” J. Biomed. Opt. 18(9), 097003 (2013).
[Crossref]

Xia, Y.

X. Cai, Y. S. Zhang, Y. Xia, and L. V. Wang, “Photoacoustic Microscopy in Tissue Engineering,” Mater. Today 16(3), 67–77 (2013).
[Crossref]

Xu, M.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]

Yao, D.-K.

D.-K. Yao, C. Zhang, K. Maslov, and L. V. Wang, “Photoacoustic measurement of the Grüneisen parameter of tissue,” J. Biomed. Opt. 19(1), 017007 (2014).
[Crossref]

Yao, J.

J. Yao and L. V. Wang, “Sensitivity of photoacoustic microscopy,” J. Photoacoust. 2(2), 87–101 (2014).
[Crossref]

J. Yao and L. V. Wang, “Photoacoustic Microscopy,” Laser Photonics Rev. 7(5), 758–778 (2013).
[Crossref]

Zhang, C.

D.-K. Yao, C. Zhang, K. Maslov, and L. V. Wang, “Photoacoustic measurement of the Grüneisen parameter of tissue,” J. Biomed. Opt. 19(1), 017007 (2014).
[Crossref]

Zhang, H. F.

Zhang, Y. S.

X. Cai, Y. S. Zhang, Y. Xia, and L. V. Wang, “Photoacoustic Microscopy in Tissue Engineering,” Mater. Today 16(3), 67–77 (2013).
[Crossref]

Ann. Phys. (1)

E. Grüneisen, “Theorie des festen Zustandes einatomiger Elemente,” Ann. Phys. 344(12), 257–306 (1912).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Laser-generation of ultrasonic X-waves using axicon transducers,” Appl. Phys. Lett. 94(6), 064108 (2009).
[Crossref]

Biomed. Opt. Express (2)

IEEE Trans. Med. Imaging (1)

K. Wang, S. A. Ermilov, R. Su, H.-P. Brecht, A. A. Oraevsky, and M. A. Anastasio, “An imaging model incorporating ultrasonic transducer properties for three-dimensional optoacoustic tomography,” IEEE Trans. Med. Imaging 30(2), 203–214 (2011).
[Crossref]

IEEE Trans. Sonics Ultrason. (5)

J. A. Brown, C. E. M. Démoré, and G. R. Lockwood, “Design and fabrication of annular arrays for high-frequency ultrasound,” IEEE Trans. Sonics Ultrason. 51(8), 1010–1017 (2004).
[Crossref]

E. J. Gottlieb, J. M. Cannata, C.-H. Hu, and K. K. Shung, “Development of a high-frequency (50 mhz) copolymer annular-array, ultrasound transducer,” IEEE Trans. Sonics Ultrason. 53(5), 1037–1045 (2006).
[Crossref]

H. R. Chabok, J. M. Cannata, H. H. Kim, J. A. Williams, J. Park, and K. K. Shung, “A high-frequency annular-array transducer using an interdigital bonded 1-3 composite,” IEEE Trans. Sonics Ultrason. 58(1), 206–214 (2011).
[Crossref]

J. A. Ketterling, O. Aristizabal, D. H. Turnbull, and F. L. Lizzi, “Design and fabrication of a 40-MHz annular array transducer,” IEEE Trans. Sonics Ultrason. 52(4), 672–681 (2005).
[Crossref]

J. Y. Lu and J. F. Greenleaf, “Nondiffracting X waves-exact solutions to free-space scalar wave equation and their finite aperture realizations,” IEEE Trans. Sonics Ultrason. 39(1), 19–31 (1992).
[Crossref]

J. Biomed. Opt. (4)

D.-K. Yao, C. Zhang, K. Maslov, and L. V. Wang, “Photoacoustic measurement of the Grüneisen parameter of tissue,” J. Biomed. Opt. 19(1), 017007 (2014).
[Crossref]

G. Paltauf, P. R. Torke, and R. Nuster, “Modeling photoacoustic imaging with a scanning focused detector using Monte Carlo simulation of energy deposition,” J. Biomed. Opt. 23(12), 1 (2018).
[Crossref]

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture,” J. Biomed. Opt. 9(6), 1327–1335 (2004).
[Crossref]

A. M. Winkler, K. Maslov, and L. V. Wang, “Noise-equivalent sensitivity of J. Photoacoust.,” J. Biomed. Opt. 18(9), 097003 (2013).
[Crossref]

J. Photoacoust. (3)

J. Yao and L. V. Wang, “Sensitivity of photoacoustic microscopy,” J. Photoacoust. 2(2), 87–101 (2014).
[Crossref]

K. G. Held, M. Jaeger, J. Rička, M. Frenz, and H. G. Akarçay, “Multiple irradiation sensing of the optical effective attenuation coefficient for spectral correction in handheld OA imaging,” J. Photoacoust. 4(2), 70–80 (2016).
[Crossref]

F. Spadin, M. Jaeger, R. Nuster, P. Subochev, and M. Frenz, “Quantitative comparison of frequency-domain and delay-and-sum optoacoustic image reconstruction including the effect of coherence factor weighting,” J. Photoacoust. 17, 100149 (2020).
[Crossref]

Laser Photonics Rev. (1)

J. Yao and L. V. Wang, “Photoacoustic Microscopy,” Laser Photonics Rev. 7(5), 758–778 (2013).
[Crossref]

Mater. Today (1)

X. Cai, Y. S. Zhang, Y. Xia, and L. V. Wang, “Photoacoustic Microscopy in Tissue Engineering,” Mater. Today 16(3), 67–77 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Phys. Med. Biol. (1)

S. L. Jacques, “Optical properties of biological tissues. A review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref]

Rev. Sci. Instrum. (1)

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]

Surg Innov (1)

M. B. Reinhart, C. R. Huntington, L. J. Blair, B. T. Heniford, and V. A. Augenstein, “Indocyanine Green. Historical Context, Current Applications, and Future Considerations,” Surg Innov 23(2), 166–175 (2016).
[Crossref]

Other (2)

S. Gratt, K. Passler, R. Nuster, and G. Paltauf, “Photoacoustic imaging using a conical axicon detector,” in SPIE Proceedings (SPIE, 2009), 73710W.

L. V. Wang, ed., Photoacoustic Imaging and Spectroscopy (CRC Press, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Comparison of simulated 2D images of a phantom consisting of five spherical sources with 0.5 mm diameter, arranged at depths between 15 and 35 mm: a) spherically focused detector, b) axicon, c) four-element planar ring array, d) four-element ring array with three inclined rings and a planar ring in the center.
Fig. 2.
Fig. 2. Schematic illustration and photographs of the presented sensor array: a) cross section image of the geometry of the sensor array, b) photograph of the lower side of the piezo film, showing the etched elements, c) photograph of the device with the aluminium housing containing the plugs for the electrical connection to the amplifier.
Fig. 3.
Fig. 3. Schematic drawing of the sensor array and the measurement setup.
Fig. 4.
Fig. 4. Photographs of two phantoms: a) Orientation of the graphite leads in the background material, consisting of agar and SMOFlipid, b) photograph of the tube phantom that was used to estimate the NEP of the sensor array.
Fig. 5.
Fig. 5. Imaging results of a microsphere phantom: a) B-scan of the phantom after dynamic focusing, b) B-scan of the phantom after dynamic focusing and coherence factor weighting, c) The difference between the two B-scans.
Fig. 6.
Fig. 6. Imaging results of a microsphere phantom after reconstruction: a) B-scans of the phantom for different depths. The results are superimposed in one image, b) B-scans of the phantom at depths of about 22.5 mm and 39 mm, c) The resolution was estimated from the FWHM of a Gaussian fit (red dotted line) to profiles through the center of a microsphere (blue continuous line).
Fig. 7.
Fig. 7. Axial profile through the center of the reconstructed microsphere image. The amplitudes of the microsphere images stay consistent for depths from 20 mm to 39 mm.
Fig. 8.
Fig. 8. Artefact reduction based on dynamic focusing and coherence weighting: a) B-scan of ring 3 across the phantom shown in the inset, b) Zoom of the area indicated by the rectangle in a) showing two leads and illustrating the overlapping effect of X-artefacts for objects positioned next to each other, c) Reconstruction results of the two leads after dynamic focusing of all rings and the use of coherence factor weighting, d) Reconstruction without negative values.
Fig. 9.
Fig. 9. Measurement of intertwined tube structures: a) Tube phantom with ICG filled silicone tubes, before filling it with scattering agar. The yellow square illustrates the scan area of 30 × 30 mm, b) Maximum amplitude projection of the 3D Scan in z-direction superposed with the photograph.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

p 0 ( r ) = Γ W ( r )
( 2 1 c s 2 2 t 2 ) p ( r , t ) = β C p W ( r ) I ( t ) t
| s ( t ) = β 4 π C p t S 0 V W ( r ) 1 | r 0 r | δ ( t | r 0 r | c s ) d 3 r d S 0
h ( r , t ) = S 1 | r 0 r | δ ( t | r 0 r | c s ) d S 0
s ( t ) = g ( t ) i h ( r i , t )
M ( r c , t ) = g ( t ) h ( r c , t )

Metrics