Abstract

This study aimed to evaluate the variations of infrared thermography according to rapid hemodynamic changes, by measuring the peripheral skin temperature in a porcine model. Eight healthy piglets were anesthetized and exposed to different levels of arterial pressure. Thermography was performed on the left forelimb to measure carpus and elbow skin temperature and their associated gradient with the core temperature. Changes in skin temperature in response to variations of blood pressure were observed. A negative correlation between arterial pressure and temperature gradients between peripheral and core temperature and a negative correlation between cardiac index and these temperature gradients were observed. Thermography may serve as a tool to detect early changes in peripheral perfusion.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Contact-free monitoring of circulation and perfusion dynamics based on the analysis of thermal imagery

Carina Barbosa Pereira, Michael Czaplik, Nikolai Blanik, Rolf Rossaint, Vladimir Blazek, and Steffen Leonhardt
Biomed. Opt. Express 5(4) 1075-1089 (2014)

Diffuse optical monitoring of peripheral tissues during uncontrolled internal hemorrhage in a porcine model

Karthik Vishwanath, Rajan Gurjar, David Wolf, Suzannah Riccardi, Michael Duggan, and David King
Biomed. Opt. Express 9(2) 569-580 (2018)

Assessment of the brain ischemia during orthostatic stress and lower body negative pressure in air force pilots by near-infrared spectroscopy

Anna Gerega, Stanislaw Wojtkiewicz, Piotr Sawosz, Michal Kacprzak, Beata Toczylowska, Karolina Bejm, Franciszek Skibniewski, Aleksander Sobotnicki, Adam Gacek, Roman Maniewski, and Adam Liebert
Biomed. Opt. Express 11(2) 1043-1060 (2020)

References

  • View by:
  • |
  • |
  • |

  1. M. Cecconi, D. De Backer, M. Antonelli, R. Beale, J. Bakker, C. Hofer, R. Jaeschke, A. Mebazaa, M. R. Pinsky, J. L. Teboul, J. L. Vincent, and A. Rhodes, “Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine,” Intensive Care Med. 40(12), 1795–1815 (2014).
    [Crossref]
  2. J.-L. Vincent and D. De Backer, “Circulatory Shock,” N. Engl. J. Med. 369(18), 1726–1734 (2013).
    [Crossref]
  3. Y. Sakr, K. Reinhart, J.-L. Vincent, C. L. Sprung, R. Moreno, V. M. Ranieri, D. De Backer, and D. Payen, “Does dopamine administration in shock influence outcome? Results of the Sepsis Occurrence in Acutely Ill Patients (SOAP) Study,” Crit. Care Med. 34(3), 589–597 (2006).
    [Crossref]
  4. A. Ortiz-Dosal, E. S. Kolosovas-Machuca, R. Rivera-Vega, J. Simón, and F. J. González, “Use of infrared thermography in children with shock: A case series,” SAGE Open Med. Case Rep. 2, 2050313X1456177 (2014).
    [Crossref]
  5. A. Ferraris, C. Bouisse, N. Mottard, F. Thiollière, S. Anselin, V. Piriou, and B. Allaouchiche, “Mottling score and skin temperature in septic shock: Relation and impact on prognosis in ICU,” PLoS One 13(8), e0202329 (2018).
    [Crossref]
  6. M. E. van Genderen, J. van Bommel, and A. Lima, “Monitoring peripheral perfusion in critically ill patients at the bedside,” Curr. Opin. Crit. Care 18(3), 273–279 (2012).
    [Crossref]
  7. I. Jawad, I. Lukšić, and S. B. Rafnsson, “Assessing available information on the burden of sepsis: global estimates of incidence, prevalence and mortality,” J. Glob. Health 2(1), 010404 (2012).
    [Crossref]
  8. M. Łokaj, N. Czapla, A. Falkowski, and P. Prowans, “The use of thermography in early detection of tissue perfusion disorders in rats,” Videosurgery Miniinvasive Tech. 3(3), 329–336 (2014).
    [Crossref]
  9. A. L. Herrick and A. Murray, “The role of capillaroscopy and thermography in the assessment and management of Raynaud’s phenomenon,” Autoimmun. Rev. 17(5), 465–472 (2018).
    [Crossref]
  10. J. Allen and K. Howell, “Microvascular imaging: techniques and opportunities for clinical physiological measurements,” Physiol. Meas. 35(7), R91–R141 (2014).
    [Crossref]
  11. V. Bernard, E. Staffa, V. Mornstein, and A. Bourek, “Infrared camera assessment of skin surface temperature – Effect of emissivity,” Phys. Med. 29(6), 583–591 (2013).
    [Crossref]
  12. H. Motoyama, F. Chen, K. Hijiya, T. Kondo, K. Ohata, M. Takahashi, T. Yamada, M. Sato, A. Aoyama, and H. Date, “Novel thermographic detection of regional malperfusion caused by a thrombosis during ex vivo lung perfusion,” Interact. Cardiovasc. Thorac. Surg. 20(2), 242–247 (2015).
    [Crossref]
  13. F. Deng, Q. Tang, Y. Zheng, G. Zeng, and N. Zhong, “Infrared thermal imaging as a novel evaluation method for deep vein thrombosis in lower limbs,” Med. Phys. 39(12), 7224–7231 (2012).
    [Crossref]
  14. C. Pouzot-Nevoret, A. Barthélemy, I. Goy-Thollot, E. Boselli, M. Cambournac, J. Guillaumin, J.-M. Bonnet-Garin, and B. Allaouchiche, “Infrared thermography: a rapid and accurate technique to detect feline aortic thromboembolism,” J. Feline Med. Surg. 20(8), 780–785 (2018).
    [Crossref]
  15. M. Adam, E. Y. K. Ng, J. H. Tan, M. L. Heng, J. W. K. Tong, and U. R. Acharya, “Computer aided diagnosis of diabetic foot using infrared thermography: A review,” Comput. Biol. Med. 91, 326–336 (2017).
    [Crossref]
  16. T. J. Love, “Thermography as an Indicator of Blood Perfusion,” Ann. N. Y. Acad. Sci. 335(1 Thermal Chara), 429–437 (1980).
    [Crossref]
  17. B. F. Jones, “A reappraisal of the use of infrared thermal image analysis in medicine,” IEEE Trans. Med. Imaging 17(6), 1019–1027 (1998).
    [Crossref]
  18. M. M. Swindle, A. Makin, A. J. Herron, F. J. Clubb, and K. S. Frazier, “Swine as Models in Biomedical Research and Toxicology Testing,” Vet. Pathol. 49(2), 344–356 (2012).
    [Crossref]
  19. D. D. Soerensen, S. Clausen, J. B. Mercer, and L. J. Pedersen, “Determining the emissivity of pig skin for accurate infrared thermography,” Comput. Electron. Agric. 109, 52–58 (2014).
    [Crossref]
  20. G. J. Tattersall, “Infrared thermography: A non-invasive window into thermal physiology,” Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol. 202, 78–98 (2016).
    [Crossref]
  21. Y. H. Chan, “Biostatistics104: Correlational Analysis,” Singapore Med. J. 44(12), 614–619 (2003).
  22. S. De Hert and A. Moerman, “Sevoflurane,” F1000Research 4, 626 (2015).
    [Crossref]
  23. J. A. Russell, B. Rush, and J. Boyd, “Pathophysiology of Septic Shock,” Crit. Care Clin. 34(1), 43–61 (2018).
    [Crossref]
  24. R. Sato and M. Nasu, “A review of sepsis-induced cardiomyopathy,” J. Intensive Care 3(1), 48 (2015).
    [Crossref]
  25. M. M. Gamcrlidze, N. A. Intskirveli, K. D. Vardosanidze, K. E. Chikhladze, L. S. Goliadze, and L. R. Ratiani, “Vasoplegia in septic shock (review),” Georgian Med. News 239, 56–62 (2015).
  26. S. P. H. Alexander, A. Mathie, and J. A. Peters, “Guide to Receptors and Channels (GRAC), 5th edition,” Br. J. Pharmacol. 164(Suppl 1), S1–S2 (2011).
    [Crossref]
  27. C. B. Pereira, M. Czaplik, N. Blanik, R. Rossaint, V. Blazek, and S. Leonhardt, “Contact-free monitoring of circulation and perfusion dynamics based on the analysis of thermal imagery,” Biomed. Opt. Express 5(4), 1075–1089 (2014).
    [Crossref]
  28. A. Nagori, L. S. Dhingra, A. Bhatnagar, R. Lodha, and T. Sethi, “Predicting Hemodynamic Shock from Thermal Images using Machine Learning,” Sci. Rep. 9(1), 91 (2019).
    [Crossref]
  29. A. Beurton, N. Ducrocq, T. Auchet, F. Joineau-Groubatch, A. Falanga, A. Kimmoun, N. Girerd, R. Fay, F. Vanhuyse, N. Tran, and B. Levy, “Beneficial Effects of Norepinephrine Alone on Cardiovascular Function and Tissue Oxygenation in a Pig Model of Cardiogenic Shock,” Shock 46(2), 214–218 (2016).
    [Crossref]
  30. R. Giraud, N. Siegenthaler, D. Arroyo, and K. Bendjelid, “Impact of epinephrine and norepinephrine on two dynamic indices in a porcine hemorrhagic shock model,” J. Trauma Acute Care Surg. 77(4), 564–569 (2014).
    [Crossref]
  31. M. M. Treggiari, J.-A. Romand, D. Burgener, P. M. Suter, and A. Aneman, “Effect of increasing norepinephrine dosage on regional blood flow in a porcine model of endotoxin shock,” Crit. Care Med. 30(6), 1334–1339 (2002).
    [Crossref]
  32. R. Persichini, S. Silva, J.-L. Teboul, M. Jozwiak, D. Chemla, C. Richard, and X. Monnet, “Effects of norepinephrine on mean systemic pressure and venous return in human septic shock,” Crit. Care Med. 40(12), 3146–3153 (2012).
    [Crossref]
  33. P. Foulon and D. De Backer, “The hemodynamic effects of norepinephrine: far more than an increase in blood pressure!” Ann. Transl. Med. 6(S1), S25 (2018).
    [Crossref]
  34. J. Noel-Morgan, D. Otsuki, J. O. Auler, J. Fukushima, and D. Fantoni, “Pulse Pressure Variation Is Comparable With Central Venous Pressure to Guide Fluid Resuscitation in Experimental Hemorrhagic Shock With Endotoxemia,” Shock 40(4), 303–311 (2013).
    [Crossref]
  35. J. Renner, P. Meybohm, R. Hanss, M. Gruenewald, J. Scholz, and B. Bein, “Effects of norepinephrine on dynamic variables of fluid responsiveness during hemorrhage and after resuscitation in a pediatric porcine model,” Paediatr. Anaesth. 19(7), 688–694 (2009).
    [Crossref]
  36. K. S. Cunningham and A. I. Gotlieb, “The role of shear stress in the pathogenesis of atherosclerosis,” Lab. Invest. 85(1), 9–23 (2005).
    [Crossref]
  37. P. F. Davies, “Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology,” Nat. Clin. Pract. Cardiovasc. Med. 6(1), 16–26 (2009).
    [Crossref]
  38. T. Li, M. Duan, K. Li, G. Yu, and Z. Ruan, “Bedside monitoring of patients with shock using a portable spatially-resolved near-infrared spectroscopy,” Biomed. Opt. Express 6(9), 3431 (2015).
    [Crossref]
  39. K. Vishwanath, R. Gurjar, D. Wolf, S. Riccardi, M. Duggan, and D. King, “Diffuse optical monitoring of peripheral tissues during uncontrolled internal hemorrhage in a porcine model,” Biomed. Opt. Express 9(2), 569–580 (2018).
    [Crossref]
  40. G. A. Gronert and J. H. Milde, “Variations in onset of porcine malignant hyperthermia,” Anesth. Analg. 60(7), 499–503 (1981).
    [Crossref]
  41. M. Shulman, B. Braverman, A. D. Ivankovich, and G. Gronert, “Sevoflurane triggers malignant hyperthermia in swine,” Anesthesiology 54(3), 259–260 (1981).
    [Crossref]
  42. H. Rosenberg, N. Pollock, A. Schiemann, T. Bulger, and K. Stowell, “Malignant hyperthermia: a review,” Orphanet J. Rare Dis. 10(1), 93 (2015).
    [Crossref]
  43. D. Krizanac, P. Stratil, D. Hoerburger, C. Testori, C. Wallmueller, A. Schober, M. Haugk, M. Haller, W. Behringer, H. Herkner, F. Sterz, and M. Holzer, “Femoro-iliacal artery versus pulmonary artery core temperature measurement during therapeutic hypothermia: an observational study,” Resuscitation 84(6), 805–809 (2013).
    [Crossref]

2019 (1)

A. Nagori, L. S. Dhingra, A. Bhatnagar, R. Lodha, and T. Sethi, “Predicting Hemodynamic Shock from Thermal Images using Machine Learning,” Sci. Rep. 9(1), 91 (2019).
[Crossref]

2018 (6)

J. A. Russell, B. Rush, and J. Boyd, “Pathophysiology of Septic Shock,” Crit. Care Clin. 34(1), 43–61 (2018).
[Crossref]

P. Foulon and D. De Backer, “The hemodynamic effects of norepinephrine: far more than an increase in blood pressure!” Ann. Transl. Med. 6(S1), S25 (2018).
[Crossref]

A. Ferraris, C. Bouisse, N. Mottard, F. Thiollière, S. Anselin, V. Piriou, and B. Allaouchiche, “Mottling score and skin temperature in septic shock: Relation and impact on prognosis in ICU,” PLoS One 13(8), e0202329 (2018).
[Crossref]

A. L. Herrick and A. Murray, “The role of capillaroscopy and thermography in the assessment and management of Raynaud’s phenomenon,” Autoimmun. Rev. 17(5), 465–472 (2018).
[Crossref]

C. Pouzot-Nevoret, A. Barthélemy, I. Goy-Thollot, E. Boselli, M. Cambournac, J. Guillaumin, J.-M. Bonnet-Garin, and B. Allaouchiche, “Infrared thermography: a rapid and accurate technique to detect feline aortic thromboembolism,” J. Feline Med. Surg. 20(8), 780–785 (2018).
[Crossref]

K. Vishwanath, R. Gurjar, D. Wolf, S. Riccardi, M. Duggan, and D. King, “Diffuse optical monitoring of peripheral tissues during uncontrolled internal hemorrhage in a porcine model,” Biomed. Opt. Express 9(2), 569–580 (2018).
[Crossref]

2017 (1)

M. Adam, E. Y. K. Ng, J. H. Tan, M. L. Heng, J. W. K. Tong, and U. R. Acharya, “Computer aided diagnosis of diabetic foot using infrared thermography: A review,” Comput. Biol. Med. 91, 326–336 (2017).
[Crossref]

2016 (2)

G. J. Tattersall, “Infrared thermography: A non-invasive window into thermal physiology,” Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol. 202, 78–98 (2016).
[Crossref]

A. Beurton, N. Ducrocq, T. Auchet, F. Joineau-Groubatch, A. Falanga, A. Kimmoun, N. Girerd, R. Fay, F. Vanhuyse, N. Tran, and B. Levy, “Beneficial Effects of Norepinephrine Alone on Cardiovascular Function and Tissue Oxygenation in a Pig Model of Cardiogenic Shock,” Shock 46(2), 214–218 (2016).
[Crossref]

2015 (6)

R. Sato and M. Nasu, “A review of sepsis-induced cardiomyopathy,” J. Intensive Care 3(1), 48 (2015).
[Crossref]

M. M. Gamcrlidze, N. A. Intskirveli, K. D. Vardosanidze, K. E. Chikhladze, L. S. Goliadze, and L. R. Ratiani, “Vasoplegia in septic shock (review),” Georgian Med. News 239, 56–62 (2015).

S. De Hert and A. Moerman, “Sevoflurane,” F1000Research 4, 626 (2015).
[Crossref]

H. Motoyama, F. Chen, K. Hijiya, T. Kondo, K. Ohata, M. Takahashi, T. Yamada, M. Sato, A. Aoyama, and H. Date, “Novel thermographic detection of regional malperfusion caused by a thrombosis during ex vivo lung perfusion,” Interact. Cardiovasc. Thorac. Surg. 20(2), 242–247 (2015).
[Crossref]

T. Li, M. Duan, K. Li, G. Yu, and Z. Ruan, “Bedside monitoring of patients with shock using a portable spatially-resolved near-infrared spectroscopy,” Biomed. Opt. Express 6(9), 3431 (2015).
[Crossref]

H. Rosenberg, N. Pollock, A. Schiemann, T. Bulger, and K. Stowell, “Malignant hyperthermia: a review,” Orphanet J. Rare Dis. 10(1), 93 (2015).
[Crossref]

2014 (7)

J. Allen and K. Howell, “Microvascular imaging: techniques and opportunities for clinical physiological measurements,” Physiol. Meas. 35(7), R91–R141 (2014).
[Crossref]

A. Ortiz-Dosal, E. S. Kolosovas-Machuca, R. Rivera-Vega, J. Simón, and F. J. González, “Use of infrared thermography in children with shock: A case series,” SAGE Open Med. Case Rep. 2, 2050313X1456177 (2014).
[Crossref]

M. Łokaj, N. Czapla, A. Falkowski, and P. Prowans, “The use of thermography in early detection of tissue perfusion disorders in rats,” Videosurgery Miniinvasive Tech. 3(3), 329–336 (2014).
[Crossref]

M. Cecconi, D. De Backer, M. Antonelli, R. Beale, J. Bakker, C. Hofer, R. Jaeschke, A. Mebazaa, M. R. Pinsky, J. L. Teboul, J. L. Vincent, and A. Rhodes, “Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine,” Intensive Care Med. 40(12), 1795–1815 (2014).
[Crossref]

D. D. Soerensen, S. Clausen, J. B. Mercer, and L. J. Pedersen, “Determining the emissivity of pig skin for accurate infrared thermography,” Comput. Electron. Agric. 109, 52–58 (2014).
[Crossref]

C. B. Pereira, M. Czaplik, N. Blanik, R. Rossaint, V. Blazek, and S. Leonhardt, “Contact-free monitoring of circulation and perfusion dynamics based on the analysis of thermal imagery,” Biomed. Opt. Express 5(4), 1075–1089 (2014).
[Crossref]

R. Giraud, N. Siegenthaler, D. Arroyo, and K. Bendjelid, “Impact of epinephrine and norepinephrine on two dynamic indices in a porcine hemorrhagic shock model,” J. Trauma Acute Care Surg. 77(4), 564–569 (2014).
[Crossref]

2013 (4)

J. Noel-Morgan, D. Otsuki, J. O. Auler, J. Fukushima, and D. Fantoni, “Pulse Pressure Variation Is Comparable With Central Venous Pressure to Guide Fluid Resuscitation in Experimental Hemorrhagic Shock With Endotoxemia,” Shock 40(4), 303–311 (2013).
[Crossref]

J.-L. Vincent and D. De Backer, “Circulatory Shock,” N. Engl. J. Med. 369(18), 1726–1734 (2013).
[Crossref]

V. Bernard, E. Staffa, V. Mornstein, and A. Bourek, “Infrared camera assessment of skin surface temperature – Effect of emissivity,” Phys. Med. 29(6), 583–591 (2013).
[Crossref]

D. Krizanac, P. Stratil, D. Hoerburger, C. Testori, C. Wallmueller, A. Schober, M. Haugk, M. Haller, W. Behringer, H. Herkner, F. Sterz, and M. Holzer, “Femoro-iliacal artery versus pulmonary artery core temperature measurement during therapeutic hypothermia: an observational study,” Resuscitation 84(6), 805–809 (2013).
[Crossref]

2012 (5)

M. E. van Genderen, J. van Bommel, and A. Lima, “Monitoring peripheral perfusion in critically ill patients at the bedside,” Curr. Opin. Crit. Care 18(3), 273–279 (2012).
[Crossref]

I. Jawad, I. Lukšić, and S. B. Rafnsson, “Assessing available information on the burden of sepsis: global estimates of incidence, prevalence and mortality,” J. Glob. Health 2(1), 010404 (2012).
[Crossref]

F. Deng, Q. Tang, Y. Zheng, G. Zeng, and N. Zhong, “Infrared thermal imaging as a novel evaluation method for deep vein thrombosis in lower limbs,” Med. Phys. 39(12), 7224–7231 (2012).
[Crossref]

M. M. Swindle, A. Makin, A. J. Herron, F. J. Clubb, and K. S. Frazier, “Swine as Models in Biomedical Research and Toxicology Testing,” Vet. Pathol. 49(2), 344–356 (2012).
[Crossref]

R. Persichini, S. Silva, J.-L. Teboul, M. Jozwiak, D. Chemla, C. Richard, and X. Monnet, “Effects of norepinephrine on mean systemic pressure and venous return in human septic shock,” Crit. Care Med. 40(12), 3146–3153 (2012).
[Crossref]

2011 (1)

S. P. H. Alexander, A. Mathie, and J. A. Peters, “Guide to Receptors and Channels (GRAC), 5th edition,” Br. J. Pharmacol. 164(Suppl 1), S1–S2 (2011).
[Crossref]

2009 (2)

J. Renner, P. Meybohm, R. Hanss, M. Gruenewald, J. Scholz, and B. Bein, “Effects of norepinephrine on dynamic variables of fluid responsiveness during hemorrhage and after resuscitation in a pediatric porcine model,” Paediatr. Anaesth. 19(7), 688–694 (2009).
[Crossref]

P. F. Davies, “Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology,” Nat. Clin. Pract. Cardiovasc. Med. 6(1), 16–26 (2009).
[Crossref]

2006 (1)

Y. Sakr, K. Reinhart, J.-L. Vincent, C. L. Sprung, R. Moreno, V. M. Ranieri, D. De Backer, and D. Payen, “Does dopamine administration in shock influence outcome? Results of the Sepsis Occurrence in Acutely Ill Patients (SOAP) Study,” Crit. Care Med. 34(3), 589–597 (2006).
[Crossref]

2005 (1)

K. S. Cunningham and A. I. Gotlieb, “The role of shear stress in the pathogenesis of atherosclerosis,” Lab. Invest. 85(1), 9–23 (2005).
[Crossref]

2003 (1)

Y. H. Chan, “Biostatistics104: Correlational Analysis,” Singapore Med. J. 44(12), 614–619 (2003).

2002 (1)

M. M. Treggiari, J.-A. Romand, D. Burgener, P. M. Suter, and A. Aneman, “Effect of increasing norepinephrine dosage on regional blood flow in a porcine model of endotoxin shock,” Crit. Care Med. 30(6), 1334–1339 (2002).
[Crossref]

1998 (1)

B. F. Jones, “A reappraisal of the use of infrared thermal image analysis in medicine,” IEEE Trans. Med. Imaging 17(6), 1019–1027 (1998).
[Crossref]

1981 (2)

G. A. Gronert and J. H. Milde, “Variations in onset of porcine malignant hyperthermia,” Anesth. Analg. 60(7), 499–503 (1981).
[Crossref]

M. Shulman, B. Braverman, A. D. Ivankovich, and G. Gronert, “Sevoflurane triggers malignant hyperthermia in swine,” Anesthesiology 54(3), 259–260 (1981).
[Crossref]

1980 (1)

T. J. Love, “Thermography as an Indicator of Blood Perfusion,” Ann. N. Y. Acad. Sci. 335(1 Thermal Chara), 429–437 (1980).
[Crossref]

Acharya, U. R.

M. Adam, E. Y. K. Ng, J. H. Tan, M. L. Heng, J. W. K. Tong, and U. R. Acharya, “Computer aided diagnosis of diabetic foot using infrared thermography: A review,” Comput. Biol. Med. 91, 326–336 (2017).
[Crossref]

Adam, M.

M. Adam, E. Y. K. Ng, J. H. Tan, M. L. Heng, J. W. K. Tong, and U. R. Acharya, “Computer aided diagnosis of diabetic foot using infrared thermography: A review,” Comput. Biol. Med. 91, 326–336 (2017).
[Crossref]

Alexander, S. P. H.

S. P. H. Alexander, A. Mathie, and J. A. Peters, “Guide to Receptors and Channels (GRAC), 5th edition,” Br. J. Pharmacol. 164(Suppl 1), S1–S2 (2011).
[Crossref]

Allaouchiche, B.

A. Ferraris, C. Bouisse, N. Mottard, F. Thiollière, S. Anselin, V. Piriou, and B. Allaouchiche, “Mottling score and skin temperature in septic shock: Relation and impact on prognosis in ICU,” PLoS One 13(8), e0202329 (2018).
[Crossref]

C. Pouzot-Nevoret, A. Barthélemy, I. Goy-Thollot, E. Boselli, M. Cambournac, J. Guillaumin, J.-M. Bonnet-Garin, and B. Allaouchiche, “Infrared thermography: a rapid and accurate technique to detect feline aortic thromboembolism,” J. Feline Med. Surg. 20(8), 780–785 (2018).
[Crossref]

Allen, J.

J. Allen and K. Howell, “Microvascular imaging: techniques and opportunities for clinical physiological measurements,” Physiol. Meas. 35(7), R91–R141 (2014).
[Crossref]

Aneman, A.

M. M. Treggiari, J.-A. Romand, D. Burgener, P. M. Suter, and A. Aneman, “Effect of increasing norepinephrine dosage on regional blood flow in a porcine model of endotoxin shock,” Crit. Care Med. 30(6), 1334–1339 (2002).
[Crossref]

Anselin, S.

A. Ferraris, C. Bouisse, N. Mottard, F. Thiollière, S. Anselin, V. Piriou, and B. Allaouchiche, “Mottling score and skin temperature in septic shock: Relation and impact on prognosis in ICU,” PLoS One 13(8), e0202329 (2018).
[Crossref]

Antonelli, M.

M. Cecconi, D. De Backer, M. Antonelli, R. Beale, J. Bakker, C. Hofer, R. Jaeschke, A. Mebazaa, M. R. Pinsky, J. L. Teboul, J. L. Vincent, and A. Rhodes, “Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine,” Intensive Care Med. 40(12), 1795–1815 (2014).
[Crossref]

Aoyama, A.

H. Motoyama, F. Chen, K. Hijiya, T. Kondo, K. Ohata, M. Takahashi, T. Yamada, M. Sato, A. Aoyama, and H. Date, “Novel thermographic detection of regional malperfusion caused by a thrombosis during ex vivo lung perfusion,” Interact. Cardiovasc. Thorac. Surg. 20(2), 242–247 (2015).
[Crossref]

Arroyo, D.

R. Giraud, N. Siegenthaler, D. Arroyo, and K. Bendjelid, “Impact of epinephrine and norepinephrine on two dynamic indices in a porcine hemorrhagic shock model,” J. Trauma Acute Care Surg. 77(4), 564–569 (2014).
[Crossref]

Auchet, T.

A. Beurton, N. Ducrocq, T. Auchet, F. Joineau-Groubatch, A. Falanga, A. Kimmoun, N. Girerd, R. Fay, F. Vanhuyse, N. Tran, and B. Levy, “Beneficial Effects of Norepinephrine Alone on Cardiovascular Function and Tissue Oxygenation in a Pig Model of Cardiogenic Shock,” Shock 46(2), 214–218 (2016).
[Crossref]

Auler, J. O.

J. Noel-Morgan, D. Otsuki, J. O. Auler, J. Fukushima, and D. Fantoni, “Pulse Pressure Variation Is Comparable With Central Venous Pressure to Guide Fluid Resuscitation in Experimental Hemorrhagic Shock With Endotoxemia,” Shock 40(4), 303–311 (2013).
[Crossref]

Bakker, J.

M. Cecconi, D. De Backer, M. Antonelli, R. Beale, J. Bakker, C. Hofer, R. Jaeschke, A. Mebazaa, M. R. Pinsky, J. L. Teboul, J. L. Vincent, and A. Rhodes, “Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine,” Intensive Care Med. 40(12), 1795–1815 (2014).
[Crossref]

Barthélemy, A.

C. Pouzot-Nevoret, A. Barthélemy, I. Goy-Thollot, E. Boselli, M. Cambournac, J. Guillaumin, J.-M. Bonnet-Garin, and B. Allaouchiche, “Infrared thermography: a rapid and accurate technique to detect feline aortic thromboembolism,” J. Feline Med. Surg. 20(8), 780–785 (2018).
[Crossref]

Beale, R.

M. Cecconi, D. De Backer, M. Antonelli, R. Beale, J. Bakker, C. Hofer, R. Jaeschke, A. Mebazaa, M. R. Pinsky, J. L. Teboul, J. L. Vincent, and A. Rhodes, “Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine,” Intensive Care Med. 40(12), 1795–1815 (2014).
[Crossref]

Behringer, W.

D. Krizanac, P. Stratil, D. Hoerburger, C. Testori, C. Wallmueller, A. Schober, M. Haugk, M. Haller, W. Behringer, H. Herkner, F. Sterz, and M. Holzer, “Femoro-iliacal artery versus pulmonary artery core temperature measurement during therapeutic hypothermia: an observational study,” Resuscitation 84(6), 805–809 (2013).
[Crossref]

Bein, B.

J. Renner, P. Meybohm, R. Hanss, M. Gruenewald, J. Scholz, and B. Bein, “Effects of norepinephrine on dynamic variables of fluid responsiveness during hemorrhage and after resuscitation in a pediatric porcine model,” Paediatr. Anaesth. 19(7), 688–694 (2009).
[Crossref]

Bendjelid, K.

R. Giraud, N. Siegenthaler, D. Arroyo, and K. Bendjelid, “Impact of epinephrine and norepinephrine on two dynamic indices in a porcine hemorrhagic shock model,” J. Trauma Acute Care Surg. 77(4), 564–569 (2014).
[Crossref]

Bernard, V.

V. Bernard, E. Staffa, V. Mornstein, and A. Bourek, “Infrared camera assessment of skin surface temperature – Effect of emissivity,” Phys. Med. 29(6), 583–591 (2013).
[Crossref]

Beurton, A.

A. Beurton, N. Ducrocq, T. Auchet, F. Joineau-Groubatch, A. Falanga, A. Kimmoun, N. Girerd, R. Fay, F. Vanhuyse, N. Tran, and B. Levy, “Beneficial Effects of Norepinephrine Alone on Cardiovascular Function and Tissue Oxygenation in a Pig Model of Cardiogenic Shock,” Shock 46(2), 214–218 (2016).
[Crossref]

Bhatnagar, A.

A. Nagori, L. S. Dhingra, A. Bhatnagar, R. Lodha, and T. Sethi, “Predicting Hemodynamic Shock from Thermal Images using Machine Learning,” Sci. Rep. 9(1), 91 (2019).
[Crossref]

Blanik, N.

Blazek, V.

Bonnet-Garin, J.-M.

C. Pouzot-Nevoret, A. Barthélemy, I. Goy-Thollot, E. Boselli, M. Cambournac, J. Guillaumin, J.-M. Bonnet-Garin, and B. Allaouchiche, “Infrared thermography: a rapid and accurate technique to detect feline aortic thromboembolism,” J. Feline Med. Surg. 20(8), 780–785 (2018).
[Crossref]

Boselli, E.

C. Pouzot-Nevoret, A. Barthélemy, I. Goy-Thollot, E. Boselli, M. Cambournac, J. Guillaumin, J.-M. Bonnet-Garin, and B. Allaouchiche, “Infrared thermography: a rapid and accurate technique to detect feline aortic thromboembolism,” J. Feline Med. Surg. 20(8), 780–785 (2018).
[Crossref]

Bouisse, C.

A. Ferraris, C. Bouisse, N. Mottard, F. Thiollière, S. Anselin, V. Piriou, and B. Allaouchiche, “Mottling score and skin temperature in septic shock: Relation and impact on prognosis in ICU,” PLoS One 13(8), e0202329 (2018).
[Crossref]

Bourek, A.

V. Bernard, E. Staffa, V. Mornstein, and A. Bourek, “Infrared camera assessment of skin surface temperature – Effect of emissivity,” Phys. Med. 29(6), 583–591 (2013).
[Crossref]

Boyd, J.

J. A. Russell, B. Rush, and J. Boyd, “Pathophysiology of Septic Shock,” Crit. Care Clin. 34(1), 43–61 (2018).
[Crossref]

Braverman, B.

M. Shulman, B. Braverman, A. D. Ivankovich, and G. Gronert, “Sevoflurane triggers malignant hyperthermia in swine,” Anesthesiology 54(3), 259–260 (1981).
[Crossref]

Bulger, T.

H. Rosenberg, N. Pollock, A. Schiemann, T. Bulger, and K. Stowell, “Malignant hyperthermia: a review,” Orphanet J. Rare Dis. 10(1), 93 (2015).
[Crossref]

Burgener, D.

M. M. Treggiari, J.-A. Romand, D. Burgener, P. M. Suter, and A. Aneman, “Effect of increasing norepinephrine dosage on regional blood flow in a porcine model of endotoxin shock,” Crit. Care Med. 30(6), 1334–1339 (2002).
[Crossref]

Cambournac, M.

C. Pouzot-Nevoret, A. Barthélemy, I. Goy-Thollot, E. Boselli, M. Cambournac, J. Guillaumin, J.-M. Bonnet-Garin, and B. Allaouchiche, “Infrared thermography: a rapid and accurate technique to detect feline aortic thromboembolism,” J. Feline Med. Surg. 20(8), 780–785 (2018).
[Crossref]

Cecconi, M.

M. Cecconi, D. De Backer, M. Antonelli, R. Beale, J. Bakker, C. Hofer, R. Jaeschke, A. Mebazaa, M. R. Pinsky, J. L. Teboul, J. L. Vincent, and A. Rhodes, “Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine,” Intensive Care Med. 40(12), 1795–1815 (2014).
[Crossref]

Chan, Y. H.

Y. H. Chan, “Biostatistics104: Correlational Analysis,” Singapore Med. J. 44(12), 614–619 (2003).

Chemla, D.

R. Persichini, S. Silva, J.-L. Teboul, M. Jozwiak, D. Chemla, C. Richard, and X. Monnet, “Effects of norepinephrine on mean systemic pressure and venous return in human septic shock,” Crit. Care Med. 40(12), 3146–3153 (2012).
[Crossref]

Chen, F.

H. Motoyama, F. Chen, K. Hijiya, T. Kondo, K. Ohata, M. Takahashi, T. Yamada, M. Sato, A. Aoyama, and H. Date, “Novel thermographic detection of regional malperfusion caused by a thrombosis during ex vivo lung perfusion,” Interact. Cardiovasc. Thorac. Surg. 20(2), 242–247 (2015).
[Crossref]

Chikhladze, K. E.

M. M. Gamcrlidze, N. A. Intskirveli, K. D. Vardosanidze, K. E. Chikhladze, L. S. Goliadze, and L. R. Ratiani, “Vasoplegia in septic shock (review),” Georgian Med. News 239, 56–62 (2015).

Clausen, S.

D. D. Soerensen, S. Clausen, J. B. Mercer, and L. J. Pedersen, “Determining the emissivity of pig skin for accurate infrared thermography,” Comput. Electron. Agric. 109, 52–58 (2014).
[Crossref]

Clubb, F. J.

M. M. Swindle, A. Makin, A. J. Herron, F. J. Clubb, and K. S. Frazier, “Swine as Models in Biomedical Research and Toxicology Testing,” Vet. Pathol. 49(2), 344–356 (2012).
[Crossref]

Cunningham, K. S.

K. S. Cunningham and A. I. Gotlieb, “The role of shear stress in the pathogenesis of atherosclerosis,” Lab. Invest. 85(1), 9–23 (2005).
[Crossref]

Czapla, N.

M. Łokaj, N. Czapla, A. Falkowski, and P. Prowans, “The use of thermography in early detection of tissue perfusion disorders in rats,” Videosurgery Miniinvasive Tech. 3(3), 329–336 (2014).
[Crossref]

Czaplik, M.

Date, H.

H. Motoyama, F. Chen, K. Hijiya, T. Kondo, K. Ohata, M. Takahashi, T. Yamada, M. Sato, A. Aoyama, and H. Date, “Novel thermographic detection of regional malperfusion caused by a thrombosis during ex vivo lung perfusion,” Interact. Cardiovasc. Thorac. Surg. 20(2), 242–247 (2015).
[Crossref]

Davies, P. F.

P. F. Davies, “Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology,” Nat. Clin. Pract. Cardiovasc. Med. 6(1), 16–26 (2009).
[Crossref]

De Backer, D.

P. Foulon and D. De Backer, “The hemodynamic effects of norepinephrine: far more than an increase in blood pressure!” Ann. Transl. Med. 6(S1), S25 (2018).
[Crossref]

M. Cecconi, D. De Backer, M. Antonelli, R. Beale, J. Bakker, C. Hofer, R. Jaeschke, A. Mebazaa, M. R. Pinsky, J. L. Teboul, J. L. Vincent, and A. Rhodes, “Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine,” Intensive Care Med. 40(12), 1795–1815 (2014).
[Crossref]

J.-L. Vincent and D. De Backer, “Circulatory Shock,” N. Engl. J. Med. 369(18), 1726–1734 (2013).
[Crossref]

Y. Sakr, K. Reinhart, J.-L. Vincent, C. L. Sprung, R. Moreno, V. M. Ranieri, D. De Backer, and D. Payen, “Does dopamine administration in shock influence outcome? Results of the Sepsis Occurrence in Acutely Ill Patients (SOAP) Study,” Crit. Care Med. 34(3), 589–597 (2006).
[Crossref]

De Hert, S.

S. De Hert and A. Moerman, “Sevoflurane,” F1000Research 4, 626 (2015).
[Crossref]

Deng, F.

F. Deng, Q. Tang, Y. Zheng, G. Zeng, and N. Zhong, “Infrared thermal imaging as a novel evaluation method for deep vein thrombosis in lower limbs,” Med. Phys. 39(12), 7224–7231 (2012).
[Crossref]

Dhingra, L. S.

A. Nagori, L. S. Dhingra, A. Bhatnagar, R. Lodha, and T. Sethi, “Predicting Hemodynamic Shock from Thermal Images using Machine Learning,” Sci. Rep. 9(1), 91 (2019).
[Crossref]

Duan, M.

Ducrocq, N.

A. Beurton, N. Ducrocq, T. Auchet, F. Joineau-Groubatch, A. Falanga, A. Kimmoun, N. Girerd, R. Fay, F. Vanhuyse, N. Tran, and B. Levy, “Beneficial Effects of Norepinephrine Alone on Cardiovascular Function and Tissue Oxygenation in a Pig Model of Cardiogenic Shock,” Shock 46(2), 214–218 (2016).
[Crossref]

Duggan, M.

Falanga, A.

A. Beurton, N. Ducrocq, T. Auchet, F. Joineau-Groubatch, A. Falanga, A. Kimmoun, N. Girerd, R. Fay, F. Vanhuyse, N. Tran, and B. Levy, “Beneficial Effects of Norepinephrine Alone on Cardiovascular Function and Tissue Oxygenation in a Pig Model of Cardiogenic Shock,” Shock 46(2), 214–218 (2016).
[Crossref]

Falkowski, A.

M. Łokaj, N. Czapla, A. Falkowski, and P. Prowans, “The use of thermography in early detection of tissue perfusion disorders in rats,” Videosurgery Miniinvasive Tech. 3(3), 329–336 (2014).
[Crossref]

Fantoni, D.

J. Noel-Morgan, D. Otsuki, J. O. Auler, J. Fukushima, and D. Fantoni, “Pulse Pressure Variation Is Comparable With Central Venous Pressure to Guide Fluid Resuscitation in Experimental Hemorrhagic Shock With Endotoxemia,” Shock 40(4), 303–311 (2013).
[Crossref]

Fay, R.

A. Beurton, N. Ducrocq, T. Auchet, F. Joineau-Groubatch, A. Falanga, A. Kimmoun, N. Girerd, R. Fay, F. Vanhuyse, N. Tran, and B. Levy, “Beneficial Effects of Norepinephrine Alone on Cardiovascular Function and Tissue Oxygenation in a Pig Model of Cardiogenic Shock,” Shock 46(2), 214–218 (2016).
[Crossref]

Ferraris, A.

A. Ferraris, C. Bouisse, N. Mottard, F. Thiollière, S. Anselin, V. Piriou, and B. Allaouchiche, “Mottling score and skin temperature in septic shock: Relation and impact on prognosis in ICU,” PLoS One 13(8), e0202329 (2018).
[Crossref]

Foulon, P.

P. Foulon and D. De Backer, “The hemodynamic effects of norepinephrine: far more than an increase in blood pressure!” Ann. Transl. Med. 6(S1), S25 (2018).
[Crossref]

Frazier, K. S.

M. M. Swindle, A. Makin, A. J. Herron, F. J. Clubb, and K. S. Frazier, “Swine as Models in Biomedical Research and Toxicology Testing,” Vet. Pathol. 49(2), 344–356 (2012).
[Crossref]

Fukushima, J.

J. Noel-Morgan, D. Otsuki, J. O. Auler, J. Fukushima, and D. Fantoni, “Pulse Pressure Variation Is Comparable With Central Venous Pressure to Guide Fluid Resuscitation in Experimental Hemorrhagic Shock With Endotoxemia,” Shock 40(4), 303–311 (2013).
[Crossref]

Gamcrlidze, M. M.

M. M. Gamcrlidze, N. A. Intskirveli, K. D. Vardosanidze, K. E. Chikhladze, L. S. Goliadze, and L. R. Ratiani, “Vasoplegia in septic shock (review),” Georgian Med. News 239, 56–62 (2015).

Giraud, R.

R. Giraud, N. Siegenthaler, D. Arroyo, and K. Bendjelid, “Impact of epinephrine and norepinephrine on two dynamic indices in a porcine hemorrhagic shock model,” J. Trauma Acute Care Surg. 77(4), 564–569 (2014).
[Crossref]

Girerd, N.

A. Beurton, N. Ducrocq, T. Auchet, F. Joineau-Groubatch, A. Falanga, A. Kimmoun, N. Girerd, R. Fay, F. Vanhuyse, N. Tran, and B. Levy, “Beneficial Effects of Norepinephrine Alone on Cardiovascular Function and Tissue Oxygenation in a Pig Model of Cardiogenic Shock,” Shock 46(2), 214–218 (2016).
[Crossref]

Goliadze, L. S.

M. M. Gamcrlidze, N. A. Intskirveli, K. D. Vardosanidze, K. E. Chikhladze, L. S. Goliadze, and L. R. Ratiani, “Vasoplegia in septic shock (review),” Georgian Med. News 239, 56–62 (2015).

González, F. J.

A. Ortiz-Dosal, E. S. Kolosovas-Machuca, R. Rivera-Vega, J. Simón, and F. J. González, “Use of infrared thermography in children with shock: A case series,” SAGE Open Med. Case Rep. 2, 2050313X1456177 (2014).
[Crossref]

Gotlieb, A. I.

K. S. Cunningham and A. I. Gotlieb, “The role of shear stress in the pathogenesis of atherosclerosis,” Lab. Invest. 85(1), 9–23 (2005).
[Crossref]

Goy-Thollot, I.

C. Pouzot-Nevoret, A. Barthélemy, I. Goy-Thollot, E. Boselli, M. Cambournac, J. Guillaumin, J.-M. Bonnet-Garin, and B. Allaouchiche, “Infrared thermography: a rapid and accurate technique to detect feline aortic thromboembolism,” J. Feline Med. Surg. 20(8), 780–785 (2018).
[Crossref]

Gronert, G.

M. Shulman, B. Braverman, A. D. Ivankovich, and G. Gronert, “Sevoflurane triggers malignant hyperthermia in swine,” Anesthesiology 54(3), 259–260 (1981).
[Crossref]

Gronert, G. A.

G. A. Gronert and J. H. Milde, “Variations in onset of porcine malignant hyperthermia,” Anesth. Analg. 60(7), 499–503 (1981).
[Crossref]

Gruenewald, M.

J. Renner, P. Meybohm, R. Hanss, M. Gruenewald, J. Scholz, and B. Bein, “Effects of norepinephrine on dynamic variables of fluid responsiveness during hemorrhage and after resuscitation in a pediatric porcine model,” Paediatr. Anaesth. 19(7), 688–694 (2009).
[Crossref]

Guillaumin, J.

C. Pouzot-Nevoret, A. Barthélemy, I. Goy-Thollot, E. Boselli, M. Cambournac, J. Guillaumin, J.-M. Bonnet-Garin, and B. Allaouchiche, “Infrared thermography: a rapid and accurate technique to detect feline aortic thromboembolism,” J. Feline Med. Surg. 20(8), 780–785 (2018).
[Crossref]

Gurjar, R.

Haller, M.

D. Krizanac, P. Stratil, D. Hoerburger, C. Testori, C. Wallmueller, A. Schober, M. Haugk, M. Haller, W. Behringer, H. Herkner, F. Sterz, and M. Holzer, “Femoro-iliacal artery versus pulmonary artery core temperature measurement during therapeutic hypothermia: an observational study,” Resuscitation 84(6), 805–809 (2013).
[Crossref]

Hanss, R.

J. Renner, P. Meybohm, R. Hanss, M. Gruenewald, J. Scholz, and B. Bein, “Effects of norepinephrine on dynamic variables of fluid responsiveness during hemorrhage and after resuscitation in a pediatric porcine model,” Paediatr. Anaesth. 19(7), 688–694 (2009).
[Crossref]

Haugk, M.

D. Krizanac, P. Stratil, D. Hoerburger, C. Testori, C. Wallmueller, A. Schober, M. Haugk, M. Haller, W. Behringer, H. Herkner, F. Sterz, and M. Holzer, “Femoro-iliacal artery versus pulmonary artery core temperature measurement during therapeutic hypothermia: an observational study,” Resuscitation 84(6), 805–809 (2013).
[Crossref]

Heng, M. L.

M. Adam, E. Y. K. Ng, J. H. Tan, M. L. Heng, J. W. K. Tong, and U. R. Acharya, “Computer aided diagnosis of diabetic foot using infrared thermography: A review,” Comput. Biol. Med. 91, 326–336 (2017).
[Crossref]

Herkner, H.

D. Krizanac, P. Stratil, D. Hoerburger, C. Testori, C. Wallmueller, A. Schober, M. Haugk, M. Haller, W. Behringer, H. Herkner, F. Sterz, and M. Holzer, “Femoro-iliacal artery versus pulmonary artery core temperature measurement during therapeutic hypothermia: an observational study,” Resuscitation 84(6), 805–809 (2013).
[Crossref]

Herrick, A. L.

A. L. Herrick and A. Murray, “The role of capillaroscopy and thermography in the assessment and management of Raynaud’s phenomenon,” Autoimmun. Rev. 17(5), 465–472 (2018).
[Crossref]

Herron, A. J.

M. M. Swindle, A. Makin, A. J. Herron, F. J. Clubb, and K. S. Frazier, “Swine as Models in Biomedical Research and Toxicology Testing,” Vet. Pathol. 49(2), 344–356 (2012).
[Crossref]

Hijiya, K.

H. Motoyama, F. Chen, K. Hijiya, T. Kondo, K. Ohata, M. Takahashi, T. Yamada, M. Sato, A. Aoyama, and H. Date, “Novel thermographic detection of regional malperfusion caused by a thrombosis during ex vivo lung perfusion,” Interact. Cardiovasc. Thorac. Surg. 20(2), 242–247 (2015).
[Crossref]

Hoerburger, D.

D. Krizanac, P. Stratil, D. Hoerburger, C. Testori, C. Wallmueller, A. Schober, M. Haugk, M. Haller, W. Behringer, H. Herkner, F. Sterz, and M. Holzer, “Femoro-iliacal artery versus pulmonary artery core temperature measurement during therapeutic hypothermia: an observational study,” Resuscitation 84(6), 805–809 (2013).
[Crossref]

Hofer, C.

M. Cecconi, D. De Backer, M. Antonelli, R. Beale, J. Bakker, C. Hofer, R. Jaeschke, A. Mebazaa, M. R. Pinsky, J. L. Teboul, J. L. Vincent, and A. Rhodes, “Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine,” Intensive Care Med. 40(12), 1795–1815 (2014).
[Crossref]

Holzer, M.

D. Krizanac, P. Stratil, D. Hoerburger, C. Testori, C. Wallmueller, A. Schober, M. Haugk, M. Haller, W. Behringer, H. Herkner, F. Sterz, and M. Holzer, “Femoro-iliacal artery versus pulmonary artery core temperature measurement during therapeutic hypothermia: an observational study,” Resuscitation 84(6), 805–809 (2013).
[Crossref]

Howell, K.

J. Allen and K. Howell, “Microvascular imaging: techniques and opportunities for clinical physiological measurements,” Physiol. Meas. 35(7), R91–R141 (2014).
[Crossref]

Intskirveli, N. A.

M. M. Gamcrlidze, N. A. Intskirveli, K. D. Vardosanidze, K. E. Chikhladze, L. S. Goliadze, and L. R. Ratiani, “Vasoplegia in septic shock (review),” Georgian Med. News 239, 56–62 (2015).

Ivankovich, A. D.

M. Shulman, B. Braverman, A. D. Ivankovich, and G. Gronert, “Sevoflurane triggers malignant hyperthermia in swine,” Anesthesiology 54(3), 259–260 (1981).
[Crossref]

Jaeschke, R.

M. Cecconi, D. De Backer, M. Antonelli, R. Beale, J. Bakker, C. Hofer, R. Jaeschke, A. Mebazaa, M. R. Pinsky, J. L. Teboul, J. L. Vincent, and A. Rhodes, “Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine,” Intensive Care Med. 40(12), 1795–1815 (2014).
[Crossref]

Jawad, I.

I. Jawad, I. Lukšić, and S. B. Rafnsson, “Assessing available information on the burden of sepsis: global estimates of incidence, prevalence and mortality,” J. Glob. Health 2(1), 010404 (2012).
[Crossref]

Joineau-Groubatch, F.

A. Beurton, N. Ducrocq, T. Auchet, F. Joineau-Groubatch, A. Falanga, A. Kimmoun, N. Girerd, R. Fay, F. Vanhuyse, N. Tran, and B. Levy, “Beneficial Effects of Norepinephrine Alone on Cardiovascular Function and Tissue Oxygenation in a Pig Model of Cardiogenic Shock,” Shock 46(2), 214–218 (2016).
[Crossref]

Jones, B. F.

B. F. Jones, “A reappraisal of the use of infrared thermal image analysis in medicine,” IEEE Trans. Med. Imaging 17(6), 1019–1027 (1998).
[Crossref]

Jozwiak, M.

R. Persichini, S. Silva, J.-L. Teboul, M. Jozwiak, D. Chemla, C. Richard, and X. Monnet, “Effects of norepinephrine on mean systemic pressure and venous return in human septic shock,” Crit. Care Med. 40(12), 3146–3153 (2012).
[Crossref]

Kimmoun, A.

A. Beurton, N. Ducrocq, T. Auchet, F. Joineau-Groubatch, A. Falanga, A. Kimmoun, N. Girerd, R. Fay, F. Vanhuyse, N. Tran, and B. Levy, “Beneficial Effects of Norepinephrine Alone on Cardiovascular Function and Tissue Oxygenation in a Pig Model of Cardiogenic Shock,” Shock 46(2), 214–218 (2016).
[Crossref]

King, D.

Kolosovas-Machuca, E. S.

A. Ortiz-Dosal, E. S. Kolosovas-Machuca, R. Rivera-Vega, J. Simón, and F. J. González, “Use of infrared thermography in children with shock: A case series,” SAGE Open Med. Case Rep. 2, 2050313X1456177 (2014).
[Crossref]

Kondo, T.

H. Motoyama, F. Chen, K. Hijiya, T. Kondo, K. Ohata, M. Takahashi, T. Yamada, M. Sato, A. Aoyama, and H. Date, “Novel thermographic detection of regional malperfusion caused by a thrombosis during ex vivo lung perfusion,” Interact. Cardiovasc. Thorac. Surg. 20(2), 242–247 (2015).
[Crossref]

Krizanac, D.

D. Krizanac, P. Stratil, D. Hoerburger, C. Testori, C. Wallmueller, A. Schober, M. Haugk, M. Haller, W. Behringer, H. Herkner, F. Sterz, and M. Holzer, “Femoro-iliacal artery versus pulmonary artery core temperature measurement during therapeutic hypothermia: an observational study,” Resuscitation 84(6), 805–809 (2013).
[Crossref]

Leonhardt, S.

Levy, B.

A. Beurton, N. Ducrocq, T. Auchet, F. Joineau-Groubatch, A. Falanga, A. Kimmoun, N. Girerd, R. Fay, F. Vanhuyse, N. Tran, and B. Levy, “Beneficial Effects of Norepinephrine Alone on Cardiovascular Function and Tissue Oxygenation in a Pig Model of Cardiogenic Shock,” Shock 46(2), 214–218 (2016).
[Crossref]

Li, K.

Li, T.

Lima, A.

M. E. van Genderen, J. van Bommel, and A. Lima, “Monitoring peripheral perfusion in critically ill patients at the bedside,” Curr. Opin. Crit. Care 18(3), 273–279 (2012).
[Crossref]

Lodha, R.

A. Nagori, L. S. Dhingra, A. Bhatnagar, R. Lodha, and T. Sethi, “Predicting Hemodynamic Shock from Thermal Images using Machine Learning,” Sci. Rep. 9(1), 91 (2019).
[Crossref]

Lokaj, M.

M. Łokaj, N. Czapla, A. Falkowski, and P. Prowans, “The use of thermography in early detection of tissue perfusion disorders in rats,” Videosurgery Miniinvasive Tech. 3(3), 329–336 (2014).
[Crossref]

Love, T. J.

T. J. Love, “Thermography as an Indicator of Blood Perfusion,” Ann. N. Y. Acad. Sci. 335(1 Thermal Chara), 429–437 (1980).
[Crossref]

Lukšic, I.

I. Jawad, I. Lukšić, and S. B. Rafnsson, “Assessing available information on the burden of sepsis: global estimates of incidence, prevalence and mortality,” J. Glob. Health 2(1), 010404 (2012).
[Crossref]

Makin, A.

M. M. Swindle, A. Makin, A. J. Herron, F. J. Clubb, and K. S. Frazier, “Swine as Models in Biomedical Research and Toxicology Testing,” Vet. Pathol. 49(2), 344–356 (2012).
[Crossref]

Mathie, A.

S. P. H. Alexander, A. Mathie, and J. A. Peters, “Guide to Receptors and Channels (GRAC), 5th edition,” Br. J. Pharmacol. 164(Suppl 1), S1–S2 (2011).
[Crossref]

Mebazaa, A.

M. Cecconi, D. De Backer, M. Antonelli, R. Beale, J. Bakker, C. Hofer, R. Jaeschke, A. Mebazaa, M. R. Pinsky, J. L. Teboul, J. L. Vincent, and A. Rhodes, “Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine,” Intensive Care Med. 40(12), 1795–1815 (2014).
[Crossref]

Mercer, J. B.

D. D. Soerensen, S. Clausen, J. B. Mercer, and L. J. Pedersen, “Determining the emissivity of pig skin for accurate infrared thermography,” Comput. Electron. Agric. 109, 52–58 (2014).
[Crossref]

Meybohm, P.

J. Renner, P. Meybohm, R. Hanss, M. Gruenewald, J. Scholz, and B. Bein, “Effects of norepinephrine on dynamic variables of fluid responsiveness during hemorrhage and after resuscitation in a pediatric porcine model,” Paediatr. Anaesth. 19(7), 688–694 (2009).
[Crossref]

Milde, J. H.

G. A. Gronert and J. H. Milde, “Variations in onset of porcine malignant hyperthermia,” Anesth. Analg. 60(7), 499–503 (1981).
[Crossref]

Moerman, A.

S. De Hert and A. Moerman, “Sevoflurane,” F1000Research 4, 626 (2015).
[Crossref]

Monnet, X.

R. Persichini, S. Silva, J.-L. Teboul, M. Jozwiak, D. Chemla, C. Richard, and X. Monnet, “Effects of norepinephrine on mean systemic pressure and venous return in human septic shock,” Crit. Care Med. 40(12), 3146–3153 (2012).
[Crossref]

Moreno, R.

Y. Sakr, K. Reinhart, J.-L. Vincent, C. L. Sprung, R. Moreno, V. M. Ranieri, D. De Backer, and D. Payen, “Does dopamine administration in shock influence outcome? Results of the Sepsis Occurrence in Acutely Ill Patients (SOAP) Study,” Crit. Care Med. 34(3), 589–597 (2006).
[Crossref]

Mornstein, V.

V. Bernard, E. Staffa, V. Mornstein, and A. Bourek, “Infrared camera assessment of skin surface temperature – Effect of emissivity,” Phys. Med. 29(6), 583–591 (2013).
[Crossref]

Motoyama, H.

H. Motoyama, F. Chen, K. Hijiya, T. Kondo, K. Ohata, M. Takahashi, T. Yamada, M. Sato, A. Aoyama, and H. Date, “Novel thermographic detection of regional malperfusion caused by a thrombosis during ex vivo lung perfusion,” Interact. Cardiovasc. Thorac. Surg. 20(2), 242–247 (2015).
[Crossref]

Mottard, N.

A. Ferraris, C. Bouisse, N. Mottard, F. Thiollière, S. Anselin, V. Piriou, and B. Allaouchiche, “Mottling score and skin temperature in septic shock: Relation and impact on prognosis in ICU,” PLoS One 13(8), e0202329 (2018).
[Crossref]

Murray, A.

A. L. Herrick and A. Murray, “The role of capillaroscopy and thermography in the assessment and management of Raynaud’s phenomenon,” Autoimmun. Rev. 17(5), 465–472 (2018).
[Crossref]

Nagori, A.

A. Nagori, L. S. Dhingra, A. Bhatnagar, R. Lodha, and T. Sethi, “Predicting Hemodynamic Shock from Thermal Images using Machine Learning,” Sci. Rep. 9(1), 91 (2019).
[Crossref]

Nasu, M.

R. Sato and M. Nasu, “A review of sepsis-induced cardiomyopathy,” J. Intensive Care 3(1), 48 (2015).
[Crossref]

Ng, E. Y. K.

M. Adam, E. Y. K. Ng, J. H. Tan, M. L. Heng, J. W. K. Tong, and U. R. Acharya, “Computer aided diagnosis of diabetic foot using infrared thermography: A review,” Comput. Biol. Med. 91, 326–336 (2017).
[Crossref]

Noel-Morgan, J.

J. Noel-Morgan, D. Otsuki, J. O. Auler, J. Fukushima, and D. Fantoni, “Pulse Pressure Variation Is Comparable With Central Venous Pressure to Guide Fluid Resuscitation in Experimental Hemorrhagic Shock With Endotoxemia,” Shock 40(4), 303–311 (2013).
[Crossref]

Ohata, K.

H. Motoyama, F. Chen, K. Hijiya, T. Kondo, K. Ohata, M. Takahashi, T. Yamada, M. Sato, A. Aoyama, and H. Date, “Novel thermographic detection of regional malperfusion caused by a thrombosis during ex vivo lung perfusion,” Interact. Cardiovasc. Thorac. Surg. 20(2), 242–247 (2015).
[Crossref]

Ortiz-Dosal, A.

A. Ortiz-Dosal, E. S. Kolosovas-Machuca, R. Rivera-Vega, J. Simón, and F. J. González, “Use of infrared thermography in children with shock: A case series,” SAGE Open Med. Case Rep. 2, 2050313X1456177 (2014).
[Crossref]

Otsuki, D.

J. Noel-Morgan, D. Otsuki, J. O. Auler, J. Fukushima, and D. Fantoni, “Pulse Pressure Variation Is Comparable With Central Venous Pressure to Guide Fluid Resuscitation in Experimental Hemorrhagic Shock With Endotoxemia,” Shock 40(4), 303–311 (2013).
[Crossref]

Payen, D.

Y. Sakr, K. Reinhart, J.-L. Vincent, C. L. Sprung, R. Moreno, V. M. Ranieri, D. De Backer, and D. Payen, “Does dopamine administration in shock influence outcome? Results of the Sepsis Occurrence in Acutely Ill Patients (SOAP) Study,” Crit. Care Med. 34(3), 589–597 (2006).
[Crossref]

Pedersen, L. J.

D. D. Soerensen, S. Clausen, J. B. Mercer, and L. J. Pedersen, “Determining the emissivity of pig skin for accurate infrared thermography,” Comput. Electron. Agric. 109, 52–58 (2014).
[Crossref]

Pereira, C. B.

Persichini, R.

R. Persichini, S. Silva, J.-L. Teboul, M. Jozwiak, D. Chemla, C. Richard, and X. Monnet, “Effects of norepinephrine on mean systemic pressure and venous return in human septic shock,” Crit. Care Med. 40(12), 3146–3153 (2012).
[Crossref]

Peters, J. A.

S. P. H. Alexander, A. Mathie, and J. A. Peters, “Guide to Receptors and Channels (GRAC), 5th edition,” Br. J. Pharmacol. 164(Suppl 1), S1–S2 (2011).
[Crossref]

Pinsky, M. R.

M. Cecconi, D. De Backer, M. Antonelli, R. Beale, J. Bakker, C. Hofer, R. Jaeschke, A. Mebazaa, M. R. Pinsky, J. L. Teboul, J. L. Vincent, and A. Rhodes, “Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine,” Intensive Care Med. 40(12), 1795–1815 (2014).
[Crossref]

Piriou, V.

A. Ferraris, C. Bouisse, N. Mottard, F. Thiollière, S. Anselin, V. Piriou, and B. Allaouchiche, “Mottling score and skin temperature in septic shock: Relation and impact on prognosis in ICU,” PLoS One 13(8), e0202329 (2018).
[Crossref]

Pollock, N.

H. Rosenberg, N. Pollock, A. Schiemann, T. Bulger, and K. Stowell, “Malignant hyperthermia: a review,” Orphanet J. Rare Dis. 10(1), 93 (2015).
[Crossref]

Pouzot-Nevoret, C.

C. Pouzot-Nevoret, A. Barthélemy, I. Goy-Thollot, E. Boselli, M. Cambournac, J. Guillaumin, J.-M. Bonnet-Garin, and B. Allaouchiche, “Infrared thermography: a rapid and accurate technique to detect feline aortic thromboembolism,” J. Feline Med. Surg. 20(8), 780–785 (2018).
[Crossref]

Prowans, P.

M. Łokaj, N. Czapla, A. Falkowski, and P. Prowans, “The use of thermography in early detection of tissue perfusion disorders in rats,” Videosurgery Miniinvasive Tech. 3(3), 329–336 (2014).
[Crossref]

Rafnsson, S. B.

I. Jawad, I. Lukšić, and S. B. Rafnsson, “Assessing available information on the burden of sepsis: global estimates of incidence, prevalence and mortality,” J. Glob. Health 2(1), 010404 (2012).
[Crossref]

Ranieri, V. M.

Y. Sakr, K. Reinhart, J.-L. Vincent, C. L. Sprung, R. Moreno, V. M. Ranieri, D. De Backer, and D. Payen, “Does dopamine administration in shock influence outcome? Results of the Sepsis Occurrence in Acutely Ill Patients (SOAP) Study,” Crit. Care Med. 34(3), 589–597 (2006).
[Crossref]

Ratiani, L. R.

M. M. Gamcrlidze, N. A. Intskirveli, K. D. Vardosanidze, K. E. Chikhladze, L. S. Goliadze, and L. R. Ratiani, “Vasoplegia in septic shock (review),” Georgian Med. News 239, 56–62 (2015).

Reinhart, K.

Y. Sakr, K. Reinhart, J.-L. Vincent, C. L. Sprung, R. Moreno, V. M. Ranieri, D. De Backer, and D. Payen, “Does dopamine administration in shock influence outcome? Results of the Sepsis Occurrence in Acutely Ill Patients (SOAP) Study,” Crit. Care Med. 34(3), 589–597 (2006).
[Crossref]

Renner, J.

J. Renner, P. Meybohm, R. Hanss, M. Gruenewald, J. Scholz, and B. Bein, “Effects of norepinephrine on dynamic variables of fluid responsiveness during hemorrhage and after resuscitation in a pediatric porcine model,” Paediatr. Anaesth. 19(7), 688–694 (2009).
[Crossref]

Rhodes, A.

M. Cecconi, D. De Backer, M. Antonelli, R. Beale, J. Bakker, C. Hofer, R. Jaeschke, A. Mebazaa, M. R. Pinsky, J. L. Teboul, J. L. Vincent, and A. Rhodes, “Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine,” Intensive Care Med. 40(12), 1795–1815 (2014).
[Crossref]

Riccardi, S.

Richard, C.

R. Persichini, S. Silva, J.-L. Teboul, M. Jozwiak, D. Chemla, C. Richard, and X. Monnet, “Effects of norepinephrine on mean systemic pressure and venous return in human septic shock,” Crit. Care Med. 40(12), 3146–3153 (2012).
[Crossref]

Rivera-Vega, R.

A. Ortiz-Dosal, E. S. Kolosovas-Machuca, R. Rivera-Vega, J. Simón, and F. J. González, “Use of infrared thermography in children with shock: A case series,” SAGE Open Med. Case Rep. 2, 2050313X1456177 (2014).
[Crossref]

Romand, J.-A.

M. M. Treggiari, J.-A. Romand, D. Burgener, P. M. Suter, and A. Aneman, “Effect of increasing norepinephrine dosage on regional blood flow in a porcine model of endotoxin shock,” Crit. Care Med. 30(6), 1334–1339 (2002).
[Crossref]

Rosenberg, H.

H. Rosenberg, N. Pollock, A. Schiemann, T. Bulger, and K. Stowell, “Malignant hyperthermia: a review,” Orphanet J. Rare Dis. 10(1), 93 (2015).
[Crossref]

Rossaint, R.

Ruan, Z.

Rush, B.

J. A. Russell, B. Rush, and J. Boyd, “Pathophysiology of Septic Shock,” Crit. Care Clin. 34(1), 43–61 (2018).
[Crossref]

Russell, J. A.

J. A. Russell, B. Rush, and J. Boyd, “Pathophysiology of Septic Shock,” Crit. Care Clin. 34(1), 43–61 (2018).
[Crossref]

Sakr, Y.

Y. Sakr, K. Reinhart, J.-L. Vincent, C. L. Sprung, R. Moreno, V. M. Ranieri, D. De Backer, and D. Payen, “Does dopamine administration in shock influence outcome? Results of the Sepsis Occurrence in Acutely Ill Patients (SOAP) Study,” Crit. Care Med. 34(3), 589–597 (2006).
[Crossref]

Sato, M.

H. Motoyama, F. Chen, K. Hijiya, T. Kondo, K. Ohata, M. Takahashi, T. Yamada, M. Sato, A. Aoyama, and H. Date, “Novel thermographic detection of regional malperfusion caused by a thrombosis during ex vivo lung perfusion,” Interact. Cardiovasc. Thorac. Surg. 20(2), 242–247 (2015).
[Crossref]

Sato, R.

R. Sato and M. Nasu, “A review of sepsis-induced cardiomyopathy,” J. Intensive Care 3(1), 48 (2015).
[Crossref]

Schiemann, A.

H. Rosenberg, N. Pollock, A. Schiemann, T. Bulger, and K. Stowell, “Malignant hyperthermia: a review,” Orphanet J. Rare Dis. 10(1), 93 (2015).
[Crossref]

Schober, A.

D. Krizanac, P. Stratil, D. Hoerburger, C. Testori, C. Wallmueller, A. Schober, M. Haugk, M. Haller, W. Behringer, H. Herkner, F. Sterz, and M. Holzer, “Femoro-iliacal artery versus pulmonary artery core temperature measurement during therapeutic hypothermia: an observational study,” Resuscitation 84(6), 805–809 (2013).
[Crossref]

Scholz, J.

J. Renner, P. Meybohm, R. Hanss, M. Gruenewald, J. Scholz, and B. Bein, “Effects of norepinephrine on dynamic variables of fluid responsiveness during hemorrhage and after resuscitation in a pediatric porcine model,” Paediatr. Anaesth. 19(7), 688–694 (2009).
[Crossref]

Sethi, T.

A. Nagori, L. S. Dhingra, A. Bhatnagar, R. Lodha, and T. Sethi, “Predicting Hemodynamic Shock from Thermal Images using Machine Learning,” Sci. Rep. 9(1), 91 (2019).
[Crossref]

Shulman, M.

M. Shulman, B. Braverman, A. D. Ivankovich, and G. Gronert, “Sevoflurane triggers malignant hyperthermia in swine,” Anesthesiology 54(3), 259–260 (1981).
[Crossref]

Siegenthaler, N.

R. Giraud, N. Siegenthaler, D. Arroyo, and K. Bendjelid, “Impact of epinephrine and norepinephrine on two dynamic indices in a porcine hemorrhagic shock model,” J. Trauma Acute Care Surg. 77(4), 564–569 (2014).
[Crossref]

Silva, S.

R. Persichini, S. Silva, J.-L. Teboul, M. Jozwiak, D. Chemla, C. Richard, and X. Monnet, “Effects of norepinephrine on mean systemic pressure and venous return in human septic shock,” Crit. Care Med. 40(12), 3146–3153 (2012).
[Crossref]

Simón, J.

A. Ortiz-Dosal, E. S. Kolosovas-Machuca, R. Rivera-Vega, J. Simón, and F. J. González, “Use of infrared thermography in children with shock: A case series,” SAGE Open Med. Case Rep. 2, 2050313X1456177 (2014).
[Crossref]

Soerensen, D. D.

D. D. Soerensen, S. Clausen, J. B. Mercer, and L. J. Pedersen, “Determining the emissivity of pig skin for accurate infrared thermography,” Comput. Electron. Agric. 109, 52–58 (2014).
[Crossref]

Sprung, C. L.

Y. Sakr, K. Reinhart, J.-L. Vincent, C. L. Sprung, R. Moreno, V. M. Ranieri, D. De Backer, and D. Payen, “Does dopamine administration in shock influence outcome? Results of the Sepsis Occurrence in Acutely Ill Patients (SOAP) Study,” Crit. Care Med. 34(3), 589–597 (2006).
[Crossref]

Staffa, E.

V. Bernard, E. Staffa, V. Mornstein, and A. Bourek, “Infrared camera assessment of skin surface temperature – Effect of emissivity,” Phys. Med. 29(6), 583–591 (2013).
[Crossref]

Sterz, F.

D. Krizanac, P. Stratil, D. Hoerburger, C. Testori, C. Wallmueller, A. Schober, M. Haugk, M. Haller, W. Behringer, H. Herkner, F. Sterz, and M. Holzer, “Femoro-iliacal artery versus pulmonary artery core temperature measurement during therapeutic hypothermia: an observational study,” Resuscitation 84(6), 805–809 (2013).
[Crossref]

Stowell, K.

H. Rosenberg, N. Pollock, A. Schiemann, T. Bulger, and K. Stowell, “Malignant hyperthermia: a review,” Orphanet J. Rare Dis. 10(1), 93 (2015).
[Crossref]

Stratil, P.

D. Krizanac, P. Stratil, D. Hoerburger, C. Testori, C. Wallmueller, A. Schober, M. Haugk, M. Haller, W. Behringer, H. Herkner, F. Sterz, and M. Holzer, “Femoro-iliacal artery versus pulmonary artery core temperature measurement during therapeutic hypothermia: an observational study,” Resuscitation 84(6), 805–809 (2013).
[Crossref]

Suter, P. M.

M. M. Treggiari, J.-A. Romand, D. Burgener, P. M. Suter, and A. Aneman, “Effect of increasing norepinephrine dosage on regional blood flow in a porcine model of endotoxin shock,” Crit. Care Med. 30(6), 1334–1339 (2002).
[Crossref]

Swindle, M. M.

M. M. Swindle, A. Makin, A. J. Herron, F. J. Clubb, and K. S. Frazier, “Swine as Models in Biomedical Research and Toxicology Testing,” Vet. Pathol. 49(2), 344–356 (2012).
[Crossref]

Takahashi, M.

H. Motoyama, F. Chen, K. Hijiya, T. Kondo, K. Ohata, M. Takahashi, T. Yamada, M. Sato, A. Aoyama, and H. Date, “Novel thermographic detection of regional malperfusion caused by a thrombosis during ex vivo lung perfusion,” Interact. Cardiovasc. Thorac. Surg. 20(2), 242–247 (2015).
[Crossref]

Tan, J. H.

M. Adam, E. Y. K. Ng, J. H. Tan, M. L. Heng, J. W. K. Tong, and U. R. Acharya, “Computer aided diagnosis of diabetic foot using infrared thermography: A review,” Comput. Biol. Med. 91, 326–336 (2017).
[Crossref]

Tang, Q.

F. Deng, Q. Tang, Y. Zheng, G. Zeng, and N. Zhong, “Infrared thermal imaging as a novel evaluation method for deep vein thrombosis in lower limbs,” Med. Phys. 39(12), 7224–7231 (2012).
[Crossref]

Tattersall, G. J.

G. J. Tattersall, “Infrared thermography: A non-invasive window into thermal physiology,” Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol. 202, 78–98 (2016).
[Crossref]

Teboul, J. L.

M. Cecconi, D. De Backer, M. Antonelli, R. Beale, J. Bakker, C. Hofer, R. Jaeschke, A. Mebazaa, M. R. Pinsky, J. L. Teboul, J. L. Vincent, and A. Rhodes, “Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine,” Intensive Care Med. 40(12), 1795–1815 (2014).
[Crossref]

Teboul, J.-L.

R. Persichini, S. Silva, J.-L. Teboul, M. Jozwiak, D. Chemla, C. Richard, and X. Monnet, “Effects of norepinephrine on mean systemic pressure and venous return in human septic shock,” Crit. Care Med. 40(12), 3146–3153 (2012).
[Crossref]

Testori, C.

D. Krizanac, P. Stratil, D. Hoerburger, C. Testori, C. Wallmueller, A. Schober, M. Haugk, M. Haller, W. Behringer, H. Herkner, F. Sterz, and M. Holzer, “Femoro-iliacal artery versus pulmonary artery core temperature measurement during therapeutic hypothermia: an observational study,” Resuscitation 84(6), 805–809 (2013).
[Crossref]

Thiollière, F.

A. Ferraris, C. Bouisse, N. Mottard, F. Thiollière, S. Anselin, V. Piriou, and B. Allaouchiche, “Mottling score and skin temperature in septic shock: Relation and impact on prognosis in ICU,” PLoS One 13(8), e0202329 (2018).
[Crossref]

Tong, J. W. K.

M. Adam, E. Y. K. Ng, J. H. Tan, M. L. Heng, J. W. K. Tong, and U. R. Acharya, “Computer aided diagnosis of diabetic foot using infrared thermography: A review,” Comput. Biol. Med. 91, 326–336 (2017).
[Crossref]

Tran, N.

A. Beurton, N. Ducrocq, T. Auchet, F. Joineau-Groubatch, A. Falanga, A. Kimmoun, N. Girerd, R. Fay, F. Vanhuyse, N. Tran, and B. Levy, “Beneficial Effects of Norepinephrine Alone on Cardiovascular Function and Tissue Oxygenation in a Pig Model of Cardiogenic Shock,” Shock 46(2), 214–218 (2016).
[Crossref]

Treggiari, M. M.

M. M. Treggiari, J.-A. Romand, D. Burgener, P. M. Suter, and A. Aneman, “Effect of increasing norepinephrine dosage on regional blood flow in a porcine model of endotoxin shock,” Crit. Care Med. 30(6), 1334–1339 (2002).
[Crossref]

van Bommel, J.

M. E. van Genderen, J. van Bommel, and A. Lima, “Monitoring peripheral perfusion in critically ill patients at the bedside,” Curr. Opin. Crit. Care 18(3), 273–279 (2012).
[Crossref]

van Genderen, M. E.

M. E. van Genderen, J. van Bommel, and A. Lima, “Monitoring peripheral perfusion in critically ill patients at the bedside,” Curr. Opin. Crit. Care 18(3), 273–279 (2012).
[Crossref]

Vanhuyse, F.

A. Beurton, N. Ducrocq, T. Auchet, F. Joineau-Groubatch, A. Falanga, A. Kimmoun, N. Girerd, R. Fay, F. Vanhuyse, N. Tran, and B. Levy, “Beneficial Effects of Norepinephrine Alone on Cardiovascular Function and Tissue Oxygenation in a Pig Model of Cardiogenic Shock,” Shock 46(2), 214–218 (2016).
[Crossref]

Vardosanidze, K. D.

M. M. Gamcrlidze, N. A. Intskirveli, K. D. Vardosanidze, K. E. Chikhladze, L. S. Goliadze, and L. R. Ratiani, “Vasoplegia in septic shock (review),” Georgian Med. News 239, 56–62 (2015).

Vincent, J. L.

M. Cecconi, D. De Backer, M. Antonelli, R. Beale, J. Bakker, C. Hofer, R. Jaeschke, A. Mebazaa, M. R. Pinsky, J. L. Teboul, J. L. Vincent, and A. Rhodes, “Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine,” Intensive Care Med. 40(12), 1795–1815 (2014).
[Crossref]

Vincent, J.-L.

J.-L. Vincent and D. De Backer, “Circulatory Shock,” N. Engl. J. Med. 369(18), 1726–1734 (2013).
[Crossref]

Y. Sakr, K. Reinhart, J.-L. Vincent, C. L. Sprung, R. Moreno, V. M. Ranieri, D. De Backer, and D. Payen, “Does dopamine administration in shock influence outcome? Results of the Sepsis Occurrence in Acutely Ill Patients (SOAP) Study,” Crit. Care Med. 34(3), 589–597 (2006).
[Crossref]

Vishwanath, K.

Wallmueller, C.

D. Krizanac, P. Stratil, D. Hoerburger, C. Testori, C. Wallmueller, A. Schober, M. Haugk, M. Haller, W. Behringer, H. Herkner, F. Sterz, and M. Holzer, “Femoro-iliacal artery versus pulmonary artery core temperature measurement during therapeutic hypothermia: an observational study,” Resuscitation 84(6), 805–809 (2013).
[Crossref]

Wolf, D.

Yamada, T.

H. Motoyama, F. Chen, K. Hijiya, T. Kondo, K. Ohata, M. Takahashi, T. Yamada, M. Sato, A. Aoyama, and H. Date, “Novel thermographic detection of regional malperfusion caused by a thrombosis during ex vivo lung perfusion,” Interact. Cardiovasc. Thorac. Surg. 20(2), 242–247 (2015).
[Crossref]

Yu, G.

Zeng, G.

F. Deng, Q. Tang, Y. Zheng, G. Zeng, and N. Zhong, “Infrared thermal imaging as a novel evaluation method for deep vein thrombosis in lower limbs,” Med. Phys. 39(12), 7224–7231 (2012).
[Crossref]

Zheng, Y.

F. Deng, Q. Tang, Y. Zheng, G. Zeng, and N. Zhong, “Infrared thermal imaging as a novel evaluation method for deep vein thrombosis in lower limbs,” Med. Phys. 39(12), 7224–7231 (2012).
[Crossref]

Zhong, N.

F. Deng, Q. Tang, Y. Zheng, G. Zeng, and N. Zhong, “Infrared thermal imaging as a novel evaluation method for deep vein thrombosis in lower limbs,” Med. Phys. 39(12), 7224–7231 (2012).
[Crossref]

Anesth. Analg. (1)

G. A. Gronert and J. H. Milde, “Variations in onset of porcine malignant hyperthermia,” Anesth. Analg. 60(7), 499–503 (1981).
[Crossref]

Anesthesiology (1)

M. Shulman, B. Braverman, A. D. Ivankovich, and G. Gronert, “Sevoflurane triggers malignant hyperthermia in swine,” Anesthesiology 54(3), 259–260 (1981).
[Crossref]

Ann. N. Y. Acad. Sci. (1)

T. J. Love, “Thermography as an Indicator of Blood Perfusion,” Ann. N. Y. Acad. Sci. 335(1 Thermal Chara), 429–437 (1980).
[Crossref]

Ann. Transl. Med. (1)

P. Foulon and D. De Backer, “The hemodynamic effects of norepinephrine: far more than an increase in blood pressure!” Ann. Transl. Med. 6(S1), S25 (2018).
[Crossref]

Autoimmun. Rev. (1)

A. L. Herrick and A. Murray, “The role of capillaroscopy and thermography in the assessment and management of Raynaud’s phenomenon,” Autoimmun. Rev. 17(5), 465–472 (2018).
[Crossref]

Biomed. Opt. Express (3)

Br. J. Pharmacol. (1)

S. P. H. Alexander, A. Mathie, and J. A. Peters, “Guide to Receptors and Channels (GRAC), 5th edition,” Br. J. Pharmacol. 164(Suppl 1), S1–S2 (2011).
[Crossref]

Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol. (1)

G. J. Tattersall, “Infrared thermography: A non-invasive window into thermal physiology,” Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol. 202, 78–98 (2016).
[Crossref]

Comput. Biol. Med. (1)

M. Adam, E. Y. K. Ng, J. H. Tan, M. L. Heng, J. W. K. Tong, and U. R. Acharya, “Computer aided diagnosis of diabetic foot using infrared thermography: A review,” Comput. Biol. Med. 91, 326–336 (2017).
[Crossref]

Comput. Electron. Agric. (1)

D. D. Soerensen, S. Clausen, J. B. Mercer, and L. J. Pedersen, “Determining the emissivity of pig skin for accurate infrared thermography,” Comput. Electron. Agric. 109, 52–58 (2014).
[Crossref]

Crit. Care Clin. (1)

J. A. Russell, B. Rush, and J. Boyd, “Pathophysiology of Septic Shock,” Crit. Care Clin. 34(1), 43–61 (2018).
[Crossref]

Crit. Care Med. (3)

M. M. Treggiari, J.-A. Romand, D. Burgener, P. M. Suter, and A. Aneman, “Effect of increasing norepinephrine dosage on regional blood flow in a porcine model of endotoxin shock,” Crit. Care Med. 30(6), 1334–1339 (2002).
[Crossref]

R. Persichini, S. Silva, J.-L. Teboul, M. Jozwiak, D. Chemla, C. Richard, and X. Monnet, “Effects of norepinephrine on mean systemic pressure and venous return in human septic shock,” Crit. Care Med. 40(12), 3146–3153 (2012).
[Crossref]

Y. Sakr, K. Reinhart, J.-L. Vincent, C. L. Sprung, R. Moreno, V. M. Ranieri, D. De Backer, and D. Payen, “Does dopamine administration in shock influence outcome? Results of the Sepsis Occurrence in Acutely Ill Patients (SOAP) Study,” Crit. Care Med. 34(3), 589–597 (2006).
[Crossref]

Curr. Opin. Crit. Care (1)

M. E. van Genderen, J. van Bommel, and A. Lima, “Monitoring peripheral perfusion in critically ill patients at the bedside,” Curr. Opin. Crit. Care 18(3), 273–279 (2012).
[Crossref]

F1000Research (1)

S. De Hert and A. Moerman, “Sevoflurane,” F1000Research 4, 626 (2015).
[Crossref]

Georgian Med. News (1)

M. M. Gamcrlidze, N. A. Intskirveli, K. D. Vardosanidze, K. E. Chikhladze, L. S. Goliadze, and L. R. Ratiani, “Vasoplegia in septic shock (review),” Georgian Med. News 239, 56–62 (2015).

IEEE Trans. Med. Imaging (1)

B. F. Jones, “A reappraisal of the use of infrared thermal image analysis in medicine,” IEEE Trans. Med. Imaging 17(6), 1019–1027 (1998).
[Crossref]

Intensive Care Med. (1)

M. Cecconi, D. De Backer, M. Antonelli, R. Beale, J. Bakker, C. Hofer, R. Jaeschke, A. Mebazaa, M. R. Pinsky, J. L. Teboul, J. L. Vincent, and A. Rhodes, “Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine,” Intensive Care Med. 40(12), 1795–1815 (2014).
[Crossref]

Interact. Cardiovasc. Thorac. Surg. (1)

H. Motoyama, F. Chen, K. Hijiya, T. Kondo, K. Ohata, M. Takahashi, T. Yamada, M. Sato, A. Aoyama, and H. Date, “Novel thermographic detection of regional malperfusion caused by a thrombosis during ex vivo lung perfusion,” Interact. Cardiovasc. Thorac. Surg. 20(2), 242–247 (2015).
[Crossref]

J. Feline Med. Surg. (1)

C. Pouzot-Nevoret, A. Barthélemy, I. Goy-Thollot, E. Boselli, M. Cambournac, J. Guillaumin, J.-M. Bonnet-Garin, and B. Allaouchiche, “Infrared thermography: a rapid and accurate technique to detect feline aortic thromboembolism,” J. Feline Med. Surg. 20(8), 780–785 (2018).
[Crossref]

J. Glob. Health (1)

I. Jawad, I. Lukšić, and S. B. Rafnsson, “Assessing available information on the burden of sepsis: global estimates of incidence, prevalence and mortality,” J. Glob. Health 2(1), 010404 (2012).
[Crossref]

J. Intensive Care (1)

R. Sato and M. Nasu, “A review of sepsis-induced cardiomyopathy,” J. Intensive Care 3(1), 48 (2015).
[Crossref]

J. Trauma Acute Care Surg. (1)

R. Giraud, N. Siegenthaler, D. Arroyo, and K. Bendjelid, “Impact of epinephrine and norepinephrine on two dynamic indices in a porcine hemorrhagic shock model,” J. Trauma Acute Care Surg. 77(4), 564–569 (2014).
[Crossref]

Lab. Invest. (1)

K. S. Cunningham and A. I. Gotlieb, “The role of shear stress in the pathogenesis of atherosclerosis,” Lab. Invest. 85(1), 9–23 (2005).
[Crossref]

Med. Phys. (1)

F. Deng, Q. Tang, Y. Zheng, G. Zeng, and N. Zhong, “Infrared thermal imaging as a novel evaluation method for deep vein thrombosis in lower limbs,” Med. Phys. 39(12), 7224–7231 (2012).
[Crossref]

N. Engl. J. Med. (1)

J.-L. Vincent and D. De Backer, “Circulatory Shock,” N. Engl. J. Med. 369(18), 1726–1734 (2013).
[Crossref]

Nat. Clin. Pract. Cardiovasc. Med. (1)

P. F. Davies, “Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology,” Nat. Clin. Pract. Cardiovasc. Med. 6(1), 16–26 (2009).
[Crossref]

Orphanet J. Rare Dis. (1)

H. Rosenberg, N. Pollock, A. Schiemann, T. Bulger, and K. Stowell, “Malignant hyperthermia: a review,” Orphanet J. Rare Dis. 10(1), 93 (2015).
[Crossref]

Paediatr. Anaesth. (1)

J. Renner, P. Meybohm, R. Hanss, M. Gruenewald, J. Scholz, and B. Bein, “Effects of norepinephrine on dynamic variables of fluid responsiveness during hemorrhage and after resuscitation in a pediatric porcine model,” Paediatr. Anaesth. 19(7), 688–694 (2009).
[Crossref]

Phys. Med. (1)

V. Bernard, E. Staffa, V. Mornstein, and A. Bourek, “Infrared camera assessment of skin surface temperature – Effect of emissivity,” Phys. Med. 29(6), 583–591 (2013).
[Crossref]

Physiol. Meas. (1)

J. Allen and K. Howell, “Microvascular imaging: techniques and opportunities for clinical physiological measurements,” Physiol. Meas. 35(7), R91–R141 (2014).
[Crossref]

PLoS One (1)

A. Ferraris, C. Bouisse, N. Mottard, F. Thiollière, S. Anselin, V. Piriou, and B. Allaouchiche, “Mottling score and skin temperature in septic shock: Relation and impact on prognosis in ICU,” PLoS One 13(8), e0202329 (2018).
[Crossref]

Resuscitation (1)

D. Krizanac, P. Stratil, D. Hoerburger, C. Testori, C. Wallmueller, A. Schober, M. Haugk, M. Haller, W. Behringer, H. Herkner, F. Sterz, and M. Holzer, “Femoro-iliacal artery versus pulmonary artery core temperature measurement during therapeutic hypothermia: an observational study,” Resuscitation 84(6), 805–809 (2013).
[Crossref]

SAGE Open Med. Case Rep. (1)

A. Ortiz-Dosal, E. S. Kolosovas-Machuca, R. Rivera-Vega, J. Simón, and F. J. González, “Use of infrared thermography in children with shock: A case series,” SAGE Open Med. Case Rep. 2, 2050313X1456177 (2014).
[Crossref]

Sci. Rep. (1)

A. Nagori, L. S. Dhingra, A. Bhatnagar, R. Lodha, and T. Sethi, “Predicting Hemodynamic Shock from Thermal Images using Machine Learning,” Sci. Rep. 9(1), 91 (2019).
[Crossref]

Shock (2)

A. Beurton, N. Ducrocq, T. Auchet, F. Joineau-Groubatch, A. Falanga, A. Kimmoun, N. Girerd, R. Fay, F. Vanhuyse, N. Tran, and B. Levy, “Beneficial Effects of Norepinephrine Alone on Cardiovascular Function and Tissue Oxygenation in a Pig Model of Cardiogenic Shock,” Shock 46(2), 214–218 (2016).
[Crossref]

J. Noel-Morgan, D. Otsuki, J. O. Auler, J. Fukushima, and D. Fantoni, “Pulse Pressure Variation Is Comparable With Central Venous Pressure to Guide Fluid Resuscitation in Experimental Hemorrhagic Shock With Endotoxemia,” Shock 40(4), 303–311 (2013).
[Crossref]

Singapore Med. J. (1)

Y. H. Chan, “Biostatistics104: Correlational Analysis,” Singapore Med. J. 44(12), 614–619 (2003).

Vet. Pathol. (1)

M. M. Swindle, A. Makin, A. J. Herron, F. J. Clubb, and K. S. Frazier, “Swine as Models in Biomedical Research and Toxicology Testing,” Vet. Pathol. 49(2), 344–356 (2012).
[Crossref]

Videosurgery Miniinvasive Tech. (1)

M. Łokaj, N. Czapla, A. Falkowski, and P. Prowans, “The use of thermography in early detection of tissue perfusion disorders in rats,” Videosurgery Miniinvasive Tech. 3(3), 329–336 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Study design (MAC: minimum alveolar concentration, MAP: mean arterial pressure).
Fig. 2.
Fig. 2. Placement of the left foreleg during the study (white arrow: rope placed around the metacarpus to maintain the foreleg).
Fig. 3.
Fig. 3. Analysis of a thermographic image (A circle of 20 cm2 was drawn on the elbow and a circle of 10 cm2 was drawn over the carpus for the measure of the mean temperature; Te: elbow mean temperature, Tca: carpus mean temperature).
Fig. 4.
Fig. 4. Boxplots describing the course of (Tc – Te) (a), (Tc – Tca) (b), MAP (c), CI (d) and PPV (e) over time points. On the abscissa: Time points (A: Baseline, B: Bolus 1, C: Hypotension 1, D: Normotension 1, E: Hypertension 1, F: Normotension 2, G: Hypotension 2, H: Bolus 2, I: Hypertension 2, J: Hypotension 3). On ordinate: Tc: central temperature. Te: elbow temperature. Tca: carpus temperature; MAP: mean arterial pressure; CI: cardiac index; PPV: pulse pressure variation, * P < 0.05.
Fig. 5.
Fig. 5. Representation of (Tc – Tca) and (Tc – Te) as a function of MAP (Tc: central temperature, Te: elbow temperature, Tca: carpus temperature, MAP: mean arterial pressure).

Tables (3)

Tables Icon

Table 1. Evolution of the different study parameters over time

Tables Icon

Table 2. Correlations between parametersa

Tables Icon

Table 3. Hemodynamic determinants of temperature – Results of univariate and multivariate analysisa

Metrics