Abstract

Optical microscopes are an essential tool for both the detection of disease in clinics, and for scientific analysis. However, in much of the world access to high-performance microscopy is limited by both the upfront cost and maintenance cost of the equipment. Here we present an open-source, 3D-printed, and fully-automated laboratory microscope, with motorised sample positioning and focus control. The microscope is highly customisable, with a number of options readily available including trans- and epi- illumination, polarisation contrast imaging, and epi-florescence imaging. The OpenFlexure microscope has been designed to enable low-volume manufacturing and maintenance by local personnel, vastly increasing accessibility. We have produced over 100 microscopes in Tanzania and Kenya for educational, scientific, and clinical applications, demonstrating that local manufacturing can be a viable alternative to international supply chains that can often be costly, slow, and unreliable.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Cost-efficient open source laser engine for microscopy

Daniel Schröder, Joran Deschamps, Anindita Dasgupta, Ulf Matti, and Jonas Ries
Biomed. Opt. Express 11(2) 609-623 (2020)

Cell phone digital microscopy using an oil droplet

Nicole Anna Szydlowski, Haoran Jing, Mohamed Alqashmi, and Ying Samuel Hu
Biomed. Opt. Express 11(5) 2328-2338 (2020)

Remote scanning for ultra-large field of view in wide-field microscopy and full-field OCT

Gaëlle Recher, Pierre Nassoy, and Amaury Badon
Biomed. Opt. Express 11(5) 2578-2590 (2020)

References

  • View by:
  • |
  • |
  • |

  1. A. J. M. Wollman, R. Nudd, E. G. Hedlund, and M. C. Leake, “From Animaculum to single molecules: 300 years of the light microscope,” Open Biol. 5(4), 150019 (2015).
    [Crossref]
  2. P. Yadav, “Health product supply chains in developing countries: Diagnosis of the root causes of underperformance and an agenda for reform,” Heal. Syst. & Reform 1(2), 142–154 (2015).
    [Crossref]
  3. R. A. Malkin, “Barriers for medical devices for the developing world,” Expert Rev. Med. Devices 4(6), 759–763 (2007).
    [Crossref]
  4. R. Malkin and A. Keane, “Evidence-based approach to the maintenance of laboratory and medical equipment in resource-poor settings,” Med. Biol. Eng. Comput. 48(7), 721–726 (2010).
    [Crossref]
  5. A. Maia Chagas, “Haves and have nots must find a better way: The case for open scientific hardware,” PLoS Biol. 16(9), e3000014 (2018).
    [Crossref]
  6. J. M. Pearce, “Building Research Equipment with Free, Open-Source Hardware,” Science 337(6100), 1303–1304 (2012).
    [Crossref]
  7. R. Fobel, C. Fobel, and A. R. Wheeler, “DropBot: An open-source digital microfluidic control system with precise control of electrostatic driving force and instantaneous drop velocity measurement,” Appl. Phys. Lett. 102(19), 193513 (2013).
    [Crossref]
  8. C. Mista, M. Zalazar, A. Pe nalva, M. Martina, and J. M. Reta, “Open Source Quartz Crystal Microbalance with dissipation monitoring,” J. Phys.: Conf. Ser. 705, 012008 (2016).
    [Crossref]
  9. J. S. Cybulski, J. Clements, and M. Prakash, “Foldscope: Origami-Based Paper Microscope,” PLoS One 9(6), e98781 (2014).
    [Crossref]
  10. T. Baden, A. M. Chagas, G. Gage, T. Marzullo, L. L. Prieto-Godino, and T. Euler, “Open Labware: 3-D Printing Your Own Lab Equipment,” PLoS Biol. 13(3), e1002086 (2015).
    [Crossref]
  11. C. Zhang, N. C. Anzalone, R. P. Faria, and J. M. Pearce, “Open-Source 3D-Printable Optics Equipment,” PLoS One 8(3), e59840 (2013).
    [Crossref]
  12. A. Maia Chagas, L. L. Prieto-Godino, A. B. Arrenberg, and T. Baden, “The €100 lab: A 3D-printable open-source platform for fluorescence microscopy, optogenetics, and accurate temperature control during behaviour of zebrafish, Drosophila, and Caenorhabditis elegans,” PLoS Biol. 15(7), e2002702 (2017).
    [Crossref]
  13. J. P. Sharkey, D. C. Foo, A. Kabla, J. J. Baumberg, and R. W. Bowman, “A one-piece 3D printed flexure translation stage for open-source microscopy,” Rev. Sci. Instrum. 87(2), 025104 (2016).
    [Crossref]
  14. X. Hong, V. K. Nagarajan, D. H. Mugler, and B. Yu, “Smartphone microendoscopy for high resolution fluorescence imaging,” J. Innovative Opt. Health Sci. 09(05), 1650046 (2016).
    [Crossref]
  15. W. Zhu, G. Pirovano, P. K. O’Neal, C. Gong, N. Kulkarni, C. D. Nguyen, C. Brand, T. Reiner, and D. Kang, “Smartphone epifluorescence microscopy for cellular imaging of fresh tissue in low-resource settings,” Biomed. Opt. Express 11(1), 89 (2020).
    [Crossref]
  16. W. Zhu, C. Gong, N. Kulkarni, C. D. Nguyen, and D. Kang, Smartphone-based Microscopes (Elsevier Inc., 2020).
  17. Sony Corporation, IMX219PQH5-C Diagonal 4.60 mm (Type 1/4.0) 8 Mega-Pixel CMOS Image Sensor with Square Pixel for Color Cameras.
  18. M. Pagnutti, R. E. Ryan, G. Cazenavette, M. Gold, R. Harlan, E. Leggett, and J. Pagnutti, “Laying the foundation to use Raspberry Pi 3 V2 camera module imagery for scientific and engineering purposes,” J. Electron. Imaging 26(1), 013014 (2017).
    [Crossref]
  19. R. Bowman, B. Vodenicharski, J. Collins, and J. Stirling, “Flat-field and colour correction for the raspberry pi camera module,” https://arxiv.org/abs/1911.13295 (2019).
  20. C. M. Nolen, G. Denina, D. Teweldebrhan, B. Bhanu, and A. A. Balandin, “High-Throughput Large-Area Automated Identification and Quality Control of Graphene and Few-Layer Graphene Films,” ACS Nano 5(2), 914–922 (2011).
    [Crossref]
  21. L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express 18(14), 14395 (2010).
    [Crossref]
  22. S. H. Jang and I. Jung, “Visibility of few-layer graphene oxide under modified light using bandpass filters,” J. Opt. Soc. Am. A 33(10), 2099 (2016).
    [Crossref]
  23. P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007).
    [Crossref]
  24. W. C. McCrone, L. B. McCrone, and J. G. Delly, Polarized Light Microscopy (Ann Arbor Science Publishers, 1978).
  25. R. Oldenbourg, “A new view on polarization microscopy,” Nature 381(6585), 811–812 (1996).
    [Crossref]
  26. J. G. Delly, Essentials of Polarized Light Microscopy and Ancillary Techniques (McCrone Group, Incorporated, 2017).
  27. D. Marr and E. Hildreth, “Theory of edge detection,” Proc. R. Soc. Lond. B 207(1167), 187–217 (1980).
    [Crossref]
  28. X. Wang, “Laplacian Operator-Based Edge Detectors,” IEEE Transactions on Pattern Analysis Mach. Intell. 29(5), 886–890 (2007).
    [Crossref]
  29. “Image composite editor - microsoft research,” https://www.microsoft.com/en-us/research/product/computational-photography-applications/image-composite-editor/ (2019).
  30. Q. Meng, K. Harrington, J. Stirling, and R. Bowman, “The OpenFlexure Block Stage: sub-100 nm fibre alignment with a monolithic plastic flexure stage,” Opt. Express 28(4), 4763 (2020).
    [Crossref]
  31. “Openflexure / pi-gen - gitlab,” https://gitlab.com/openflexure/pi-gen (2019).
  32. “Openflexure / openflexure-ev - gitlab,” https://gitlab.com/openflexure/openflexure-microscope-jsclient (2019).
  33. “Openflexure / openflexure-microscope - gitlab,” https://gitlab.com/openflexure/openflexure-microscope (2019).
  34. B. Diederich, R. Richter, S. Carlstedt, X. Uwurukundo, H. Wang, A. Mosig, and R. Heintzmann, “UC2 – A 3D-printed General-Purpose Optical Toolbox for Microscopic Imaging,” in Imaging and Applied Optics 2019 (COSI, IS, MATH, pcAOP), vol. 2019 (OSA, Washington D.C., 2019), p. ITh3B.5.

2020 (2)

2018 (1)

A. Maia Chagas, “Haves and have nots must find a better way: The case for open scientific hardware,” PLoS Biol. 16(9), e3000014 (2018).
[Crossref]

2017 (2)

M. Pagnutti, R. E. Ryan, G. Cazenavette, M. Gold, R. Harlan, E. Leggett, and J. Pagnutti, “Laying the foundation to use Raspberry Pi 3 V2 camera module imagery for scientific and engineering purposes,” J. Electron. Imaging 26(1), 013014 (2017).
[Crossref]

A. Maia Chagas, L. L. Prieto-Godino, A. B. Arrenberg, and T. Baden, “The €100 lab: A 3D-printable open-source platform for fluorescence microscopy, optogenetics, and accurate temperature control during behaviour of zebrafish, Drosophila, and Caenorhabditis elegans,” PLoS Biol. 15(7), e2002702 (2017).
[Crossref]

2016 (4)

J. P. Sharkey, D. C. Foo, A. Kabla, J. J. Baumberg, and R. W. Bowman, “A one-piece 3D printed flexure translation stage for open-source microscopy,” Rev. Sci. Instrum. 87(2), 025104 (2016).
[Crossref]

X. Hong, V. K. Nagarajan, D. H. Mugler, and B. Yu, “Smartphone microendoscopy for high resolution fluorescence imaging,” J. Innovative Opt. Health Sci. 09(05), 1650046 (2016).
[Crossref]

C. Mista, M. Zalazar, A. Pe nalva, M. Martina, and J. M. Reta, “Open Source Quartz Crystal Microbalance with dissipation monitoring,” J. Phys.: Conf. Ser. 705, 012008 (2016).
[Crossref]

S. H. Jang and I. Jung, “Visibility of few-layer graphene oxide under modified light using bandpass filters,” J. Opt. Soc. Am. A 33(10), 2099 (2016).
[Crossref]

2015 (3)

A. J. M. Wollman, R. Nudd, E. G. Hedlund, and M. C. Leake, “From Animaculum to single molecules: 300 years of the light microscope,” Open Biol. 5(4), 150019 (2015).
[Crossref]

P. Yadav, “Health product supply chains in developing countries: Diagnosis of the root causes of underperformance and an agenda for reform,” Heal. Syst. & Reform 1(2), 142–154 (2015).
[Crossref]

T. Baden, A. M. Chagas, G. Gage, T. Marzullo, L. L. Prieto-Godino, and T. Euler, “Open Labware: 3-D Printing Your Own Lab Equipment,” PLoS Biol. 13(3), e1002086 (2015).
[Crossref]

2014 (1)

J. S. Cybulski, J. Clements, and M. Prakash, “Foldscope: Origami-Based Paper Microscope,” PLoS One 9(6), e98781 (2014).
[Crossref]

2013 (2)

R. Fobel, C. Fobel, and A. R. Wheeler, “DropBot: An open-source digital microfluidic control system with precise control of electrostatic driving force and instantaneous drop velocity measurement,” Appl. Phys. Lett. 102(19), 193513 (2013).
[Crossref]

C. Zhang, N. C. Anzalone, R. P. Faria, and J. M. Pearce, “Open-Source 3D-Printable Optics Equipment,” PLoS One 8(3), e59840 (2013).
[Crossref]

2012 (1)

J. M. Pearce, “Building Research Equipment with Free, Open-Source Hardware,” Science 337(6100), 1303–1304 (2012).
[Crossref]

2011 (1)

C. M. Nolen, G. Denina, D. Teweldebrhan, B. Bhanu, and A. A. Balandin, “High-Throughput Large-Area Automated Identification and Quality Control of Graphene and Few-Layer Graphene Films,” ACS Nano 5(2), 914–922 (2011).
[Crossref]

2010 (2)

L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express 18(14), 14395 (2010).
[Crossref]

R. Malkin and A. Keane, “Evidence-based approach to the maintenance of laboratory and medical equipment in resource-poor settings,” Med. Biol. Eng. Comput. 48(7), 721–726 (2010).
[Crossref]

2007 (3)

R. A. Malkin, “Barriers for medical devices for the developing world,” Expert Rev. Med. Devices 4(6), 759–763 (2007).
[Crossref]

P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007).
[Crossref]

X. Wang, “Laplacian Operator-Based Edge Detectors,” IEEE Transactions on Pattern Analysis Mach. Intell. 29(5), 886–890 (2007).
[Crossref]

1996 (1)

R. Oldenbourg, “A new view on polarization microscopy,” Nature 381(6585), 811–812 (1996).
[Crossref]

1980 (1)

D. Marr and E. Hildreth, “Theory of edge detection,” Proc. R. Soc. Lond. B 207(1167), 187–217 (1980).
[Crossref]

Anzalone, N. C.

C. Zhang, N. C. Anzalone, R. P. Faria, and J. M. Pearce, “Open-Source 3D-Printable Optics Equipment,” PLoS One 8(3), e59840 (2013).
[Crossref]

Arrenberg, A. B.

A. Maia Chagas, L. L. Prieto-Godino, A. B. Arrenberg, and T. Baden, “The €100 lab: A 3D-printable open-source platform for fluorescence microscopy, optogenetics, and accurate temperature control during behaviour of zebrafish, Drosophila, and Caenorhabditis elegans,” PLoS Biol. 15(7), e2002702 (2017).
[Crossref]

Baden, T.

A. Maia Chagas, L. L. Prieto-Godino, A. B. Arrenberg, and T. Baden, “The €100 lab: A 3D-printable open-source platform for fluorescence microscopy, optogenetics, and accurate temperature control during behaviour of zebrafish, Drosophila, and Caenorhabditis elegans,” PLoS Biol. 15(7), e2002702 (2017).
[Crossref]

T. Baden, A. M. Chagas, G. Gage, T. Marzullo, L. L. Prieto-Godino, and T. Euler, “Open Labware: 3-D Printing Your Own Lab Equipment,” PLoS Biol. 13(3), e1002086 (2015).
[Crossref]

Balandin, A. A.

C. M. Nolen, G. Denina, D. Teweldebrhan, B. Bhanu, and A. A. Balandin, “High-Throughput Large-Area Automated Identification and Quality Control of Graphene and Few-Layer Graphene Films,” ACS Nano 5(2), 914–922 (2011).
[Crossref]

Baumberg, J. J.

J. P. Sharkey, D. C. Foo, A. Kabla, J. J. Baumberg, and R. W. Bowman, “A one-piece 3D printed flexure translation stage for open-source microscopy,” Rev. Sci. Instrum. 87(2), 025104 (2016).
[Crossref]

Bhanu, B.

C. M. Nolen, G. Denina, D. Teweldebrhan, B. Bhanu, and A. A. Balandin, “High-Throughput Large-Area Automated Identification and Quality Control of Graphene and Few-Layer Graphene Films,” ACS Nano 5(2), 914–922 (2011).
[Crossref]

Blake, P.

P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007).
[Crossref]

Booth, T. J.

P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007).
[Crossref]

Bowman, R.

Q. Meng, K. Harrington, J. Stirling, and R. Bowman, “The OpenFlexure Block Stage: sub-100 nm fibre alignment with a monolithic plastic flexure stage,” Opt. Express 28(4), 4763 (2020).
[Crossref]

R. Bowman, B. Vodenicharski, J. Collins, and J. Stirling, “Flat-field and colour correction for the raspberry pi camera module,” https://arxiv.org/abs/1911.13295 (2019).

Bowman, R. W.

J. P. Sharkey, D. C. Foo, A. Kabla, J. J. Baumberg, and R. W. Bowman, “A one-piece 3D printed flexure translation stage for open-source microscopy,” Rev. Sci. Instrum. 87(2), 025104 (2016).
[Crossref]

Brand, C.

Carlstedt, S.

B. Diederich, R. Richter, S. Carlstedt, X. Uwurukundo, H. Wang, A. Mosig, and R. Heintzmann, “UC2 – A 3D-printed General-Purpose Optical Toolbox for Microscopic Imaging,” in Imaging and Applied Optics 2019 (COSI, IS, MATH, pcAOP), vol. 2019 (OSA, Washington D.C., 2019), p. ITh3B.5.

Castro Neto, A. H.

P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007).
[Crossref]

Cazenavette, G.

M. Pagnutti, R. E. Ryan, G. Cazenavette, M. Gold, R. Harlan, E. Leggett, and J. Pagnutti, “Laying the foundation to use Raspberry Pi 3 V2 camera module imagery for scientific and engineering purposes,” J. Electron. Imaging 26(1), 013014 (2017).
[Crossref]

Chagas, A. M.

T. Baden, A. M. Chagas, G. Gage, T. Marzullo, L. L. Prieto-Godino, and T. Euler, “Open Labware: 3-D Printing Your Own Lab Equipment,” PLoS Biol. 13(3), e1002086 (2015).
[Crossref]

Chu, H. S.

Clements, J.

J. S. Cybulski, J. Clements, and M. Prakash, “Foldscope: Origami-Based Paper Microscope,” PLoS One 9(6), e98781 (2014).
[Crossref]

Collins, J.

R. Bowman, B. Vodenicharski, J. Collins, and J. Stirling, “Flat-field and colour correction for the raspberry pi camera module,” https://arxiv.org/abs/1911.13295 (2019).

Cybulski, J. S.

J. S. Cybulski, J. Clements, and M. Prakash, “Foldscope: Origami-Based Paper Microscope,” PLoS One 9(6), e98781 (2014).
[Crossref]

Delly, J. G.

W. C. McCrone, L. B. McCrone, and J. G. Delly, Polarized Light Microscopy (Ann Arbor Science Publishers, 1978).

J. G. Delly, Essentials of Polarized Light Microscopy and Ancillary Techniques (McCrone Group, Incorporated, 2017).

Denina, G.

C. M. Nolen, G. Denina, D. Teweldebrhan, B. Bhanu, and A. A. Balandin, “High-Throughput Large-Area Automated Identification and Quality Control of Graphene and Few-Layer Graphene Films,” ACS Nano 5(2), 914–922 (2011).
[Crossref]

Diederich, B.

B. Diederich, R. Richter, S. Carlstedt, X. Uwurukundo, H. Wang, A. Mosig, and R. Heintzmann, “UC2 – A 3D-printed General-Purpose Optical Toolbox for Microscopic Imaging,” in Imaging and Applied Optics 2019 (COSI, IS, MATH, pcAOP), vol. 2019 (OSA, Washington D.C., 2019), p. ITh3B.5.

Euler, T.

T. Baden, A. M. Chagas, G. Gage, T. Marzullo, L. L. Prieto-Godino, and T. Euler, “Open Labware: 3-D Printing Your Own Lab Equipment,” PLoS Biol. 13(3), e1002086 (2015).
[Crossref]

Faria, R. P.

C. Zhang, N. C. Anzalone, R. P. Faria, and J. M. Pearce, “Open-Source 3D-Printable Optics Equipment,” PLoS One 8(3), e59840 (2013).
[Crossref]

Fobel, C.

R. Fobel, C. Fobel, and A. R. Wheeler, “DropBot: An open-source digital microfluidic control system with precise control of electrostatic driving force and instantaneous drop velocity measurement,” Appl. Phys. Lett. 102(19), 193513 (2013).
[Crossref]

Fobel, R.

R. Fobel, C. Fobel, and A. R. Wheeler, “DropBot: An open-source digital microfluidic control system with precise control of electrostatic driving force and instantaneous drop velocity measurement,” Appl. Phys. Lett. 102(19), 193513 (2013).
[Crossref]

Foo, D. C.

J. P. Sharkey, D. C. Foo, A. Kabla, J. J. Baumberg, and R. W. Bowman, “A one-piece 3D printed flexure translation stage for open-source microscopy,” Rev. Sci. Instrum. 87(2), 025104 (2016).
[Crossref]

Gage, G.

T. Baden, A. M. Chagas, G. Gage, T. Marzullo, L. L. Prieto-Godino, and T. Euler, “Open Labware: 3-D Printing Your Own Lab Equipment,” PLoS Biol. 13(3), e1002086 (2015).
[Crossref]

Geim, A. K.

P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007).
[Crossref]

Gold, M.

M. Pagnutti, R. E. Ryan, G. Cazenavette, M. Gold, R. Harlan, E. Leggett, and J. Pagnutti, “Laying the foundation to use Raspberry Pi 3 V2 camera module imagery for scientific and engineering purposes,” J. Electron. Imaging 26(1), 013014 (2017).
[Crossref]

Gong, C.

Harlan, R.

M. Pagnutti, R. E. Ryan, G. Cazenavette, M. Gold, R. Harlan, E. Leggett, and J. Pagnutti, “Laying the foundation to use Raspberry Pi 3 V2 camera module imagery for scientific and engineering purposes,” J. Electron. Imaging 26(1), 013014 (2017).
[Crossref]

Harrington, K.

Hedlund, E. G.

A. J. M. Wollman, R. Nudd, E. G. Hedlund, and M. C. Leake, “From Animaculum to single molecules: 300 years of the light microscope,” Open Biol. 5(4), 150019 (2015).
[Crossref]

Heintzmann, R.

B. Diederich, R. Richter, S. Carlstedt, X. Uwurukundo, H. Wang, A. Mosig, and R. Heintzmann, “UC2 – A 3D-printed General-Purpose Optical Toolbox for Microscopic Imaging,” in Imaging and Applied Optics 2019 (COSI, IS, MATH, pcAOP), vol. 2019 (OSA, Washington D.C., 2019), p. ITh3B.5.

Hildreth, E.

D. Marr and E. Hildreth, “Theory of edge detection,” Proc. R. Soc. Lond. B 207(1167), 187–217 (1980).
[Crossref]

Hill, E. W.

P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007).
[Crossref]

Hong, X.

X. Hong, V. K. Nagarajan, D. H. Mugler, and B. Yu, “Smartphone microendoscopy for high resolution fluorescence imaging,” J. Innovative Opt. Health Sci. 09(05), 1650046 (2016).
[Crossref]

Jang, S. H.

Jiang, D.

P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007).
[Crossref]

Jung, I.

Kabla, A.

J. P. Sharkey, D. C. Foo, A. Kabla, J. J. Baumberg, and R. W. Bowman, “A one-piece 3D printed flexure translation stage for open-source microscopy,” Rev. Sci. Instrum. 87(2), 025104 (2016).
[Crossref]

Kang, D.

Keane, A.

R. Malkin and A. Keane, “Evidence-based approach to the maintenance of laboratory and medical equipment in resource-poor settings,” Med. Biol. Eng. Comput. 48(7), 721–726 (2010).
[Crossref]

Koh, W. S.

Kulkarni, N.

Leake, M. C.

A. J. M. Wollman, R. Nudd, E. G. Hedlund, and M. C. Leake, “From Animaculum to single molecules: 300 years of the light microscope,” Open Biol. 5(4), 150019 (2015).
[Crossref]

Leggett, E.

M. Pagnutti, R. E. Ryan, G. Cazenavette, M. Gold, R. Harlan, E. Leggett, and J. Pagnutti, “Laying the foundation to use Raspberry Pi 3 V2 camera module imagery for scientific and engineering purposes,” J. Electron. Imaging 26(1), 013014 (2017).
[Crossref]

Li, E. P.

Maia Chagas, A.

A. Maia Chagas, “Haves and have nots must find a better way: The case for open scientific hardware,” PLoS Biol. 16(9), e3000014 (2018).
[Crossref]

A. Maia Chagas, L. L. Prieto-Godino, A. B. Arrenberg, and T. Baden, “The €100 lab: A 3D-printable open-source platform for fluorescence microscopy, optogenetics, and accurate temperature control during behaviour of zebrafish, Drosophila, and Caenorhabditis elegans,” PLoS Biol. 15(7), e2002702 (2017).
[Crossref]

Malkin, R.

R. Malkin and A. Keane, “Evidence-based approach to the maintenance of laboratory and medical equipment in resource-poor settings,” Med. Biol. Eng. Comput. 48(7), 721–726 (2010).
[Crossref]

Malkin, R. A.

R. A. Malkin, “Barriers for medical devices for the developing world,” Expert Rev. Med. Devices 4(6), 759–763 (2007).
[Crossref]

Marr, D.

D. Marr and E. Hildreth, “Theory of edge detection,” Proc. R. Soc. Lond. B 207(1167), 187–217 (1980).
[Crossref]

Martina, M.

C. Mista, M. Zalazar, A. Pe nalva, M. Martina, and J. M. Reta, “Open Source Quartz Crystal Microbalance with dissipation monitoring,” J. Phys.: Conf. Ser. 705, 012008 (2016).
[Crossref]

Marzullo, T.

T. Baden, A. M. Chagas, G. Gage, T. Marzullo, L. L. Prieto-Godino, and T. Euler, “Open Labware: 3-D Printing Your Own Lab Equipment,” PLoS Biol. 13(3), e1002086 (2015).
[Crossref]

McCrone, L. B.

W. C. McCrone, L. B. McCrone, and J. G. Delly, Polarized Light Microscopy (Ann Arbor Science Publishers, 1978).

McCrone, W. C.

W. C. McCrone, L. B. McCrone, and J. G. Delly, Polarized Light Microscopy (Ann Arbor Science Publishers, 1978).

Meng, Q.

Mista, C.

C. Mista, M. Zalazar, A. Pe nalva, M. Martina, and J. M. Reta, “Open Source Quartz Crystal Microbalance with dissipation monitoring,” J. Phys.: Conf. Ser. 705, 012008 (2016).
[Crossref]

Mosig, A.

B. Diederich, R. Richter, S. Carlstedt, X. Uwurukundo, H. Wang, A. Mosig, and R. Heintzmann, “UC2 – A 3D-printed General-Purpose Optical Toolbox for Microscopic Imaging,” in Imaging and Applied Optics 2019 (COSI, IS, MATH, pcAOP), vol. 2019 (OSA, Washington D.C., 2019), p. ITh3B.5.

Mugler, D. H.

X. Hong, V. K. Nagarajan, D. H. Mugler, and B. Yu, “Smartphone microendoscopy for high resolution fluorescence imaging,” J. Innovative Opt. Health Sci. 09(05), 1650046 (2016).
[Crossref]

Nagarajan, V. K.

X. Hong, V. K. Nagarajan, D. H. Mugler, and B. Yu, “Smartphone microendoscopy for high resolution fluorescence imaging,” J. Innovative Opt. Health Sci. 09(05), 1650046 (2016).
[Crossref]

Nguyen, C. D.

Nolen, C. M.

C. M. Nolen, G. Denina, D. Teweldebrhan, B. Bhanu, and A. A. Balandin, “High-Throughput Large-Area Automated Identification and Quality Control of Graphene and Few-Layer Graphene Films,” ACS Nano 5(2), 914–922 (2011).
[Crossref]

Novoselov, K. S.

P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007).
[Crossref]

Nudd, R.

A. J. M. Wollman, R. Nudd, E. G. Hedlund, and M. C. Leake, “From Animaculum to single molecules: 300 years of the light microscope,” Open Biol. 5(4), 150019 (2015).
[Crossref]

O’Neal, P. K.

Oldenbourg, R.

R. Oldenbourg, “A new view on polarization microscopy,” Nature 381(6585), 811–812 (1996).
[Crossref]

Pagnutti, J.

M. Pagnutti, R. E. Ryan, G. Cazenavette, M. Gold, R. Harlan, E. Leggett, and J. Pagnutti, “Laying the foundation to use Raspberry Pi 3 V2 camera module imagery for scientific and engineering purposes,” J. Electron. Imaging 26(1), 013014 (2017).
[Crossref]

Pagnutti, M.

M. Pagnutti, R. E. Ryan, G. Cazenavette, M. Gold, R. Harlan, E. Leggett, and J. Pagnutti, “Laying the foundation to use Raspberry Pi 3 V2 camera module imagery for scientific and engineering purposes,” J. Electron. Imaging 26(1), 013014 (2017).
[Crossref]

Pe nalva, A.

C. Mista, M. Zalazar, A. Pe nalva, M. Martina, and J. M. Reta, “Open Source Quartz Crystal Microbalance with dissipation monitoring,” J. Phys.: Conf. Ser. 705, 012008 (2016).
[Crossref]

Pearce, J. M.

C. Zhang, N. C. Anzalone, R. P. Faria, and J. M. Pearce, “Open-Source 3D-Printable Optics Equipment,” PLoS One 8(3), e59840 (2013).
[Crossref]

J. M. Pearce, “Building Research Equipment with Free, Open-Source Hardware,” Science 337(6100), 1303–1304 (2012).
[Crossref]

Pirovano, G.

Prakash, M.

J. S. Cybulski, J. Clements, and M. Prakash, “Foldscope: Origami-Based Paper Microscope,” PLoS One 9(6), e98781 (2014).
[Crossref]

Prieto-Godino, L. L.

A. Maia Chagas, L. L. Prieto-Godino, A. B. Arrenberg, and T. Baden, “The €100 lab: A 3D-printable open-source platform for fluorescence microscopy, optogenetics, and accurate temperature control during behaviour of zebrafish, Drosophila, and Caenorhabditis elegans,” PLoS Biol. 15(7), e2002702 (2017).
[Crossref]

T. Baden, A. M. Chagas, G. Gage, T. Marzullo, L. L. Prieto-Godino, and T. Euler, “Open Labware: 3-D Printing Your Own Lab Equipment,” PLoS Biol. 13(3), e1002086 (2015).
[Crossref]

Reiner, T.

Reta, J. M.

C. Mista, M. Zalazar, A. Pe nalva, M. Martina, and J. M. Reta, “Open Source Quartz Crystal Microbalance with dissipation monitoring,” J. Phys.: Conf. Ser. 705, 012008 (2016).
[Crossref]

Richter, R.

B. Diederich, R. Richter, S. Carlstedt, X. Uwurukundo, H. Wang, A. Mosig, and R. Heintzmann, “UC2 – A 3D-printed General-Purpose Optical Toolbox for Microscopic Imaging,” in Imaging and Applied Optics 2019 (COSI, IS, MATH, pcAOP), vol. 2019 (OSA, Washington D.C., 2019), p. ITh3B.5.

Ryan, R. E.

M. Pagnutti, R. E. Ryan, G. Cazenavette, M. Gold, R. Harlan, E. Leggett, and J. Pagnutti, “Laying the foundation to use Raspberry Pi 3 V2 camera module imagery for scientific and engineering purposes,” J. Electron. Imaging 26(1), 013014 (2017).
[Crossref]

Sharkey, J. P.

J. P. Sharkey, D. C. Foo, A. Kabla, J. J. Baumberg, and R. W. Bowman, “A one-piece 3D printed flexure translation stage for open-source microscopy,” Rev. Sci. Instrum. 87(2), 025104 (2016).
[Crossref]

Stirling, J.

Q. Meng, K. Harrington, J. Stirling, and R. Bowman, “The OpenFlexure Block Stage: sub-100 nm fibre alignment with a monolithic plastic flexure stage,” Opt. Express 28(4), 4763 (2020).
[Crossref]

R. Bowman, B. Vodenicharski, J. Collins, and J. Stirling, “Flat-field and colour correction for the raspberry pi camera module,” https://arxiv.org/abs/1911.13295 (2019).

Teweldebrhan, D.

C. M. Nolen, G. Denina, D. Teweldebrhan, B. Bhanu, and A. A. Balandin, “High-Throughput Large-Area Automated Identification and Quality Control of Graphene and Few-Layer Graphene Films,” ACS Nano 5(2), 914–922 (2011).
[Crossref]

Uwurukundo, X.

B. Diederich, R. Richter, S. Carlstedt, X. Uwurukundo, H. Wang, A. Mosig, and R. Heintzmann, “UC2 – A 3D-printed General-Purpose Optical Toolbox for Microscopic Imaging,” in Imaging and Applied Optics 2019 (COSI, IS, MATH, pcAOP), vol. 2019 (OSA, Washington D.C., 2019), p. ITh3B.5.

Vodenicharski, B.

R. Bowman, B. Vodenicharski, J. Collins, and J. Stirling, “Flat-field and colour correction for the raspberry pi camera module,” https://arxiv.org/abs/1911.13295 (2019).

Wang, H.

B. Diederich, R. Richter, S. Carlstedt, X. Uwurukundo, H. Wang, A. Mosig, and R. Heintzmann, “UC2 – A 3D-printed General-Purpose Optical Toolbox for Microscopic Imaging,” in Imaging and Applied Optics 2019 (COSI, IS, MATH, pcAOP), vol. 2019 (OSA, Washington D.C., 2019), p. ITh3B.5.

Wang, X.

X. Wang, “Laplacian Operator-Based Edge Detectors,” IEEE Transactions on Pattern Analysis Mach. Intell. 29(5), 886–890 (2007).
[Crossref]

Wheeler, A. R.

R. Fobel, C. Fobel, and A. R. Wheeler, “DropBot: An open-source digital microfluidic control system with precise control of electrostatic driving force and instantaneous drop velocity measurement,” Appl. Phys. Lett. 102(19), 193513 (2013).
[Crossref]

Wollman, A. J. M.

A. J. M. Wollman, R. Nudd, E. G. Hedlund, and M. C. Leake, “From Animaculum to single molecules: 300 years of the light microscope,” Open Biol. 5(4), 150019 (2015).
[Crossref]

Wu, L.

Yadav, P.

P. Yadav, “Health product supply chains in developing countries: Diagnosis of the root causes of underperformance and an agenda for reform,” Heal. Syst. & Reform 1(2), 142–154 (2015).
[Crossref]

Yang, R.

P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007).
[Crossref]

Yu, B.

X. Hong, V. K. Nagarajan, D. H. Mugler, and B. Yu, “Smartphone microendoscopy for high resolution fluorescence imaging,” J. Innovative Opt. Health Sci. 09(05), 1650046 (2016).
[Crossref]

Zalazar, M.

C. Mista, M. Zalazar, A. Pe nalva, M. Martina, and J. M. Reta, “Open Source Quartz Crystal Microbalance with dissipation monitoring,” J. Phys.: Conf. Ser. 705, 012008 (2016).
[Crossref]

Zhang, C.

C. Zhang, N. C. Anzalone, R. P. Faria, and J. M. Pearce, “Open-Source 3D-Printable Optics Equipment,” PLoS One 8(3), e59840 (2013).
[Crossref]

Zhu, W.

ACS Nano (1)

C. M. Nolen, G. Denina, D. Teweldebrhan, B. Bhanu, and A. A. Balandin, “High-Throughput Large-Area Automated Identification and Quality Control of Graphene and Few-Layer Graphene Films,” ACS Nano 5(2), 914–922 (2011).
[Crossref]

Appl. Phys. Lett. (2)

P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007).
[Crossref]

R. Fobel, C. Fobel, and A. R. Wheeler, “DropBot: An open-source digital microfluidic control system with precise control of electrostatic driving force and instantaneous drop velocity measurement,” Appl. Phys. Lett. 102(19), 193513 (2013).
[Crossref]

Biomed. Opt. Express (1)

Expert Rev. Med. Devices (1)

R. A. Malkin, “Barriers for medical devices for the developing world,” Expert Rev. Med. Devices 4(6), 759–763 (2007).
[Crossref]

Heal. Syst. & Reform (1)

P. Yadav, “Health product supply chains in developing countries: Diagnosis of the root causes of underperformance and an agenda for reform,” Heal. Syst. & Reform 1(2), 142–154 (2015).
[Crossref]

IEEE Transactions on Pattern Analysis Mach. Intell. (1)

X. Wang, “Laplacian Operator-Based Edge Detectors,” IEEE Transactions on Pattern Analysis Mach. Intell. 29(5), 886–890 (2007).
[Crossref]

J. Electron. Imaging (1)

M. Pagnutti, R. E. Ryan, G. Cazenavette, M. Gold, R. Harlan, E. Leggett, and J. Pagnutti, “Laying the foundation to use Raspberry Pi 3 V2 camera module imagery for scientific and engineering purposes,” J. Electron. Imaging 26(1), 013014 (2017).
[Crossref]

J. Innovative Opt. Health Sci. (1)

X. Hong, V. K. Nagarajan, D. H. Mugler, and B. Yu, “Smartphone microendoscopy for high resolution fluorescence imaging,” J. Innovative Opt. Health Sci. 09(05), 1650046 (2016).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys.: Conf. Ser. (1)

C. Mista, M. Zalazar, A. Pe nalva, M. Martina, and J. M. Reta, “Open Source Quartz Crystal Microbalance with dissipation monitoring,” J. Phys.: Conf. Ser. 705, 012008 (2016).
[Crossref]

Med. Biol. Eng. Comput. (1)

R. Malkin and A. Keane, “Evidence-based approach to the maintenance of laboratory and medical equipment in resource-poor settings,” Med. Biol. Eng. Comput. 48(7), 721–726 (2010).
[Crossref]

Nature (1)

R. Oldenbourg, “A new view on polarization microscopy,” Nature 381(6585), 811–812 (1996).
[Crossref]

Open Biol. (1)

A. J. M. Wollman, R. Nudd, E. G. Hedlund, and M. C. Leake, “From Animaculum to single molecules: 300 years of the light microscope,” Open Biol. 5(4), 150019 (2015).
[Crossref]

Opt. Express (2)

PLoS Biol. (3)

A. Maia Chagas, “Haves and have nots must find a better way: The case for open scientific hardware,” PLoS Biol. 16(9), e3000014 (2018).
[Crossref]

T. Baden, A. M. Chagas, G. Gage, T. Marzullo, L. L. Prieto-Godino, and T. Euler, “Open Labware: 3-D Printing Your Own Lab Equipment,” PLoS Biol. 13(3), e1002086 (2015).
[Crossref]

A. Maia Chagas, L. L. Prieto-Godino, A. B. Arrenberg, and T. Baden, “The €100 lab: A 3D-printable open-source platform for fluorescence microscopy, optogenetics, and accurate temperature control during behaviour of zebrafish, Drosophila, and Caenorhabditis elegans,” PLoS Biol. 15(7), e2002702 (2017).
[Crossref]

PLoS One (2)

C. Zhang, N. C. Anzalone, R. P. Faria, and J. M. Pearce, “Open-Source 3D-Printable Optics Equipment,” PLoS One 8(3), e59840 (2013).
[Crossref]

J. S. Cybulski, J. Clements, and M. Prakash, “Foldscope: Origami-Based Paper Microscope,” PLoS One 9(6), e98781 (2014).
[Crossref]

Proc. R. Soc. Lond. B (1)

D. Marr and E. Hildreth, “Theory of edge detection,” Proc. R. Soc. Lond. B 207(1167), 187–217 (1980).
[Crossref]

Rev. Sci. Instrum. (1)

J. P. Sharkey, D. C. Foo, A. Kabla, J. J. Baumberg, and R. W. Bowman, “A one-piece 3D printed flexure translation stage for open-source microscopy,” Rev. Sci. Instrum. 87(2), 025104 (2016).
[Crossref]

Science (1)

J. M. Pearce, “Building Research Equipment with Free, Open-Source Hardware,” Science 337(6100), 1303–1304 (2012).
[Crossref]

Other (10)

R. Bowman, B. Vodenicharski, J. Collins, and J. Stirling, “Flat-field and colour correction for the raspberry pi camera module,” https://arxiv.org/abs/1911.13295 (2019).

W. Zhu, C. Gong, N. Kulkarni, C. D. Nguyen, and D. Kang, Smartphone-based Microscopes (Elsevier Inc., 2020).

Sony Corporation, IMX219PQH5-C Diagonal 4.60 mm (Type 1/4.0) 8 Mega-Pixel CMOS Image Sensor with Square Pixel for Color Cameras.

“Image composite editor - microsoft research,” https://www.microsoft.com/en-us/research/product/computational-photography-applications/image-composite-editor/ (2019).

“Openflexure / pi-gen - gitlab,” https://gitlab.com/openflexure/pi-gen (2019).

“Openflexure / openflexure-ev - gitlab,” https://gitlab.com/openflexure/openflexure-microscope-jsclient (2019).

“Openflexure / openflexure-microscope - gitlab,” https://gitlab.com/openflexure/openflexure-microscope (2019).

B. Diederich, R. Richter, S. Carlstedt, X. Uwurukundo, H. Wang, A. Mosig, and R. Heintzmann, “UC2 – A 3D-printed General-Purpose Optical Toolbox for Microscopic Imaging,” in Imaging and Applied Optics 2019 (COSI, IS, MATH, pcAOP), vol. 2019 (OSA, Washington D.C., 2019), p. ITh3B.5.

J. G. Delly, Essentials of Polarized Light Microscopy and Ancillary Techniques (McCrone Group, Incorporated, 2017).

W. C. McCrone, L. B. McCrone, and J. G. Delly, Polarized Light Microscopy (Ann Arbor Science Publishers, 1978).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Overview of the OpenFlexure Microscope design, in transmission bright-field configuration. The condenser mount houses an illumination LED and a plastic condenser lens, while the optics module sits below the stage and houses an objective lens, tube lens, and camera. The entire optics module is attached to the $z$-actuator, providing variable focus. Both the optics module and $x$-$y$ stage are controlled by actuator gears at the back of the microscope, optionally driven by stepper motors. A detachable electronics housing stores optional electronic parts, such as motor controllers and a Raspberry Pi, for automation.
Fig. 2.
Fig. 2. Cross-section schematics of trans- (a.) and epi- (b.) illumination configurations. LED1 provides transmission illumination, with a condenser lens L1. LED2 and lens L3 provide epi-illumination, connected to a removable filter cube housing two filters, F1 at $45^{\circ}$ and F2. These filters can be removed or replaced by beamsplitters or polarizers to enable bright-field, fluorescence, or polarization-contrast epi-illuminated imaging. In both configurations, a standard RMS objective O1 and tube lens L2 image the sample onto the camera sensor CAM.
Fig. 3.
Fig. 3. Schematics (left) and images (right) of four different imaging modalities possible using the OFM. a. Trans-illumination bright-field imaging of a Giemsa-stained thin blood smear, obtained with a $100\times$, $1.25$NA oil immersion objective. The inset shows a magnified section of the image, highlighting a ring-form trophozoite of Plasmodium falciparum. b. Epi-illumination bright-field imaging of a group of thin graphene flakes, obtained with a $40\times$, $0.65$NA dry objective. The inset shows a magnified section of the image, highlighting a resolvable tri-layer graphene flake (contrast has been digitally enhanced for clarity by increasing brightness and gamma). c. Polarisation-contrast trans-illumination image of 5CB liquid crystal droplets. A bright-field image is shown below for comparison. Both images were obtained with a $40\times$, $0.65$NA dry objective, and depict the same region of the sample. Arrows on the polarisers denote the transmission axis. d. Fluorescence images of unstained Lily of the Valley (convallaria majalis) rhizome, at two different wavelengths. The excitation wavelength (“Ex.”), and minimum emission wavelength imaged (“Em.”) are shown above the respective panels. Both images were obtained with a $40\times$, $0.65$NA dry objective, and depict the same region of the sample. Both the colour of illumination LED, and the filters in the filter cube, will change depending on the application.
Fig. 4.
Fig. 4. Tiled scan image of a Giemsa-stained thin blood smear, obtained with a $100\times$, $1.25$NA oil immersion objective. The inset highlights an individual 8-megapixel image from the scan. The composite image was obtained from a $10 \times 10$ grid of captures. After accounting for image overlap and skewing, and cropping out edges of the composite with missing sections, the resulting image is $14920$ px $\times 11270$ px ($\approx 170$ megapixel).

Tables (1)

Tables Icon

Table 1. Common fastening hardware. Bulk total (using unit prices) 3.80 GBP. One-off total (using pack prices) 19.20 GBP

Metrics