Abstract

We introduce an accessible cell phone imaging method using small droplets of microscope immersion oil and consumer-grade oils. Oil droplets were more resistant to evaporation than water droplets, and they resolved cellular structures that were visible using a 20x/0.75 objective. We optically characterized the droplets using a cell phone screen and resolution target. We further obtained cellular resolution images of an onion epidermis and a zea stem cross-section sample. Our droplet-based method enables stable optical imaging for diagnostic and educational purposes without custom setups, specialized components, or manufacturing processes.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Visualization of blood cell contrast in nailfold capillaries with high-speed reverse lens mobile phone microscopy

Gregory N. McKay, Nela Mohan, Ian Butterworth, Aurélien Bourquard, Álvaro Sánchez-Ferro, Carlos Castro-González, and Nicholas J. Durr
Biomed. Opt. Express 11(4) 2268-2276 (2020)

Simple adaptive mobile phone screen illumination for dual phone differential phase contrast (DPDPC) microscopy

Sara Kheireddine, Zachary J. Smith, Dan V. Nicolau, and Sebastian Wachsmann-Hogiu
Biomed. Opt. Express 10(9) 4369-4380 (2019)

Label-free imaging flow cytometer for analyzing large cell populations by line-field quantitative phase microscopy with digital refocusing

Hidenao Yamada, Amane Hirotsu, Daisuke Yamashita, Osamu Yasuhiko, Toyohiko Yamauchi, Tsukasa Kayou, Hiroaki Suzuki, Shigetoshi Okazaki, Hirotoshi Kikuchi, Hiroya Takeuchi, and Yukio Ueda
Biomed. Opt. Express 11(4) 2213-2223 (2020)

References

  • View by:
  • |
  • |
  • |

  1. Z. J. Smith, K. Chu, A. R. Espenson, M. Rahimzadeh, A. Gryshuk, M. Molinaro, D. M. Dwyre, S. Lane, D. Matthews, and S. Wachsmann-Hogiu, “Cell-phone-based platform for biomedical device development and education applications,” PLoS One 6(3), e17150 (2011).
    [Crossref]
  2. A. Orth, E. R. Wilson, J. G. Thompson, and B. C. Gibson, “A dual-mode mobile phone microscope using the onboard camera flash and ambient light,” Sci. Rep. 8(1), 3298 (2018).
    [Crossref]
  3. B. Dai, J. Ziao, L. Zheng, H. Bachman, Y. Fu, X. Wan, Y. Zhang, Y. Huang, X. Han, C. Zhao, T. J. Huang, S. Zhuang, and D. Zhang, “Colour compound lenses for a portable fluorescence microscope,” Light: Sci. Appl. 8(1), 75 (2019).
    [Crossref]
  4. C. W. Pirnstill and G. L. Coté, “Malaria Diagnosis Using a Mobile Phone Polarized Microscope,” Sci. Rep. 5(1), 13368 (2015).
    [Crossref]
  5. D. Jung, J.-H. Choi, S. Kim, S. Ryu, W. Lee, J.-S. Lee, and C. Joo, “Smartphone-based multi-contrast microscope using color-multiplexed illumination,” Sci. Rep. 7(1), 7564 (2017).
    [Crossref]
  6. J.-H. Kim, H.-G. Joo, T.-H. Kim, and Y.-G. Ju, “A smartphone-based fluorescence microscope utilizing an external phone camera lens module,” BioChip J. 9(4), 285–292 (2015).
    [Crossref]
  7. H. Zhu, O. Yaglidere, T. W. Su, D. Tseng, and A. Ozcan, “Wide-field fluorescent microscopy on a cell-phone,” Conf. Proc. IEEE Eng. Med. Biol. Soc.2011, 6801–6804 (2011).
  8. L. Bellina and E. Missoni, “Mobile cell-phones (M-phones) in telemicroscopy: increasing connectivity of isolated laboratories,” Diagn. Pathol. 4(1), 19 (2009).
    [Crossref]
  9. T. E. Agbana, J.-C. Diehl, F. van Pul, S. M. Patlan, M. Verhaegen, and G. Vdovin, “Imaging & identification of malaria parasites using cellphone microscope with a ball lens,” PLOS ONE 13(10), e0205020 (2018).
    [Crossref]
  10. Y. Kobori, P. Pfanner, G. S. Prins, and C. Niederberger, “Novel device for male infertility screening with single-ball lens microscope and smartphone,” Fertil. Steril. 106(3), 574–578 (2016).
    [Crossref]
  11. Y.-L. Sung, J. Jeang, C.-H. Lee, and W.-C. Shih, “Fabricating optical lenses by inkjet printing and heat-assisted in situ curing of polydimethylsiloxane for smartphone microscopy,” J. Biomed. Opt. 20(4), 047005 (2015).
    [Crossref]
  12. X. Zheng and H. Jiang, “Liquid tunable microlenses based on MEMS techniques,” J. Phys. D: Appl. Phys. 46(32), 323001 (2013).
    [Crossref]
  13. H. H. Myint, A. M. Marpaung, H. Kurniawan, H. Hattori, and K. Kagawa, “Water droplet lens microscope and microphotographs,” Phys. Educ. 36(2), 97–101 (2001).
    [Crossref]
  14. F. A. Chowdhury and K. J. Chau, “Microscopy using water droplets,” MOEMS and Miniaturized Systems XI 8252, 82520Z (2012)..
    [Crossref]
  15. Refractive Index List of Common Household Liquids. International Gem Society https://www.gemsociety.org/article/refractive-index-list-of-common-household-liquids/ .
  16. S. S. Arya, S. Ramanujam, and P. K. Vijayaraghavan, “Refractive index as an objective method for evaluation of rancidity in edible oils and fats,” J. Am. Oil Chem. Soc. 46(1), 28–30 (1969).
    [Crossref]
  17. A. C. Godswill, I. O. Amagwula, I. S. Victory, and A. I. Gonzaga, “Effects of repeated deep frying on refractive index and peroxide value of selected vegetable oils,” Int. J. Adv. Acad. Res. 4, 106–119 (2018).
  18. D. J. Reddy, “Substitute for Cedar Wood Oil for Oil Immersion Work,” Ind. Med. Gaz. 79, 565 (1944).
  19. V. R. Jayalakshamma and R. Ssayee, “Cost effective, qualitative immersion oil for microscopy,” J. Anat. Soc. India 54, 48–50 (2005).
  20. A. Skandarajah, C. D. Reber, N. A. Switz, and D. A. Fletcher, “Quantitative imaging with a mobile phone microscope,” PLoS One 9(5), e96906 (2014).
    [Crossref]

2019 (1)

B. Dai, J. Ziao, L. Zheng, H. Bachman, Y. Fu, X. Wan, Y. Zhang, Y. Huang, X. Han, C. Zhao, T. J. Huang, S. Zhuang, and D. Zhang, “Colour compound lenses for a portable fluorescence microscope,” Light: Sci. Appl. 8(1), 75 (2019).
[Crossref]

2018 (3)

A. Orth, E. R. Wilson, J. G. Thompson, and B. C. Gibson, “A dual-mode mobile phone microscope using the onboard camera flash and ambient light,” Sci. Rep. 8(1), 3298 (2018).
[Crossref]

T. E. Agbana, J.-C. Diehl, F. van Pul, S. M. Patlan, M. Verhaegen, and G. Vdovin, “Imaging & identification of malaria parasites using cellphone microscope with a ball lens,” PLOS ONE 13(10), e0205020 (2018).
[Crossref]

A. C. Godswill, I. O. Amagwula, I. S. Victory, and A. I. Gonzaga, “Effects of repeated deep frying on refractive index and peroxide value of selected vegetable oils,” Int. J. Adv. Acad. Res. 4, 106–119 (2018).

2017 (1)

D. Jung, J.-H. Choi, S. Kim, S. Ryu, W. Lee, J.-S. Lee, and C. Joo, “Smartphone-based multi-contrast microscope using color-multiplexed illumination,” Sci. Rep. 7(1), 7564 (2017).
[Crossref]

2016 (1)

Y. Kobori, P. Pfanner, G. S. Prins, and C. Niederberger, “Novel device for male infertility screening with single-ball lens microscope and smartphone,” Fertil. Steril. 106(3), 574–578 (2016).
[Crossref]

2015 (3)

Y.-L. Sung, J. Jeang, C.-H. Lee, and W.-C. Shih, “Fabricating optical lenses by inkjet printing and heat-assisted in situ curing of polydimethylsiloxane for smartphone microscopy,” J. Biomed. Opt. 20(4), 047005 (2015).
[Crossref]

C. W. Pirnstill and G. L. Coté, “Malaria Diagnosis Using a Mobile Phone Polarized Microscope,” Sci. Rep. 5(1), 13368 (2015).
[Crossref]

J.-H. Kim, H.-G. Joo, T.-H. Kim, and Y.-G. Ju, “A smartphone-based fluorescence microscope utilizing an external phone camera lens module,” BioChip J. 9(4), 285–292 (2015).
[Crossref]

2014 (1)

A. Skandarajah, C. D. Reber, N. A. Switz, and D. A. Fletcher, “Quantitative imaging with a mobile phone microscope,” PLoS One 9(5), e96906 (2014).
[Crossref]

2013 (1)

X. Zheng and H. Jiang, “Liquid tunable microlenses based on MEMS techniques,” J. Phys. D: Appl. Phys. 46(32), 323001 (2013).
[Crossref]

2012 (1)

F. A. Chowdhury and K. J. Chau, “Microscopy using water droplets,” MOEMS and Miniaturized Systems XI 8252, 82520Z (2012)..
[Crossref]

2011 (1)

Z. J. Smith, K. Chu, A. R. Espenson, M. Rahimzadeh, A. Gryshuk, M. Molinaro, D. M. Dwyre, S. Lane, D. Matthews, and S. Wachsmann-Hogiu, “Cell-phone-based platform for biomedical device development and education applications,” PLoS One 6(3), e17150 (2011).
[Crossref]

2009 (1)

L. Bellina and E. Missoni, “Mobile cell-phones (M-phones) in telemicroscopy: increasing connectivity of isolated laboratories,” Diagn. Pathol. 4(1), 19 (2009).
[Crossref]

2005 (1)

V. R. Jayalakshamma and R. Ssayee, “Cost effective, qualitative immersion oil for microscopy,” J. Anat. Soc. India 54, 48–50 (2005).

2001 (1)

H. H. Myint, A. M. Marpaung, H. Kurniawan, H. Hattori, and K. Kagawa, “Water droplet lens microscope and microphotographs,” Phys. Educ. 36(2), 97–101 (2001).
[Crossref]

1969 (1)

S. S. Arya, S. Ramanujam, and P. K. Vijayaraghavan, “Refractive index as an objective method for evaluation of rancidity in edible oils and fats,” J. Am. Oil Chem. Soc. 46(1), 28–30 (1969).
[Crossref]

1944 (1)

D. J. Reddy, “Substitute for Cedar Wood Oil for Oil Immersion Work,” Ind. Med. Gaz. 79, 565 (1944).

Agbana, T. E.

T. E. Agbana, J.-C. Diehl, F. van Pul, S. M. Patlan, M. Verhaegen, and G. Vdovin, “Imaging & identification of malaria parasites using cellphone microscope with a ball lens,” PLOS ONE 13(10), e0205020 (2018).
[Crossref]

Amagwula, I. O.

A. C. Godswill, I. O. Amagwula, I. S. Victory, and A. I. Gonzaga, “Effects of repeated deep frying on refractive index and peroxide value of selected vegetable oils,” Int. J. Adv. Acad. Res. 4, 106–119 (2018).

Arya, S. S.

S. S. Arya, S. Ramanujam, and P. K. Vijayaraghavan, “Refractive index as an objective method for evaluation of rancidity in edible oils and fats,” J. Am. Oil Chem. Soc. 46(1), 28–30 (1969).
[Crossref]

Bachman, H.

B. Dai, J. Ziao, L. Zheng, H. Bachman, Y. Fu, X. Wan, Y. Zhang, Y. Huang, X. Han, C. Zhao, T. J. Huang, S. Zhuang, and D. Zhang, “Colour compound lenses for a portable fluorescence microscope,” Light: Sci. Appl. 8(1), 75 (2019).
[Crossref]

Bellina, L.

L. Bellina and E. Missoni, “Mobile cell-phones (M-phones) in telemicroscopy: increasing connectivity of isolated laboratories,” Diagn. Pathol. 4(1), 19 (2009).
[Crossref]

Chau, K. J.

F. A. Chowdhury and K. J. Chau, “Microscopy using water droplets,” MOEMS and Miniaturized Systems XI 8252, 82520Z (2012)..
[Crossref]

Choi, J.-H.

D. Jung, J.-H. Choi, S. Kim, S. Ryu, W. Lee, J.-S. Lee, and C. Joo, “Smartphone-based multi-contrast microscope using color-multiplexed illumination,” Sci. Rep. 7(1), 7564 (2017).
[Crossref]

Chowdhury, F. A.

F. A. Chowdhury and K. J. Chau, “Microscopy using water droplets,” MOEMS and Miniaturized Systems XI 8252, 82520Z (2012)..
[Crossref]

Chu, K.

Z. J. Smith, K. Chu, A. R. Espenson, M. Rahimzadeh, A. Gryshuk, M. Molinaro, D. M. Dwyre, S. Lane, D. Matthews, and S. Wachsmann-Hogiu, “Cell-phone-based platform for biomedical device development and education applications,” PLoS One 6(3), e17150 (2011).
[Crossref]

Coté, G. L.

C. W. Pirnstill and G. L. Coté, “Malaria Diagnosis Using a Mobile Phone Polarized Microscope,” Sci. Rep. 5(1), 13368 (2015).
[Crossref]

Dai, B.

B. Dai, J. Ziao, L. Zheng, H. Bachman, Y. Fu, X. Wan, Y. Zhang, Y. Huang, X. Han, C. Zhao, T. J. Huang, S. Zhuang, and D. Zhang, “Colour compound lenses for a portable fluorescence microscope,” Light: Sci. Appl. 8(1), 75 (2019).
[Crossref]

Diehl, J.-C.

T. E. Agbana, J.-C. Diehl, F. van Pul, S. M. Patlan, M. Verhaegen, and G. Vdovin, “Imaging & identification of malaria parasites using cellphone microscope with a ball lens,” PLOS ONE 13(10), e0205020 (2018).
[Crossref]

Dwyre, D. M.

Z. J. Smith, K. Chu, A. R. Espenson, M. Rahimzadeh, A. Gryshuk, M. Molinaro, D. M. Dwyre, S. Lane, D. Matthews, and S. Wachsmann-Hogiu, “Cell-phone-based platform for biomedical device development and education applications,” PLoS One 6(3), e17150 (2011).
[Crossref]

Espenson, A. R.

Z. J. Smith, K. Chu, A. R. Espenson, M. Rahimzadeh, A. Gryshuk, M. Molinaro, D. M. Dwyre, S. Lane, D. Matthews, and S. Wachsmann-Hogiu, “Cell-phone-based platform for biomedical device development and education applications,” PLoS One 6(3), e17150 (2011).
[Crossref]

Fletcher, D. A.

A. Skandarajah, C. D. Reber, N. A. Switz, and D. A. Fletcher, “Quantitative imaging with a mobile phone microscope,” PLoS One 9(5), e96906 (2014).
[Crossref]

Fu, Y.

B. Dai, J. Ziao, L. Zheng, H. Bachman, Y. Fu, X. Wan, Y. Zhang, Y. Huang, X. Han, C. Zhao, T. J. Huang, S. Zhuang, and D. Zhang, “Colour compound lenses for a portable fluorescence microscope,” Light: Sci. Appl. 8(1), 75 (2019).
[Crossref]

Gibson, B. C.

A. Orth, E. R. Wilson, J. G. Thompson, and B. C. Gibson, “A dual-mode mobile phone microscope using the onboard camera flash and ambient light,” Sci. Rep. 8(1), 3298 (2018).
[Crossref]

Godswill, A. C.

A. C. Godswill, I. O. Amagwula, I. S. Victory, and A. I. Gonzaga, “Effects of repeated deep frying on refractive index and peroxide value of selected vegetable oils,” Int. J. Adv. Acad. Res. 4, 106–119 (2018).

Gonzaga, A. I.

A. C. Godswill, I. O. Amagwula, I. S. Victory, and A. I. Gonzaga, “Effects of repeated deep frying on refractive index and peroxide value of selected vegetable oils,” Int. J. Adv. Acad. Res. 4, 106–119 (2018).

Gryshuk, A.

Z. J. Smith, K. Chu, A. R. Espenson, M. Rahimzadeh, A. Gryshuk, M. Molinaro, D. M. Dwyre, S. Lane, D. Matthews, and S. Wachsmann-Hogiu, “Cell-phone-based platform for biomedical device development and education applications,” PLoS One 6(3), e17150 (2011).
[Crossref]

Han, X.

B. Dai, J. Ziao, L. Zheng, H. Bachman, Y. Fu, X. Wan, Y. Zhang, Y. Huang, X. Han, C. Zhao, T. J. Huang, S. Zhuang, and D. Zhang, “Colour compound lenses for a portable fluorescence microscope,” Light: Sci. Appl. 8(1), 75 (2019).
[Crossref]

Hattori, H.

H. H. Myint, A. M. Marpaung, H. Kurniawan, H. Hattori, and K. Kagawa, “Water droplet lens microscope and microphotographs,” Phys. Educ. 36(2), 97–101 (2001).
[Crossref]

Huang, T. J.

B. Dai, J. Ziao, L. Zheng, H. Bachman, Y. Fu, X. Wan, Y. Zhang, Y. Huang, X. Han, C. Zhao, T. J. Huang, S. Zhuang, and D. Zhang, “Colour compound lenses for a portable fluorescence microscope,” Light: Sci. Appl. 8(1), 75 (2019).
[Crossref]

Huang, Y.

B. Dai, J. Ziao, L. Zheng, H. Bachman, Y. Fu, X. Wan, Y. Zhang, Y. Huang, X. Han, C. Zhao, T. J. Huang, S. Zhuang, and D. Zhang, “Colour compound lenses for a portable fluorescence microscope,” Light: Sci. Appl. 8(1), 75 (2019).
[Crossref]

Jayalakshamma, V. R.

V. R. Jayalakshamma and R. Ssayee, “Cost effective, qualitative immersion oil for microscopy,” J. Anat. Soc. India 54, 48–50 (2005).

Jeang, J.

Y.-L. Sung, J. Jeang, C.-H. Lee, and W.-C. Shih, “Fabricating optical lenses by inkjet printing and heat-assisted in situ curing of polydimethylsiloxane for smartphone microscopy,” J. Biomed. Opt. 20(4), 047005 (2015).
[Crossref]

Jiang, H.

X. Zheng and H. Jiang, “Liquid tunable microlenses based on MEMS techniques,” J. Phys. D: Appl. Phys. 46(32), 323001 (2013).
[Crossref]

Joo, C.

D. Jung, J.-H. Choi, S. Kim, S. Ryu, W. Lee, J.-S. Lee, and C. Joo, “Smartphone-based multi-contrast microscope using color-multiplexed illumination,” Sci. Rep. 7(1), 7564 (2017).
[Crossref]

Joo, H.-G.

J.-H. Kim, H.-G. Joo, T.-H. Kim, and Y.-G. Ju, “A smartphone-based fluorescence microscope utilizing an external phone camera lens module,” BioChip J. 9(4), 285–292 (2015).
[Crossref]

Ju, Y.-G.

J.-H. Kim, H.-G. Joo, T.-H. Kim, and Y.-G. Ju, “A smartphone-based fluorescence microscope utilizing an external phone camera lens module,” BioChip J. 9(4), 285–292 (2015).
[Crossref]

Jung, D.

D. Jung, J.-H. Choi, S. Kim, S. Ryu, W. Lee, J.-S. Lee, and C. Joo, “Smartphone-based multi-contrast microscope using color-multiplexed illumination,” Sci. Rep. 7(1), 7564 (2017).
[Crossref]

Kagawa, K.

H. H. Myint, A. M. Marpaung, H. Kurniawan, H. Hattori, and K. Kagawa, “Water droplet lens microscope and microphotographs,” Phys. Educ. 36(2), 97–101 (2001).
[Crossref]

Kim, J.-H.

J.-H. Kim, H.-G. Joo, T.-H. Kim, and Y.-G. Ju, “A smartphone-based fluorescence microscope utilizing an external phone camera lens module,” BioChip J. 9(4), 285–292 (2015).
[Crossref]

Kim, S.

D. Jung, J.-H. Choi, S. Kim, S. Ryu, W. Lee, J.-S. Lee, and C. Joo, “Smartphone-based multi-contrast microscope using color-multiplexed illumination,” Sci. Rep. 7(1), 7564 (2017).
[Crossref]

Kim, T.-H.

J.-H. Kim, H.-G. Joo, T.-H. Kim, and Y.-G. Ju, “A smartphone-based fluorescence microscope utilizing an external phone camera lens module,” BioChip J. 9(4), 285–292 (2015).
[Crossref]

Kobori, Y.

Y. Kobori, P. Pfanner, G. S. Prins, and C. Niederberger, “Novel device for male infertility screening with single-ball lens microscope and smartphone,” Fertil. Steril. 106(3), 574–578 (2016).
[Crossref]

Kurniawan, H.

H. H. Myint, A. M. Marpaung, H. Kurniawan, H. Hattori, and K. Kagawa, “Water droplet lens microscope and microphotographs,” Phys. Educ. 36(2), 97–101 (2001).
[Crossref]

Lane, S.

Z. J. Smith, K. Chu, A. R. Espenson, M. Rahimzadeh, A. Gryshuk, M. Molinaro, D. M. Dwyre, S. Lane, D. Matthews, and S. Wachsmann-Hogiu, “Cell-phone-based platform for biomedical device development and education applications,” PLoS One 6(3), e17150 (2011).
[Crossref]

Lee, C.-H.

Y.-L. Sung, J. Jeang, C.-H. Lee, and W.-C. Shih, “Fabricating optical lenses by inkjet printing and heat-assisted in situ curing of polydimethylsiloxane for smartphone microscopy,” J. Biomed. Opt. 20(4), 047005 (2015).
[Crossref]

Lee, J.-S.

D. Jung, J.-H. Choi, S. Kim, S. Ryu, W. Lee, J.-S. Lee, and C. Joo, “Smartphone-based multi-contrast microscope using color-multiplexed illumination,” Sci. Rep. 7(1), 7564 (2017).
[Crossref]

Lee, W.

D. Jung, J.-H. Choi, S. Kim, S. Ryu, W. Lee, J.-S. Lee, and C. Joo, “Smartphone-based multi-contrast microscope using color-multiplexed illumination,” Sci. Rep. 7(1), 7564 (2017).
[Crossref]

Marpaung, A. M.

H. H. Myint, A. M. Marpaung, H. Kurniawan, H. Hattori, and K. Kagawa, “Water droplet lens microscope and microphotographs,” Phys. Educ. 36(2), 97–101 (2001).
[Crossref]

Matthews, D.

Z. J. Smith, K. Chu, A. R. Espenson, M. Rahimzadeh, A. Gryshuk, M. Molinaro, D. M. Dwyre, S. Lane, D. Matthews, and S. Wachsmann-Hogiu, “Cell-phone-based platform for biomedical device development and education applications,” PLoS One 6(3), e17150 (2011).
[Crossref]

Missoni, E.

L. Bellina and E. Missoni, “Mobile cell-phones (M-phones) in telemicroscopy: increasing connectivity of isolated laboratories,” Diagn. Pathol. 4(1), 19 (2009).
[Crossref]

Molinaro, M.

Z. J. Smith, K. Chu, A. R. Espenson, M. Rahimzadeh, A. Gryshuk, M. Molinaro, D. M. Dwyre, S. Lane, D. Matthews, and S. Wachsmann-Hogiu, “Cell-phone-based platform for biomedical device development and education applications,” PLoS One 6(3), e17150 (2011).
[Crossref]

Myint, H. H.

H. H. Myint, A. M. Marpaung, H. Kurniawan, H. Hattori, and K. Kagawa, “Water droplet lens microscope and microphotographs,” Phys. Educ. 36(2), 97–101 (2001).
[Crossref]

Niederberger, C.

Y. Kobori, P. Pfanner, G. S. Prins, and C. Niederberger, “Novel device for male infertility screening with single-ball lens microscope and smartphone,” Fertil. Steril. 106(3), 574–578 (2016).
[Crossref]

Orth, A.

A. Orth, E. R. Wilson, J. G. Thompson, and B. C. Gibson, “A dual-mode mobile phone microscope using the onboard camera flash and ambient light,” Sci. Rep. 8(1), 3298 (2018).
[Crossref]

Ozcan, A.

H. Zhu, O. Yaglidere, T. W. Su, D. Tseng, and A. Ozcan, “Wide-field fluorescent microscopy on a cell-phone,” Conf. Proc. IEEE Eng. Med. Biol. Soc.2011, 6801–6804 (2011).

Patlan, S. M.

T. E. Agbana, J.-C. Diehl, F. van Pul, S. M. Patlan, M. Verhaegen, and G. Vdovin, “Imaging & identification of malaria parasites using cellphone microscope with a ball lens,” PLOS ONE 13(10), e0205020 (2018).
[Crossref]

Pfanner, P.

Y. Kobori, P. Pfanner, G. S. Prins, and C. Niederberger, “Novel device for male infertility screening with single-ball lens microscope and smartphone,” Fertil. Steril. 106(3), 574–578 (2016).
[Crossref]

Pirnstill, C. W.

C. W. Pirnstill and G. L. Coté, “Malaria Diagnosis Using a Mobile Phone Polarized Microscope,” Sci. Rep. 5(1), 13368 (2015).
[Crossref]

Prins, G. S.

Y. Kobori, P. Pfanner, G. S. Prins, and C. Niederberger, “Novel device for male infertility screening with single-ball lens microscope and smartphone,” Fertil. Steril. 106(3), 574–578 (2016).
[Crossref]

Rahimzadeh, M.

Z. J. Smith, K. Chu, A. R. Espenson, M. Rahimzadeh, A. Gryshuk, M. Molinaro, D. M. Dwyre, S. Lane, D. Matthews, and S. Wachsmann-Hogiu, “Cell-phone-based platform for biomedical device development and education applications,” PLoS One 6(3), e17150 (2011).
[Crossref]

Ramanujam, S.

S. S. Arya, S. Ramanujam, and P. K. Vijayaraghavan, “Refractive index as an objective method for evaluation of rancidity in edible oils and fats,” J. Am. Oil Chem. Soc. 46(1), 28–30 (1969).
[Crossref]

Reber, C. D.

A. Skandarajah, C. D. Reber, N. A. Switz, and D. A. Fletcher, “Quantitative imaging with a mobile phone microscope,” PLoS One 9(5), e96906 (2014).
[Crossref]

Reddy, D. J.

D. J. Reddy, “Substitute for Cedar Wood Oil for Oil Immersion Work,” Ind. Med. Gaz. 79, 565 (1944).

Ryu, S.

D. Jung, J.-H. Choi, S. Kim, S. Ryu, W. Lee, J.-S. Lee, and C. Joo, “Smartphone-based multi-contrast microscope using color-multiplexed illumination,” Sci. Rep. 7(1), 7564 (2017).
[Crossref]

Shih, W.-C.

Y.-L. Sung, J. Jeang, C.-H. Lee, and W.-C. Shih, “Fabricating optical lenses by inkjet printing and heat-assisted in situ curing of polydimethylsiloxane for smartphone microscopy,” J. Biomed. Opt. 20(4), 047005 (2015).
[Crossref]

Skandarajah, A.

A. Skandarajah, C. D. Reber, N. A. Switz, and D. A. Fletcher, “Quantitative imaging with a mobile phone microscope,” PLoS One 9(5), e96906 (2014).
[Crossref]

Smith, Z. J.

Z. J. Smith, K. Chu, A. R. Espenson, M. Rahimzadeh, A. Gryshuk, M. Molinaro, D. M. Dwyre, S. Lane, D. Matthews, and S. Wachsmann-Hogiu, “Cell-phone-based platform for biomedical device development and education applications,” PLoS One 6(3), e17150 (2011).
[Crossref]

Ssayee, R.

V. R. Jayalakshamma and R. Ssayee, “Cost effective, qualitative immersion oil for microscopy,” J. Anat. Soc. India 54, 48–50 (2005).

Su, T. W.

H. Zhu, O. Yaglidere, T. W. Su, D. Tseng, and A. Ozcan, “Wide-field fluorescent microscopy on a cell-phone,” Conf. Proc. IEEE Eng. Med. Biol. Soc.2011, 6801–6804 (2011).

Sung, Y.-L.

Y.-L. Sung, J. Jeang, C.-H. Lee, and W.-C. Shih, “Fabricating optical lenses by inkjet printing and heat-assisted in situ curing of polydimethylsiloxane for smartphone microscopy,” J. Biomed. Opt. 20(4), 047005 (2015).
[Crossref]

Switz, N. A.

A. Skandarajah, C. D. Reber, N. A. Switz, and D. A. Fletcher, “Quantitative imaging with a mobile phone microscope,” PLoS One 9(5), e96906 (2014).
[Crossref]

Thompson, J. G.

A. Orth, E. R. Wilson, J. G. Thompson, and B. C. Gibson, “A dual-mode mobile phone microscope using the onboard camera flash and ambient light,” Sci. Rep. 8(1), 3298 (2018).
[Crossref]

Tseng, D.

H. Zhu, O. Yaglidere, T. W. Su, D. Tseng, and A. Ozcan, “Wide-field fluorescent microscopy on a cell-phone,” Conf. Proc. IEEE Eng. Med. Biol. Soc.2011, 6801–6804 (2011).

van Pul, F.

T. E. Agbana, J.-C. Diehl, F. van Pul, S. M. Patlan, M. Verhaegen, and G. Vdovin, “Imaging & identification of malaria parasites using cellphone microscope with a ball lens,” PLOS ONE 13(10), e0205020 (2018).
[Crossref]

Vdovin, G.

T. E. Agbana, J.-C. Diehl, F. van Pul, S. M. Patlan, M. Verhaegen, and G. Vdovin, “Imaging & identification of malaria parasites using cellphone microscope with a ball lens,” PLOS ONE 13(10), e0205020 (2018).
[Crossref]

Verhaegen, M.

T. E. Agbana, J.-C. Diehl, F. van Pul, S. M. Patlan, M. Verhaegen, and G. Vdovin, “Imaging & identification of malaria parasites using cellphone microscope with a ball lens,” PLOS ONE 13(10), e0205020 (2018).
[Crossref]

Victory, I. S.

A. C. Godswill, I. O. Amagwula, I. S. Victory, and A. I. Gonzaga, “Effects of repeated deep frying on refractive index and peroxide value of selected vegetable oils,” Int. J. Adv. Acad. Res. 4, 106–119 (2018).

Vijayaraghavan, P. K.

S. S. Arya, S. Ramanujam, and P. K. Vijayaraghavan, “Refractive index as an objective method for evaluation of rancidity in edible oils and fats,” J. Am. Oil Chem. Soc. 46(1), 28–30 (1969).
[Crossref]

Wachsmann-Hogiu, S.

Z. J. Smith, K. Chu, A. R. Espenson, M. Rahimzadeh, A. Gryshuk, M. Molinaro, D. M. Dwyre, S. Lane, D. Matthews, and S. Wachsmann-Hogiu, “Cell-phone-based platform for biomedical device development and education applications,” PLoS One 6(3), e17150 (2011).
[Crossref]

Wan, X.

B. Dai, J. Ziao, L. Zheng, H. Bachman, Y. Fu, X. Wan, Y. Zhang, Y. Huang, X. Han, C. Zhao, T. J. Huang, S. Zhuang, and D. Zhang, “Colour compound lenses for a portable fluorescence microscope,” Light: Sci. Appl. 8(1), 75 (2019).
[Crossref]

Wilson, E. R.

A. Orth, E. R. Wilson, J. G. Thompson, and B. C. Gibson, “A dual-mode mobile phone microscope using the onboard camera flash and ambient light,” Sci. Rep. 8(1), 3298 (2018).
[Crossref]

Yaglidere, O.

H. Zhu, O. Yaglidere, T. W. Su, D. Tseng, and A. Ozcan, “Wide-field fluorescent microscopy on a cell-phone,” Conf. Proc. IEEE Eng. Med. Biol. Soc.2011, 6801–6804 (2011).

Zhang, D.

B. Dai, J. Ziao, L. Zheng, H. Bachman, Y. Fu, X. Wan, Y. Zhang, Y. Huang, X. Han, C. Zhao, T. J. Huang, S. Zhuang, and D. Zhang, “Colour compound lenses for a portable fluorescence microscope,” Light: Sci. Appl. 8(1), 75 (2019).
[Crossref]

Zhang, Y.

B. Dai, J. Ziao, L. Zheng, H. Bachman, Y. Fu, X. Wan, Y. Zhang, Y. Huang, X. Han, C. Zhao, T. J. Huang, S. Zhuang, and D. Zhang, “Colour compound lenses for a portable fluorescence microscope,” Light: Sci. Appl. 8(1), 75 (2019).
[Crossref]

Zhao, C.

B. Dai, J. Ziao, L. Zheng, H. Bachman, Y. Fu, X. Wan, Y. Zhang, Y. Huang, X. Han, C. Zhao, T. J. Huang, S. Zhuang, and D. Zhang, “Colour compound lenses for a portable fluorescence microscope,” Light: Sci. Appl. 8(1), 75 (2019).
[Crossref]

Zheng, L.

B. Dai, J. Ziao, L. Zheng, H. Bachman, Y. Fu, X. Wan, Y. Zhang, Y. Huang, X. Han, C. Zhao, T. J. Huang, S. Zhuang, and D. Zhang, “Colour compound lenses for a portable fluorescence microscope,” Light: Sci. Appl. 8(1), 75 (2019).
[Crossref]

Zheng, X.

X. Zheng and H. Jiang, “Liquid tunable microlenses based on MEMS techniques,” J. Phys. D: Appl. Phys. 46(32), 323001 (2013).
[Crossref]

Zhu, H.

H. Zhu, O. Yaglidere, T. W. Su, D. Tseng, and A. Ozcan, “Wide-field fluorescent microscopy on a cell-phone,” Conf. Proc. IEEE Eng. Med. Biol. Soc.2011, 6801–6804 (2011).

Zhuang, S.

B. Dai, J. Ziao, L. Zheng, H. Bachman, Y. Fu, X. Wan, Y. Zhang, Y. Huang, X. Han, C. Zhao, T. J. Huang, S. Zhuang, and D. Zhang, “Colour compound lenses for a portable fluorescence microscope,” Light: Sci. Appl. 8(1), 75 (2019).
[Crossref]

Ziao, J.

B. Dai, J. Ziao, L. Zheng, H. Bachman, Y. Fu, X. Wan, Y. Zhang, Y. Huang, X. Han, C. Zhao, T. J. Huang, S. Zhuang, and D. Zhang, “Colour compound lenses for a portable fluorescence microscope,” Light: Sci. Appl. 8(1), 75 (2019).
[Crossref]

BioChip J. (1)

J.-H. Kim, H.-G. Joo, T.-H. Kim, and Y.-G. Ju, “A smartphone-based fluorescence microscope utilizing an external phone camera lens module,” BioChip J. 9(4), 285–292 (2015).
[Crossref]

Diagn. Pathol. (1)

L. Bellina and E. Missoni, “Mobile cell-phones (M-phones) in telemicroscopy: increasing connectivity of isolated laboratories,” Diagn. Pathol. 4(1), 19 (2009).
[Crossref]

Fertil. Steril. (1)

Y. Kobori, P. Pfanner, G. S. Prins, and C. Niederberger, “Novel device for male infertility screening with single-ball lens microscope and smartphone,” Fertil. Steril. 106(3), 574–578 (2016).
[Crossref]

Ind. Med. Gaz. (1)

D. J. Reddy, “Substitute for Cedar Wood Oil for Oil Immersion Work,” Ind. Med. Gaz. 79, 565 (1944).

Int. J. Adv. Acad. Res. (1)

A. C. Godswill, I. O. Amagwula, I. S. Victory, and A. I. Gonzaga, “Effects of repeated deep frying on refractive index and peroxide value of selected vegetable oils,” Int. J. Adv. Acad. Res. 4, 106–119 (2018).

J. Am. Oil Chem. Soc. (1)

S. S. Arya, S. Ramanujam, and P. K. Vijayaraghavan, “Refractive index as an objective method for evaluation of rancidity in edible oils and fats,” J. Am. Oil Chem. Soc. 46(1), 28–30 (1969).
[Crossref]

J. Anat. Soc. India (1)

V. R. Jayalakshamma and R. Ssayee, “Cost effective, qualitative immersion oil for microscopy,” J. Anat. Soc. India 54, 48–50 (2005).

J. Biomed. Opt. (1)

Y.-L. Sung, J. Jeang, C.-H. Lee, and W.-C. Shih, “Fabricating optical lenses by inkjet printing and heat-assisted in situ curing of polydimethylsiloxane for smartphone microscopy,” J. Biomed. Opt. 20(4), 047005 (2015).
[Crossref]

J. Phys. D: Appl. Phys. (1)

X. Zheng and H. Jiang, “Liquid tunable microlenses based on MEMS techniques,” J. Phys. D: Appl. Phys. 46(32), 323001 (2013).
[Crossref]

Light: Sci. Appl. (1)

B. Dai, J. Ziao, L. Zheng, H. Bachman, Y. Fu, X. Wan, Y. Zhang, Y. Huang, X. Han, C. Zhao, T. J. Huang, S. Zhuang, and D. Zhang, “Colour compound lenses for a portable fluorescence microscope,” Light: Sci. Appl. 8(1), 75 (2019).
[Crossref]

MOEMS and Miniaturized Systems XI (1)

F. A. Chowdhury and K. J. Chau, “Microscopy using water droplets,” MOEMS and Miniaturized Systems XI 8252, 82520Z (2012)..
[Crossref]

Phys. Educ. (1)

H. H. Myint, A. M. Marpaung, H. Kurniawan, H. Hattori, and K. Kagawa, “Water droplet lens microscope and microphotographs,” Phys. Educ. 36(2), 97–101 (2001).
[Crossref]

PLoS One (3)

Z. J. Smith, K. Chu, A. R. Espenson, M. Rahimzadeh, A. Gryshuk, M. Molinaro, D. M. Dwyre, S. Lane, D. Matthews, and S. Wachsmann-Hogiu, “Cell-phone-based platform for biomedical device development and education applications,” PLoS One 6(3), e17150 (2011).
[Crossref]

T. E. Agbana, J.-C. Diehl, F. van Pul, S. M. Patlan, M. Verhaegen, and G. Vdovin, “Imaging & identification of malaria parasites using cellphone microscope with a ball lens,” PLOS ONE 13(10), e0205020 (2018).
[Crossref]

A. Skandarajah, C. D. Reber, N. A. Switz, and D. A. Fletcher, “Quantitative imaging with a mobile phone microscope,” PLoS One 9(5), e96906 (2014).
[Crossref]

Sci. Rep. (3)

A. Orth, E. R. Wilson, J. G. Thompson, and B. C. Gibson, “A dual-mode mobile phone microscope using the onboard camera flash and ambient light,” Sci. Rep. 8(1), 3298 (2018).
[Crossref]

C. W. Pirnstill and G. L. Coté, “Malaria Diagnosis Using a Mobile Phone Polarized Microscope,” Sci. Rep. 5(1), 13368 (2015).
[Crossref]

D. Jung, J.-H. Choi, S. Kim, S. Ryu, W. Lee, J.-S. Lee, and C. Joo, “Smartphone-based multi-contrast microscope using color-multiplexed illumination,” Sci. Rep. 7(1), 7564 (2017).
[Crossref]

Other (2)

H. Zhu, O. Yaglidere, T. W. Su, D. Tseng, and A. Ozcan, “Wide-field fluorescent microscopy on a cell-phone,” Conf. Proc. IEEE Eng. Med. Biol. Soc.2011, 6801–6804 (2011).

Refractive Index List of Common Household Liquids. International Gem Society https://www.gemsociety.org/article/refractive-index-list-of-common-household-liquids/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic illustration of a cell phone capturing an image of a droplet used to magnify a biological sample. The matrix of oil droplets in the sample image sat on a borosilicate cover glass.
Fig. 2.
Fig. 2. The droplet morphology. A) Comparison of droplets made of water, immersion oil, and corn oil at room temperature for 20 minutes. Scale bar = 5 mm. B) Comparison between immersion oil and water at room temperature for 16 hours. C) A typical relationship between the volume and diameter of the water droplets.
Fig. 3.
Fig. 3. Optical characterization of water and immersion oil (IO) droplets. A) Immersion oil and water droplet images on a cell phone screen. B) Characterization of the optical magnification of droplets using a cell phone screen for low-resource settings. C) Characterization of the relationship between the focal length of the droplet (${f_1}$, x axis) and the achievable magnification (y axis) assuming the cell phone screen pixels are 3 mm away from the droplet lens, ${s_{o1}} = 3\; mm$. D) Characterization of the optical resolution using a USAF resolution target. E) Line profiles from the USAF image taken with a droplet in D). F) USAF image taken using a commercial clip-on macro lens. G) High-magnification view of F) showing Group 4 and 5 elements resolved from the image. E) A 2 µL IO droplet image resolving Group 4 and 5 elements.
Fig. 4.
Fig. 4. A comparison between magnified oil droplet images and images obtained using a Nikon Eclipse Ti-E2 inverted microscope with brightfield illumination and a 20x/0.75 objective. A) Droplet (grey) and microscopy (yellow) images of an onion epidermis sample. B) Droplet (grey) and microscopy (yellow) images of a zea stem cross-section. C) Line profile plots of droplet (grey) and microscopy (yellow) images of the onion epidermis sample demonstrating the achievable spatial resolution at the boundary of three adjacent cells. Dimensions in 1* are approximate. Scale bar = 100 µm.
Fig. 5.
Fig. 5. Imaging using cooking oil droplets of 4, 3, and 2 µL in volume, from left to right. A) Immersion oil, B) corn oil, C) canola oil, D) olive oil.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

1 f = ( n 1 ) ( 1 R 1 1 R 2 ) ,
f = R 1 n 1 ,
M = ( s i 1 s o 1 ) ( s i 2 s o 2 ) ,
1 f 1 = 1 s o 1 + 1 s i 1 ,
1 f 2 = 1 s o 2 + 1 s i 2 ,
M = ( f 1 s o 1 f 1 ) ( s i 2 f 2 f 2 ) .
M | f 1 s o 1 f 1 | = | 1 s o 1 f 1 1 | .
R e s o l u t i o n ( l i n e p a i r m m ) = 2 G r o u p + ( E l e m e n t 1 6 ) .

Metrics