Abstract

Simultaneous imaging of multiple hemodynamic parameters helps to evaluate the physiological and pathological status of biological tissue. To achieve multimodal hemodynamics imaging with a large field of view, an infinite conjugate relay lens system compatible with the standard C-Mount camera lens is designed to adapt one camera lens with multiple CCD/CMOS cameras for simultaneously multi-wavelength imaging. Using this relay lens system, dual wavelength reflectance imaging and laser speckle contrast imaging were combined to simultaneously detect the changes in blood flow, oxygenation, and hemoglobin concentrations. To improve the accuracy of hemoglobin concentration measurement with an LED illumination source, an integral algorithm is proposed that accounts for the dependence of differential pathlength factors (DPF) on hemoglobin concentrations and the integral effect of both the emission spectrum of the light source and the spectrum response of the detector. The imaging system is validated by both phantom and in vivo experiments, including the arterial occlusion, and the detection of blood volume pulse (BVP) and blood flow pulse (BFP) signal in human subjects. The system helps in the exploration of macroscopic tissue hemodynamics.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
RGB camera-based imaging of cerebral tissue oxygen saturation, hemoglobin concentration, and hemodynamic spontaneous low-frequency oscillations in rat brain following induction of cortical spreading depression

Afrina Mustari, Naoki Nakamura, Satoko Kawauchi, Shunichi Sato, Manabu Sato, and Izumi Nishidate
Biomed. Opt. Express 9(3) 933-951 (2018)

Simple and affordable imaging of multiple physiological parameters with RGB camera-based diffuse reflectance spectroscopy

Izumi Nishidate, Masashi Minakawa, Daniel McDuff, MD. Abdul Wares, Kazuya Nakano, Hideaki Haneishi, Yoshihisa Aizu, and Kyuichi Niizeki
Biomed. Opt. Express 11(2) 1073-1091 (2020)

In vivo imaging of hepatic hemodynamics and light scattering property during ischemia-reperfusion in rats based on spectrocolorimetry

Sharmin Akter, Satoko Kawauchi, Shunichi Sato, Suefumi Aosasa, Junji Yamamoto, and Izumi Nishidate
Biomed. Opt. Express 8(2) 974-992 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic Imaging of Cerebral Blood Flow Using Laser Speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
    [Crossref]
  2. J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
    [Crossref]
  3. J. D. Briers, G. J. Richards, and X. He, “Capillary Blood Flow Monitoring Using Laser Speckle Contrast Analysis (LASCA),” J. Biomed. Opt. 4(1), 164–175 (1999).
    [Crossref]
  4. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
    [Crossref]
  5. A. Mustari, N. Nakamura, S. Kawauchi, S. Sato, M. Sato, and I. Nishidate, “RGB camera-based imaging of cerebral tissue oxygen saturation, hemoglobin concentration, and hemodynamic spontaneous low-frequency oscillations in rat brain following induction of cortical spreading depression,” Biomed. Opt. Express 9(3), 933–951 (2018).
    [Crossref]
  6. J. Spigulis and I. Oshina, “Snapshot RGB mapping of skin melanin and hemoglobin,” J. Biomed. Opt. 20(5), 050503 (2015).
    [Crossref]
  7. M. Seong, Z. Phillips, P. M. Mai, C. Yeo, C. Song, K. Lee, and J. G. Kim, “Simultaneous blood flow and blood oxygenation measurements using a combination of diffuse speckle contrast analysis and near-infrared spectroscopy,” J. Biomed. Opt. 21(2), 027001 (2016).
    [Crossref]
  8. C. Yin, F. Zhou, Y. Wang, W. Luo, Q. Luo, and P. Li, “Simultaneous detection of hemodynamics, mitochondrial metabolism and light scattering changes during cortical spreading depression in rats based on multi-spectral optical imaging,” NeuroImage 76, 70–80 (2013).
    [Crossref]
  9. I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt. 16(8), 086012 (2011).
    [Crossref]
  10. A. L. Vahrmeijer, M. Hutteman, J. R. van der Vorst, C. J. H. van de Velde, and J. V. Frangioni, “Image-guided cancer surgery using near-infrared fluorescence,” Nat. Rev. Clin. Oncol. 10(9), 507–518 (2013).
    [Crossref]
  11. A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28(1), 28–30 (2003).
    [Crossref]
  12. W. Ren, Y. Qu, J. Pei, L. Xiao, S. Zhang, S. Chang, and R. X. Xu, “Development of a Multimodal Colposcopy for Characterization of Cervical Intraepithelial Neoplasia,” J. Med. Devices 11(3), 031005 (2017).
    [Crossref]
  13. I. Sigal, M. M. Koletar, D. Ringuette, R. Gad, M. A. Jeffrey, P. L. Carlen, B. Stefanovic, and O. Levi, “Imaging brain activity during seizures in freely behaving rats using a miniature multi-modal imaging system,” Biomed. Opt. Express 7(9), 3596–3609 (2016).
    [Crossref]
  14. W. Ren, Q. Gan, Q. Wu, S. Zhang, and R. X. Xu, “Quasi-simultaneous multimodal imaging of cutaneous tissue oxygenation and perfusion,” J. Biomed. Opt. 20(12), 121307 (2015).
    [Crossref]
  15. I. Kofman and D. Abookasis, “Dual-wavelength laser speckle imaging for monitoring brain metabolic and hemodynamic response to closed head traumatic brain injury in mice,” J. Biomed. Opt. 20(10), 106009 (2015).
    [Crossref]
  16. Z. Luo, Z. Yuan, Y. Pan, and C. Du, “Simultaneous imaging of cortical hemodynamics and blood oxygenation change during cerebral ischemia using dual-wavelength laser speckle contrast imaging,” Opt. Lett. 34(9), 1480–1482 (2009).
    [Crossref]
  17. R. Liu, Q. Huang, B. Li, C. Yin, C. Jiang, J. Wang, J. Lu, Q. Luo, and P. Li, “Extendable, miniaturized multi-modal optical imaging system: cortical hemodynamic observation in freely moving animals,” Opt. Express 21(2), 1911–1924 (2013).
    [Crossref]
  18. J. Cha, A. Broch, S. Mudge, K. Kim, J. Namgoong, E. Oh, and P. C. W. Kim, “Real-time, label-free, intraoperative visualization of peripheral nerves and micro-vasculatures using multimodal optical imaging techniques,” Biomed. Opt. Express 9(3), 1097–1110 (2018).
    [Crossref]
  19. X. Sun, Y. Wang, S. Chen, W. Luo, P. Li, and Q. Luo, “Simultaneous monitoring of intracellular pH changes and hemodynamic response during cortical spreading depression by fluorescence-corrected multimodal optical imaging,” NeuroImage 57(3), 873–884 (2011).
    [Crossref]
  20. Z. Chen, N. Zhu, S. Pacheco, X. Wang, and R. Liang, “Single camera imaging system for color and near-infrared fluorescence image guided surgery,” Biomed. Opt. Express 5(8), 2791–2797 (2014).
    [Crossref]
  21. P. Miao, L. Zhang, M. Li, Y. Zhang, S. Feng, Q. Wang, and N. V. Thakor, “Chronic wide-field imaging of brain hemodynamics in behaving animals,” Biomed. Opt. Express 8(1), 436–445 (2017).
    [Crossref]
  22. G. Themelis, J. S. Yoo, K. Soh, R. B. Schulz, and V. Ntziachristos, “Real-time intraoperative fluorescence imaging system using light-absorption correction,” J. Biomed. Opt. 14(6), 064012 (2009).
    [Crossref]
  23. C. Crouzet, J. Q. Nguyen, A. Ponticorvo, N. P. Bernal, A. J. Durkin, and B. Choi, “Acute discrimination between superficial-partial and deep-partial thickness burns in a preclinical model with laser speckle imaging,” Burns 41(5), 1058–1063 (2015).
    [Crossref]
  24. X. Wu, J. Li, K. Joypaul, W. W. Bao, D. Wang, Y. J. Huang, P. C. Li, and W. Mei, “Blood flow index as an indicator of successful sciatic nerve block: a prospective observational study using laser speckle contrast imaging,” Br. J. Anaesth. 121(4), 859–866 (2018).
    [Crossref]
  25. Y. Huang, T. L. Ringold, J. S. Nelson, and B. Choi, “Noninvasive blood flow imaging for real-time feedback during laser therapy of port wine stain birthmarks,” Lasers Surg. Med. 40(3), 167–173 (2008).
    [Crossref]
  26. P. Vaupel, F. Kallinowski, and P. Okunieff, “Blood Flow, Oxygen and Nutrient Supply, and Metabolic Microenvironment of Human Tumors: A Review,” Cancer Res. 49(23), 6449–6465 (1989).
  27. M. Kohl, U. Lindauer, G. Royl, M. Kühl, L. Gold, A. Villringer, and U. Dirnagl, “Physical model for the spectroscopic analysis of cortical intrinsic optical signals,” Phys. Med. Biol. 45(12), 3749–3764 (2000).
    [Crossref]
  28. J. Wang, Y. Wang, B. Li, D. Feng, J. Lu, Q. Luo, and P. Li, “Dual-wavelength laser speckle imaging to simultaneously access blood flow, blood volume, and oxygenation using a color CCD camera,” Opt. Lett. 38(18), 3690–3692 (2013).
    [Crossref]
  29. T. Kurata, Z. Li, S. Oda, H. Kawahira, and H. Haneishi, “Impact of vessel diameter and bandwidth of illumination in sidestream dark-field oximetry,” Biomed. Opt. Express 6(5), 1616–1631 (2015).
    [Crossref]
  30. T. Kurata, S. Oda, H. Kawahira, and H. Haneishi, “Correction method for influence of tissue scattering for sidestream dark-field oximetry using multicolor LEDs,” Opt. Rev. 23(6), 955–967 (2016).
    [Crossref]
  31. R. Hashimoto, T. Kurata, M. Sekine, K. Nakano, T. Ohnishi, and H. Haneishi, “Two-wavelength oximetry of tissue microcirculation based on sidestream dark-field imaging,” J. Biomed. Opt. 24(03), 1 (2018).
    [Crossref]
  32. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref]
  33. S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue - temporal and frequency-analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992).
    [Crossref]
  34. L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (John Wiley & Sons, Inc, 2009).
  35. L. V. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio. 47(2), 131–146 (1995).
    [Crossref]
  36. A. Guazzi, M. Villarroel, J. Jorge, J. Daly, M. C. Frise, P. A. Robbins, and L. Tarassenko, “Non-contact measurement of oxygen saturation with an RGB camera,” Biomed. Opt. Express 6(9), 3320–3338 (2015).
    [Crossref]
  37. J. Allen, “Photoplethysmography and its application in clinical physiological measurement,” Physiol. Meas. 28(3), R1–R39 (2007).
    [Crossref]
  38. C. E. Dunn, B. Lertsakdadet, C. Crouzet, A. Bahani, and B. Choi, “Comparison of speckleplethysmographic (SPG) and photoplethysmographic (PPG) imaging by Monte Carlo simulations and in vivo measurements,” Biomed. Opt. Express 9(9), 4306–4316 (2018).
    [Crossref]
  39. M. Ghijsen, T. B. Rice, B. Y. Yang, S. M. White, and B. J. Tromberg, “Wearable speckle plethysmography (SPG) for characterizing microvascular flow and resistance,” Biomed. Opt. Express 9(8), 3937–3952 (2018).
    [Crossref]
  40. W. Lv, Y. Wang, X. Chen, X. Fu, J. Lu, and P. Li, “Enhancing vascular visualization in laser speckle contrast imaging of blood flow using multi-focus image fusion,” J. Biophotonics 12(1), e201800100 (2019).
    [Crossref]

2019 (1)

W. Lv, Y. Wang, X. Chen, X. Fu, J. Lu, and P. Li, “Enhancing vascular visualization in laser speckle contrast imaging of blood flow using multi-focus image fusion,” J. Biophotonics 12(1), e201800100 (2019).
[Crossref]

2018 (6)

C. E. Dunn, B. Lertsakdadet, C. Crouzet, A. Bahani, and B. Choi, “Comparison of speckleplethysmographic (SPG) and photoplethysmographic (PPG) imaging by Monte Carlo simulations and in vivo measurements,” Biomed. Opt. Express 9(9), 4306–4316 (2018).
[Crossref]

M. Ghijsen, T. B. Rice, B. Y. Yang, S. M. White, and B. J. Tromberg, “Wearable speckle plethysmography (SPG) for characterizing microvascular flow and resistance,” Biomed. Opt. Express 9(8), 3937–3952 (2018).
[Crossref]

A. Mustari, N. Nakamura, S. Kawauchi, S. Sato, M. Sato, and I. Nishidate, “RGB camera-based imaging of cerebral tissue oxygen saturation, hemoglobin concentration, and hemodynamic spontaneous low-frequency oscillations in rat brain following induction of cortical spreading depression,” Biomed. Opt. Express 9(3), 933–951 (2018).
[Crossref]

J. Cha, A. Broch, S. Mudge, K. Kim, J. Namgoong, E. Oh, and P. C. W. Kim, “Real-time, label-free, intraoperative visualization of peripheral nerves and micro-vasculatures using multimodal optical imaging techniques,” Biomed. Opt. Express 9(3), 1097–1110 (2018).
[Crossref]

X. Wu, J. Li, K. Joypaul, W. W. Bao, D. Wang, Y. J. Huang, P. C. Li, and W. Mei, “Blood flow index as an indicator of successful sciatic nerve block: a prospective observational study using laser speckle contrast imaging,” Br. J. Anaesth. 121(4), 859–866 (2018).
[Crossref]

R. Hashimoto, T. Kurata, M. Sekine, K. Nakano, T. Ohnishi, and H. Haneishi, “Two-wavelength oximetry of tissue microcirculation based on sidestream dark-field imaging,” J. Biomed. Opt. 24(03), 1 (2018).
[Crossref]

2017 (2)

P. Miao, L. Zhang, M. Li, Y. Zhang, S. Feng, Q. Wang, and N. V. Thakor, “Chronic wide-field imaging of brain hemodynamics in behaving animals,” Biomed. Opt. Express 8(1), 436–445 (2017).
[Crossref]

W. Ren, Y. Qu, J. Pei, L. Xiao, S. Zhang, S. Chang, and R. X. Xu, “Development of a Multimodal Colposcopy for Characterization of Cervical Intraepithelial Neoplasia,” J. Med. Devices 11(3), 031005 (2017).
[Crossref]

2016 (3)

I. Sigal, M. M. Koletar, D. Ringuette, R. Gad, M. A. Jeffrey, P. L. Carlen, B. Stefanovic, and O. Levi, “Imaging brain activity during seizures in freely behaving rats using a miniature multi-modal imaging system,” Biomed. Opt. Express 7(9), 3596–3609 (2016).
[Crossref]

M. Seong, Z. Phillips, P. M. Mai, C. Yeo, C. Song, K. Lee, and J. G. Kim, “Simultaneous blood flow and blood oxygenation measurements using a combination of diffuse speckle contrast analysis and near-infrared spectroscopy,” J. Biomed. Opt. 21(2), 027001 (2016).
[Crossref]

T. Kurata, S. Oda, H. Kawahira, and H. Haneishi, “Correction method for influence of tissue scattering for sidestream dark-field oximetry using multicolor LEDs,” Opt. Rev. 23(6), 955–967 (2016).
[Crossref]

2015 (6)

A. Guazzi, M. Villarroel, J. Jorge, J. Daly, M. C. Frise, P. A. Robbins, and L. Tarassenko, “Non-contact measurement of oxygen saturation with an RGB camera,” Biomed. Opt. Express 6(9), 3320–3338 (2015).
[Crossref]

T. Kurata, Z. Li, S. Oda, H. Kawahira, and H. Haneishi, “Impact of vessel diameter and bandwidth of illumination in sidestream dark-field oximetry,” Biomed. Opt. Express 6(5), 1616–1631 (2015).
[Crossref]

C. Crouzet, J. Q. Nguyen, A. Ponticorvo, N. P. Bernal, A. J. Durkin, and B. Choi, “Acute discrimination between superficial-partial and deep-partial thickness burns in a preclinical model with laser speckle imaging,” Burns 41(5), 1058–1063 (2015).
[Crossref]

J. Spigulis and I. Oshina, “Snapshot RGB mapping of skin melanin and hemoglobin,” J. Biomed. Opt. 20(5), 050503 (2015).
[Crossref]

W. Ren, Q. Gan, Q. Wu, S. Zhang, and R. X. Xu, “Quasi-simultaneous multimodal imaging of cutaneous tissue oxygenation and perfusion,” J. Biomed. Opt. 20(12), 121307 (2015).
[Crossref]

I. Kofman and D. Abookasis, “Dual-wavelength laser speckle imaging for monitoring brain metabolic and hemodynamic response to closed head traumatic brain injury in mice,” J. Biomed. Opt. 20(10), 106009 (2015).
[Crossref]

2014 (1)

2013 (5)

R. Liu, Q. Huang, B. Li, C. Yin, C. Jiang, J. Wang, J. Lu, Q. Luo, and P. Li, “Extendable, miniaturized multi-modal optical imaging system: cortical hemodynamic observation in freely moving animals,” Opt. Express 21(2), 1911–1924 (2013).
[Crossref]

J. Wang, Y. Wang, B. Li, D. Feng, J. Lu, Q. Luo, and P. Li, “Dual-wavelength laser speckle imaging to simultaneously access blood flow, blood volume, and oxygenation using a color CCD camera,” Opt. Lett. 38(18), 3690–3692 (2013).
[Crossref]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref]

A. L. Vahrmeijer, M. Hutteman, J. R. van der Vorst, C. J. H. van de Velde, and J. V. Frangioni, “Image-guided cancer surgery using near-infrared fluorescence,” Nat. Rev. Clin. Oncol. 10(9), 507–518 (2013).
[Crossref]

C. Yin, F. Zhou, Y. Wang, W. Luo, Q. Luo, and P. Li, “Simultaneous detection of hemodynamics, mitochondrial metabolism and light scattering changes during cortical spreading depression in rats based on multi-spectral optical imaging,” NeuroImage 76, 70–80 (2013).
[Crossref]

2011 (2)

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt. 16(8), 086012 (2011).
[Crossref]

X. Sun, Y. Wang, S. Chen, W. Luo, P. Li, and Q. Luo, “Simultaneous monitoring of intracellular pH changes and hemodynamic response during cortical spreading depression by fluorescence-corrected multimodal optical imaging,” NeuroImage 57(3), 873–884 (2011).
[Crossref]

2010 (1)

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref]

2009 (2)

Z. Luo, Z. Yuan, Y. Pan, and C. Du, “Simultaneous imaging of cortical hemodynamics and blood oxygenation change during cerebral ischemia using dual-wavelength laser speckle contrast imaging,” Opt. Lett. 34(9), 1480–1482 (2009).
[Crossref]

G. Themelis, J. S. Yoo, K. Soh, R. B. Schulz, and V. Ntziachristos, “Real-time intraoperative fluorescence imaging system using light-absorption correction,” J. Biomed. Opt. 14(6), 064012 (2009).
[Crossref]

2008 (1)

Y. Huang, T. L. Ringold, J. S. Nelson, and B. Choi, “Noninvasive blood flow imaging for real-time feedback during laser therapy of port wine stain birthmarks,” Lasers Surg. Med. 40(3), 167–173 (2008).
[Crossref]

2007 (1)

J. Allen, “Photoplethysmography and its application in clinical physiological measurement,” Physiol. Meas. 28(3), R1–R39 (2007).
[Crossref]

2003 (1)

2001 (1)

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic Imaging of Cerebral Blood Flow Using Laser Speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[Crossref]

2000 (1)

M. Kohl, U. Lindauer, G. Royl, M. Kühl, L. Gold, A. Villringer, and U. Dirnagl, “Physical model for the spectroscopic analysis of cortical intrinsic optical signals,” Phys. Med. Biol. 45(12), 3749–3764 (2000).
[Crossref]

1999 (1)

J. D. Briers, G. J. Richards, and X. He, “Capillary Blood Flow Monitoring Using Laser Speckle Contrast Analysis (LASCA),” J. Biomed. Opt. 4(1), 164–175 (1999).
[Crossref]

1996 (1)

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[Crossref]

1995 (1)

L. V. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio. 47(2), 131–146 (1995).
[Crossref]

1992 (1)

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue - temporal and frequency-analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992).
[Crossref]

1989 (1)

P. Vaupel, F. Kallinowski, and P. Okunieff, “Blood Flow, Oxygen and Nutrient Supply, and Metabolic Microenvironment of Human Tumors: A Review,” Cancer Res. 49(23), 6449–6465 (1989).

Abookasis, D.

I. Kofman and D. Abookasis, “Dual-wavelength laser speckle imaging for monitoring brain metabolic and hemodynamic response to closed head traumatic brain injury in mice,” J. Biomed. Opt. 20(10), 106009 (2015).
[Crossref]

Aizu, Y.

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt. 16(8), 086012 (2011).
[Crossref]

Allen, J.

J. Allen, “Photoplethysmography and its application in clinical physiological measurement,” Physiol. Meas. 28(3), R1–R39 (2007).
[Crossref]

Andermann, M. L.

Arridge, S. R.

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue - temporal and frequency-analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992).
[Crossref]

Bahani, A.

Bao, W. W.

X. Wu, J. Li, K. Joypaul, W. W. Bao, D. Wang, Y. J. Huang, P. C. Li, and W. Mei, “Blood flow index as an indicator of successful sciatic nerve block: a prospective observational study using laser speckle contrast imaging,” Br. J. Anaesth. 121(4), 859–866 (2018).
[Crossref]

Bernal, N. P.

C. Crouzet, J. Q. Nguyen, A. Ponticorvo, N. P. Bernal, A. J. Durkin, and B. Choi, “Acute discrimination between superficial-partial and deep-partial thickness burns in a preclinical model with laser speckle imaging,” Burns 41(5), 1058–1063 (2015).
[Crossref]

Boas, D. A.

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref]

A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28(1), 28–30 (2003).
[Crossref]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic Imaging of Cerebral Blood Flow Using Laser Speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[Crossref]

Bolay, H.

Briers, J. D.

J. D. Briers, G. J. Richards, and X. He, “Capillary Blood Flow Monitoring Using Laser Speckle Contrast Analysis (LASCA),” J. Biomed. Opt. 4(1), 164–175 (1999).
[Crossref]

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[Crossref]

Broch, A.

Carlen, P. L.

Cha, J.

Chang, S.

W. Ren, Y. Qu, J. Pei, L. Xiao, S. Zhang, S. Chang, and R. X. Xu, “Development of a Multimodal Colposcopy for Characterization of Cervical Intraepithelial Neoplasia,” J. Med. Devices 11(3), 031005 (2017).
[Crossref]

Chen, S.

X. Sun, Y. Wang, S. Chen, W. Luo, P. Li, and Q. Luo, “Simultaneous monitoring of intracellular pH changes and hemodynamic response during cortical spreading depression by fluorescence-corrected multimodal optical imaging,” NeuroImage 57(3), 873–884 (2011).
[Crossref]

Chen, X.

W. Lv, Y. Wang, X. Chen, X. Fu, J. Lu, and P. Li, “Enhancing vascular visualization in laser speckle contrast imaging of blood flow using multi-focus image fusion,” J. Biophotonics 12(1), e201800100 (2019).
[Crossref]

Chen, Z.

Choi, B.

C. E. Dunn, B. Lertsakdadet, C. Crouzet, A. Bahani, and B. Choi, “Comparison of speckleplethysmographic (SPG) and photoplethysmographic (PPG) imaging by Monte Carlo simulations and in vivo measurements,” Biomed. Opt. Express 9(9), 4306–4316 (2018).
[Crossref]

C. Crouzet, J. Q. Nguyen, A. Ponticorvo, N. P. Bernal, A. J. Durkin, and B. Choi, “Acute discrimination between superficial-partial and deep-partial thickness burns in a preclinical model with laser speckle imaging,” Burns 41(5), 1058–1063 (2015).
[Crossref]

Y. Huang, T. L. Ringold, J. S. Nelson, and B. Choi, “Noninvasive blood flow imaging for real-time feedback during laser therapy of port wine stain birthmarks,” Lasers Surg. Med. 40(3), 167–173 (2008).
[Crossref]

Cope, M.

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue - temporal and frequency-analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992).
[Crossref]

Crouzet, C.

C. E. Dunn, B. Lertsakdadet, C. Crouzet, A. Bahani, and B. Choi, “Comparison of speckleplethysmographic (SPG) and photoplethysmographic (PPG) imaging by Monte Carlo simulations and in vivo measurements,” Biomed. Opt. Express 9(9), 4306–4316 (2018).
[Crossref]

C. Crouzet, J. Q. Nguyen, A. Ponticorvo, N. P. Bernal, A. J. Durkin, and B. Choi, “Acute discrimination between superficial-partial and deep-partial thickness burns in a preclinical model with laser speckle imaging,” Burns 41(5), 1058–1063 (2015).
[Crossref]

Dale, A. M.

Daly, J.

Delpy, D. T.

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue - temporal and frequency-analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992).
[Crossref]

Devor, A.

Dirnagl, U.

M. Kohl, U. Lindauer, G. Royl, M. Kühl, L. Gold, A. Villringer, and U. Dirnagl, “Physical model for the spectroscopic analysis of cortical intrinsic optical signals,” Phys. Med. Biol. 45(12), 3749–3764 (2000).
[Crossref]

Du, C.

Dunn, A. K.

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref]

A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28(1), 28–30 (2003).
[Crossref]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic Imaging of Cerebral Blood Flow Using Laser Speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[Crossref]

Dunn, C. E.

Durkin, A. J.

C. Crouzet, J. Q. Nguyen, A. Ponticorvo, N. P. Bernal, A. J. Durkin, and B. Choi, “Acute discrimination between superficial-partial and deep-partial thickness burns in a preclinical model with laser speckle imaging,” Burns 41(5), 1058–1063 (2015).
[Crossref]

Feng, D.

Feng, S.

Frangioni, J. V.

A. L. Vahrmeijer, M. Hutteman, J. R. van der Vorst, C. J. H. van de Velde, and J. V. Frangioni, “Image-guided cancer surgery using near-infrared fluorescence,” Nat. Rev. Clin. Oncol. 10(9), 507–518 (2013).
[Crossref]

Frise, M. C.

Fu, X.

W. Lv, Y. Wang, X. Chen, X. Fu, J. Lu, and P. Li, “Enhancing vascular visualization in laser speckle contrast imaging of blood flow using multi-focus image fusion,” J. Biophotonics 12(1), e201800100 (2019).
[Crossref]

Gad, R.

Gan, Q.

W. Ren, Q. Gan, Q. Wu, S. Zhang, and R. X. Xu, “Quasi-simultaneous multimodal imaging of cutaneous tissue oxygenation and perfusion,” J. Biomed. Opt. 20(12), 121307 (2015).
[Crossref]

Ghijsen, M.

Gold, L.

M. Kohl, U. Lindauer, G. Royl, M. Kühl, L. Gold, A. Villringer, and U. Dirnagl, “Physical model for the spectroscopic analysis of cortical intrinsic optical signals,” Phys. Med. Biol. 45(12), 3749–3764 (2000).
[Crossref]

Guazzi, A.

Haneishi, H.

R. Hashimoto, T. Kurata, M. Sekine, K. Nakano, T. Ohnishi, and H. Haneishi, “Two-wavelength oximetry of tissue microcirculation based on sidestream dark-field imaging,” J. Biomed. Opt. 24(03), 1 (2018).
[Crossref]

T. Kurata, S. Oda, H. Kawahira, and H. Haneishi, “Correction method for influence of tissue scattering for sidestream dark-field oximetry using multicolor LEDs,” Opt. Rev. 23(6), 955–967 (2016).
[Crossref]

T. Kurata, Z. Li, S. Oda, H. Kawahira, and H. Haneishi, “Impact of vessel diameter and bandwidth of illumination in sidestream dark-field oximetry,” Biomed. Opt. Express 6(5), 1616–1631 (2015).
[Crossref]

Hashimoto, R.

R. Hashimoto, T. Kurata, M. Sekine, K. Nakano, T. Ohnishi, and H. Haneishi, “Two-wavelength oximetry of tissue microcirculation based on sidestream dark-field imaging,” J. Biomed. Opt. 24(03), 1 (2018).
[Crossref]

He, X.

J. D. Briers, G. J. Richards, and X. He, “Capillary Blood Flow Monitoring Using Laser Speckle Contrast Analysis (LASCA),” J. Biomed. Opt. 4(1), 164–175 (1999).
[Crossref]

Huang, Q.

Huang, Y.

Y. Huang, T. L. Ringold, J. S. Nelson, and B. Choi, “Noninvasive blood flow imaging for real-time feedback during laser therapy of port wine stain birthmarks,” Lasers Surg. Med. 40(3), 167–173 (2008).
[Crossref]

Huang, Y. J.

X. Wu, J. Li, K. Joypaul, W. W. Bao, D. Wang, Y. J. Huang, P. C. Li, and W. Mei, “Blood flow index as an indicator of successful sciatic nerve block: a prospective observational study using laser speckle contrast imaging,” Br. J. Anaesth. 121(4), 859–866 (2018).
[Crossref]

Hutteman, M.

A. L. Vahrmeijer, M. Hutteman, J. R. van der Vorst, C. J. H. van de Velde, and J. V. Frangioni, “Image-guided cancer surgery using near-infrared fluorescence,” Nat. Rev. Clin. Oncol. 10(9), 507–518 (2013).
[Crossref]

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref]

L. V. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio. 47(2), 131–146 (1995).
[Crossref]

Jeffrey, M. A.

Jiang, C.

Jorge, J.

Joypaul, K.

X. Wu, J. Li, K. Joypaul, W. W. Bao, D. Wang, Y. J. Huang, P. C. Li, and W. Mei, “Blood flow index as an indicator of successful sciatic nerve block: a prospective observational study using laser speckle contrast imaging,” Br. J. Anaesth. 121(4), 859–866 (2018).
[Crossref]

Kallinowski, F.

P. Vaupel, F. Kallinowski, and P. Okunieff, “Blood Flow, Oxygen and Nutrient Supply, and Metabolic Microenvironment of Human Tumors: A Review,” Cancer Res. 49(23), 6449–6465 (1989).

Kawahira, H.

T. Kurata, S. Oda, H. Kawahira, and H. Haneishi, “Correction method for influence of tissue scattering for sidestream dark-field oximetry using multicolor LEDs,” Opt. Rev. 23(6), 955–967 (2016).
[Crossref]

T. Kurata, Z. Li, S. Oda, H. Kawahira, and H. Haneishi, “Impact of vessel diameter and bandwidth of illumination in sidestream dark-field oximetry,” Biomed. Opt. Express 6(5), 1616–1631 (2015).
[Crossref]

Kawase, T.

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt. 16(8), 086012 (2011).
[Crossref]

Kawauchi, S.

Kim, J. G.

M. Seong, Z. Phillips, P. M. Mai, C. Yeo, C. Song, K. Lee, and J. G. Kim, “Simultaneous blood flow and blood oxygenation measurements using a combination of diffuse speckle contrast analysis and near-infrared spectroscopy,” J. Biomed. Opt. 21(2), 027001 (2016).
[Crossref]

Kim, K.

Kim, P. C. W.

Kofman, I.

I. Kofman and D. Abookasis, “Dual-wavelength laser speckle imaging for monitoring brain metabolic and hemodynamic response to closed head traumatic brain injury in mice,” J. Biomed. Opt. 20(10), 106009 (2015).
[Crossref]

Kohl, M.

M. Kohl, U. Lindauer, G. Royl, M. Kühl, L. Gold, A. Villringer, and U. Dirnagl, “Physical model for the spectroscopic analysis of cortical intrinsic optical signals,” Phys. Med. Biol. 45(12), 3749–3764 (2000).
[Crossref]

Koletar, M. M.

Kühl, M.

M. Kohl, U. Lindauer, G. Royl, M. Kühl, L. Gold, A. Villringer, and U. Dirnagl, “Physical model for the spectroscopic analysis of cortical intrinsic optical signals,” Phys. Med. Biol. 45(12), 3749–3764 (2000).
[Crossref]

Kurata, T.

R. Hashimoto, T. Kurata, M. Sekine, K. Nakano, T. Ohnishi, and H. Haneishi, “Two-wavelength oximetry of tissue microcirculation based on sidestream dark-field imaging,” J. Biomed. Opt. 24(03), 1 (2018).
[Crossref]

T. Kurata, S. Oda, H. Kawahira, and H. Haneishi, “Correction method for influence of tissue scattering for sidestream dark-field oximetry using multicolor LEDs,” Opt. Rev. 23(6), 955–967 (2016).
[Crossref]

T. Kurata, Z. Li, S. Oda, H. Kawahira, and H. Haneishi, “Impact of vessel diameter and bandwidth of illumination in sidestream dark-field oximetry,” Biomed. Opt. Express 6(5), 1616–1631 (2015).
[Crossref]

Lee, K.

M. Seong, Z. Phillips, P. M. Mai, C. Yeo, C. Song, K. Lee, and J. G. Kim, “Simultaneous blood flow and blood oxygenation measurements using a combination of diffuse speckle contrast analysis and near-infrared spectroscopy,” J. Biomed. Opt. 21(2), 027001 (2016).
[Crossref]

Lertsakdadet, B.

Levi, O.

Li, B.

Li, J.

X. Wu, J. Li, K. Joypaul, W. W. Bao, D. Wang, Y. J. Huang, P. C. Li, and W. Mei, “Blood flow index as an indicator of successful sciatic nerve block: a prospective observational study using laser speckle contrast imaging,” Br. J. Anaesth. 121(4), 859–866 (2018).
[Crossref]

Li, M.

Li, P.

W. Lv, Y. Wang, X. Chen, X. Fu, J. Lu, and P. Li, “Enhancing vascular visualization in laser speckle contrast imaging of blood flow using multi-focus image fusion,” J. Biophotonics 12(1), e201800100 (2019).
[Crossref]

J. Wang, Y. Wang, B. Li, D. Feng, J. Lu, Q. Luo, and P. Li, “Dual-wavelength laser speckle imaging to simultaneously access blood flow, blood volume, and oxygenation using a color CCD camera,” Opt. Lett. 38(18), 3690–3692 (2013).
[Crossref]

R. Liu, Q. Huang, B. Li, C. Yin, C. Jiang, J. Wang, J. Lu, Q. Luo, and P. Li, “Extendable, miniaturized multi-modal optical imaging system: cortical hemodynamic observation in freely moving animals,” Opt. Express 21(2), 1911–1924 (2013).
[Crossref]

C. Yin, F. Zhou, Y. Wang, W. Luo, Q. Luo, and P. Li, “Simultaneous detection of hemodynamics, mitochondrial metabolism and light scattering changes during cortical spreading depression in rats based on multi-spectral optical imaging,” NeuroImage 76, 70–80 (2013).
[Crossref]

X. Sun, Y. Wang, S. Chen, W. Luo, P. Li, and Q. Luo, “Simultaneous monitoring of intracellular pH changes and hemodynamic response during cortical spreading depression by fluorescence-corrected multimodal optical imaging,” NeuroImage 57(3), 873–884 (2011).
[Crossref]

Li, P. C.

X. Wu, J. Li, K. Joypaul, W. W. Bao, D. Wang, Y. J. Huang, P. C. Li, and W. Mei, “Blood flow index as an indicator of successful sciatic nerve block: a prospective observational study using laser speckle contrast imaging,” Br. J. Anaesth. 121(4), 859–866 (2018).
[Crossref]

Li, Z.

Liang, R.

Lindauer, U.

M. Kohl, U. Lindauer, G. Royl, M. Kühl, L. Gold, A. Villringer, and U. Dirnagl, “Physical model for the spectroscopic analysis of cortical intrinsic optical signals,” Phys. Med. Biol. 45(12), 3749–3764 (2000).
[Crossref]

Liu, R.

Lu, J.

Luo, Q.

R. Liu, Q. Huang, B. Li, C. Yin, C. Jiang, J. Wang, J. Lu, Q. Luo, and P. Li, “Extendable, miniaturized multi-modal optical imaging system: cortical hemodynamic observation in freely moving animals,” Opt. Express 21(2), 1911–1924 (2013).
[Crossref]

C. Yin, F. Zhou, Y. Wang, W. Luo, Q. Luo, and P. Li, “Simultaneous detection of hemodynamics, mitochondrial metabolism and light scattering changes during cortical spreading depression in rats based on multi-spectral optical imaging,” NeuroImage 76, 70–80 (2013).
[Crossref]

J. Wang, Y. Wang, B. Li, D. Feng, J. Lu, Q. Luo, and P. Li, “Dual-wavelength laser speckle imaging to simultaneously access blood flow, blood volume, and oxygenation using a color CCD camera,” Opt. Lett. 38(18), 3690–3692 (2013).
[Crossref]

X. Sun, Y. Wang, S. Chen, W. Luo, P. Li, and Q. Luo, “Simultaneous monitoring of intracellular pH changes and hemodynamic response during cortical spreading depression by fluorescence-corrected multimodal optical imaging,” NeuroImage 57(3), 873–884 (2011).
[Crossref]

Luo, W.

C. Yin, F. Zhou, Y. Wang, W. Luo, Q. Luo, and P. Li, “Simultaneous detection of hemodynamics, mitochondrial metabolism and light scattering changes during cortical spreading depression in rats based on multi-spectral optical imaging,” NeuroImage 76, 70–80 (2013).
[Crossref]

X. Sun, Y. Wang, S. Chen, W. Luo, P. Li, and Q. Luo, “Simultaneous monitoring of intracellular pH changes and hemodynamic response during cortical spreading depression by fluorescence-corrected multimodal optical imaging,” NeuroImage 57(3), 873–884 (2011).
[Crossref]

Luo, Z.

Lv, W.

W. Lv, Y. Wang, X. Chen, X. Fu, J. Lu, and P. Li, “Enhancing vascular visualization in laser speckle contrast imaging of blood flow using multi-focus image fusion,” J. Biophotonics 12(1), e201800100 (2019).
[Crossref]

Maeda, T.

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt. 16(8), 086012 (2011).
[Crossref]

Mai, P. M.

M. Seong, Z. Phillips, P. M. Mai, C. Yeo, C. Song, K. Lee, and J. G. Kim, “Simultaneous blood flow and blood oxygenation measurements using a combination of diffuse speckle contrast analysis and near-infrared spectroscopy,” J. Biomed. Opt. 21(2), 027001 (2016).
[Crossref]

Mei, W.

X. Wu, J. Li, K. Joypaul, W. W. Bao, D. Wang, Y. J. Huang, P. C. Li, and W. Mei, “Blood flow index as an indicator of successful sciatic nerve block: a prospective observational study using laser speckle contrast imaging,” Br. J. Anaesth. 121(4), 859–866 (2018).
[Crossref]

Miao, P.

Moskowitz, M. A.

Mudge, S.

Mustari, A.

Nakamura, N.

Nakano, K.

R. Hashimoto, T. Kurata, M. Sekine, K. Nakano, T. Ohnishi, and H. Haneishi, “Two-wavelength oximetry of tissue microcirculation based on sidestream dark-field imaging,” J. Biomed. Opt. 24(03), 1 (2018).
[Crossref]

Namgoong, J.

Nelson, J. S.

Y. Huang, T. L. Ringold, J. S. Nelson, and B. Choi, “Noninvasive blood flow imaging for real-time feedback during laser therapy of port wine stain birthmarks,” Lasers Surg. Med. 40(3), 167–173 (2008).
[Crossref]

Nguyen, J. Q.

C. Crouzet, J. Q. Nguyen, A. Ponticorvo, N. P. Bernal, A. J. Durkin, and B. Choi, “Acute discrimination between superficial-partial and deep-partial thickness burns in a preclinical model with laser speckle imaging,” Burns 41(5), 1058–1063 (2015).
[Crossref]

Niizeki, K.

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt. 16(8), 086012 (2011).
[Crossref]

Nishidate, I.

Ntziachristos, V.

G. Themelis, J. S. Yoo, K. Soh, R. B. Schulz, and V. Ntziachristos, “Real-time intraoperative fluorescence imaging system using light-absorption correction,” J. Biomed. Opt. 14(6), 064012 (2009).
[Crossref]

Oda, S.

T. Kurata, S. Oda, H. Kawahira, and H. Haneishi, “Correction method for influence of tissue scattering for sidestream dark-field oximetry using multicolor LEDs,” Opt. Rev. 23(6), 955–967 (2016).
[Crossref]

T. Kurata, Z. Li, S. Oda, H. Kawahira, and H. Haneishi, “Impact of vessel diameter and bandwidth of illumination in sidestream dark-field oximetry,” Biomed. Opt. Express 6(5), 1616–1631 (2015).
[Crossref]

Oh, E.

Ohnishi, T.

R. Hashimoto, T. Kurata, M. Sekine, K. Nakano, T. Ohnishi, and H. Haneishi, “Two-wavelength oximetry of tissue microcirculation based on sidestream dark-field imaging,” J. Biomed. Opt. 24(03), 1 (2018).
[Crossref]

Okunieff, P.

P. Vaupel, F. Kallinowski, and P. Okunieff, “Blood Flow, Oxygen and Nutrient Supply, and Metabolic Microenvironment of Human Tumors: A Review,” Cancer Res. 49(23), 6449–6465 (1989).

Oshina, I.

J. Spigulis and I. Oshina, “Snapshot RGB mapping of skin melanin and hemoglobin,” J. Biomed. Opt. 20(5), 050503 (2015).
[Crossref]

Pacheco, S.

Pan, Y.

Pei, J.

W. Ren, Y. Qu, J. Pei, L. Xiao, S. Zhang, S. Chang, and R. X. Xu, “Development of a Multimodal Colposcopy for Characterization of Cervical Intraepithelial Neoplasia,” J. Med. Devices 11(3), 031005 (2017).
[Crossref]

Phillips, Z.

M. Seong, Z. Phillips, P. M. Mai, C. Yeo, C. Song, K. Lee, and J. G. Kim, “Simultaneous blood flow and blood oxygenation measurements using a combination of diffuse speckle contrast analysis and near-infrared spectroscopy,” J. Biomed. Opt. 21(2), 027001 (2016).
[Crossref]

Ponticorvo, A.

C. Crouzet, J. Q. Nguyen, A. Ponticorvo, N. P. Bernal, A. J. Durkin, and B. Choi, “Acute discrimination between superficial-partial and deep-partial thickness burns in a preclinical model with laser speckle imaging,” Burns 41(5), 1058–1063 (2015).
[Crossref]

Qu, Y.

W. Ren, Y. Qu, J. Pei, L. Xiao, S. Zhang, S. Chang, and R. X. Xu, “Development of a Multimodal Colposcopy for Characterization of Cervical Intraepithelial Neoplasia,” J. Med. Devices 11(3), 031005 (2017).
[Crossref]

Ren, W.

W. Ren, Y. Qu, J. Pei, L. Xiao, S. Zhang, S. Chang, and R. X. Xu, “Development of a Multimodal Colposcopy for Characterization of Cervical Intraepithelial Neoplasia,” J. Med. Devices 11(3), 031005 (2017).
[Crossref]

W. Ren, Q. Gan, Q. Wu, S. Zhang, and R. X. Xu, “Quasi-simultaneous multimodal imaging of cutaneous tissue oxygenation and perfusion,” J. Biomed. Opt. 20(12), 121307 (2015).
[Crossref]

Rice, T. B.

Richards, G. J.

J. D. Briers, G. J. Richards, and X. He, “Capillary Blood Flow Monitoring Using Laser Speckle Contrast Analysis (LASCA),” J. Biomed. Opt. 4(1), 164–175 (1999).
[Crossref]

Ringold, T. L.

Y. Huang, T. L. Ringold, J. S. Nelson, and B. Choi, “Noninvasive blood flow imaging for real-time feedback during laser therapy of port wine stain birthmarks,” Lasers Surg. Med. 40(3), 167–173 (2008).
[Crossref]

Ringuette, D.

Robbins, P. A.

Royl, G.

M. Kohl, U. Lindauer, G. Royl, M. Kühl, L. Gold, A. Villringer, and U. Dirnagl, “Physical model for the spectroscopic analysis of cortical intrinsic optical signals,” Phys. Med. Biol. 45(12), 3749–3764 (2000).
[Crossref]

Sato, M.

Sato, S.

Schulz, R. B.

G. Themelis, J. S. Yoo, K. Soh, R. B. Schulz, and V. Ntziachristos, “Real-time intraoperative fluorescence imaging system using light-absorption correction,” J. Biomed. Opt. 14(6), 064012 (2009).
[Crossref]

Sekine, M.

R. Hashimoto, T. Kurata, M. Sekine, K. Nakano, T. Ohnishi, and H. Haneishi, “Two-wavelength oximetry of tissue microcirculation based on sidestream dark-field imaging,” J. Biomed. Opt. 24(03), 1 (2018).
[Crossref]

Seong, M.

M. Seong, Z. Phillips, P. M. Mai, C. Yeo, C. Song, K. Lee, and J. G. Kim, “Simultaneous blood flow and blood oxygenation measurements using a combination of diffuse speckle contrast analysis and near-infrared spectroscopy,” J. Biomed. Opt. 21(2), 027001 (2016).
[Crossref]

Sigal, I.

Soh, K.

G. Themelis, J. S. Yoo, K. Soh, R. B. Schulz, and V. Ntziachristos, “Real-time intraoperative fluorescence imaging system using light-absorption correction,” J. Biomed. Opt. 14(6), 064012 (2009).
[Crossref]

Song, C.

M. Seong, Z. Phillips, P. M. Mai, C. Yeo, C. Song, K. Lee, and J. G. Kim, “Simultaneous blood flow and blood oxygenation measurements using a combination of diffuse speckle contrast analysis and near-infrared spectroscopy,” J. Biomed. Opt. 21(2), 027001 (2016).
[Crossref]

Spigulis, J.

J. Spigulis and I. Oshina, “Snapshot RGB mapping of skin melanin and hemoglobin,” J. Biomed. Opt. 20(5), 050503 (2015).
[Crossref]

Stefanovic, B.

Sun, X.

X. Sun, Y. Wang, S. Chen, W. Luo, P. Li, and Q. Luo, “Simultaneous monitoring of intracellular pH changes and hemodynamic response during cortical spreading depression by fluorescence-corrected multimodal optical imaging,” NeuroImage 57(3), 873–884 (2011).
[Crossref]

Tanaka, N.

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt. 16(8), 086012 (2011).
[Crossref]

Tarassenko, L.

Thakor, N. V.

Themelis, G.

G. Themelis, J. S. Yoo, K. Soh, R. B. Schulz, and V. Ntziachristos, “Real-time intraoperative fluorescence imaging system using light-absorption correction,” J. Biomed. Opt. 14(6), 064012 (2009).
[Crossref]

Tromberg, B. J.

Vahrmeijer, A. L.

A. L. Vahrmeijer, M. Hutteman, J. R. van der Vorst, C. J. H. van de Velde, and J. V. Frangioni, “Image-guided cancer surgery using near-infrared fluorescence,” Nat. Rev. Clin. Oncol. 10(9), 507–518 (2013).
[Crossref]

van de Velde, C. J. H.

A. L. Vahrmeijer, M. Hutteman, J. R. van der Vorst, C. J. H. van de Velde, and J. V. Frangioni, “Image-guided cancer surgery using near-infrared fluorescence,” Nat. Rev. Clin. Oncol. 10(9), 507–518 (2013).
[Crossref]

van der Vorst, J. R.

A. L. Vahrmeijer, M. Hutteman, J. R. van der Vorst, C. J. H. van de Velde, and J. V. Frangioni, “Image-guided cancer surgery using near-infrared fluorescence,” Nat. Rev. Clin. Oncol. 10(9), 507–518 (2013).
[Crossref]

Vaupel, P.

P. Vaupel, F. Kallinowski, and P. Okunieff, “Blood Flow, Oxygen and Nutrient Supply, and Metabolic Microenvironment of Human Tumors: A Review,” Cancer Res. 49(23), 6449–6465 (1989).

Villarroel, M.

Villringer, A.

M. Kohl, U. Lindauer, G. Royl, M. Kühl, L. Gold, A. Villringer, and U. Dirnagl, “Physical model for the spectroscopic analysis of cortical intrinsic optical signals,” Phys. Med. Biol. 45(12), 3749–3764 (2000).
[Crossref]

Wang, D.

X. Wu, J. Li, K. Joypaul, W. W. Bao, D. Wang, Y. J. Huang, P. C. Li, and W. Mei, “Blood flow index as an indicator of successful sciatic nerve block: a prospective observational study using laser speckle contrast imaging,” Br. J. Anaesth. 121(4), 859–866 (2018).
[Crossref]

Wang, J.

Wang, L. V.

L. V. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio. 47(2), 131–146 (1995).
[Crossref]

L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (John Wiley & Sons, Inc, 2009).

Wang, Q.

Wang, X.

Wang, Y.

W. Lv, Y. Wang, X. Chen, X. Fu, J. Lu, and P. Li, “Enhancing vascular visualization in laser speckle contrast imaging of blood flow using multi-focus image fusion,” J. Biophotonics 12(1), e201800100 (2019).
[Crossref]

J. Wang, Y. Wang, B. Li, D. Feng, J. Lu, Q. Luo, and P. Li, “Dual-wavelength laser speckle imaging to simultaneously access blood flow, blood volume, and oxygenation using a color CCD camera,” Opt. Lett. 38(18), 3690–3692 (2013).
[Crossref]

C. Yin, F. Zhou, Y. Wang, W. Luo, Q. Luo, and P. Li, “Simultaneous detection of hemodynamics, mitochondrial metabolism and light scattering changes during cortical spreading depression in rats based on multi-spectral optical imaging,” NeuroImage 76, 70–80 (2013).
[Crossref]

X. Sun, Y. Wang, S. Chen, W. Luo, P. Li, and Q. Luo, “Simultaneous monitoring of intracellular pH changes and hemodynamic response during cortical spreading depression by fluorescence-corrected multimodal optical imaging,” NeuroImage 57(3), 873–884 (2011).
[Crossref]

Webster, S.

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[Crossref]

White, S. M.

Wu, H.

L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (John Wiley & Sons, Inc, 2009).

Wu, Q.

W. Ren, Q. Gan, Q. Wu, S. Zhang, and R. X. Xu, “Quasi-simultaneous multimodal imaging of cutaneous tissue oxygenation and perfusion,” J. Biomed. Opt. 20(12), 121307 (2015).
[Crossref]

Wu, X.

X. Wu, J. Li, K. Joypaul, W. W. Bao, D. Wang, Y. J. Huang, P. C. Li, and W. Mei, “Blood flow index as an indicator of successful sciatic nerve block: a prospective observational study using laser speckle contrast imaging,” Br. J. Anaesth. 121(4), 859–866 (2018).
[Crossref]

Xiao, L.

W. Ren, Y. Qu, J. Pei, L. Xiao, S. Zhang, S. Chang, and R. X. Xu, “Development of a Multimodal Colposcopy for Characterization of Cervical Intraepithelial Neoplasia,” J. Med. Devices 11(3), 031005 (2017).
[Crossref]

Xu, R. X.

W. Ren, Y. Qu, J. Pei, L. Xiao, S. Zhang, S. Chang, and R. X. Xu, “Development of a Multimodal Colposcopy for Characterization of Cervical Intraepithelial Neoplasia,” J. Med. Devices 11(3), 031005 (2017).
[Crossref]

W. Ren, Q. Gan, Q. Wu, S. Zhang, and R. X. Xu, “Quasi-simultaneous multimodal imaging of cutaneous tissue oxygenation and perfusion,” J. Biomed. Opt. 20(12), 121307 (2015).
[Crossref]

Yang, B. Y.

Yeo, C.

M. Seong, Z. Phillips, P. M. Mai, C. Yeo, C. Song, K. Lee, and J. G. Kim, “Simultaneous blood flow and blood oxygenation measurements using a combination of diffuse speckle contrast analysis and near-infrared spectroscopy,” J. Biomed. Opt. 21(2), 027001 (2016).
[Crossref]

Yin, C.

C. Yin, F. Zhou, Y. Wang, W. Luo, Q. Luo, and P. Li, “Simultaneous detection of hemodynamics, mitochondrial metabolism and light scattering changes during cortical spreading depression in rats based on multi-spectral optical imaging,” NeuroImage 76, 70–80 (2013).
[Crossref]

R. Liu, Q. Huang, B. Li, C. Yin, C. Jiang, J. Wang, J. Lu, Q. Luo, and P. Li, “Extendable, miniaturized multi-modal optical imaging system: cortical hemodynamic observation in freely moving animals,” Opt. Express 21(2), 1911–1924 (2013).
[Crossref]

Yoo, J. S.

G. Themelis, J. S. Yoo, K. Soh, R. B. Schulz, and V. Ntziachristos, “Real-time intraoperative fluorescence imaging system using light-absorption correction,” J. Biomed. Opt. 14(6), 064012 (2009).
[Crossref]

Yuan, Z.

Yuasa, T.

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt. 16(8), 086012 (2011).
[Crossref]

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt. 16(8), 086012 (2011).
[Crossref]

Zhang, L.

Zhang, S.

W. Ren, Y. Qu, J. Pei, L. Xiao, S. Zhang, S. Chang, and R. X. Xu, “Development of a Multimodal Colposcopy for Characterization of Cervical Intraepithelial Neoplasia,” J. Med. Devices 11(3), 031005 (2017).
[Crossref]

W. Ren, Q. Gan, Q. Wu, S. Zhang, and R. X. Xu, “Quasi-simultaneous multimodal imaging of cutaneous tissue oxygenation and perfusion,” J. Biomed. Opt. 20(12), 121307 (2015).
[Crossref]

Zhang, Y.

Zheng, L.

L. V. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio. 47(2), 131–146 (1995).
[Crossref]

Zhou, F.

C. Yin, F. Zhou, Y. Wang, W. Luo, Q. Luo, and P. Li, “Simultaneous detection of hemodynamics, mitochondrial metabolism and light scattering changes during cortical spreading depression in rats based on multi-spectral optical imaging,” NeuroImage 76, 70–80 (2013).
[Crossref]

Zhu, N.

Biomed. Opt. Express (9)

J. Cha, A. Broch, S. Mudge, K. Kim, J. Namgoong, E. Oh, and P. C. W. Kim, “Real-time, label-free, intraoperative visualization of peripheral nerves and micro-vasculatures using multimodal optical imaging techniques,” Biomed. Opt. Express 9(3), 1097–1110 (2018).
[Crossref]

A. Guazzi, M. Villarroel, J. Jorge, J. Daly, M. C. Frise, P. A. Robbins, and L. Tarassenko, “Non-contact measurement of oxygen saturation with an RGB camera,” Biomed. Opt. Express 6(9), 3320–3338 (2015).
[Crossref]

P. Miao, L. Zhang, M. Li, Y. Zhang, S. Feng, Q. Wang, and N. V. Thakor, “Chronic wide-field imaging of brain hemodynamics in behaving animals,” Biomed. Opt. Express 8(1), 436–445 (2017).
[Crossref]

A. Mustari, N. Nakamura, S. Kawauchi, S. Sato, M. Sato, and I. Nishidate, “RGB camera-based imaging of cerebral tissue oxygen saturation, hemoglobin concentration, and hemodynamic spontaneous low-frequency oscillations in rat brain following induction of cortical spreading depression,” Biomed. Opt. Express 9(3), 933–951 (2018).
[Crossref]

T. Kurata, Z. Li, S. Oda, H. Kawahira, and H. Haneishi, “Impact of vessel diameter and bandwidth of illumination in sidestream dark-field oximetry,” Biomed. Opt. Express 6(5), 1616–1631 (2015).
[Crossref]

I. Sigal, M. M. Koletar, D. Ringuette, R. Gad, M. A. Jeffrey, P. L. Carlen, B. Stefanovic, and O. Levi, “Imaging brain activity during seizures in freely behaving rats using a miniature multi-modal imaging system,” Biomed. Opt. Express 7(9), 3596–3609 (2016).
[Crossref]

M. Ghijsen, T. B. Rice, B. Y. Yang, S. M. White, and B. J. Tromberg, “Wearable speckle plethysmography (SPG) for characterizing microvascular flow and resistance,” Biomed. Opt. Express 9(8), 3937–3952 (2018).
[Crossref]

C. E. Dunn, B. Lertsakdadet, C. Crouzet, A. Bahani, and B. Choi, “Comparison of speckleplethysmographic (SPG) and photoplethysmographic (PPG) imaging by Monte Carlo simulations and in vivo measurements,” Biomed. Opt. Express 9(9), 4306–4316 (2018).
[Crossref]

Z. Chen, N. Zhu, S. Pacheco, X. Wang, and R. Liang, “Single camera imaging system for color and near-infrared fluorescence image guided surgery,” Biomed. Opt. Express 5(8), 2791–2797 (2014).
[Crossref]

Br. J. Anaesth. (1)

X. Wu, J. Li, K. Joypaul, W. W. Bao, D. Wang, Y. J. Huang, P. C. Li, and W. Mei, “Blood flow index as an indicator of successful sciatic nerve block: a prospective observational study using laser speckle contrast imaging,” Br. J. Anaesth. 121(4), 859–866 (2018).
[Crossref]

Burns (1)

C. Crouzet, J. Q. Nguyen, A. Ponticorvo, N. P. Bernal, A. J. Durkin, and B. Choi, “Acute discrimination between superficial-partial and deep-partial thickness burns in a preclinical model with laser speckle imaging,” Burns 41(5), 1058–1063 (2015).
[Crossref]

Cancer Res. (1)

P. Vaupel, F. Kallinowski, and P. Okunieff, “Blood Flow, Oxygen and Nutrient Supply, and Metabolic Microenvironment of Human Tumors: A Review,” Cancer Res. 49(23), 6449–6465 (1989).

Comput. Meth. Prog. Bio. (1)

L. V. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio. 47(2), 131–146 (1995).
[Crossref]

J. Biomed. Opt. (10)

R. Hashimoto, T. Kurata, M. Sekine, K. Nakano, T. Ohnishi, and H. Haneishi, “Two-wavelength oximetry of tissue microcirculation based on sidestream dark-field imaging,” J. Biomed. Opt. 24(03), 1 (2018).
[Crossref]

G. Themelis, J. S. Yoo, K. Soh, R. B. Schulz, and V. Ntziachristos, “Real-time intraoperative fluorescence imaging system using light-absorption correction,” J. Biomed. Opt. 14(6), 064012 (2009).
[Crossref]

W. Ren, Q. Gan, Q. Wu, S. Zhang, and R. X. Xu, “Quasi-simultaneous multimodal imaging of cutaneous tissue oxygenation and perfusion,” J. Biomed. Opt. 20(12), 121307 (2015).
[Crossref]

I. Kofman and D. Abookasis, “Dual-wavelength laser speckle imaging for monitoring brain metabolic and hemodynamic response to closed head traumatic brain injury in mice,” J. Biomed. Opt. 20(10), 106009 (2015).
[Crossref]

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[Crossref]

J. D. Briers, G. J. Richards, and X. He, “Capillary Blood Flow Monitoring Using Laser Speckle Contrast Analysis (LASCA),” J. Biomed. Opt. 4(1), 164–175 (1999).
[Crossref]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref]

J. Spigulis and I. Oshina, “Snapshot RGB mapping of skin melanin and hemoglobin,” J. Biomed. Opt. 20(5), 050503 (2015).
[Crossref]

M. Seong, Z. Phillips, P. M. Mai, C. Yeo, C. Song, K. Lee, and J. G. Kim, “Simultaneous blood flow and blood oxygenation measurements using a combination of diffuse speckle contrast analysis and near-infrared spectroscopy,” J. Biomed. Opt. 21(2), 027001 (2016).
[Crossref]

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt. 16(8), 086012 (2011).
[Crossref]

J. Biophotonics (1)

W. Lv, Y. Wang, X. Chen, X. Fu, J. Lu, and P. Li, “Enhancing vascular visualization in laser speckle contrast imaging of blood flow using multi-focus image fusion,” J. Biophotonics 12(1), e201800100 (2019).
[Crossref]

J. Cereb. Blood Flow Metab. (1)

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic Imaging of Cerebral Blood Flow Using Laser Speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[Crossref]

J. Med. Devices (1)

W. Ren, Y. Qu, J. Pei, L. Xiao, S. Zhang, S. Chang, and R. X. Xu, “Development of a Multimodal Colposcopy for Characterization of Cervical Intraepithelial Neoplasia,” J. Med. Devices 11(3), 031005 (2017).
[Crossref]

Lasers Surg. Med. (1)

Y. Huang, T. L. Ringold, J. S. Nelson, and B. Choi, “Noninvasive blood flow imaging for real-time feedback during laser therapy of port wine stain birthmarks,” Lasers Surg. Med. 40(3), 167–173 (2008).
[Crossref]

Nat. Rev. Clin. Oncol. (1)

A. L. Vahrmeijer, M. Hutteman, J. R. van der Vorst, C. J. H. van de Velde, and J. V. Frangioni, “Image-guided cancer surgery using near-infrared fluorescence,” Nat. Rev. Clin. Oncol. 10(9), 507–518 (2013).
[Crossref]

NeuroImage (2)

C. Yin, F. Zhou, Y. Wang, W. Luo, Q. Luo, and P. Li, “Simultaneous detection of hemodynamics, mitochondrial metabolism and light scattering changes during cortical spreading depression in rats based on multi-spectral optical imaging,” NeuroImage 76, 70–80 (2013).
[Crossref]

X. Sun, Y. Wang, S. Chen, W. Luo, P. Li, and Q. Luo, “Simultaneous monitoring of intracellular pH changes and hemodynamic response during cortical spreading depression by fluorescence-corrected multimodal optical imaging,” NeuroImage 57(3), 873–884 (2011).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Opt. Rev. (1)

T. Kurata, S. Oda, H. Kawahira, and H. Haneishi, “Correction method for influence of tissue scattering for sidestream dark-field oximetry using multicolor LEDs,” Opt. Rev. 23(6), 955–967 (2016).
[Crossref]

Phys. Med. Biol. (3)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref]

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue - temporal and frequency-analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992).
[Crossref]

M. Kohl, U. Lindauer, G. Royl, M. Kühl, L. Gold, A. Villringer, and U. Dirnagl, “Physical model for the spectroscopic analysis of cortical intrinsic optical signals,” Phys. Med. Biol. 45(12), 3749–3764 (2000).
[Crossref]

Physiol. Meas. (1)

J. Allen, “Photoplethysmography and its application in clinical physiological measurement,” Physiol. Meas. 28(3), R1–R39 (2007).
[Crossref]

Other (1)

L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (John Wiley & Sons, Inc, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. System diagram. (a) Optical design of the infinite conjugate relay lens system. (b) System diagram of the large-field multi-modal imaging system. (c) Relationship between the working distance of the system and the operating current of the electrically tunable focusing lens. (d) Spectrum responses of the RGB camera and spectrum distributions of the color LED.
Fig. 2.
Fig. 2. Flow diagram of data processing.
Fig. 3.
Fig. 3. Change of HbT concentration calculated with our integral algorithm and the modified Lambert-Beer’s law with a constant DPF corresponding to the initial concentration.
Fig. 4.
Fig. 4. Change of HbO, HbR and HbT as the blood oxygen changed obtained by using (a) our integral method, (b) the molar extinction coefficients at peak wavelengths of LEDs. (c) Comparison of HbT concentrations calculated with these two methods.
Fig. 5.
Fig. 5. Results of arterial occlusion experiment. (a) Spatiotemporal changes of rBF, $\Delta $HbO, $\Delta $HbR, $\Delta $HbT, rMRO2 (b) Time courses of changes in rBF, $\Delta $HbO, $\Delta $HbR, $\Delta $HbT in the ROI indicated in (a). (c) Time course of change in rMRO2 in the ROI.
Fig. 6.
Fig. 6. Results of BFP and BVP observations. (a) Time courses of BFP signal and the BVP signal in 10s. (b) Time courses of the BFP and BVP signals in one period. (c) Time delay histogram distribution of one subject in 40s. (d) Time delay of the four subjects. (e) ROI on the nail of right index finger.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

D a = 3 2 z 0 2 u a + u s , u a 2 + u s , u a
z 0 = ( u s , ) 1
D a ( u a ) 1 / 2
u a = I n ( 10 ) ( ε H b O c H b O + ε H b R c H b R )
D a = α ( c H b T ) 1 / 2
c H b T = c H b O + c H b R
log ( R 0 / R t ) = ( ε H b O Δ c H b O + ε H b R Δ c H b R ) D a
V = m r R L d λ
[ V B , 0 V B , t V R , 0 V R , t ] = m [ 400 650 r B L g ε H b O α d λ 400 650 r B L g ε H b R α d λ 400 650 r R L r ε H b O α d λ 400 650 r R L r ε H b R α d λ ] [ Δ c H b O c H b T 1 / 2 Δ c H b R c H b T 1 / 2 ]
K = σ < I >
K = β 0.5 { τ C T + τ c 2 2 T 2 [ exp ( 2 T τ c ) 1 ] } 0.5
τ c 1 v
r M R O 2 = ( 1 + Δ v B F / v B F , 0 ) ( 1 + γ R Δ c H b R / c H b R , 0 ) ( 1 + γ T Δ c H b T / c H b T , 0 ) 1

Metrics