Abstract

With recent changes in the legalization of cannabis around the world, there is an urgent need for rapid, yet sensitive, screening devices for testing drivers and employees under the influence of cannabis at the roadside and at the workplace, respectively. Oral fluid lateral flow immunoassays (LFAs) have recently been explored for such applications. While LFAs offer on-site, low-cost and rapid detection of tetrahydrocannabinol (THC), their nominal detection threshold is about 25 ng/ml, which is well above the 1-5 ng/ml per se limits set by regulations. In this paper, we report on the development of a thermo-photonic imaging system that utilizes the commercially available low-cost LFAs but offers detection of THC at unprecedented low concentrations. Our reader technology examines photothermal responses of gold nanoparticles (GNPs) in LFA through lock-in thermography (LIT). Our results (n = 300) suggest that the demodulation of localized surface plasmon resonance responses of GNPs captured by infrared cameras allows for detection of THC concentrations as low as 2 ng/ml with 96% accuracy. Quantification of THC concentration is also achievable with our technology through calibration.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Improved noncontact optical sensor for detection of glucose concentration and indication of dehydration level

Nisan Ozana, Nadav Arbel, Yevgeny Beiderman, Vicente Mico, Martin Sanz, Javier Garcia, Arun Anand, Baharam Javidi, Yoram Epstein, and Zeev Zalevsky
Biomed. Opt. Express 5(6) 1926-1940 (2014)

Perturbed Talbot patterns for the measurement of low particle concentrations in fluids

Meike Hofmann, Ronald Kampmann, and Stefan Sinzinger
Appl. Opt. 51(10) 1605-1615 (2012)

Bloch surface wave enhanced biosensor for the direct detection of Angiopoietin-2 tumor biomarker in human plasma

Riccardo Rizzo, Maria Alvaro, Norbert Danz, Lucia Napione, Emiliano Descrovi, Stefan Schmieder, Alberto Sinibaldi, Subinoy Rana, Rona Chandrawati, Peter Munzert, Thomas Schubert, Emmanuel Maillart, Aleksei Anopchenko, Paola Rivolo, Alessandro Mascioletti, Erik Förster, Frank Sonntag, Molly M. Stevens, Federico Bussolino, and Francesco Michelotti
Biomed. Opt. Express 9(2) 529-542 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Public Safety Canada. Cannabis Policy Performance Metrics, Research Summary 2016, Ottawa, Ontario.
  2. World Health Organization Reports. Management of substance abuse: Cannabis. https://www.who.int/substance_abuse/facts/cannabis/en/ .
  3. W. C. Kerr, Y. Ye, M. S. Subbaraman, E. Williams, and T. K. Greenfield, “Changes in Marijuana Use Across the 2012 Washington State Recreational Legalization: Is Retrospective Assessment of Use Before Legalization More Accurate?” J. Stud. Alcohol Drugs 79(3), 495–502 (2018).
    [Crossref]
  4. Shikha Prashad and Francesca M. Filbey. “Cognitive motor deficits in cannabis users,” Feb. 2017. Current Opinion in Behavioral Sciences.
  5. Poling Sewell, and Sofuoglu. See also: Brooks-Russell, Wempe, Vigil, et al. “Marijuana use and driving: Systematic literature review,” 2017. Colorado Department of Public Health and Environment.
  6. Ole Rogeberg and Rune Elvik. “The effects of cannabis intoxication on motor vehicle collision revisited and revised,” Feb. 2016. Addiction.
  7. Jean-Louis Martin, Blandine Gadegbeku, and Dan Wu et al., “Cannabis, alcohol, and fatal road accidents,” 2017. PLoS One. In comparison, the study found that drivers under the influence of alcohol are 17.8 times more likely to be culpable for a fatal accident.
  8. European Monitoring Centre for Drugs and Drug Addiction (2019), European Drug Report 2019: Trends and Developments, Publications Office of the European Union, Luxembourg
  9. Canadian Centre on Substance Use and Addiction 2018, “Canadian drug summary: cannabis”
  10. European Monitoring Centre for Drugs and Drug Addiction, “The state of the drugs problem in Europe,” Annual report 2012.
  11. D. J. Beirness and A. J. Porath-Waller, “Clearing the smoke on cannabis: Cannabis use and driving-an update,” Canadian Centre on Substance Abuse” (2019).
  12. Substance Abuse and Mental Health Services Administration, “The National Survey on Drug Use and Health: 2017”
  13. Australian Institute of Health and Welfare 2017. National Drug Strategy Household Survey 2016: detailed findings. Drug Statistics series no. 31. Cat. no. PHE 214. Canberra: AIHW
  14. R. L. Hartman, T. L. Brown, G. Milavetz, A. Spurgin, D. A. Gorelick, G. R. Gaffney, and M. A. Huestis, “Effect of blood collection time on measured Δ9-tetrahydrocannabinol concentrations: implications for driving interpretation and drug policy,” Clin. Chem. 62(2), 367–377 (2016).
    [Crossref]
  15. D. J. Beirness and D. R. Smith, “An assessment of oral fluid drug screening devices,” J. - Can. Soc. Forensic Sci. 50(2), 55–63 (2017).
    [Crossref]
  16. M. A. Huestis and E. J. Cone, “Relationship of Δ9-Tetrahydrocannabinol Concentrations in Oral Fluid and Plasma after Controlled Administration of Smoked Cannabis,” J. Anal. Toxicol. 28(6), 394–399 (2004).
    [Crossref]
  17. G. Li, S. P. Baker, Q. Zhao, J. E. Brady, B. H. Lang, G. W. Rebok, and C. DiMaggio, “Drug violations and aviation accidents: findings from the US mandatory drug testing programs,” Addiction 106(7), 1287–1292 (2011).
    [Crossref]
  18. M. T. French, M. C. Roebuck, and P. K. Alexandre, “To test or not to test: do workplace drug testing programs discourage employee drug use?” Soc. Sci. Res. 33(1), 45–63 (2004).
    [Crossref]
  19. S. George, “A snapshot of workplace drug testing in the UK,” Occup. Med. 55(1), 69–71 (2005).
    [Crossref]
  20. O. A. Silva and M. Yonamine, “Drug abuse among workers in Brazilian regions,” Rev. Saude Publica 38(4), 552–556 (2004).
    [Crossref]
  21. E. J. Cone, L. Presley, M. Lehrer, W. Seiter, M. Smith, K. W. Kardos, D. Fritch, S. Salamone, and R. S. Niedbala, “Oral fluid testing for drugs of abuse: positive prevalence rates by Intercept™ immunoassay screening and GC-MS-MS confirmation and suggested cutoff concentrations,” J. Anal. Toxicol. 26(8), 541–546 (2002).
    [Crossref]
  22. S. Macdonald, W. Hall, P. Roman, T. Stockwell, M. Coghlan, and S. Nesvaag, “Testing for cannabis in the work-place: a review of the evidence,” Addiction 105(3), 408–416 (2010).
    [Crossref]
  23. H. Choi, S. Baeck, E. Kim, S. Lee, M. Jang, J. Lee, H. Choi, and H. Chung, “Analysis of cannabis in oral fluid specimens by GC-MS with automatic SPE,” Sci. Justice 49(4), 242–246 (2009).
    [Crossref]
  24. M. Sánchez, A. Arroyo, M. Barbal, M. Palahí, and A. Mora, “Cozart® RapiScan Oral Fluid Drug Testing System validation by GC-MS/MS analysis,” Ann. Toxicol. Anal. 20(3), 131–136 (2008).
    [Crossref]
  25. V. Reinstadler, S. Lierheimer, M. Boettcher, and H. Oberacher, “A validated workflow for drug detection in oral fluid by non-targeted liquid chromatography-tandem mass spectrometry,” Anal. Bioanal. Chem. 411(4), 867–876 (2019).
    [Crossref]
  26. O. Quintela, D. M. Andrenyak, A. M. Hoggan, and D. J. Crouch, “A validated method for the detection of Δ9-tetrahydrocannabinol and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol in oral fluid samples by liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry,” J. Anal. Toxicol. 31(3), 157–164 (2007).
    [Crossref]
  27. D. J. Crouch, J. M. Walsh, L. Cangianelli, and O. Quintela, “Laboratory evaluation and field application of roadside oral fluid collectors and drug testing devices,” Ther. Drug Monit. 30(2), 188–195 (2008).
    [Crossref]
  28. B. D. Plouffe and S. K. Murthy, “Fluorescence-based lateral flow assays for rapid oral fluid roadside detection of cannabis use,” Electrophoresis 38(3-4), 501–506 (2017).
    [Crossref]
  29. P. Rezai, N. Tabatabaei, and A. Ojaghi, “System and method for photo-thermal analysis of immunoassay tests,” U.S. Patent Application 15/839,325, filed May 23, 2019.
  30. A. Ojaghi, M. Pallapa, N. Tabatabaei, and P. Rezai, “High-sensitivity interpretation of lateral flow immunoassays using thermophotonic lock-in imaging,” Sens. Actuators, A 273, 189–196 (2018).
    [Crossref]
  31. K. M. Koczula and A. Gallotta, “Lateral flow assays,” Essays Biochem. 60(1), 111–120 (2016).
    [Crossref]
  32. Canadian Society of Forensic Science Drugs and Driving Committee (DDC) Drug Screening Equipment – Oral Fluid Standards and Evaluation Procedures.
  33. N. Tabatabaei, A. Mandelis, and B. T. Amaechi, “Thermophotonic lock-in imaging of early demineralized and carious lesions in human teeth,” J. Biomed. Opt. 16(7), 071402 (2011).
    [Crossref]
  34. N. Tabatabaei, A. Mandelis, M. Dehghany, K. H. Michaelian, and B. T. Amaechi, “On the sensitivity of thermophotonic lock-in imaging and polarized Raman spectroscopy to early dental caries diagnosis,” J. Biomed. Opt. 17(2), 025002 (2012).
    [Crossref]
  35. A. Ojaghi, A. Parkhimchyk, and N. Tabatabaei, “First step toward translation of thermophotonic lock-in imaging to dentistry as an early caries detection technology,” J. Biomed. Opt. 21(9), 096003 (2016).
    [Crossref]
  36. E. B. Shokouhi, M. Razani, A. Gupta, and N. Tabatabaei, “Comparative study on the detection of early dental caries using thermo-photonic lock-in imaging and optical coherence tomography,” Biomed. Opt. Express 9(9), 3983–3997 (2018).
    [Crossref]
  37. J. M. Bland and D. G. Altman, “Statistical notes: measurement error proportional to the mean,” BMJ 313(7049), 106 (1996).
    [Crossref]
  38. H. Schulze, M. Schumacher, R. Urmeew, K. Auerbach, J. Alvarez, and I. M. Bernhoft et al., “Findings from the DRUID project Driving Under the Influence of Drugs, Alcohol, and Medicines in Europe d findings from the DRUID project,” Lisbon: EMCDDA (2012).
  39. Innova Biosciences Ltd, A guide to lateral flow immunoassays, Babraham Research Campus, Cambridge.
  40. T. R. Arkell, R. C. Kevin, J. Stuart, N. Lintzeris, P. S. Haber, J. G. Ramaekers, and I. S. McGregor, “Detection of Δ9 THC in oral fluid following vaporized cannabis with varied cannabidiol (CBD) content: An evaluation of two point-of-collection testing devices,” Drug Test. Anal. 11(10), 1486–1497 (2019).
    [Crossref]
  41. Y. Zhao, H. Wang, P. Zhang, C. Sun, X. Wang, X. Wang, R. Yang, C. Wang, and L. Zhou, “Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay,” Sci. Rep. 6(1), 21342 (2016).
    [Crossref]
  42. J. Hwang, D. Kwon, S. Lee, and S. Jeon, “Detection of Salmonella bacteria in milk using gold-coated magnetic nanoparticle clusters and lateral flow filters,” RSC Adv. 6(54), 48445–48448 (2016).
    [Crossref]
  43. K. O. Jae, N. P. Ferris, K. N. Lee, Y. S. Joo, B. H. Hyun, and J. H. Park, “Simple and rapid lateral-flow assay for the detection of foot-and-mouth disease virus,” Clin. Vaccine Immunol. 16(11), 1660–1664 (2009).
    [Crossref]
  44. A. Fleury, P. Sastre, E. Sciutto, S. Correia, A. Monedero, A. Toledo, M. Hernandez, L. J. S. Harrison, and R. M. E. Parkhouse, “A lateral flow assay (LFA) for the rapid detection of extraparenchymal neurocysticercosis using cerebrospinal fluid,” Exp. Parasitol. 171, 67–70 (2016).
    [Crossref]
  45. M. Razani, A. Parkhimchyk, and N. Tabatabaei, “Lock-in thermography using a cellphone attachment infrared camera,” AIP Adv. 8(3), 035305 (2018).
    [Crossref]

2019 (2)

V. Reinstadler, S. Lierheimer, M. Boettcher, and H. Oberacher, “A validated workflow for drug detection in oral fluid by non-targeted liquid chromatography-tandem mass spectrometry,” Anal. Bioanal. Chem. 411(4), 867–876 (2019).
[Crossref]

T. R. Arkell, R. C. Kevin, J. Stuart, N. Lintzeris, P. S. Haber, J. G. Ramaekers, and I. S. McGregor, “Detection of Δ9 THC in oral fluid following vaporized cannabis with varied cannabidiol (CBD) content: An evaluation of two point-of-collection testing devices,” Drug Test. Anal. 11(10), 1486–1497 (2019).
[Crossref]

2018 (4)

E. B. Shokouhi, M. Razani, A. Gupta, and N. Tabatabaei, “Comparative study on the detection of early dental caries using thermo-photonic lock-in imaging and optical coherence tomography,” Biomed. Opt. Express 9(9), 3983–3997 (2018).
[Crossref]

M. Razani, A. Parkhimchyk, and N. Tabatabaei, “Lock-in thermography using a cellphone attachment infrared camera,” AIP Adv. 8(3), 035305 (2018).
[Crossref]

A. Ojaghi, M. Pallapa, N. Tabatabaei, and P. Rezai, “High-sensitivity interpretation of lateral flow immunoassays using thermophotonic lock-in imaging,” Sens. Actuators, A 273, 189–196 (2018).
[Crossref]

W. C. Kerr, Y. Ye, M. S. Subbaraman, E. Williams, and T. K. Greenfield, “Changes in Marijuana Use Across the 2012 Washington State Recreational Legalization: Is Retrospective Assessment of Use Before Legalization More Accurate?” J. Stud. Alcohol Drugs 79(3), 495–502 (2018).
[Crossref]

2017 (2)

D. J. Beirness and D. R. Smith, “An assessment of oral fluid drug screening devices,” J. - Can. Soc. Forensic Sci. 50(2), 55–63 (2017).
[Crossref]

B. D. Plouffe and S. K. Murthy, “Fluorescence-based lateral flow assays for rapid oral fluid roadside detection of cannabis use,” Electrophoresis 38(3-4), 501–506 (2017).
[Crossref]

2016 (6)

K. M. Koczula and A. Gallotta, “Lateral flow assays,” Essays Biochem. 60(1), 111–120 (2016).
[Crossref]

R. L. Hartman, T. L. Brown, G. Milavetz, A. Spurgin, D. A. Gorelick, G. R. Gaffney, and M. A. Huestis, “Effect of blood collection time on measured Δ9-tetrahydrocannabinol concentrations: implications for driving interpretation and drug policy,” Clin. Chem. 62(2), 367–377 (2016).
[Crossref]

A. Fleury, P. Sastre, E. Sciutto, S. Correia, A. Monedero, A. Toledo, M. Hernandez, L. J. S. Harrison, and R. M. E. Parkhouse, “A lateral flow assay (LFA) for the rapid detection of extraparenchymal neurocysticercosis using cerebrospinal fluid,” Exp. Parasitol. 171, 67–70 (2016).
[Crossref]

A. Ojaghi, A. Parkhimchyk, and N. Tabatabaei, “First step toward translation of thermophotonic lock-in imaging to dentistry as an early caries detection technology,” J. Biomed. Opt. 21(9), 096003 (2016).
[Crossref]

Y. Zhao, H. Wang, P. Zhang, C. Sun, X. Wang, X. Wang, R. Yang, C. Wang, and L. Zhou, “Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay,” Sci. Rep. 6(1), 21342 (2016).
[Crossref]

J. Hwang, D. Kwon, S. Lee, and S. Jeon, “Detection of Salmonella bacteria in milk using gold-coated magnetic nanoparticle clusters and lateral flow filters,” RSC Adv. 6(54), 48445–48448 (2016).
[Crossref]

2012 (1)

N. Tabatabaei, A. Mandelis, M. Dehghany, K. H. Michaelian, and B. T. Amaechi, “On the sensitivity of thermophotonic lock-in imaging and polarized Raman spectroscopy to early dental caries diagnosis,” J. Biomed. Opt. 17(2), 025002 (2012).
[Crossref]

2011 (2)

G. Li, S. P. Baker, Q. Zhao, J. E. Brady, B. H. Lang, G. W. Rebok, and C. DiMaggio, “Drug violations and aviation accidents: findings from the US mandatory drug testing programs,” Addiction 106(7), 1287–1292 (2011).
[Crossref]

N. Tabatabaei, A. Mandelis, and B. T. Amaechi, “Thermophotonic lock-in imaging of early demineralized and carious lesions in human teeth,” J. Biomed. Opt. 16(7), 071402 (2011).
[Crossref]

2010 (1)

S. Macdonald, W. Hall, P. Roman, T. Stockwell, M. Coghlan, and S. Nesvaag, “Testing for cannabis in the work-place: a review of the evidence,” Addiction 105(3), 408–416 (2010).
[Crossref]

2009 (2)

H. Choi, S. Baeck, E. Kim, S. Lee, M. Jang, J. Lee, H. Choi, and H. Chung, “Analysis of cannabis in oral fluid specimens by GC-MS with automatic SPE,” Sci. Justice 49(4), 242–246 (2009).
[Crossref]

K. O. Jae, N. P. Ferris, K. N. Lee, Y. S. Joo, B. H. Hyun, and J. H. Park, “Simple and rapid lateral-flow assay for the detection of foot-and-mouth disease virus,” Clin. Vaccine Immunol. 16(11), 1660–1664 (2009).
[Crossref]

2008 (2)

M. Sánchez, A. Arroyo, M. Barbal, M. Palahí, and A. Mora, “Cozart® RapiScan Oral Fluid Drug Testing System validation by GC-MS/MS analysis,” Ann. Toxicol. Anal. 20(3), 131–136 (2008).
[Crossref]

D. J. Crouch, J. M. Walsh, L. Cangianelli, and O. Quintela, “Laboratory evaluation and field application of roadside oral fluid collectors and drug testing devices,” Ther. Drug Monit. 30(2), 188–195 (2008).
[Crossref]

2007 (1)

O. Quintela, D. M. Andrenyak, A. M. Hoggan, and D. J. Crouch, “A validated method for the detection of Δ9-tetrahydrocannabinol and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol in oral fluid samples by liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry,” J. Anal. Toxicol. 31(3), 157–164 (2007).
[Crossref]

2005 (1)

S. George, “A snapshot of workplace drug testing in the UK,” Occup. Med. 55(1), 69–71 (2005).
[Crossref]

2004 (3)

O. A. Silva and M. Yonamine, “Drug abuse among workers in Brazilian regions,” Rev. Saude Publica 38(4), 552–556 (2004).
[Crossref]

M. T. French, M. C. Roebuck, and P. K. Alexandre, “To test or not to test: do workplace drug testing programs discourage employee drug use?” Soc. Sci. Res. 33(1), 45–63 (2004).
[Crossref]

M. A. Huestis and E. J. Cone, “Relationship of Δ9-Tetrahydrocannabinol Concentrations in Oral Fluid and Plasma after Controlled Administration of Smoked Cannabis,” J. Anal. Toxicol. 28(6), 394–399 (2004).
[Crossref]

2002 (1)

E. J. Cone, L. Presley, M. Lehrer, W. Seiter, M. Smith, K. W. Kardos, D. Fritch, S. Salamone, and R. S. Niedbala, “Oral fluid testing for drugs of abuse: positive prevalence rates by Intercept™ immunoassay screening and GC-MS-MS confirmation and suggested cutoff concentrations,” J. Anal. Toxicol. 26(8), 541–546 (2002).
[Crossref]

1996 (1)

J. M. Bland and D. G. Altman, “Statistical notes: measurement error proportional to the mean,” BMJ 313(7049), 106 (1996).
[Crossref]

Alexandre, P. K.

M. T. French, M. C. Roebuck, and P. K. Alexandre, “To test or not to test: do workplace drug testing programs discourage employee drug use?” Soc. Sci. Res. 33(1), 45–63 (2004).
[Crossref]

Altman, D. G.

J. M. Bland and D. G. Altman, “Statistical notes: measurement error proportional to the mean,” BMJ 313(7049), 106 (1996).
[Crossref]

Alvarez, J.

H. Schulze, M. Schumacher, R. Urmeew, K. Auerbach, J. Alvarez, and I. M. Bernhoft et al., “Findings from the DRUID project Driving Under the Influence of Drugs, Alcohol, and Medicines in Europe d findings from the DRUID project,” Lisbon: EMCDDA (2012).

Amaechi, B. T.

N. Tabatabaei, A. Mandelis, M. Dehghany, K. H. Michaelian, and B. T. Amaechi, “On the sensitivity of thermophotonic lock-in imaging and polarized Raman spectroscopy to early dental caries diagnosis,” J. Biomed. Opt. 17(2), 025002 (2012).
[Crossref]

N. Tabatabaei, A. Mandelis, and B. T. Amaechi, “Thermophotonic lock-in imaging of early demineralized and carious lesions in human teeth,” J. Biomed. Opt. 16(7), 071402 (2011).
[Crossref]

Andrenyak, D. M.

O. Quintela, D. M. Andrenyak, A. M. Hoggan, and D. J. Crouch, “A validated method for the detection of Δ9-tetrahydrocannabinol and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol in oral fluid samples by liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry,” J. Anal. Toxicol. 31(3), 157–164 (2007).
[Crossref]

Arkell, T. R.

T. R. Arkell, R. C. Kevin, J. Stuart, N. Lintzeris, P. S. Haber, J. G. Ramaekers, and I. S. McGregor, “Detection of Δ9 THC in oral fluid following vaporized cannabis with varied cannabidiol (CBD) content: An evaluation of two point-of-collection testing devices,” Drug Test. Anal. 11(10), 1486–1497 (2019).
[Crossref]

Arroyo, A.

M. Sánchez, A. Arroyo, M. Barbal, M. Palahí, and A. Mora, “Cozart® RapiScan Oral Fluid Drug Testing System validation by GC-MS/MS analysis,” Ann. Toxicol. Anal. 20(3), 131–136 (2008).
[Crossref]

Auerbach, K.

H. Schulze, M. Schumacher, R. Urmeew, K. Auerbach, J. Alvarez, and I. M. Bernhoft et al., “Findings from the DRUID project Driving Under the Influence of Drugs, Alcohol, and Medicines in Europe d findings from the DRUID project,” Lisbon: EMCDDA (2012).

Baeck, S.

H. Choi, S. Baeck, E. Kim, S. Lee, M. Jang, J. Lee, H. Choi, and H. Chung, “Analysis of cannabis in oral fluid specimens by GC-MS with automatic SPE,” Sci. Justice 49(4), 242–246 (2009).
[Crossref]

Baker, S. P.

G. Li, S. P. Baker, Q. Zhao, J. E. Brady, B. H. Lang, G. W. Rebok, and C. DiMaggio, “Drug violations and aviation accidents: findings from the US mandatory drug testing programs,” Addiction 106(7), 1287–1292 (2011).
[Crossref]

Barbal, M.

M. Sánchez, A. Arroyo, M. Barbal, M. Palahí, and A. Mora, “Cozart® RapiScan Oral Fluid Drug Testing System validation by GC-MS/MS analysis,” Ann. Toxicol. Anal. 20(3), 131–136 (2008).
[Crossref]

Beirness, D. J.

D. J. Beirness and D. R. Smith, “An assessment of oral fluid drug screening devices,” J. - Can. Soc. Forensic Sci. 50(2), 55–63 (2017).
[Crossref]

D. J. Beirness and A. J. Porath-Waller, “Clearing the smoke on cannabis: Cannabis use and driving-an update,” Canadian Centre on Substance Abuse” (2019).

Bernhoft, I. M.

H. Schulze, M. Schumacher, R. Urmeew, K. Auerbach, J. Alvarez, and I. M. Bernhoft et al., “Findings from the DRUID project Driving Under the Influence of Drugs, Alcohol, and Medicines in Europe d findings from the DRUID project,” Lisbon: EMCDDA (2012).

Bland, J. M.

J. M. Bland and D. G. Altman, “Statistical notes: measurement error proportional to the mean,” BMJ 313(7049), 106 (1996).
[Crossref]

Boettcher, M.

V. Reinstadler, S. Lierheimer, M. Boettcher, and H. Oberacher, “A validated workflow for drug detection in oral fluid by non-targeted liquid chromatography-tandem mass spectrometry,” Anal. Bioanal. Chem. 411(4), 867–876 (2019).
[Crossref]

Brady, J. E.

G. Li, S. P. Baker, Q. Zhao, J. E. Brady, B. H. Lang, G. W. Rebok, and C. DiMaggio, “Drug violations and aviation accidents: findings from the US mandatory drug testing programs,” Addiction 106(7), 1287–1292 (2011).
[Crossref]

Brown, T. L.

R. L. Hartman, T. L. Brown, G. Milavetz, A. Spurgin, D. A. Gorelick, G. R. Gaffney, and M. A. Huestis, “Effect of blood collection time on measured Δ9-tetrahydrocannabinol concentrations: implications for driving interpretation and drug policy,” Clin. Chem. 62(2), 367–377 (2016).
[Crossref]

Cangianelli, L.

D. J. Crouch, J. M. Walsh, L. Cangianelli, and O. Quintela, “Laboratory evaluation and field application of roadside oral fluid collectors and drug testing devices,” Ther. Drug Monit. 30(2), 188–195 (2008).
[Crossref]

Choi, H.

H. Choi, S. Baeck, E. Kim, S. Lee, M. Jang, J. Lee, H. Choi, and H. Chung, “Analysis of cannabis in oral fluid specimens by GC-MS with automatic SPE,” Sci. Justice 49(4), 242–246 (2009).
[Crossref]

H. Choi, S. Baeck, E. Kim, S. Lee, M. Jang, J. Lee, H. Choi, and H. Chung, “Analysis of cannabis in oral fluid specimens by GC-MS with automatic SPE,” Sci. Justice 49(4), 242–246 (2009).
[Crossref]

Chung, H.

H. Choi, S. Baeck, E. Kim, S. Lee, M. Jang, J. Lee, H. Choi, and H. Chung, “Analysis of cannabis in oral fluid specimens by GC-MS with automatic SPE,” Sci. Justice 49(4), 242–246 (2009).
[Crossref]

Coghlan, M.

S. Macdonald, W. Hall, P. Roman, T. Stockwell, M. Coghlan, and S. Nesvaag, “Testing for cannabis in the work-place: a review of the evidence,” Addiction 105(3), 408–416 (2010).
[Crossref]

Cone, E. J.

M. A. Huestis and E. J. Cone, “Relationship of Δ9-Tetrahydrocannabinol Concentrations in Oral Fluid and Plasma after Controlled Administration of Smoked Cannabis,” J. Anal. Toxicol. 28(6), 394–399 (2004).
[Crossref]

E. J. Cone, L. Presley, M. Lehrer, W. Seiter, M. Smith, K. W. Kardos, D. Fritch, S. Salamone, and R. S. Niedbala, “Oral fluid testing for drugs of abuse: positive prevalence rates by Intercept™ immunoassay screening and GC-MS-MS confirmation and suggested cutoff concentrations,” J. Anal. Toxicol. 26(8), 541–546 (2002).
[Crossref]

Correia, S.

A. Fleury, P. Sastre, E. Sciutto, S. Correia, A. Monedero, A. Toledo, M. Hernandez, L. J. S. Harrison, and R. M. E. Parkhouse, “A lateral flow assay (LFA) for the rapid detection of extraparenchymal neurocysticercosis using cerebrospinal fluid,” Exp. Parasitol. 171, 67–70 (2016).
[Crossref]

Crouch, D. J.

D. J. Crouch, J. M. Walsh, L. Cangianelli, and O. Quintela, “Laboratory evaluation and field application of roadside oral fluid collectors and drug testing devices,” Ther. Drug Monit. 30(2), 188–195 (2008).
[Crossref]

O. Quintela, D. M. Andrenyak, A. M. Hoggan, and D. J. Crouch, “A validated method for the detection of Δ9-tetrahydrocannabinol and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol in oral fluid samples by liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry,” J. Anal. Toxicol. 31(3), 157–164 (2007).
[Crossref]

Dehghany, M.

N. Tabatabaei, A. Mandelis, M. Dehghany, K. H. Michaelian, and B. T. Amaechi, “On the sensitivity of thermophotonic lock-in imaging and polarized Raman spectroscopy to early dental caries diagnosis,” J. Biomed. Opt. 17(2), 025002 (2012).
[Crossref]

DiMaggio, C.

G. Li, S. P. Baker, Q. Zhao, J. E. Brady, B. H. Lang, G. W. Rebok, and C. DiMaggio, “Drug violations and aviation accidents: findings from the US mandatory drug testing programs,” Addiction 106(7), 1287–1292 (2011).
[Crossref]

Elvik, Rune

Ole Rogeberg and Rune Elvik. “The effects of cannabis intoxication on motor vehicle collision revisited and revised,” Feb. 2016. Addiction.

Ferris, N. P.

K. O. Jae, N. P. Ferris, K. N. Lee, Y. S. Joo, B. H. Hyun, and J. H. Park, “Simple and rapid lateral-flow assay for the detection of foot-and-mouth disease virus,” Clin. Vaccine Immunol. 16(11), 1660–1664 (2009).
[Crossref]

Filbey, Francesca M.

Shikha Prashad and Francesca M. Filbey. “Cognitive motor deficits in cannabis users,” Feb. 2017. Current Opinion in Behavioral Sciences.

Fleury, A.

A. Fleury, P. Sastre, E. Sciutto, S. Correia, A. Monedero, A. Toledo, M. Hernandez, L. J. S. Harrison, and R. M. E. Parkhouse, “A lateral flow assay (LFA) for the rapid detection of extraparenchymal neurocysticercosis using cerebrospinal fluid,” Exp. Parasitol. 171, 67–70 (2016).
[Crossref]

French, M. T.

M. T. French, M. C. Roebuck, and P. K. Alexandre, “To test or not to test: do workplace drug testing programs discourage employee drug use?” Soc. Sci. Res. 33(1), 45–63 (2004).
[Crossref]

Fritch, D.

E. J. Cone, L. Presley, M. Lehrer, W. Seiter, M. Smith, K. W. Kardos, D. Fritch, S. Salamone, and R. S. Niedbala, “Oral fluid testing for drugs of abuse: positive prevalence rates by Intercept™ immunoassay screening and GC-MS-MS confirmation and suggested cutoff concentrations,” J. Anal. Toxicol. 26(8), 541–546 (2002).
[Crossref]

Gadegbeku, Blandine

Jean-Louis Martin, Blandine Gadegbeku, and Dan Wu et al., “Cannabis, alcohol, and fatal road accidents,” 2017. PLoS One. In comparison, the study found that drivers under the influence of alcohol are 17.8 times more likely to be culpable for a fatal accident.

Gaffney, G. R.

R. L. Hartman, T. L. Brown, G. Milavetz, A. Spurgin, D. A. Gorelick, G. R. Gaffney, and M. A. Huestis, “Effect of blood collection time on measured Δ9-tetrahydrocannabinol concentrations: implications for driving interpretation and drug policy,” Clin. Chem. 62(2), 367–377 (2016).
[Crossref]

Gallotta, A.

K. M. Koczula and A. Gallotta, “Lateral flow assays,” Essays Biochem. 60(1), 111–120 (2016).
[Crossref]

George, S.

S. George, “A snapshot of workplace drug testing in the UK,” Occup. Med. 55(1), 69–71 (2005).
[Crossref]

Gorelick, D. A.

R. L. Hartman, T. L. Brown, G. Milavetz, A. Spurgin, D. A. Gorelick, G. R. Gaffney, and M. A. Huestis, “Effect of blood collection time on measured Δ9-tetrahydrocannabinol concentrations: implications for driving interpretation and drug policy,” Clin. Chem. 62(2), 367–377 (2016).
[Crossref]

Greenfield, T. K.

W. C. Kerr, Y. Ye, M. S. Subbaraman, E. Williams, and T. K. Greenfield, “Changes in Marijuana Use Across the 2012 Washington State Recreational Legalization: Is Retrospective Assessment of Use Before Legalization More Accurate?” J. Stud. Alcohol Drugs 79(3), 495–502 (2018).
[Crossref]

Gupta, A.

Haber, P. S.

T. R. Arkell, R. C. Kevin, J. Stuart, N. Lintzeris, P. S. Haber, J. G. Ramaekers, and I. S. McGregor, “Detection of Δ9 THC in oral fluid following vaporized cannabis with varied cannabidiol (CBD) content: An evaluation of two point-of-collection testing devices,” Drug Test. Anal. 11(10), 1486–1497 (2019).
[Crossref]

Hall, W.

S. Macdonald, W. Hall, P. Roman, T. Stockwell, M. Coghlan, and S. Nesvaag, “Testing for cannabis in the work-place: a review of the evidence,” Addiction 105(3), 408–416 (2010).
[Crossref]

Harrison, L. J. S.

A. Fleury, P. Sastre, E. Sciutto, S. Correia, A. Monedero, A. Toledo, M. Hernandez, L. J. S. Harrison, and R. M. E. Parkhouse, “A lateral flow assay (LFA) for the rapid detection of extraparenchymal neurocysticercosis using cerebrospinal fluid,” Exp. Parasitol. 171, 67–70 (2016).
[Crossref]

Hartman, R. L.

R. L. Hartman, T. L. Brown, G. Milavetz, A. Spurgin, D. A. Gorelick, G. R. Gaffney, and M. A. Huestis, “Effect of blood collection time on measured Δ9-tetrahydrocannabinol concentrations: implications for driving interpretation and drug policy,” Clin. Chem. 62(2), 367–377 (2016).
[Crossref]

Hernandez, M.

A. Fleury, P. Sastre, E. Sciutto, S. Correia, A. Monedero, A. Toledo, M. Hernandez, L. J. S. Harrison, and R. M. E. Parkhouse, “A lateral flow assay (LFA) for the rapid detection of extraparenchymal neurocysticercosis using cerebrospinal fluid,” Exp. Parasitol. 171, 67–70 (2016).
[Crossref]

Hoggan, A. M.

O. Quintela, D. M. Andrenyak, A. M. Hoggan, and D. J. Crouch, “A validated method for the detection of Δ9-tetrahydrocannabinol and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol in oral fluid samples by liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry,” J. Anal. Toxicol. 31(3), 157–164 (2007).
[Crossref]

Huestis, M. A.

R. L. Hartman, T. L. Brown, G. Milavetz, A. Spurgin, D. A. Gorelick, G. R. Gaffney, and M. A. Huestis, “Effect of blood collection time on measured Δ9-tetrahydrocannabinol concentrations: implications for driving interpretation and drug policy,” Clin. Chem. 62(2), 367–377 (2016).
[Crossref]

M. A. Huestis and E. J. Cone, “Relationship of Δ9-Tetrahydrocannabinol Concentrations in Oral Fluid and Plasma after Controlled Administration of Smoked Cannabis,” J. Anal. Toxicol. 28(6), 394–399 (2004).
[Crossref]

Hwang, J.

J. Hwang, D. Kwon, S. Lee, and S. Jeon, “Detection of Salmonella bacteria in milk using gold-coated magnetic nanoparticle clusters and lateral flow filters,” RSC Adv. 6(54), 48445–48448 (2016).
[Crossref]

Hyun, B. H.

K. O. Jae, N. P. Ferris, K. N. Lee, Y. S. Joo, B. H. Hyun, and J. H. Park, “Simple and rapid lateral-flow assay for the detection of foot-and-mouth disease virus,” Clin. Vaccine Immunol. 16(11), 1660–1664 (2009).
[Crossref]

Jae, K. O.

K. O. Jae, N. P. Ferris, K. N. Lee, Y. S. Joo, B. H. Hyun, and J. H. Park, “Simple and rapid lateral-flow assay for the detection of foot-and-mouth disease virus,” Clin. Vaccine Immunol. 16(11), 1660–1664 (2009).
[Crossref]

Jang, M.

H. Choi, S. Baeck, E. Kim, S. Lee, M. Jang, J. Lee, H. Choi, and H. Chung, “Analysis of cannabis in oral fluid specimens by GC-MS with automatic SPE,” Sci. Justice 49(4), 242–246 (2009).
[Crossref]

Jeon, S.

J. Hwang, D. Kwon, S. Lee, and S. Jeon, “Detection of Salmonella bacteria in milk using gold-coated magnetic nanoparticle clusters and lateral flow filters,” RSC Adv. 6(54), 48445–48448 (2016).
[Crossref]

Joo, Y. S.

K. O. Jae, N. P. Ferris, K. N. Lee, Y. S. Joo, B. H. Hyun, and J. H. Park, “Simple and rapid lateral-flow assay for the detection of foot-and-mouth disease virus,” Clin. Vaccine Immunol. 16(11), 1660–1664 (2009).
[Crossref]

Kardos, K. W.

E. J. Cone, L. Presley, M. Lehrer, W. Seiter, M. Smith, K. W. Kardos, D. Fritch, S. Salamone, and R. S. Niedbala, “Oral fluid testing for drugs of abuse: positive prevalence rates by Intercept™ immunoassay screening and GC-MS-MS confirmation and suggested cutoff concentrations,” J. Anal. Toxicol. 26(8), 541–546 (2002).
[Crossref]

Kerr, W. C.

W. C. Kerr, Y. Ye, M. S. Subbaraman, E. Williams, and T. K. Greenfield, “Changes in Marijuana Use Across the 2012 Washington State Recreational Legalization: Is Retrospective Assessment of Use Before Legalization More Accurate?” J. Stud. Alcohol Drugs 79(3), 495–502 (2018).
[Crossref]

Kevin, R. C.

T. R. Arkell, R. C. Kevin, J. Stuart, N. Lintzeris, P. S. Haber, J. G. Ramaekers, and I. S. McGregor, “Detection of Δ9 THC in oral fluid following vaporized cannabis with varied cannabidiol (CBD) content: An evaluation of two point-of-collection testing devices,” Drug Test. Anal. 11(10), 1486–1497 (2019).
[Crossref]

Kim, E.

H. Choi, S. Baeck, E. Kim, S. Lee, M. Jang, J. Lee, H. Choi, and H. Chung, “Analysis of cannabis in oral fluid specimens by GC-MS with automatic SPE,” Sci. Justice 49(4), 242–246 (2009).
[Crossref]

Koczula, K. M.

K. M. Koczula and A. Gallotta, “Lateral flow assays,” Essays Biochem. 60(1), 111–120 (2016).
[Crossref]

Kwon, D.

J. Hwang, D. Kwon, S. Lee, and S. Jeon, “Detection of Salmonella bacteria in milk using gold-coated magnetic nanoparticle clusters and lateral flow filters,” RSC Adv. 6(54), 48445–48448 (2016).
[Crossref]

Lang, B. H.

G. Li, S. P. Baker, Q. Zhao, J. E. Brady, B. H. Lang, G. W. Rebok, and C. DiMaggio, “Drug violations and aviation accidents: findings from the US mandatory drug testing programs,” Addiction 106(7), 1287–1292 (2011).
[Crossref]

Lee, J.

H. Choi, S. Baeck, E. Kim, S. Lee, M. Jang, J. Lee, H. Choi, and H. Chung, “Analysis of cannabis in oral fluid specimens by GC-MS with automatic SPE,” Sci. Justice 49(4), 242–246 (2009).
[Crossref]

Lee, K. N.

K. O. Jae, N. P. Ferris, K. N. Lee, Y. S. Joo, B. H. Hyun, and J. H. Park, “Simple and rapid lateral-flow assay for the detection of foot-and-mouth disease virus,” Clin. Vaccine Immunol. 16(11), 1660–1664 (2009).
[Crossref]

Lee, S.

J. Hwang, D. Kwon, S. Lee, and S. Jeon, “Detection of Salmonella bacteria in milk using gold-coated magnetic nanoparticle clusters and lateral flow filters,” RSC Adv. 6(54), 48445–48448 (2016).
[Crossref]

H. Choi, S. Baeck, E. Kim, S. Lee, M. Jang, J. Lee, H. Choi, and H. Chung, “Analysis of cannabis in oral fluid specimens by GC-MS with automatic SPE,” Sci. Justice 49(4), 242–246 (2009).
[Crossref]

Lehrer, M.

E. J. Cone, L. Presley, M. Lehrer, W. Seiter, M. Smith, K. W. Kardos, D. Fritch, S. Salamone, and R. S. Niedbala, “Oral fluid testing for drugs of abuse: positive prevalence rates by Intercept™ immunoassay screening and GC-MS-MS confirmation and suggested cutoff concentrations,” J. Anal. Toxicol. 26(8), 541–546 (2002).
[Crossref]

Li, G.

G. Li, S. P. Baker, Q. Zhao, J. E. Brady, B. H. Lang, G. W. Rebok, and C. DiMaggio, “Drug violations and aviation accidents: findings from the US mandatory drug testing programs,” Addiction 106(7), 1287–1292 (2011).
[Crossref]

Lierheimer, S.

V. Reinstadler, S. Lierheimer, M. Boettcher, and H. Oberacher, “A validated workflow for drug detection in oral fluid by non-targeted liquid chromatography-tandem mass spectrometry,” Anal. Bioanal. Chem. 411(4), 867–876 (2019).
[Crossref]

Lintzeris, N.

T. R. Arkell, R. C. Kevin, J. Stuart, N. Lintzeris, P. S. Haber, J. G. Ramaekers, and I. S. McGregor, “Detection of Δ9 THC in oral fluid following vaporized cannabis with varied cannabidiol (CBD) content: An evaluation of two point-of-collection testing devices,” Drug Test. Anal. 11(10), 1486–1497 (2019).
[Crossref]

Macdonald, S.

S. Macdonald, W. Hall, P. Roman, T. Stockwell, M. Coghlan, and S. Nesvaag, “Testing for cannabis in the work-place: a review of the evidence,” Addiction 105(3), 408–416 (2010).
[Crossref]

Mandelis, A.

N. Tabatabaei, A. Mandelis, M. Dehghany, K. H. Michaelian, and B. T. Amaechi, “On the sensitivity of thermophotonic lock-in imaging and polarized Raman spectroscopy to early dental caries diagnosis,” J. Biomed. Opt. 17(2), 025002 (2012).
[Crossref]

N. Tabatabaei, A. Mandelis, and B. T. Amaechi, “Thermophotonic lock-in imaging of early demineralized and carious lesions in human teeth,” J. Biomed. Opt. 16(7), 071402 (2011).
[Crossref]

Martin, Jean-Louis

Jean-Louis Martin, Blandine Gadegbeku, and Dan Wu et al., “Cannabis, alcohol, and fatal road accidents,” 2017. PLoS One. In comparison, the study found that drivers under the influence of alcohol are 17.8 times more likely to be culpable for a fatal accident.

McGregor, I. S.

T. R. Arkell, R. C. Kevin, J. Stuart, N. Lintzeris, P. S. Haber, J. G. Ramaekers, and I. S. McGregor, “Detection of Δ9 THC in oral fluid following vaporized cannabis with varied cannabidiol (CBD) content: An evaluation of two point-of-collection testing devices,” Drug Test. Anal. 11(10), 1486–1497 (2019).
[Crossref]

Michaelian, K. H.

N. Tabatabaei, A. Mandelis, M. Dehghany, K. H. Michaelian, and B. T. Amaechi, “On the sensitivity of thermophotonic lock-in imaging and polarized Raman spectroscopy to early dental caries diagnosis,” J. Biomed. Opt. 17(2), 025002 (2012).
[Crossref]

Milavetz, G.

R. L. Hartman, T. L. Brown, G. Milavetz, A. Spurgin, D. A. Gorelick, G. R. Gaffney, and M. A. Huestis, “Effect of blood collection time on measured Δ9-tetrahydrocannabinol concentrations: implications for driving interpretation and drug policy,” Clin. Chem. 62(2), 367–377 (2016).
[Crossref]

Monedero, A.

A. Fleury, P. Sastre, E. Sciutto, S. Correia, A. Monedero, A. Toledo, M. Hernandez, L. J. S. Harrison, and R. M. E. Parkhouse, “A lateral flow assay (LFA) for the rapid detection of extraparenchymal neurocysticercosis using cerebrospinal fluid,” Exp. Parasitol. 171, 67–70 (2016).
[Crossref]

Mora, A.

M. Sánchez, A. Arroyo, M. Barbal, M. Palahí, and A. Mora, “Cozart® RapiScan Oral Fluid Drug Testing System validation by GC-MS/MS analysis,” Ann. Toxicol. Anal. 20(3), 131–136 (2008).
[Crossref]

Murthy, S. K.

B. D. Plouffe and S. K. Murthy, “Fluorescence-based lateral flow assays for rapid oral fluid roadside detection of cannabis use,” Electrophoresis 38(3-4), 501–506 (2017).
[Crossref]

Nesvaag, S.

S. Macdonald, W. Hall, P. Roman, T. Stockwell, M. Coghlan, and S. Nesvaag, “Testing for cannabis in the work-place: a review of the evidence,” Addiction 105(3), 408–416 (2010).
[Crossref]

Niedbala, R. S.

E. J. Cone, L. Presley, M. Lehrer, W. Seiter, M. Smith, K. W. Kardos, D. Fritch, S. Salamone, and R. S. Niedbala, “Oral fluid testing for drugs of abuse: positive prevalence rates by Intercept™ immunoassay screening and GC-MS-MS confirmation and suggested cutoff concentrations,” J. Anal. Toxicol. 26(8), 541–546 (2002).
[Crossref]

Oberacher, H.

V. Reinstadler, S. Lierheimer, M. Boettcher, and H. Oberacher, “A validated workflow for drug detection in oral fluid by non-targeted liquid chromatography-tandem mass spectrometry,” Anal. Bioanal. Chem. 411(4), 867–876 (2019).
[Crossref]

Ojaghi, A.

A. Ojaghi, M. Pallapa, N. Tabatabaei, and P. Rezai, “High-sensitivity interpretation of lateral flow immunoassays using thermophotonic lock-in imaging,” Sens. Actuators, A 273, 189–196 (2018).
[Crossref]

A. Ojaghi, A. Parkhimchyk, and N. Tabatabaei, “First step toward translation of thermophotonic lock-in imaging to dentistry as an early caries detection technology,” J. Biomed. Opt. 21(9), 096003 (2016).
[Crossref]

P. Rezai, N. Tabatabaei, and A. Ojaghi, “System and method for photo-thermal analysis of immunoassay tests,” U.S. Patent Application 15/839,325, filed May 23, 2019.

Palahí, M.

M. Sánchez, A. Arroyo, M. Barbal, M. Palahí, and A. Mora, “Cozart® RapiScan Oral Fluid Drug Testing System validation by GC-MS/MS analysis,” Ann. Toxicol. Anal. 20(3), 131–136 (2008).
[Crossref]

Pallapa, M.

A. Ojaghi, M. Pallapa, N. Tabatabaei, and P. Rezai, “High-sensitivity interpretation of lateral flow immunoassays using thermophotonic lock-in imaging,” Sens. Actuators, A 273, 189–196 (2018).
[Crossref]

Park, J. H.

K. O. Jae, N. P. Ferris, K. N. Lee, Y. S. Joo, B. H. Hyun, and J. H. Park, “Simple and rapid lateral-flow assay for the detection of foot-and-mouth disease virus,” Clin. Vaccine Immunol. 16(11), 1660–1664 (2009).
[Crossref]

Parkhimchyk, A.

M. Razani, A. Parkhimchyk, and N. Tabatabaei, “Lock-in thermography using a cellphone attachment infrared camera,” AIP Adv. 8(3), 035305 (2018).
[Crossref]

A. Ojaghi, A. Parkhimchyk, and N. Tabatabaei, “First step toward translation of thermophotonic lock-in imaging to dentistry as an early caries detection technology,” J. Biomed. Opt. 21(9), 096003 (2016).
[Crossref]

Parkhouse, R. M. E.

A. Fleury, P. Sastre, E. Sciutto, S. Correia, A. Monedero, A. Toledo, M. Hernandez, L. J. S. Harrison, and R. M. E. Parkhouse, “A lateral flow assay (LFA) for the rapid detection of extraparenchymal neurocysticercosis using cerebrospinal fluid,” Exp. Parasitol. 171, 67–70 (2016).
[Crossref]

Plouffe, B. D.

B. D. Plouffe and S. K. Murthy, “Fluorescence-based lateral flow assays for rapid oral fluid roadside detection of cannabis use,” Electrophoresis 38(3-4), 501–506 (2017).
[Crossref]

Porath-Waller, A. J.

D. J. Beirness and A. J. Porath-Waller, “Clearing the smoke on cannabis: Cannabis use and driving-an update,” Canadian Centre on Substance Abuse” (2019).

Prashad, Shikha

Shikha Prashad and Francesca M. Filbey. “Cognitive motor deficits in cannabis users,” Feb. 2017. Current Opinion in Behavioral Sciences.

Presley, L.

E. J. Cone, L. Presley, M. Lehrer, W. Seiter, M. Smith, K. W. Kardos, D. Fritch, S. Salamone, and R. S. Niedbala, “Oral fluid testing for drugs of abuse: positive prevalence rates by Intercept™ immunoassay screening and GC-MS-MS confirmation and suggested cutoff concentrations,” J. Anal. Toxicol. 26(8), 541–546 (2002).
[Crossref]

Quintela, O.

D. J. Crouch, J. M. Walsh, L. Cangianelli, and O. Quintela, “Laboratory evaluation and field application of roadside oral fluid collectors and drug testing devices,” Ther. Drug Monit. 30(2), 188–195 (2008).
[Crossref]

O. Quintela, D. M. Andrenyak, A. M. Hoggan, and D. J. Crouch, “A validated method for the detection of Δ9-tetrahydrocannabinol and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol in oral fluid samples by liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry,” J. Anal. Toxicol. 31(3), 157–164 (2007).
[Crossref]

Ramaekers, J. G.

T. R. Arkell, R. C. Kevin, J. Stuart, N. Lintzeris, P. S. Haber, J. G. Ramaekers, and I. S. McGregor, “Detection of Δ9 THC in oral fluid following vaporized cannabis with varied cannabidiol (CBD) content: An evaluation of two point-of-collection testing devices,” Drug Test. Anal. 11(10), 1486–1497 (2019).
[Crossref]

Razani, M.

Rebok, G. W.

G. Li, S. P. Baker, Q. Zhao, J. E. Brady, B. H. Lang, G. W. Rebok, and C. DiMaggio, “Drug violations and aviation accidents: findings from the US mandatory drug testing programs,” Addiction 106(7), 1287–1292 (2011).
[Crossref]

Reinstadler, V.

V. Reinstadler, S. Lierheimer, M. Boettcher, and H. Oberacher, “A validated workflow for drug detection in oral fluid by non-targeted liquid chromatography-tandem mass spectrometry,” Anal. Bioanal. Chem. 411(4), 867–876 (2019).
[Crossref]

Rezai, P.

A. Ojaghi, M. Pallapa, N. Tabatabaei, and P. Rezai, “High-sensitivity interpretation of lateral flow immunoassays using thermophotonic lock-in imaging,” Sens. Actuators, A 273, 189–196 (2018).
[Crossref]

P. Rezai, N. Tabatabaei, and A. Ojaghi, “System and method for photo-thermal analysis of immunoassay tests,” U.S. Patent Application 15/839,325, filed May 23, 2019.

Roebuck, M. C.

M. T. French, M. C. Roebuck, and P. K. Alexandre, “To test or not to test: do workplace drug testing programs discourage employee drug use?” Soc. Sci. Res. 33(1), 45–63 (2004).
[Crossref]

Rogeberg, Ole

Ole Rogeberg and Rune Elvik. “The effects of cannabis intoxication on motor vehicle collision revisited and revised,” Feb. 2016. Addiction.

Roman, P.

S. Macdonald, W. Hall, P. Roman, T. Stockwell, M. Coghlan, and S. Nesvaag, “Testing for cannabis in the work-place: a review of the evidence,” Addiction 105(3), 408–416 (2010).
[Crossref]

Salamone, S.

E. J. Cone, L. Presley, M. Lehrer, W. Seiter, M. Smith, K. W. Kardos, D. Fritch, S. Salamone, and R. S. Niedbala, “Oral fluid testing for drugs of abuse: positive prevalence rates by Intercept™ immunoassay screening and GC-MS-MS confirmation and suggested cutoff concentrations,” J. Anal. Toxicol. 26(8), 541–546 (2002).
[Crossref]

Sánchez, M.

M. Sánchez, A. Arroyo, M. Barbal, M. Palahí, and A. Mora, “Cozart® RapiScan Oral Fluid Drug Testing System validation by GC-MS/MS analysis,” Ann. Toxicol. Anal. 20(3), 131–136 (2008).
[Crossref]

Sastre, P.

A. Fleury, P. Sastre, E. Sciutto, S. Correia, A. Monedero, A. Toledo, M. Hernandez, L. J. S. Harrison, and R. M. E. Parkhouse, “A lateral flow assay (LFA) for the rapid detection of extraparenchymal neurocysticercosis using cerebrospinal fluid,” Exp. Parasitol. 171, 67–70 (2016).
[Crossref]

Schulze, H.

H. Schulze, M. Schumacher, R. Urmeew, K. Auerbach, J. Alvarez, and I. M. Bernhoft et al., “Findings from the DRUID project Driving Under the Influence of Drugs, Alcohol, and Medicines in Europe d findings from the DRUID project,” Lisbon: EMCDDA (2012).

Schumacher, M.

H. Schulze, M. Schumacher, R. Urmeew, K. Auerbach, J. Alvarez, and I. M. Bernhoft et al., “Findings from the DRUID project Driving Under the Influence of Drugs, Alcohol, and Medicines in Europe d findings from the DRUID project,” Lisbon: EMCDDA (2012).

Sciutto, E.

A. Fleury, P. Sastre, E. Sciutto, S. Correia, A. Monedero, A. Toledo, M. Hernandez, L. J. S. Harrison, and R. M. E. Parkhouse, “A lateral flow assay (LFA) for the rapid detection of extraparenchymal neurocysticercosis using cerebrospinal fluid,” Exp. Parasitol. 171, 67–70 (2016).
[Crossref]

Seiter, W.

E. J. Cone, L. Presley, M. Lehrer, W. Seiter, M. Smith, K. W. Kardos, D. Fritch, S. Salamone, and R. S. Niedbala, “Oral fluid testing for drugs of abuse: positive prevalence rates by Intercept™ immunoassay screening and GC-MS-MS confirmation and suggested cutoff concentrations,” J. Anal. Toxicol. 26(8), 541–546 (2002).
[Crossref]

Sewell, Poling

Poling Sewell, and Sofuoglu. See also: Brooks-Russell, Wempe, Vigil, et al. “Marijuana use and driving: Systematic literature review,” 2017. Colorado Department of Public Health and Environment.

Shokouhi, E. B.

Silva, O. A.

O. A. Silva and M. Yonamine, “Drug abuse among workers in Brazilian regions,” Rev. Saude Publica 38(4), 552–556 (2004).
[Crossref]

Smith, D. R.

D. J. Beirness and D. R. Smith, “An assessment of oral fluid drug screening devices,” J. - Can. Soc. Forensic Sci. 50(2), 55–63 (2017).
[Crossref]

Smith, M.

E. J. Cone, L. Presley, M. Lehrer, W. Seiter, M. Smith, K. W. Kardos, D. Fritch, S. Salamone, and R. S. Niedbala, “Oral fluid testing for drugs of abuse: positive prevalence rates by Intercept™ immunoassay screening and GC-MS-MS confirmation and suggested cutoff concentrations,” J. Anal. Toxicol. 26(8), 541–546 (2002).
[Crossref]

Spurgin, A.

R. L. Hartman, T. L. Brown, G. Milavetz, A. Spurgin, D. A. Gorelick, G. R. Gaffney, and M. A. Huestis, “Effect of blood collection time on measured Δ9-tetrahydrocannabinol concentrations: implications for driving interpretation and drug policy,” Clin. Chem. 62(2), 367–377 (2016).
[Crossref]

Stockwell, T.

S. Macdonald, W. Hall, P. Roman, T. Stockwell, M. Coghlan, and S. Nesvaag, “Testing for cannabis in the work-place: a review of the evidence,” Addiction 105(3), 408–416 (2010).
[Crossref]

Stuart, J.

T. R. Arkell, R. C. Kevin, J. Stuart, N. Lintzeris, P. S. Haber, J. G. Ramaekers, and I. S. McGregor, “Detection of Δ9 THC in oral fluid following vaporized cannabis with varied cannabidiol (CBD) content: An evaluation of two point-of-collection testing devices,” Drug Test. Anal. 11(10), 1486–1497 (2019).
[Crossref]

Subbaraman, M. S.

W. C. Kerr, Y. Ye, M. S. Subbaraman, E. Williams, and T. K. Greenfield, “Changes in Marijuana Use Across the 2012 Washington State Recreational Legalization: Is Retrospective Assessment of Use Before Legalization More Accurate?” J. Stud. Alcohol Drugs 79(3), 495–502 (2018).
[Crossref]

Sun, C.

Y. Zhao, H. Wang, P. Zhang, C. Sun, X. Wang, X. Wang, R. Yang, C. Wang, and L. Zhou, “Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay,” Sci. Rep. 6(1), 21342 (2016).
[Crossref]

Tabatabaei, N.

E. B. Shokouhi, M. Razani, A. Gupta, and N. Tabatabaei, “Comparative study on the detection of early dental caries using thermo-photonic lock-in imaging and optical coherence tomography,” Biomed. Opt. Express 9(9), 3983–3997 (2018).
[Crossref]

A. Ojaghi, M. Pallapa, N. Tabatabaei, and P. Rezai, “High-sensitivity interpretation of lateral flow immunoassays using thermophotonic lock-in imaging,” Sens. Actuators, A 273, 189–196 (2018).
[Crossref]

M. Razani, A. Parkhimchyk, and N. Tabatabaei, “Lock-in thermography using a cellphone attachment infrared camera,” AIP Adv. 8(3), 035305 (2018).
[Crossref]

A. Ojaghi, A. Parkhimchyk, and N. Tabatabaei, “First step toward translation of thermophotonic lock-in imaging to dentistry as an early caries detection technology,” J. Biomed. Opt. 21(9), 096003 (2016).
[Crossref]

N. Tabatabaei, A. Mandelis, M. Dehghany, K. H. Michaelian, and B. T. Amaechi, “On the sensitivity of thermophotonic lock-in imaging and polarized Raman spectroscopy to early dental caries diagnosis,” J. Biomed. Opt. 17(2), 025002 (2012).
[Crossref]

N. Tabatabaei, A. Mandelis, and B. T. Amaechi, “Thermophotonic lock-in imaging of early demineralized and carious lesions in human teeth,” J. Biomed. Opt. 16(7), 071402 (2011).
[Crossref]

P. Rezai, N. Tabatabaei, and A. Ojaghi, “System and method for photo-thermal analysis of immunoassay tests,” U.S. Patent Application 15/839,325, filed May 23, 2019.

Toledo, A.

A. Fleury, P. Sastre, E. Sciutto, S. Correia, A. Monedero, A. Toledo, M. Hernandez, L. J. S. Harrison, and R. M. E. Parkhouse, “A lateral flow assay (LFA) for the rapid detection of extraparenchymal neurocysticercosis using cerebrospinal fluid,” Exp. Parasitol. 171, 67–70 (2016).
[Crossref]

Urmeew, R.

H. Schulze, M. Schumacher, R. Urmeew, K. Auerbach, J. Alvarez, and I. M. Bernhoft et al., “Findings from the DRUID project Driving Under the Influence of Drugs, Alcohol, and Medicines in Europe d findings from the DRUID project,” Lisbon: EMCDDA (2012).

Walsh, J. M.

D. J. Crouch, J. M. Walsh, L. Cangianelli, and O. Quintela, “Laboratory evaluation and field application of roadside oral fluid collectors and drug testing devices,” Ther. Drug Monit. 30(2), 188–195 (2008).
[Crossref]

Wang, C.

Y. Zhao, H. Wang, P. Zhang, C. Sun, X. Wang, X. Wang, R. Yang, C. Wang, and L. Zhou, “Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay,” Sci. Rep. 6(1), 21342 (2016).
[Crossref]

Wang, H.

Y. Zhao, H. Wang, P. Zhang, C. Sun, X. Wang, X. Wang, R. Yang, C. Wang, and L. Zhou, “Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay,” Sci. Rep. 6(1), 21342 (2016).
[Crossref]

Wang, X.

Y. Zhao, H. Wang, P. Zhang, C. Sun, X. Wang, X. Wang, R. Yang, C. Wang, and L. Zhou, “Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay,” Sci. Rep. 6(1), 21342 (2016).
[Crossref]

Y. Zhao, H. Wang, P. Zhang, C. Sun, X. Wang, X. Wang, R. Yang, C. Wang, and L. Zhou, “Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay,” Sci. Rep. 6(1), 21342 (2016).
[Crossref]

Williams, E.

W. C. Kerr, Y. Ye, M. S. Subbaraman, E. Williams, and T. K. Greenfield, “Changes in Marijuana Use Across the 2012 Washington State Recreational Legalization: Is Retrospective Assessment of Use Before Legalization More Accurate?” J. Stud. Alcohol Drugs 79(3), 495–502 (2018).
[Crossref]

Wu, Dan

Jean-Louis Martin, Blandine Gadegbeku, and Dan Wu et al., “Cannabis, alcohol, and fatal road accidents,” 2017. PLoS One. In comparison, the study found that drivers under the influence of alcohol are 17.8 times more likely to be culpable for a fatal accident.

Yang, R.

Y. Zhao, H. Wang, P. Zhang, C. Sun, X. Wang, X. Wang, R. Yang, C. Wang, and L. Zhou, “Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay,” Sci. Rep. 6(1), 21342 (2016).
[Crossref]

Ye, Y.

W. C. Kerr, Y. Ye, M. S. Subbaraman, E. Williams, and T. K. Greenfield, “Changes in Marijuana Use Across the 2012 Washington State Recreational Legalization: Is Retrospective Assessment of Use Before Legalization More Accurate?” J. Stud. Alcohol Drugs 79(3), 495–502 (2018).
[Crossref]

Yonamine, M.

O. A. Silva and M. Yonamine, “Drug abuse among workers in Brazilian regions,” Rev. Saude Publica 38(4), 552–556 (2004).
[Crossref]

Zhang, P.

Y. Zhao, H. Wang, P. Zhang, C. Sun, X. Wang, X. Wang, R. Yang, C. Wang, and L. Zhou, “Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay,” Sci. Rep. 6(1), 21342 (2016).
[Crossref]

Zhao, Q.

G. Li, S. P. Baker, Q. Zhao, J. E. Brady, B. H. Lang, G. W. Rebok, and C. DiMaggio, “Drug violations and aviation accidents: findings from the US mandatory drug testing programs,” Addiction 106(7), 1287–1292 (2011).
[Crossref]

Zhao, Y.

Y. Zhao, H. Wang, P. Zhang, C. Sun, X. Wang, X. Wang, R. Yang, C. Wang, and L. Zhou, “Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay,” Sci. Rep. 6(1), 21342 (2016).
[Crossref]

Zhou, L.

Y. Zhao, H. Wang, P. Zhang, C. Sun, X. Wang, X. Wang, R. Yang, C. Wang, and L. Zhou, “Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay,” Sci. Rep. 6(1), 21342 (2016).
[Crossref]

Addiction (2)

G. Li, S. P. Baker, Q. Zhao, J. E. Brady, B. H. Lang, G. W. Rebok, and C. DiMaggio, “Drug violations and aviation accidents: findings from the US mandatory drug testing programs,” Addiction 106(7), 1287–1292 (2011).
[Crossref]

S. Macdonald, W. Hall, P. Roman, T. Stockwell, M. Coghlan, and S. Nesvaag, “Testing for cannabis in the work-place: a review of the evidence,” Addiction 105(3), 408–416 (2010).
[Crossref]

AIP Adv. (1)

M. Razani, A. Parkhimchyk, and N. Tabatabaei, “Lock-in thermography using a cellphone attachment infrared camera,” AIP Adv. 8(3), 035305 (2018).
[Crossref]

Anal. Bioanal. Chem. (1)

V. Reinstadler, S. Lierheimer, M. Boettcher, and H. Oberacher, “A validated workflow for drug detection in oral fluid by non-targeted liquid chromatography-tandem mass spectrometry,” Anal. Bioanal. Chem. 411(4), 867–876 (2019).
[Crossref]

Ann. Toxicol. Anal. (1)

M. Sánchez, A. Arroyo, M. Barbal, M. Palahí, and A. Mora, “Cozart® RapiScan Oral Fluid Drug Testing System validation by GC-MS/MS analysis,” Ann. Toxicol. Anal. 20(3), 131–136 (2008).
[Crossref]

Biomed. Opt. Express (1)

BMJ (1)

J. M. Bland and D. G. Altman, “Statistical notes: measurement error proportional to the mean,” BMJ 313(7049), 106 (1996).
[Crossref]

Clin. Chem. (1)

R. L. Hartman, T. L. Brown, G. Milavetz, A. Spurgin, D. A. Gorelick, G. R. Gaffney, and M. A. Huestis, “Effect of blood collection time on measured Δ9-tetrahydrocannabinol concentrations: implications for driving interpretation and drug policy,” Clin. Chem. 62(2), 367–377 (2016).
[Crossref]

Clin. Vaccine Immunol. (1)

K. O. Jae, N. P. Ferris, K. N. Lee, Y. S. Joo, B. H. Hyun, and J. H. Park, “Simple and rapid lateral-flow assay for the detection of foot-and-mouth disease virus,” Clin. Vaccine Immunol. 16(11), 1660–1664 (2009).
[Crossref]

Drug Test. Anal. (1)

T. R. Arkell, R. C. Kevin, J. Stuart, N. Lintzeris, P. S. Haber, J. G. Ramaekers, and I. S. McGregor, “Detection of Δ9 THC in oral fluid following vaporized cannabis with varied cannabidiol (CBD) content: An evaluation of two point-of-collection testing devices,” Drug Test. Anal. 11(10), 1486–1497 (2019).
[Crossref]

Electrophoresis (1)

B. D. Plouffe and S. K. Murthy, “Fluorescence-based lateral flow assays for rapid oral fluid roadside detection of cannabis use,” Electrophoresis 38(3-4), 501–506 (2017).
[Crossref]

Essays Biochem. (1)

K. M. Koczula and A. Gallotta, “Lateral flow assays,” Essays Biochem. 60(1), 111–120 (2016).
[Crossref]

Exp. Parasitol. (1)

A. Fleury, P. Sastre, E. Sciutto, S. Correia, A. Monedero, A. Toledo, M. Hernandez, L. J. S. Harrison, and R. M. E. Parkhouse, “A lateral flow assay (LFA) for the rapid detection of extraparenchymal neurocysticercosis using cerebrospinal fluid,” Exp. Parasitol. 171, 67–70 (2016).
[Crossref]

J. - Can. Soc. Forensic Sci. (1)

D. J. Beirness and D. R. Smith, “An assessment of oral fluid drug screening devices,” J. - Can. Soc. Forensic Sci. 50(2), 55–63 (2017).
[Crossref]

J. Anal. Toxicol. (3)

M. A. Huestis and E. J. Cone, “Relationship of Δ9-Tetrahydrocannabinol Concentrations in Oral Fluid and Plasma after Controlled Administration of Smoked Cannabis,” J. Anal. Toxicol. 28(6), 394–399 (2004).
[Crossref]

O. Quintela, D. M. Andrenyak, A. M. Hoggan, and D. J. Crouch, “A validated method for the detection of Δ9-tetrahydrocannabinol and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol in oral fluid samples by liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry,” J. Anal. Toxicol. 31(3), 157–164 (2007).
[Crossref]

E. J. Cone, L. Presley, M. Lehrer, W. Seiter, M. Smith, K. W. Kardos, D. Fritch, S. Salamone, and R. S. Niedbala, “Oral fluid testing for drugs of abuse: positive prevalence rates by Intercept™ immunoassay screening and GC-MS-MS confirmation and suggested cutoff concentrations,” J. Anal. Toxicol. 26(8), 541–546 (2002).
[Crossref]

J. Biomed. Opt. (3)

N. Tabatabaei, A. Mandelis, and B. T. Amaechi, “Thermophotonic lock-in imaging of early demineralized and carious lesions in human teeth,” J. Biomed. Opt. 16(7), 071402 (2011).
[Crossref]

N. Tabatabaei, A. Mandelis, M. Dehghany, K. H. Michaelian, and B. T. Amaechi, “On the sensitivity of thermophotonic lock-in imaging and polarized Raman spectroscopy to early dental caries diagnosis,” J. Biomed. Opt. 17(2), 025002 (2012).
[Crossref]

A. Ojaghi, A. Parkhimchyk, and N. Tabatabaei, “First step toward translation of thermophotonic lock-in imaging to dentistry as an early caries detection technology,” J. Biomed. Opt. 21(9), 096003 (2016).
[Crossref]

J. Stud. Alcohol Drugs (1)

W. C. Kerr, Y. Ye, M. S. Subbaraman, E. Williams, and T. K. Greenfield, “Changes in Marijuana Use Across the 2012 Washington State Recreational Legalization: Is Retrospective Assessment of Use Before Legalization More Accurate?” J. Stud. Alcohol Drugs 79(3), 495–502 (2018).
[Crossref]

Occup. Med. (1)

S. George, “A snapshot of workplace drug testing in the UK,” Occup. Med. 55(1), 69–71 (2005).
[Crossref]

Rev. Saude Publica (1)

O. A. Silva and M. Yonamine, “Drug abuse among workers in Brazilian regions,” Rev. Saude Publica 38(4), 552–556 (2004).
[Crossref]

RSC Adv. (1)

J. Hwang, D. Kwon, S. Lee, and S. Jeon, “Detection of Salmonella bacteria in milk using gold-coated magnetic nanoparticle clusters and lateral flow filters,” RSC Adv. 6(54), 48445–48448 (2016).
[Crossref]

Sci. Justice (1)

H. Choi, S. Baeck, E. Kim, S. Lee, M. Jang, J. Lee, H. Choi, and H. Chung, “Analysis of cannabis in oral fluid specimens by GC-MS with automatic SPE,” Sci. Justice 49(4), 242–246 (2009).
[Crossref]

Sci. Rep. (1)

Y. Zhao, H. Wang, P. Zhang, C. Sun, X. Wang, X. Wang, R. Yang, C. Wang, and L. Zhou, “Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay,” Sci. Rep. 6(1), 21342 (2016).
[Crossref]

Sens. Actuators, A (1)

A. Ojaghi, M. Pallapa, N. Tabatabaei, and P. Rezai, “High-sensitivity interpretation of lateral flow immunoassays using thermophotonic lock-in imaging,” Sens. Actuators, A 273, 189–196 (2018).
[Crossref]

Soc. Sci. Res. (1)

M. T. French, M. C. Roebuck, and P. K. Alexandre, “To test or not to test: do workplace drug testing programs discourage employee drug use?” Soc. Sci. Res. 33(1), 45–63 (2004).
[Crossref]

Ther. Drug Monit. (1)

D. J. Crouch, J. M. Walsh, L. Cangianelli, and O. Quintela, “Laboratory evaluation and field application of roadside oral fluid collectors and drug testing devices,” Ther. Drug Monit. 30(2), 188–195 (2008).
[Crossref]

Other (16)

P. Rezai, N. Tabatabaei, and A. Ojaghi, “System and method for photo-thermal analysis of immunoassay tests,” U.S. Patent Application 15/839,325, filed May 23, 2019.

H. Schulze, M. Schumacher, R. Urmeew, K. Auerbach, J. Alvarez, and I. M. Bernhoft et al., “Findings from the DRUID project Driving Under the Influence of Drugs, Alcohol, and Medicines in Europe d findings from the DRUID project,” Lisbon: EMCDDA (2012).

Innova Biosciences Ltd, A guide to lateral flow immunoassays, Babraham Research Campus, Cambridge.

Canadian Society of Forensic Science Drugs and Driving Committee (DDC) Drug Screening Equipment – Oral Fluid Standards and Evaluation Procedures.

Public Safety Canada. Cannabis Policy Performance Metrics, Research Summary 2016, Ottawa, Ontario.

World Health Organization Reports. Management of substance abuse: Cannabis. https://www.who.int/substance_abuse/facts/cannabis/en/ .

Shikha Prashad and Francesca M. Filbey. “Cognitive motor deficits in cannabis users,” Feb. 2017. Current Opinion in Behavioral Sciences.

Poling Sewell, and Sofuoglu. See also: Brooks-Russell, Wempe, Vigil, et al. “Marijuana use and driving: Systematic literature review,” 2017. Colorado Department of Public Health and Environment.

Ole Rogeberg and Rune Elvik. “The effects of cannabis intoxication on motor vehicle collision revisited and revised,” Feb. 2016. Addiction.

Jean-Louis Martin, Blandine Gadegbeku, and Dan Wu et al., “Cannabis, alcohol, and fatal road accidents,” 2017. PLoS One. In comparison, the study found that drivers under the influence of alcohol are 17.8 times more likely to be culpable for a fatal accident.

European Monitoring Centre for Drugs and Drug Addiction (2019), European Drug Report 2019: Trends and Developments, Publications Office of the European Union, Luxembourg

Canadian Centre on Substance Use and Addiction 2018, “Canadian drug summary: cannabis”

European Monitoring Centre for Drugs and Drug Addiction, “The state of the drugs problem in Europe,” Annual report 2012.

D. J. Beirness and A. J. Porath-Waller, “Clearing the smoke on cannabis: Cannabis use and driving-an update,” Canadian Centre on Substance Abuse” (2019).

Substance Abuse and Mental Health Services Administration, “The National Survey on Drug Use and Health: 2017”

Australian Institute of Health and Welfare 2017. National Drug Strategy Household Survey 2016: detailed findings. Drug Statistics series no. 31. Cat. no. PHE 214. Canberra: AIHW

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Schematic diagram of LFA test strip. Schematic illustration of binding mechanisms of competitive LFAs (b) before use, (c) negative test, and (d) positive test with their respective visual appearance.
Fig. 2.
Fig. 2. (a) A schematic diagram of the LIT imaging system used for the interpretation of LFA test strips. (b) Amplitude image after LIT measurement. (c) Average intensity of pixels over all the columns in a strip.
Fig. 3.
Fig. 3. (a) Visual and LIT images of 6 representative LFAs at concentrations of 0, 2, 5, 7.5, 10 and 25 ng/ml. (b) Normalized amplitude values obtained from LIT LFA images in (a). (c) Distribution of the entire dataset of the LFAs at various concentrations obtained from the LIT system. (d) Mean normalized amplitude at different THC concentrations obtained from (c) with 99% confidence interval error bars.
Fig. 4.
Fig. 4. Percentage of LFAs of various concentrations dropped in bin number 1-6 in LIT (a) and visual interpretation (b). (c) ROC curves from the visual and LIT interpretation data.

Tables (2)

Tables Icon

Table 1. Four possible outcomes: true positive (TP), true negative (TN), false positive (FP), false negative (FN) at different criterion/cut-off levels (i.e., bin numbers)

Tables Icon

Table 2. Sensitivity, specificity, accuracy, positive predictive value (PPV) and negative predictive value (NPV) calculated from the visual and LIT interpretation of LFAs at various criterion/cut-off.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Sensitivity = T P TP + FN Specificity = T N TN + FP
Accuracy = T P + T N TP + FP + TN + FN PPV = T P TP + FP NPV = T N TN + FN