Abstract

Blood glucose measurements help to guide insulin therapy, thus reducing disease severities, secondary complications, and related mortalities. Efforts are underway to allow diabetes patients to experience a more convenient way to measure blood glucose and consequently increase their adherence to regular self-monitoring of blood glucose (SMBG). This study demonstrated a new SMBG system that integrated all components of a glucometer via a smartphone’s optical sensing module to detect the colorimetric blood strip and obtains the blood glucose concentration with calculations performed by an application install in the smartphone. To validate the accuracy and applicability of the new SMBG system regarding the ISO15197:2013 accuracy criteria and patient requirements, a clinical trial and usability survey involving participants from different age groups were conducted in collaboration with the China Medical University, where enrolled 120 diabetic patients were asked to operate the new SMBG system to measure their blood glucose concentration, and feedback was obtained from their user experience. The results showed that three different reagent system lots fulfilled the accuracy requirements with values of 97.4–97.5% , and all of the data were within zones A and B of the consensus error grid, which satisfies the ISO 15197:2013 requirement. The usability survey showed that 97.5% of the participants found the operations convenient, and 100% found the design easy for carrying. This new system could lead to improvements in blood glucose monitoring by people with diabetes, and thus, better management of the disease.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Encapsulation of FITC to monitor extracellular pH: a step towards the development of red blood cells as circulating blood analyte biosensors

Sarah C. Ritter, Mark A. Milanick, and Kenith E. Meissner
Biomed. Opt. Express 2(7) 2012-2021 (2011)

Smartphone-based colorimetric analysis for detection of saliva alcohol concentration

Youngkee Jung, Jinhee Kim, Olumide Awofeso, Huisung Kim, Fred Regnier, and Euiwon Bae
Appl. Opt. 54(31) 9183-9189 (2015)

Improved noncontact optical sensor for detection of glucose concentration and indication of dehydration level

Nisan Ozana, Nadav Arbel, Yevgeny Beiderman, Vicente Mico, Martin Sanz, Javier Garcia, Arun Anand, Baharam Javidi, Yoram Epstein, and Zeev Zalevsky
Biomed. Opt. Express 5(6) 1926-1940 (2014)

References

  • View by:
  • |
  • |
  • |

  1. N. Cho, J. Shaw, S. Karuranga, Y. Huang, J. D. da Rocha Fernandes, A. Ohlrogge, and B. Malanda, “IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045,” Diabetes Res. Clin. Pract. 138, 271–281 (2018).
    [Crossref]
  2. D. G. Gardner and D. Shoback, Greenspan’s Basic & Clinical Endocrinology (McGraw-Hill Medical, 2011).
  3. “About Diabetes,” World Health Organization. Archived from the original on 31 March 2014. Retrieved 4 April 2014. (2014).
  4. “Diabetes Fact sheet N°312,” WHO. October 2013. Archived from the original on 26 August 2013. Retrieved 25 March 2014. (2011).
  5. N. Poolsup, N. Suksomboon, and S. Rattanasookchit, “Meta-analysis of the benefits of self-monitoring of blood glucose on glycemic control in type 2 diabetes patients: an update,” Diabetes Technol. Ther. 11(12), 775–784 (2009).
    [Crossref]
  6. S. Skeie, G. B. Kristensen, S. Carlsen, and S. Sandberg, “Self-monitoring of blood glucose in type 1 diabetes patients with insufficient metabolic control: focused self-monitoring of blood glucose intervention can lower glycated hemoglobin A1C,” J. Diabetes Sci. Technol. 3(1), 83–88 (2009).
    [Crossref]
  7. S. L. Tunis and M. E. Minshall, “Self-monitoring of blood glucose (SMBG) for type 2 diabetes patients treated with oral anti-diabetes drugs and with a recent history of monitoring: cost-effectiveness in the US,” Curr. Med. Res. Opin. 26(1), 151–162 (2010).
    [Crossref]
  8. E. I. Boutati and S. A. Raptis, “Self-monitoring of blood glucose as part of the integral care of type 2 diabetes,” Diabetes Care 32(suppl_2), S205–S210 (2009).
    [Crossref]
  9. L. Jovanovic, “Using meal-based self-monitoring of blood glucose as a tool to improve outcomes in pregnancy complicated by diabetes,” Endocr. Pract. 14(2), 239–247 (2008).
    [Crossref]
  10. M. J. O’Kane and J. Pickup, “Self-monitoring of blood glucose in diabetes: is it worth it?” Ann. Clin. Biochem. 46(4), 273–282 (2009).
    [Crossref]
  11. R. Weiss and I. Lazar, “The need for continuous blood glucose monitoring in the intensive care unit,” J. Diabetes Sci. Technol. 1(3), 412–414 (2007).
    [Crossref]
  12. C. P. Price, “Point-of-care testing in diabetes mellitus,” Clin. Chem. Lab. Med. 41(9), 1213–1219 (2003).
    [Crossref]
  13. A. Heller and B. Feldman, “Electrochemical glucose sensors and their applications in diabetes management,” Chem. Rev. 108(7), 2482–2505 (2008).
    [Crossref]
  14. S. B. Bankar, M. V. Bule, R. S. Singhal, and L. Ananthanarayan, “Glucose oxidase–an overview,” Biotechnol. Adv. 27(4), 489–501 (2009).
    [Crossref]
  15. D. Grieshaber, R. MacKenzie, J. Vörös, and E. Reimhult, “Electrochemical biosensors-sensor principles and architectures,” Sensors 8(3), 1400–1458 (2008).
    [Crossref]
  16. C. Shan, H. Yang, J. Song, D. Han, A. Ivaska, and L. Niu, “Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene,” Anal. Chem. 81(6), 2378–2382 (2009).
    [Crossref]
  17. X. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu, and Y. Lin, “Glucose oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing,” Biosens. Bioelectron. 25(4), 901–905 (2009).
    [Crossref]
  18. A. Koh, D. Kang, Y. Xue, S. Lee, R. M. Pielak, J. Kim, T. Hwang, S. Min, A. Banks, P. Bastien, M. Manco, L. Wang, K. Ammann, K.-I. Jang, P. Won, S. Han, R. Ghaffari, U. Paik, M. Slepian, G. Balooch, Y. Huang, and J. Rogers, “A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat,” Sci. Transl. Med. 8(366), 366ra165 (2016).
    [Crossref]
  19. B.-H. Hou, H. Takanaga, G. Grossmann, L.-Q. Chen, X.-Q. Qu, A. M. Jones, S. Lalonde, O. Schweissgut, W. Wiechert, and W. B. Frommer, “Optical sensors for monitoring dynamic changes of intracellular metabolite levels in mammalian cells,” Nat. Protoc. 6(11), 1818–1833 (2011).
    [Crossref]
  20. A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124(35), 10596–10604 (2002).
    [Crossref]
  21. X.-D. Wang, T.-Y. Zhou, X. Chen, K.-Y. Wong, and X.-R. Wang, “An optical biosensor for the rapid determination of glucose in human serum,” Sens. Actuators, B 129(2), 866–873 (2008).
    [Crossref]
  22. G. Chang, Y. Tatsu, T. Goto, H. Imaishi, and K. Morigaki, “Glucose concentration determination based on silica sol–gel encapsulated glucose oxidase optical biosensor arrays,” Talanta 83(1), 61–65 (2010).
    [Crossref]
  23. C. H. Raine III, L. E. Schrock, S. V. Edelman, S. R. D. Mudaliar, W. Zhong, L. J. Proud, and J. L. Parkes, “Significant insulin dose errors may occur if blood glucose results are obtained from miscoded meters,” J. Diabetes Sci. Technol. 1(2), 205–210 (2007).
    [Crossref]
  24. International Organization for Standardization, “ISO 15197:2013. In vitro diagnostic test systems – Requirements for blood-glucose monitoring systems for self-testing in managing diabetes mellitus,” (2013).
  25. M. Erbach, G. Freckmann, R. Hinzmann, B. Kulzer, R. Ziegler, L. Heinemann, and O. Schnell, “Interferences and limitations in blood glucose self-testing: an overview of the current knowledge,” J. Diabetes Sci. Technol. 10(5), 1161–1168 (2016).
    [Crossref]
  26. A. Baumstark, S. Pleus, C. Schmid, M. Link, C. Haug, and G. Freckmann, “Lot-to-lot variability of test strips and accuracy assessment of systems for self-monitoring of blood glucose according to ISO 15197,” J. Diabetes Sci. Technol. 6(5), 1076–1086 (2012).
    [Crossref]
  27. B. H. Ginsberg, “Factors affecting blood glucose monitoring: sources of errors in measurement,” J. Diabetes Sci. Technol. 3(4), 903–913 (2009).
    [Crossref]
  28. G. Freckmann, M. Link, C. Schmid, S. Pleus, A. Baumstark, and C. Haug, “System accuracy evaluation of different blood glucose monitoring systems following ISO 15197: 2013 by using two different comparison methods,” Diabetes Technol. Ther. 17(9), 635–648 (2015).
    [Crossref]
  29. H.-C. Wang, F.-Y. Chang, T.-M. Tsai, C.-H. Chen, and Y.-Y. Chen, “Design, fabrication, and feasibility analysis of a colorimetric detection system with a smartphone for self-monitoring blood glucose,” J. Biomed. Opt. 24(02), 1 (2019).
    [Crossref]
  30. A. Farley, C. Hendry, and E. McLafferty, “Blood components,” Nurs. Stand. 27(9), 35–39 (2012).
    [Crossref]
  31. H. Popp, “Blood Banking and Transfusion Medicine: Basic Principles & Practice,” Pathology 35(5), 457 (2003).
    [Crossref]
  32. L. M. Mikesh and D. E. Bruns, “Stabilization of glucose in blood specimens: mechanism of delay in fluoride inhibition of glycolysis,” Clin. Chem. (Washington, DC, U. S.) 54(5), 930–932 (2008).
    [Crossref]
  33. J. M. Bland and D. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet 327(8476), 307–310 (1986).
    [Crossref]

2019 (1)

H.-C. Wang, F.-Y. Chang, T.-M. Tsai, C.-H. Chen, and Y.-Y. Chen, “Design, fabrication, and feasibility analysis of a colorimetric detection system with a smartphone for self-monitoring blood glucose,” J. Biomed. Opt. 24(02), 1 (2019).
[Crossref]

2018 (1)

N. Cho, J. Shaw, S. Karuranga, Y. Huang, J. D. da Rocha Fernandes, A. Ohlrogge, and B. Malanda, “IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045,” Diabetes Res. Clin. Pract. 138, 271–281 (2018).
[Crossref]

2016 (2)

A. Koh, D. Kang, Y. Xue, S. Lee, R. M. Pielak, J. Kim, T. Hwang, S. Min, A. Banks, P. Bastien, M. Manco, L. Wang, K. Ammann, K.-I. Jang, P. Won, S. Han, R. Ghaffari, U. Paik, M. Slepian, G. Balooch, Y. Huang, and J. Rogers, “A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat,” Sci. Transl. Med. 8(366), 366ra165 (2016).
[Crossref]

M. Erbach, G. Freckmann, R. Hinzmann, B. Kulzer, R. Ziegler, L. Heinemann, and O. Schnell, “Interferences and limitations in blood glucose self-testing: an overview of the current knowledge,” J. Diabetes Sci. Technol. 10(5), 1161–1168 (2016).
[Crossref]

2015 (1)

G. Freckmann, M. Link, C. Schmid, S. Pleus, A. Baumstark, and C. Haug, “System accuracy evaluation of different blood glucose monitoring systems following ISO 15197: 2013 by using two different comparison methods,” Diabetes Technol. Ther. 17(9), 635–648 (2015).
[Crossref]

2012 (2)

A. Baumstark, S. Pleus, C. Schmid, M. Link, C. Haug, and G. Freckmann, “Lot-to-lot variability of test strips and accuracy assessment of systems for self-monitoring of blood glucose according to ISO 15197,” J. Diabetes Sci. Technol. 6(5), 1076–1086 (2012).
[Crossref]

A. Farley, C. Hendry, and E. McLafferty, “Blood components,” Nurs. Stand. 27(9), 35–39 (2012).
[Crossref]

2011 (1)

B.-H. Hou, H. Takanaga, G. Grossmann, L.-Q. Chen, X.-Q. Qu, A. M. Jones, S. Lalonde, O. Schweissgut, W. Wiechert, and W. B. Frommer, “Optical sensors for monitoring dynamic changes of intracellular metabolite levels in mammalian cells,” Nat. Protoc. 6(11), 1818–1833 (2011).
[Crossref]

2010 (2)

G. Chang, Y. Tatsu, T. Goto, H. Imaishi, and K. Morigaki, “Glucose concentration determination based on silica sol–gel encapsulated glucose oxidase optical biosensor arrays,” Talanta 83(1), 61–65 (2010).
[Crossref]

S. L. Tunis and M. E. Minshall, “Self-monitoring of blood glucose (SMBG) for type 2 diabetes patients treated with oral anti-diabetes drugs and with a recent history of monitoring: cost-effectiveness in the US,” Curr. Med. Res. Opin. 26(1), 151–162 (2010).
[Crossref]

2009 (8)

E. I. Boutati and S. A. Raptis, “Self-monitoring of blood glucose as part of the integral care of type 2 diabetes,” Diabetes Care 32(suppl_2), S205–S210 (2009).
[Crossref]

N. Poolsup, N. Suksomboon, and S. Rattanasookchit, “Meta-analysis of the benefits of self-monitoring of blood glucose on glycemic control in type 2 diabetes patients: an update,” Diabetes Technol. Ther. 11(12), 775–784 (2009).
[Crossref]

S. Skeie, G. B. Kristensen, S. Carlsen, and S. Sandberg, “Self-monitoring of blood glucose in type 1 diabetes patients with insufficient metabolic control: focused self-monitoring of blood glucose intervention can lower glycated hemoglobin A1C,” J. Diabetes Sci. Technol. 3(1), 83–88 (2009).
[Crossref]

M. J. O’Kane and J. Pickup, “Self-monitoring of blood glucose in diabetes: is it worth it?” Ann. Clin. Biochem. 46(4), 273–282 (2009).
[Crossref]

S. B. Bankar, M. V. Bule, R. S. Singhal, and L. Ananthanarayan, “Glucose oxidase–an overview,” Biotechnol. Adv. 27(4), 489–501 (2009).
[Crossref]

C. Shan, H. Yang, J. Song, D. Han, A. Ivaska, and L. Niu, “Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene,” Anal. Chem. 81(6), 2378–2382 (2009).
[Crossref]

X. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu, and Y. Lin, “Glucose oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing,” Biosens. Bioelectron. 25(4), 901–905 (2009).
[Crossref]

B. H. Ginsberg, “Factors affecting blood glucose monitoring: sources of errors in measurement,” J. Diabetes Sci. Technol. 3(4), 903–913 (2009).
[Crossref]

2008 (5)

L. M. Mikesh and D. E. Bruns, “Stabilization of glucose in blood specimens: mechanism of delay in fluoride inhibition of glycolysis,” Clin. Chem. (Washington, DC, U. S.) 54(5), 930–932 (2008).
[Crossref]

A. Heller and B. Feldman, “Electrochemical glucose sensors and their applications in diabetes management,” Chem. Rev. 108(7), 2482–2505 (2008).
[Crossref]

X.-D. Wang, T.-Y. Zhou, X. Chen, K.-Y. Wong, and X.-R. Wang, “An optical biosensor for the rapid determination of glucose in human serum,” Sens. Actuators, B 129(2), 866–873 (2008).
[Crossref]

D. Grieshaber, R. MacKenzie, J. Vörös, and E. Reimhult, “Electrochemical biosensors-sensor principles and architectures,” Sensors 8(3), 1400–1458 (2008).
[Crossref]

L. Jovanovic, “Using meal-based self-monitoring of blood glucose as a tool to improve outcomes in pregnancy complicated by diabetes,” Endocr. Pract. 14(2), 239–247 (2008).
[Crossref]

2007 (2)

R. Weiss and I. Lazar, “The need for continuous blood glucose monitoring in the intensive care unit,” J. Diabetes Sci. Technol. 1(3), 412–414 (2007).
[Crossref]

C. H. Raine III, L. E. Schrock, S. V. Edelman, S. R. D. Mudaliar, W. Zhong, L. J. Proud, and J. L. Parkes, “Significant insulin dose errors may occur if blood glucose results are obtained from miscoded meters,” J. Diabetes Sci. Technol. 1(2), 205–210 (2007).
[Crossref]

2003 (2)

C. P. Price, “Point-of-care testing in diabetes mellitus,” Clin. Chem. Lab. Med. 41(9), 1213–1219 (2003).
[Crossref]

H. Popp, “Blood Banking and Transfusion Medicine: Basic Principles & Practice,” Pathology 35(5), 457 (2003).
[Crossref]

2002 (1)

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124(35), 10596–10604 (2002).
[Crossref]

1986 (1)

J. M. Bland and D. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet 327(8476), 307–310 (1986).
[Crossref]

Aksay, I. A.

X. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu, and Y. Lin, “Glucose oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing,” Biosens. Bioelectron. 25(4), 901–905 (2009).
[Crossref]

Altman, D.

J. M. Bland and D. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet 327(8476), 307–310 (1986).
[Crossref]

Ammann, K.

A. Koh, D. Kang, Y. Xue, S. Lee, R. M. Pielak, J. Kim, T. Hwang, S. Min, A. Banks, P. Bastien, M. Manco, L. Wang, K. Ammann, K.-I. Jang, P. Won, S. Han, R. Ghaffari, U. Paik, M. Slepian, G. Balooch, Y. Huang, and J. Rogers, “A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat,” Sci. Transl. Med. 8(366), 366ra165 (2016).
[Crossref]

Ananthanarayan, L.

S. B. Bankar, M. V. Bule, R. S. Singhal, and L. Ananthanarayan, “Glucose oxidase–an overview,” Biotechnol. Adv. 27(4), 489–501 (2009).
[Crossref]

Balooch, G.

A. Koh, D. Kang, Y. Xue, S. Lee, R. M. Pielak, J. Kim, T. Hwang, S. Min, A. Banks, P. Bastien, M. Manco, L. Wang, K. Ammann, K.-I. Jang, P. Won, S. Han, R. Ghaffari, U. Paik, M. Slepian, G. Balooch, Y. Huang, and J. Rogers, “A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat,” Sci. Transl. Med. 8(366), 366ra165 (2016).
[Crossref]

Bankar, S. B.

S. B. Bankar, M. V. Bule, R. S. Singhal, and L. Ananthanarayan, “Glucose oxidase–an overview,” Biotechnol. Adv. 27(4), 489–501 (2009).
[Crossref]

Banks, A.

A. Koh, D. Kang, Y. Xue, S. Lee, R. M. Pielak, J. Kim, T. Hwang, S. Min, A. Banks, P. Bastien, M. Manco, L. Wang, K. Ammann, K.-I. Jang, P. Won, S. Han, R. Ghaffari, U. Paik, M. Slepian, G. Balooch, Y. Huang, and J. Rogers, “A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat,” Sci. Transl. Med. 8(366), 366ra165 (2016).
[Crossref]

Bastien, P.

A. Koh, D. Kang, Y. Xue, S. Lee, R. M. Pielak, J. Kim, T. Hwang, S. Min, A. Banks, P. Bastien, M. Manco, L. Wang, K. Ammann, K.-I. Jang, P. Won, S. Han, R. Ghaffari, U. Paik, M. Slepian, G. Balooch, Y. Huang, and J. Rogers, “A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat,” Sci. Transl. Med. 8(366), 366ra165 (2016).
[Crossref]

Baumstark, A.

G. Freckmann, M. Link, C. Schmid, S. Pleus, A. Baumstark, and C. Haug, “System accuracy evaluation of different blood glucose monitoring systems following ISO 15197: 2013 by using two different comparison methods,” Diabetes Technol. Ther. 17(9), 635–648 (2015).
[Crossref]

A. Baumstark, S. Pleus, C. Schmid, M. Link, C. Haug, and G. Freckmann, “Lot-to-lot variability of test strips and accuracy assessment of systems for self-monitoring of blood glucose according to ISO 15197,” J. Diabetes Sci. Technol. 6(5), 1076–1086 (2012).
[Crossref]

Bland, J. M.

J. M. Bland and D. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet 327(8476), 307–310 (1986).
[Crossref]

Boutati, E. I.

E. I. Boutati and S. A. Raptis, “Self-monitoring of blood glucose as part of the integral care of type 2 diabetes,” Diabetes Care 32(suppl_2), S205–S210 (2009).
[Crossref]

Bruns, D. E.

L. M. Mikesh and D. E. Bruns, “Stabilization of glucose in blood specimens: mechanism of delay in fluoride inhibition of glycolysis,” Clin. Chem. (Washington, DC, U. S.) 54(5), 930–932 (2008).
[Crossref]

Bule, M. V.

S. B. Bankar, M. V. Bule, R. S. Singhal, and L. Ananthanarayan, “Glucose oxidase–an overview,” Biotechnol. Adv. 27(4), 489–501 (2009).
[Crossref]

Carlsen, S.

S. Skeie, G. B. Kristensen, S. Carlsen, and S. Sandberg, “Self-monitoring of blood glucose in type 1 diabetes patients with insufficient metabolic control: focused self-monitoring of blood glucose intervention can lower glycated hemoglobin A1C,” J. Diabetes Sci. Technol. 3(1), 83–88 (2009).
[Crossref]

Chang, F.-Y.

H.-C. Wang, F.-Y. Chang, T.-M. Tsai, C.-H. Chen, and Y.-Y. Chen, “Design, fabrication, and feasibility analysis of a colorimetric detection system with a smartphone for self-monitoring blood glucose,” J. Biomed. Opt. 24(02), 1 (2019).
[Crossref]

Chang, G.

G. Chang, Y. Tatsu, T. Goto, H. Imaishi, and K. Morigaki, “Glucose concentration determination based on silica sol–gel encapsulated glucose oxidase optical biosensor arrays,” Talanta 83(1), 61–65 (2010).
[Crossref]

Chen, C.-H.

H.-C. Wang, F.-Y. Chang, T.-M. Tsai, C.-H. Chen, and Y.-Y. Chen, “Design, fabrication, and feasibility analysis of a colorimetric detection system with a smartphone for self-monitoring blood glucose,” J. Biomed. Opt. 24(02), 1 (2019).
[Crossref]

Chen, L.-Q.

B.-H. Hou, H. Takanaga, G. Grossmann, L.-Q. Chen, X.-Q. Qu, A. M. Jones, S. Lalonde, O. Schweissgut, W. Wiechert, and W. B. Frommer, “Optical sensors for monitoring dynamic changes of intracellular metabolite levels in mammalian cells,” Nat. Protoc. 6(11), 1818–1833 (2011).
[Crossref]

Chen, X.

X.-D. Wang, T.-Y. Zhou, X. Chen, K.-Y. Wong, and X.-R. Wang, “An optical biosensor for the rapid determination of glucose in human serum,” Sens. Actuators, B 129(2), 866–873 (2008).
[Crossref]

Chen, Y.-Y.

H.-C. Wang, F.-Y. Chang, T.-M. Tsai, C.-H. Chen, and Y.-Y. Chen, “Design, fabrication, and feasibility analysis of a colorimetric detection system with a smartphone for self-monitoring blood glucose,” J. Biomed. Opt. 24(02), 1 (2019).
[Crossref]

Cho, N.

N. Cho, J. Shaw, S. Karuranga, Y. Huang, J. D. da Rocha Fernandes, A. Ohlrogge, and B. Malanda, “IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045,” Diabetes Res. Clin. Pract. 138, 271–281 (2018).
[Crossref]

da Rocha Fernandes, J. D.

N. Cho, J. Shaw, S. Karuranga, Y. Huang, J. D. da Rocha Fernandes, A. Ohlrogge, and B. Malanda, “IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045,” Diabetes Res. Clin. Pract. 138, 271–281 (2018).
[Crossref]

Edelman, S. V.

C. H. Raine III, L. E. Schrock, S. V. Edelman, S. R. D. Mudaliar, W. Zhong, L. J. Proud, and J. L. Parkes, “Significant insulin dose errors may occur if blood glucose results are obtained from miscoded meters,” J. Diabetes Sci. Technol. 1(2), 205–210 (2007).
[Crossref]

Erbach, M.

M. Erbach, G. Freckmann, R. Hinzmann, B. Kulzer, R. Ziegler, L. Heinemann, and O. Schnell, “Interferences and limitations in blood glucose self-testing: an overview of the current knowledge,” J. Diabetes Sci. Technol. 10(5), 1161–1168 (2016).
[Crossref]

Farley, A.

A. Farley, C. Hendry, and E. McLafferty, “Blood components,” Nurs. Stand. 27(9), 35–39 (2012).
[Crossref]

Feldman, B.

A. Heller and B. Feldman, “Electrochemical glucose sensors and their applications in diabetes management,” Chem. Rev. 108(7), 2482–2505 (2008).
[Crossref]

Freckmann, G.

M. Erbach, G. Freckmann, R. Hinzmann, B. Kulzer, R. Ziegler, L. Heinemann, and O. Schnell, “Interferences and limitations in blood glucose self-testing: an overview of the current knowledge,” J. Diabetes Sci. Technol. 10(5), 1161–1168 (2016).
[Crossref]

G. Freckmann, M. Link, C. Schmid, S. Pleus, A. Baumstark, and C. Haug, “System accuracy evaluation of different blood glucose monitoring systems following ISO 15197: 2013 by using two different comparison methods,” Diabetes Technol. Ther. 17(9), 635–648 (2015).
[Crossref]

A. Baumstark, S. Pleus, C. Schmid, M. Link, C. Haug, and G. Freckmann, “Lot-to-lot variability of test strips and accuracy assessment of systems for self-monitoring of blood glucose according to ISO 15197,” J. Diabetes Sci. Technol. 6(5), 1076–1086 (2012).
[Crossref]

Frommer, W. B.

B.-H. Hou, H. Takanaga, G. Grossmann, L.-Q. Chen, X.-Q. Qu, A. M. Jones, S. Lalonde, O. Schweissgut, W. Wiechert, and W. B. Frommer, “Optical sensors for monitoring dynamic changes of intracellular metabolite levels in mammalian cells,” Nat. Protoc. 6(11), 1818–1833 (2011).
[Crossref]

Gardner, D. G.

D. G. Gardner and D. Shoback, Greenspan’s Basic & Clinical Endocrinology (McGraw-Hill Medical, 2011).

Ghaffari, R.

A. Koh, D. Kang, Y. Xue, S. Lee, R. M. Pielak, J. Kim, T. Hwang, S. Min, A. Banks, P. Bastien, M. Manco, L. Wang, K. Ammann, K.-I. Jang, P. Won, S. Han, R. Ghaffari, U. Paik, M. Slepian, G. Balooch, Y. Huang, and J. Rogers, “A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat,” Sci. Transl. Med. 8(366), 366ra165 (2016).
[Crossref]

Ginsberg, B. H.

B. H. Ginsberg, “Factors affecting blood glucose monitoring: sources of errors in measurement,” J. Diabetes Sci. Technol. 3(4), 903–913 (2009).
[Crossref]

Goto, T.

G. Chang, Y. Tatsu, T. Goto, H. Imaishi, and K. Morigaki, “Glucose concentration determination based on silica sol–gel encapsulated glucose oxidase optical biosensor arrays,” Talanta 83(1), 61–65 (2010).
[Crossref]

Grieshaber, D.

D. Grieshaber, R. MacKenzie, J. Vörös, and E. Reimhult, “Electrochemical biosensors-sensor principles and architectures,” Sensors 8(3), 1400–1458 (2008).
[Crossref]

Grossmann, G.

B.-H. Hou, H. Takanaga, G. Grossmann, L.-Q. Chen, X.-Q. Qu, A. M. Jones, S. Lalonde, O. Schweissgut, W. Wiechert, and W. B. Frommer, “Optical sensors for monitoring dynamic changes of intracellular metabolite levels in mammalian cells,” Nat. Protoc. 6(11), 1818–1833 (2011).
[Crossref]

Haes, A. J.

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124(35), 10596–10604 (2002).
[Crossref]

Han, D.

C. Shan, H. Yang, J. Song, D. Han, A. Ivaska, and L. Niu, “Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene,” Anal. Chem. 81(6), 2378–2382 (2009).
[Crossref]

Han, S.

A. Koh, D. Kang, Y. Xue, S. Lee, R. M. Pielak, J. Kim, T. Hwang, S. Min, A. Banks, P. Bastien, M. Manco, L. Wang, K. Ammann, K.-I. Jang, P. Won, S. Han, R. Ghaffari, U. Paik, M. Slepian, G. Balooch, Y. Huang, and J. Rogers, “A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat,” Sci. Transl. Med. 8(366), 366ra165 (2016).
[Crossref]

Haug, C.

G. Freckmann, M. Link, C. Schmid, S. Pleus, A. Baumstark, and C. Haug, “System accuracy evaluation of different blood glucose monitoring systems following ISO 15197: 2013 by using two different comparison methods,” Diabetes Technol. Ther. 17(9), 635–648 (2015).
[Crossref]

A. Baumstark, S. Pleus, C. Schmid, M. Link, C. Haug, and G. Freckmann, “Lot-to-lot variability of test strips and accuracy assessment of systems for self-monitoring of blood glucose according to ISO 15197,” J. Diabetes Sci. Technol. 6(5), 1076–1086 (2012).
[Crossref]

Heinemann, L.

M. Erbach, G. Freckmann, R. Hinzmann, B. Kulzer, R. Ziegler, L. Heinemann, and O. Schnell, “Interferences and limitations in blood glucose self-testing: an overview of the current knowledge,” J. Diabetes Sci. Technol. 10(5), 1161–1168 (2016).
[Crossref]

Heller, A.

A. Heller and B. Feldman, “Electrochemical glucose sensors and their applications in diabetes management,” Chem. Rev. 108(7), 2482–2505 (2008).
[Crossref]

Hendry, C.

A. Farley, C. Hendry, and E. McLafferty, “Blood components,” Nurs. Stand. 27(9), 35–39 (2012).
[Crossref]

Hinzmann, R.

M. Erbach, G. Freckmann, R. Hinzmann, B. Kulzer, R. Ziegler, L. Heinemann, and O. Schnell, “Interferences and limitations in blood glucose self-testing: an overview of the current knowledge,” J. Diabetes Sci. Technol. 10(5), 1161–1168 (2016).
[Crossref]

Hou, B.-H.

B.-H. Hou, H. Takanaga, G. Grossmann, L.-Q. Chen, X.-Q. Qu, A. M. Jones, S. Lalonde, O. Schweissgut, W. Wiechert, and W. B. Frommer, “Optical sensors for monitoring dynamic changes of intracellular metabolite levels in mammalian cells,” Nat. Protoc. 6(11), 1818–1833 (2011).
[Crossref]

Huang, Y.

N. Cho, J. Shaw, S. Karuranga, Y. Huang, J. D. da Rocha Fernandes, A. Ohlrogge, and B. Malanda, “IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045,” Diabetes Res. Clin. Pract. 138, 271–281 (2018).
[Crossref]

A. Koh, D. Kang, Y. Xue, S. Lee, R. M. Pielak, J. Kim, T. Hwang, S. Min, A. Banks, P. Bastien, M. Manco, L. Wang, K. Ammann, K.-I. Jang, P. Won, S. Han, R. Ghaffari, U. Paik, M. Slepian, G. Balooch, Y. Huang, and J. Rogers, “A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat,” Sci. Transl. Med. 8(366), 366ra165 (2016).
[Crossref]

Hwang, T.

A. Koh, D. Kang, Y. Xue, S. Lee, R. M. Pielak, J. Kim, T. Hwang, S. Min, A. Banks, P. Bastien, M. Manco, L. Wang, K. Ammann, K.-I. Jang, P. Won, S. Han, R. Ghaffari, U. Paik, M. Slepian, G. Balooch, Y. Huang, and J. Rogers, “A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat,” Sci. Transl. Med. 8(366), 366ra165 (2016).
[Crossref]

Imaishi, H.

G. Chang, Y. Tatsu, T. Goto, H. Imaishi, and K. Morigaki, “Glucose concentration determination based on silica sol–gel encapsulated glucose oxidase optical biosensor arrays,” Talanta 83(1), 61–65 (2010).
[Crossref]

Ivaska, A.

C. Shan, H. Yang, J. Song, D. Han, A. Ivaska, and L. Niu, “Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene,” Anal. Chem. 81(6), 2378–2382 (2009).
[Crossref]

Jang, K.-I.

A. Koh, D. Kang, Y. Xue, S. Lee, R. M. Pielak, J. Kim, T. Hwang, S. Min, A. Banks, P. Bastien, M. Manco, L. Wang, K. Ammann, K.-I. Jang, P. Won, S. Han, R. Ghaffari, U. Paik, M. Slepian, G. Balooch, Y. Huang, and J. Rogers, “A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat,” Sci. Transl. Med. 8(366), 366ra165 (2016).
[Crossref]

Jones, A. M.

B.-H. Hou, H. Takanaga, G. Grossmann, L.-Q. Chen, X.-Q. Qu, A. M. Jones, S. Lalonde, O. Schweissgut, W. Wiechert, and W. B. Frommer, “Optical sensors for monitoring dynamic changes of intracellular metabolite levels in mammalian cells,” Nat. Protoc. 6(11), 1818–1833 (2011).
[Crossref]

Jovanovic, L.

L. Jovanovic, “Using meal-based self-monitoring of blood glucose as a tool to improve outcomes in pregnancy complicated by diabetes,” Endocr. Pract. 14(2), 239–247 (2008).
[Crossref]

Kang, D.

A. Koh, D. Kang, Y. Xue, S. Lee, R. M. Pielak, J. Kim, T. Hwang, S. Min, A. Banks, P. Bastien, M. Manco, L. Wang, K. Ammann, K.-I. Jang, P. Won, S. Han, R. Ghaffari, U. Paik, M. Slepian, G. Balooch, Y. Huang, and J. Rogers, “A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat,” Sci. Transl. Med. 8(366), 366ra165 (2016).
[Crossref]

Kang, X.

X. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu, and Y. Lin, “Glucose oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing,” Biosens. Bioelectron. 25(4), 901–905 (2009).
[Crossref]

Karuranga, S.

N. Cho, J. Shaw, S. Karuranga, Y. Huang, J. D. da Rocha Fernandes, A. Ohlrogge, and B. Malanda, “IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045,” Diabetes Res. Clin. Pract. 138, 271–281 (2018).
[Crossref]

Kim, J.

A. Koh, D. Kang, Y. Xue, S. Lee, R. M. Pielak, J. Kim, T. Hwang, S. Min, A. Banks, P. Bastien, M. Manco, L. Wang, K. Ammann, K.-I. Jang, P. Won, S. Han, R. Ghaffari, U. Paik, M. Slepian, G. Balooch, Y. Huang, and J. Rogers, “A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat,” Sci. Transl. Med. 8(366), 366ra165 (2016).
[Crossref]

Koh, A.

A. Koh, D. Kang, Y. Xue, S. Lee, R. M. Pielak, J. Kim, T. Hwang, S. Min, A. Banks, P. Bastien, M. Manco, L. Wang, K. Ammann, K.-I. Jang, P. Won, S. Han, R. Ghaffari, U. Paik, M. Slepian, G. Balooch, Y. Huang, and J. Rogers, “A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat,” Sci. Transl. Med. 8(366), 366ra165 (2016).
[Crossref]

Kristensen, G. B.

S. Skeie, G. B. Kristensen, S. Carlsen, and S. Sandberg, “Self-monitoring of blood glucose in type 1 diabetes patients with insufficient metabolic control: focused self-monitoring of blood glucose intervention can lower glycated hemoglobin A1C,” J. Diabetes Sci. Technol. 3(1), 83–88 (2009).
[Crossref]

Kulzer, B.

M. Erbach, G. Freckmann, R. Hinzmann, B. Kulzer, R. Ziegler, L. Heinemann, and O. Schnell, “Interferences and limitations in blood glucose self-testing: an overview of the current knowledge,” J. Diabetes Sci. Technol. 10(5), 1161–1168 (2016).
[Crossref]

Lalonde, S.

B.-H. Hou, H. Takanaga, G. Grossmann, L.-Q. Chen, X.-Q. Qu, A. M. Jones, S. Lalonde, O. Schweissgut, W. Wiechert, and W. B. Frommer, “Optical sensors for monitoring dynamic changes of intracellular metabolite levels in mammalian cells,” Nat. Protoc. 6(11), 1818–1833 (2011).
[Crossref]

Lazar, I.

R. Weiss and I. Lazar, “The need for continuous blood glucose monitoring in the intensive care unit,” J. Diabetes Sci. Technol. 1(3), 412–414 (2007).
[Crossref]

Lee, S.

A. Koh, D. Kang, Y. Xue, S. Lee, R. M. Pielak, J. Kim, T. Hwang, S. Min, A. Banks, P. Bastien, M. Manco, L. Wang, K. Ammann, K.-I. Jang, P. Won, S. Han, R. Ghaffari, U. Paik, M. Slepian, G. Balooch, Y. Huang, and J. Rogers, “A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat,” Sci. Transl. Med. 8(366), 366ra165 (2016).
[Crossref]

Lin, Y.

X. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu, and Y. Lin, “Glucose oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing,” Biosens. Bioelectron. 25(4), 901–905 (2009).
[Crossref]

Link, M.

G. Freckmann, M. Link, C. Schmid, S. Pleus, A. Baumstark, and C. Haug, “System accuracy evaluation of different blood glucose monitoring systems following ISO 15197: 2013 by using two different comparison methods,” Diabetes Technol. Ther. 17(9), 635–648 (2015).
[Crossref]

A. Baumstark, S. Pleus, C. Schmid, M. Link, C. Haug, and G. Freckmann, “Lot-to-lot variability of test strips and accuracy assessment of systems for self-monitoring of blood glucose according to ISO 15197,” J. Diabetes Sci. Technol. 6(5), 1076–1086 (2012).
[Crossref]

Liu, J.

X. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu, and Y. Lin, “Glucose oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing,” Biosens. Bioelectron. 25(4), 901–905 (2009).
[Crossref]

MacKenzie, R.

D. Grieshaber, R. MacKenzie, J. Vörös, and E. Reimhult, “Electrochemical biosensors-sensor principles and architectures,” Sensors 8(3), 1400–1458 (2008).
[Crossref]

Malanda, B.

N. Cho, J. Shaw, S. Karuranga, Y. Huang, J. D. da Rocha Fernandes, A. Ohlrogge, and B. Malanda, “IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045,” Diabetes Res. Clin. Pract. 138, 271–281 (2018).
[Crossref]

Manco, M.

A. Koh, D. Kang, Y. Xue, S. Lee, R. M. Pielak, J. Kim, T. Hwang, S. Min, A. Banks, P. Bastien, M. Manco, L. Wang, K. Ammann, K.-I. Jang, P. Won, S. Han, R. Ghaffari, U. Paik, M. Slepian, G. Balooch, Y. Huang, and J. Rogers, “A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat,” Sci. Transl. Med. 8(366), 366ra165 (2016).
[Crossref]

McLafferty, E.

A. Farley, C. Hendry, and E. McLafferty, “Blood components,” Nurs. Stand. 27(9), 35–39 (2012).
[Crossref]

Mikesh, L. M.

L. M. Mikesh and D. E. Bruns, “Stabilization of glucose in blood specimens: mechanism of delay in fluoride inhibition of glycolysis,” Clin. Chem. (Washington, DC, U. S.) 54(5), 930–932 (2008).
[Crossref]

Min, S.

A. Koh, D. Kang, Y. Xue, S. Lee, R. M. Pielak, J. Kim, T. Hwang, S. Min, A. Banks, P. Bastien, M. Manco, L. Wang, K. Ammann, K.-I. Jang, P. Won, S. Han, R. Ghaffari, U. Paik, M. Slepian, G. Balooch, Y. Huang, and J. Rogers, “A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat,” Sci. Transl. Med. 8(366), 366ra165 (2016).
[Crossref]

Minshall, M. E.

S. L. Tunis and M. E. Minshall, “Self-monitoring of blood glucose (SMBG) for type 2 diabetes patients treated with oral anti-diabetes drugs and with a recent history of monitoring: cost-effectiveness in the US,” Curr. Med. Res. Opin. 26(1), 151–162 (2010).
[Crossref]

Morigaki, K.

G. Chang, Y. Tatsu, T. Goto, H. Imaishi, and K. Morigaki, “Glucose concentration determination based on silica sol–gel encapsulated glucose oxidase optical biosensor arrays,” Talanta 83(1), 61–65 (2010).
[Crossref]

Mudaliar, S. R. D.

C. H. Raine III, L. E. Schrock, S. V. Edelman, S. R. D. Mudaliar, W. Zhong, L. J. Proud, and J. L. Parkes, “Significant insulin dose errors may occur if blood glucose results are obtained from miscoded meters,” J. Diabetes Sci. Technol. 1(2), 205–210 (2007).
[Crossref]

Niu, L.

C. Shan, H. Yang, J. Song, D. Han, A. Ivaska, and L. Niu, “Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene,” Anal. Chem. 81(6), 2378–2382 (2009).
[Crossref]

O’Kane, M. J.

M. J. O’Kane and J. Pickup, “Self-monitoring of blood glucose in diabetes: is it worth it?” Ann. Clin. Biochem. 46(4), 273–282 (2009).
[Crossref]

Ohlrogge, A.

N. Cho, J. Shaw, S. Karuranga, Y. Huang, J. D. da Rocha Fernandes, A. Ohlrogge, and B. Malanda, “IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045,” Diabetes Res. Clin. Pract. 138, 271–281 (2018).
[Crossref]

Paik, U.

A. Koh, D. Kang, Y. Xue, S. Lee, R. M. Pielak, J. Kim, T. Hwang, S. Min, A. Banks, P. Bastien, M. Manco, L. Wang, K. Ammann, K.-I. Jang, P. Won, S. Han, R. Ghaffari, U. Paik, M. Slepian, G. Balooch, Y. Huang, and J. Rogers, “A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat,” Sci. Transl. Med. 8(366), 366ra165 (2016).
[Crossref]

Parkes, J. L.

C. H. Raine III, L. E. Schrock, S. V. Edelman, S. R. D. Mudaliar, W. Zhong, L. J. Proud, and J. L. Parkes, “Significant insulin dose errors may occur if blood glucose results are obtained from miscoded meters,” J. Diabetes Sci. Technol. 1(2), 205–210 (2007).
[Crossref]

Pickup, J.

M. J. O’Kane and J. Pickup, “Self-monitoring of blood glucose in diabetes: is it worth it?” Ann. Clin. Biochem. 46(4), 273–282 (2009).
[Crossref]

Pielak, R. M.

A. Koh, D. Kang, Y. Xue, S. Lee, R. M. Pielak, J. Kim, T. Hwang, S. Min, A. Banks, P. Bastien, M. Manco, L. Wang, K. Ammann, K.-I. Jang, P. Won, S. Han, R. Ghaffari, U. Paik, M. Slepian, G. Balooch, Y. Huang, and J. Rogers, “A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat,” Sci. Transl. Med. 8(366), 366ra165 (2016).
[Crossref]

Pleus, S.

G. Freckmann, M. Link, C. Schmid, S. Pleus, A. Baumstark, and C. Haug, “System accuracy evaluation of different blood glucose monitoring systems following ISO 15197: 2013 by using two different comparison methods,” Diabetes Technol. Ther. 17(9), 635–648 (2015).
[Crossref]

A. Baumstark, S. Pleus, C. Schmid, M. Link, C. Haug, and G. Freckmann, “Lot-to-lot variability of test strips and accuracy assessment of systems for self-monitoring of blood glucose according to ISO 15197,” J. Diabetes Sci. Technol. 6(5), 1076–1086 (2012).
[Crossref]

Poolsup, N.

N. Poolsup, N. Suksomboon, and S. Rattanasookchit, “Meta-analysis of the benefits of self-monitoring of blood glucose on glycemic control in type 2 diabetes patients: an update,” Diabetes Technol. Ther. 11(12), 775–784 (2009).
[Crossref]

Popp, H.

H. Popp, “Blood Banking and Transfusion Medicine: Basic Principles & Practice,” Pathology 35(5), 457 (2003).
[Crossref]

Price, C. P.

C. P. Price, “Point-of-care testing in diabetes mellitus,” Clin. Chem. Lab. Med. 41(9), 1213–1219 (2003).
[Crossref]

Proud, L. J.

C. H. Raine III, L. E. Schrock, S. V. Edelman, S. R. D. Mudaliar, W. Zhong, L. J. Proud, and J. L. Parkes, “Significant insulin dose errors may occur if blood glucose results are obtained from miscoded meters,” J. Diabetes Sci. Technol. 1(2), 205–210 (2007).
[Crossref]

Qu, X.-Q.

B.-H. Hou, H. Takanaga, G. Grossmann, L.-Q. Chen, X.-Q. Qu, A. M. Jones, S. Lalonde, O. Schweissgut, W. Wiechert, and W. B. Frommer, “Optical sensors for monitoring dynamic changes of intracellular metabolite levels in mammalian cells,” Nat. Protoc. 6(11), 1818–1833 (2011).
[Crossref]

Raine III, C. H.

C. H. Raine III, L. E. Schrock, S. V. Edelman, S. R. D. Mudaliar, W. Zhong, L. J. Proud, and J. L. Parkes, “Significant insulin dose errors may occur if blood glucose results are obtained from miscoded meters,” J. Diabetes Sci. Technol. 1(2), 205–210 (2007).
[Crossref]

Raptis, S. A.

E. I. Boutati and S. A. Raptis, “Self-monitoring of blood glucose as part of the integral care of type 2 diabetes,” Diabetes Care 32(suppl_2), S205–S210 (2009).
[Crossref]

Rattanasookchit, S.

N. Poolsup, N. Suksomboon, and S. Rattanasookchit, “Meta-analysis of the benefits of self-monitoring of blood glucose on glycemic control in type 2 diabetes patients: an update,” Diabetes Technol. Ther. 11(12), 775–784 (2009).
[Crossref]

Reimhult, E.

D. Grieshaber, R. MacKenzie, J. Vörös, and E. Reimhult, “Electrochemical biosensors-sensor principles and architectures,” Sensors 8(3), 1400–1458 (2008).
[Crossref]

Rogers, J.

A. Koh, D. Kang, Y. Xue, S. Lee, R. M. Pielak, J. Kim, T. Hwang, S. Min, A. Banks, P. Bastien, M. Manco, L. Wang, K. Ammann, K.-I. Jang, P. Won, S. Han, R. Ghaffari, U. Paik, M. Slepian, G. Balooch, Y. Huang, and J. Rogers, “A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat,” Sci. Transl. Med. 8(366), 366ra165 (2016).
[Crossref]

Sandberg, S.

S. Skeie, G. B. Kristensen, S. Carlsen, and S. Sandberg, “Self-monitoring of blood glucose in type 1 diabetes patients with insufficient metabolic control: focused self-monitoring of blood glucose intervention can lower glycated hemoglobin A1C,” J. Diabetes Sci. Technol. 3(1), 83–88 (2009).
[Crossref]

Schmid, C.

G. Freckmann, M. Link, C. Schmid, S. Pleus, A. Baumstark, and C. Haug, “System accuracy evaluation of different blood glucose monitoring systems following ISO 15197: 2013 by using two different comparison methods,” Diabetes Technol. Ther. 17(9), 635–648 (2015).
[Crossref]

A. Baumstark, S. Pleus, C. Schmid, M. Link, C. Haug, and G. Freckmann, “Lot-to-lot variability of test strips and accuracy assessment of systems for self-monitoring of blood glucose according to ISO 15197,” J. Diabetes Sci. Technol. 6(5), 1076–1086 (2012).
[Crossref]

Schnell, O.

M. Erbach, G. Freckmann, R. Hinzmann, B. Kulzer, R. Ziegler, L. Heinemann, and O. Schnell, “Interferences and limitations in blood glucose self-testing: an overview of the current knowledge,” J. Diabetes Sci. Technol. 10(5), 1161–1168 (2016).
[Crossref]

Schrock, L. E.

C. H. Raine III, L. E. Schrock, S. V. Edelman, S. R. D. Mudaliar, W. Zhong, L. J. Proud, and J. L. Parkes, “Significant insulin dose errors may occur if blood glucose results are obtained from miscoded meters,” J. Diabetes Sci. Technol. 1(2), 205–210 (2007).
[Crossref]

Schweissgut, O.

B.-H. Hou, H. Takanaga, G. Grossmann, L.-Q. Chen, X.-Q. Qu, A. M. Jones, S. Lalonde, O. Schweissgut, W. Wiechert, and W. B. Frommer, “Optical sensors for monitoring dynamic changes of intracellular metabolite levels in mammalian cells,” Nat. Protoc. 6(11), 1818–1833 (2011).
[Crossref]

Shan, C.

C. Shan, H. Yang, J. Song, D. Han, A. Ivaska, and L. Niu, “Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene,” Anal. Chem. 81(6), 2378–2382 (2009).
[Crossref]

Shaw, J.

N. Cho, J. Shaw, S. Karuranga, Y. Huang, J. D. da Rocha Fernandes, A. Ohlrogge, and B. Malanda, “IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045,” Diabetes Res. Clin. Pract. 138, 271–281 (2018).
[Crossref]

Shoback, D.

D. G. Gardner and D. Shoback, Greenspan’s Basic & Clinical Endocrinology (McGraw-Hill Medical, 2011).

Singhal, R. S.

S. B. Bankar, M. V. Bule, R. S. Singhal, and L. Ananthanarayan, “Glucose oxidase–an overview,” Biotechnol. Adv. 27(4), 489–501 (2009).
[Crossref]

Skeie, S.

S. Skeie, G. B. Kristensen, S. Carlsen, and S. Sandberg, “Self-monitoring of blood glucose in type 1 diabetes patients with insufficient metabolic control: focused self-monitoring of blood glucose intervention can lower glycated hemoglobin A1C,” J. Diabetes Sci. Technol. 3(1), 83–88 (2009).
[Crossref]

Slepian, M.

A. Koh, D. Kang, Y. Xue, S. Lee, R. M. Pielak, J. Kim, T. Hwang, S. Min, A. Banks, P. Bastien, M. Manco, L. Wang, K. Ammann, K.-I. Jang, P. Won, S. Han, R. Ghaffari, U. Paik, M. Slepian, G. Balooch, Y. Huang, and J. Rogers, “A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat,” Sci. Transl. Med. 8(366), 366ra165 (2016).
[Crossref]

Song, J.

C. Shan, H. Yang, J. Song, D. Han, A. Ivaska, and L. Niu, “Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene,” Anal. Chem. 81(6), 2378–2382 (2009).
[Crossref]

Suksomboon, N.

N. Poolsup, N. Suksomboon, and S. Rattanasookchit, “Meta-analysis of the benefits of self-monitoring of blood glucose on glycemic control in type 2 diabetes patients: an update,” Diabetes Technol. Ther. 11(12), 775–784 (2009).
[Crossref]

Takanaga, H.

B.-H. Hou, H. Takanaga, G. Grossmann, L.-Q. Chen, X.-Q. Qu, A. M. Jones, S. Lalonde, O. Schweissgut, W. Wiechert, and W. B. Frommer, “Optical sensors for monitoring dynamic changes of intracellular metabolite levels in mammalian cells,” Nat. Protoc. 6(11), 1818–1833 (2011).
[Crossref]

Tatsu, Y.

G. Chang, Y. Tatsu, T. Goto, H. Imaishi, and K. Morigaki, “Glucose concentration determination based on silica sol–gel encapsulated glucose oxidase optical biosensor arrays,” Talanta 83(1), 61–65 (2010).
[Crossref]

Tsai, T.-M.

H.-C. Wang, F.-Y. Chang, T.-M. Tsai, C.-H. Chen, and Y.-Y. Chen, “Design, fabrication, and feasibility analysis of a colorimetric detection system with a smartphone for self-monitoring blood glucose,” J. Biomed. Opt. 24(02), 1 (2019).
[Crossref]

Tunis, S. L.

S. L. Tunis and M. E. Minshall, “Self-monitoring of blood glucose (SMBG) for type 2 diabetes patients treated with oral anti-diabetes drugs and with a recent history of monitoring: cost-effectiveness in the US,” Curr. Med. Res. Opin. 26(1), 151–162 (2010).
[Crossref]

Van Duyne, R. P.

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124(35), 10596–10604 (2002).
[Crossref]

Vörös, J.

D. Grieshaber, R. MacKenzie, J. Vörös, and E. Reimhult, “Electrochemical biosensors-sensor principles and architectures,” Sensors 8(3), 1400–1458 (2008).
[Crossref]

Wang, H.-C.

H.-C. Wang, F.-Y. Chang, T.-M. Tsai, C.-H. Chen, and Y.-Y. Chen, “Design, fabrication, and feasibility analysis of a colorimetric detection system with a smartphone for self-monitoring blood glucose,” J. Biomed. Opt. 24(02), 1 (2019).
[Crossref]

Wang, J.

X. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu, and Y. Lin, “Glucose oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing,” Biosens. Bioelectron. 25(4), 901–905 (2009).
[Crossref]

Wang, L.

A. Koh, D. Kang, Y. Xue, S. Lee, R. M. Pielak, J. Kim, T. Hwang, S. Min, A. Banks, P. Bastien, M. Manco, L. Wang, K. Ammann, K.-I. Jang, P. Won, S. Han, R. Ghaffari, U. Paik, M. Slepian, G. Balooch, Y. Huang, and J. Rogers, “A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat,” Sci. Transl. Med. 8(366), 366ra165 (2016).
[Crossref]

Wang, X.-D.

X.-D. Wang, T.-Y. Zhou, X. Chen, K.-Y. Wong, and X.-R. Wang, “An optical biosensor for the rapid determination of glucose in human serum,” Sens. Actuators, B 129(2), 866–873 (2008).
[Crossref]

Wang, X.-R.

X.-D. Wang, T.-Y. Zhou, X. Chen, K.-Y. Wong, and X.-R. Wang, “An optical biosensor for the rapid determination of glucose in human serum,” Sens. Actuators, B 129(2), 866–873 (2008).
[Crossref]

Weiss, R.

R. Weiss and I. Lazar, “The need for continuous blood glucose monitoring in the intensive care unit,” J. Diabetes Sci. Technol. 1(3), 412–414 (2007).
[Crossref]

Wiechert, W.

B.-H. Hou, H. Takanaga, G. Grossmann, L.-Q. Chen, X.-Q. Qu, A. M. Jones, S. Lalonde, O. Schweissgut, W. Wiechert, and W. B. Frommer, “Optical sensors for monitoring dynamic changes of intracellular metabolite levels in mammalian cells,” Nat. Protoc. 6(11), 1818–1833 (2011).
[Crossref]

Won, P.

A. Koh, D. Kang, Y. Xue, S. Lee, R. M. Pielak, J. Kim, T. Hwang, S. Min, A. Banks, P. Bastien, M. Manco, L. Wang, K. Ammann, K.-I. Jang, P. Won, S. Han, R. Ghaffari, U. Paik, M. Slepian, G. Balooch, Y. Huang, and J. Rogers, “A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat,” Sci. Transl. Med. 8(366), 366ra165 (2016).
[Crossref]

Wong, K.-Y.

X.-D. Wang, T.-Y. Zhou, X. Chen, K.-Y. Wong, and X.-R. Wang, “An optical biosensor for the rapid determination of glucose in human serum,” Sens. Actuators, B 129(2), 866–873 (2008).
[Crossref]

Wu, H.

X. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu, and Y. Lin, “Glucose oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing,” Biosens. Bioelectron. 25(4), 901–905 (2009).
[Crossref]

Xue, Y.

A. Koh, D. Kang, Y. Xue, S. Lee, R. M. Pielak, J. Kim, T. Hwang, S. Min, A. Banks, P. Bastien, M. Manco, L. Wang, K. Ammann, K.-I. Jang, P. Won, S. Han, R. Ghaffari, U. Paik, M. Slepian, G. Balooch, Y. Huang, and J. Rogers, “A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat,” Sci. Transl. Med. 8(366), 366ra165 (2016).
[Crossref]

Yang, H.

C. Shan, H. Yang, J. Song, D. Han, A. Ivaska, and L. Niu, “Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene,” Anal. Chem. 81(6), 2378–2382 (2009).
[Crossref]

Zhong, W.

C. H. Raine III, L. E. Schrock, S. V. Edelman, S. R. D. Mudaliar, W. Zhong, L. J. Proud, and J. L. Parkes, “Significant insulin dose errors may occur if blood glucose results are obtained from miscoded meters,” J. Diabetes Sci. Technol. 1(2), 205–210 (2007).
[Crossref]

Zhou, T.-Y.

X.-D. Wang, T.-Y. Zhou, X. Chen, K.-Y. Wong, and X.-R. Wang, “An optical biosensor for the rapid determination of glucose in human serum,” Sens. Actuators, B 129(2), 866–873 (2008).
[Crossref]

Ziegler, R.

M. Erbach, G. Freckmann, R. Hinzmann, B. Kulzer, R. Ziegler, L. Heinemann, and O. Schnell, “Interferences and limitations in blood glucose self-testing: an overview of the current knowledge,” J. Diabetes Sci. Technol. 10(5), 1161–1168 (2016).
[Crossref]

Anal. Chem. (1)

C. Shan, H. Yang, J. Song, D. Han, A. Ivaska, and L. Niu, “Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene,” Anal. Chem. 81(6), 2378–2382 (2009).
[Crossref]

Ann. Clin. Biochem. (1)

M. J. O’Kane and J. Pickup, “Self-monitoring of blood glucose in diabetes: is it worth it?” Ann. Clin. Biochem. 46(4), 273–282 (2009).
[Crossref]

Biosens. Bioelectron. (1)

X. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu, and Y. Lin, “Glucose oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing,” Biosens. Bioelectron. 25(4), 901–905 (2009).
[Crossref]

Biotechnol. Adv. (1)

S. B. Bankar, M. V. Bule, R. S. Singhal, and L. Ananthanarayan, “Glucose oxidase–an overview,” Biotechnol. Adv. 27(4), 489–501 (2009).
[Crossref]

Chem. Rev. (1)

A. Heller and B. Feldman, “Electrochemical glucose sensors and their applications in diabetes management,” Chem. Rev. 108(7), 2482–2505 (2008).
[Crossref]

Clin. Chem. (Washington, DC, U. S.) (1)

L. M. Mikesh and D. E. Bruns, “Stabilization of glucose in blood specimens: mechanism of delay in fluoride inhibition of glycolysis,” Clin. Chem. (Washington, DC, U. S.) 54(5), 930–932 (2008).
[Crossref]

Clin. Chem. Lab. Med. (1)

C. P. Price, “Point-of-care testing in diabetes mellitus,” Clin. Chem. Lab. Med. 41(9), 1213–1219 (2003).
[Crossref]

Curr. Med. Res. Opin. (1)

S. L. Tunis and M. E. Minshall, “Self-monitoring of blood glucose (SMBG) for type 2 diabetes patients treated with oral anti-diabetes drugs and with a recent history of monitoring: cost-effectiveness in the US,” Curr. Med. Res. Opin. 26(1), 151–162 (2010).
[Crossref]

Diabetes Care (1)

E. I. Boutati and S. A. Raptis, “Self-monitoring of blood glucose as part of the integral care of type 2 diabetes,” Diabetes Care 32(suppl_2), S205–S210 (2009).
[Crossref]

Diabetes Res. Clin. Pract. (1)

N. Cho, J. Shaw, S. Karuranga, Y. Huang, J. D. da Rocha Fernandes, A. Ohlrogge, and B. Malanda, “IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045,” Diabetes Res. Clin. Pract. 138, 271–281 (2018).
[Crossref]

Diabetes Technol. Ther. (2)

N. Poolsup, N. Suksomboon, and S. Rattanasookchit, “Meta-analysis of the benefits of self-monitoring of blood glucose on glycemic control in type 2 diabetes patients: an update,” Diabetes Technol. Ther. 11(12), 775–784 (2009).
[Crossref]

G. Freckmann, M. Link, C. Schmid, S. Pleus, A. Baumstark, and C. Haug, “System accuracy evaluation of different blood glucose monitoring systems following ISO 15197: 2013 by using two different comparison methods,” Diabetes Technol. Ther. 17(9), 635–648 (2015).
[Crossref]

Endocr. Pract. (1)

L. Jovanovic, “Using meal-based self-monitoring of blood glucose as a tool to improve outcomes in pregnancy complicated by diabetes,” Endocr. Pract. 14(2), 239–247 (2008).
[Crossref]

J. Am. Chem. Soc. (1)

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124(35), 10596–10604 (2002).
[Crossref]

J. Biomed. Opt. (1)

H.-C. Wang, F.-Y. Chang, T.-M. Tsai, C.-H. Chen, and Y.-Y. Chen, “Design, fabrication, and feasibility analysis of a colorimetric detection system with a smartphone for self-monitoring blood glucose,” J. Biomed. Opt. 24(02), 1 (2019).
[Crossref]

J. Diabetes Sci. Technol. (6)

C. H. Raine III, L. E. Schrock, S. V. Edelman, S. R. D. Mudaliar, W. Zhong, L. J. Proud, and J. L. Parkes, “Significant insulin dose errors may occur if blood glucose results are obtained from miscoded meters,” J. Diabetes Sci. Technol. 1(2), 205–210 (2007).
[Crossref]

M. Erbach, G. Freckmann, R. Hinzmann, B. Kulzer, R. Ziegler, L. Heinemann, and O. Schnell, “Interferences and limitations in blood glucose self-testing: an overview of the current knowledge,” J. Diabetes Sci. Technol. 10(5), 1161–1168 (2016).
[Crossref]

A. Baumstark, S. Pleus, C. Schmid, M. Link, C. Haug, and G. Freckmann, “Lot-to-lot variability of test strips and accuracy assessment of systems for self-monitoring of blood glucose according to ISO 15197,” J. Diabetes Sci. Technol. 6(5), 1076–1086 (2012).
[Crossref]

B. H. Ginsberg, “Factors affecting blood glucose monitoring: sources of errors in measurement,” J. Diabetes Sci. Technol. 3(4), 903–913 (2009).
[Crossref]

S. Skeie, G. B. Kristensen, S. Carlsen, and S. Sandberg, “Self-monitoring of blood glucose in type 1 diabetes patients with insufficient metabolic control: focused self-monitoring of blood glucose intervention can lower glycated hemoglobin A1C,” J. Diabetes Sci. Technol. 3(1), 83–88 (2009).
[Crossref]

R. Weiss and I. Lazar, “The need for continuous blood glucose monitoring in the intensive care unit,” J. Diabetes Sci. Technol. 1(3), 412–414 (2007).
[Crossref]

Lancet (1)

J. M. Bland and D. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet 327(8476), 307–310 (1986).
[Crossref]

Nat. Protoc. (1)

B.-H. Hou, H. Takanaga, G. Grossmann, L.-Q. Chen, X.-Q. Qu, A. M. Jones, S. Lalonde, O. Schweissgut, W. Wiechert, and W. B. Frommer, “Optical sensors for monitoring dynamic changes of intracellular metabolite levels in mammalian cells,” Nat. Protoc. 6(11), 1818–1833 (2011).
[Crossref]

Nurs. Stand. (1)

A. Farley, C. Hendry, and E. McLafferty, “Blood components,” Nurs. Stand. 27(9), 35–39 (2012).
[Crossref]

Pathology (1)

H. Popp, “Blood Banking and Transfusion Medicine: Basic Principles & Practice,” Pathology 35(5), 457 (2003).
[Crossref]

Sci. Transl. Med. (1)

A. Koh, D. Kang, Y. Xue, S. Lee, R. M. Pielak, J. Kim, T. Hwang, S. Min, A. Banks, P. Bastien, M. Manco, L. Wang, K. Ammann, K.-I. Jang, P. Won, S. Han, R. Ghaffari, U. Paik, M. Slepian, G. Balooch, Y. Huang, and J. Rogers, “A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat,” Sci. Transl. Med. 8(366), 366ra165 (2016).
[Crossref]

Sens. Actuators, B (1)

X.-D. Wang, T.-Y. Zhou, X. Chen, K.-Y. Wong, and X.-R. Wang, “An optical biosensor for the rapid determination of glucose in human serum,” Sens. Actuators, B 129(2), 866–873 (2008).
[Crossref]

Sensors (1)

D. Grieshaber, R. MacKenzie, J. Vörös, and E. Reimhult, “Electrochemical biosensors-sensor principles and architectures,” Sensors 8(3), 1400–1458 (2008).
[Crossref]

Talanta (1)

G. Chang, Y. Tatsu, T. Goto, H. Imaishi, and K. Morigaki, “Glucose concentration determination based on silica sol–gel encapsulated glucose oxidase optical biosensor arrays,” Talanta 83(1), 61–65 (2010).
[Crossref]

Other (4)

International Organization for Standardization, “ISO 15197:2013. In vitro diagnostic test systems – Requirements for blood-glucose monitoring systems for self-testing in managing diabetes mellitus,” (2013).

D. G. Gardner and D. Shoback, Greenspan’s Basic & Clinical Endocrinology (McGraw-Hill Medical, 2011).

“About Diabetes,” World Health Organization. Archived from the original on 31 March 2014. Retrieved 4 April 2014. (2014).

“Diabetes Fact sheet N°312,” WHO. October 2013. Archived from the original on 26 August 2013. Retrieved 25 March 2014. (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a). Smartphone and IDDBG, comprising the isolated ambient light enclosure, CTS, reflector channel, alignment plate, and disposable blood lancet. (b). Optical light tracking simulation structure. The red arrows indicate the light path in the IDDBG.
Fig. 2.
Fig. 2. Simulation results of illuminance and illuminance uniformity on the CTS.
Fig. 3.
Fig. 3. Operation procedures for IDDBG with a smartphone to measure blood glucose concentration.
Fig. 4.
Fig. 4. Three lots of linear equations as signal reference mainline that obtained based on the normalized value of the G signal with the linear regression analysis method. The linear equation is used to correlated signal to concentration. Glucose concentrations of 50$\sim$500 mg/dL were recorded with the IDDBG and G signal and the results were read with a smartphone.
Fig. 5.
Fig. 5. Participant age survey results. Among 120 subjects, 28 were type1 diabetes patients and 92 were type 2 diabetes patients. Further, 1.7% were under the age of 20, 6.7% were 21 to 30, 20.8% were 31 to 40, 30.8% were 51 to 60, 23.3% were 61 to 70, and 5% were over 71.
Fig. 6.
Fig. 6. Difference plot and consensus error grid analysis results. (a) Comparison of the measured data from the developed SMBG system and from the YSI-2300 analyzer for 118 diabetes patient’s specimens. Solid lines indicate system accuracy limits of ISO 15197:2013. The results showed that each of three lots of strips has one sample out of the accuracy criteria. Therefore, the percentages of three lots of strips trial results within the accuracy limits were 97.4%(Lot 1), 97.5% (Lot 2), and 97.4% (Lot 3). (b) For the consensus error grid (CEG) analysis results showed that 2 samples fell within zones B (would not lead to inappropriate treatment), and 116 samples fell within zones A (indicates no effect on clinical action). Therefore, 100% of the various strip lots’ results fell within the zones A & B.
Fig. 7.
Fig. 7. Usability survey results for the operation and carrying convenience. (a) 97.5% of the subjects felt that the IDDBG is convenient to operate. (b) 100% of the subjects felt that the IDDBG is convenient to carry.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

N = S S X 400 ,
y = 0.3415 x + 213.82 ,
y = 0.3215 x + 223.53 ,
y = 0.3315 x + 218.68 ,