Abstract

The purpose of this work was to evaluate peripheral image quality in the pseudophakic eye using computational, physical, and psychophysical methods. We designed and constructed a physical model of the pseudophakic human eye with realistic dimensions using a corneal phantom and a board-only camera that was pivoted around an axis that matched the anatomical center of a human retina, assuming a radius of curvature of 12 mm, while it was submersed in a 23.4 mm long water filled chamber to emulate human ocular axial length. We used this optical setup to perform direct recording of the point spread function (PSF) and the associated retinal images for a commercial intraocular lens (IOL). Additionally, psychophysical tests were carried out to investigate the impact of the off-axis astigmatism in peripheral visual performance, where spectacle-induced astigmatism simulated the pseudophakic conditions in healthy subjects. Our findings using the physical eye model confirm the existence of large amounts of astigmatism in the periphery of the pseudophakic eye. The psychophysical tests revealed a significant reduction of detection sensitivity in the peripheral visual field. The latter suggests that off-axis astigmatism in patients implanted with IOLs may have performance and safety implications for activities requiring efficient peripheral vision.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Double image in far peripheral vision of pseudophakic eye as source of negative dysphotopsia

Michael J. Simpson
J. Opt. Soc. Am. A 31(12) 2642-2649 (2014)

Statistical variation of aberration structure and image quality in a normal population of healthy eyes

Larry N. Thibos, Xin Hong, Arthur Bradley, and Xu Cheng
J. Opt. Soc. Am. A 19(12) 2329-2348 (2002)

Full 3-D OCT-based pseudophakic custom computer eye model

M. Sun, P. Pérez-Merino, E. Martinez-Enriquez, M. Velasco-Ocana, and S. Marcos
Biomed. Opt. Express 7(3) 1074-1088 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Visual Sci. 49(6), 2531–2540 (2008).
    [Crossref]
  2. P. P. Fagerholm, B. T. Philipson, and B. Lindström, “Normal human lens-the distribution of protein,” Exp. Eye Res. 33(6), 615–620 (1981).
    [Crossref]
  3. M. Delaye and A. Tardieu, “Short-range oder of crystallin proteins accounts for eye lens transparency,” Nature 302(5907), 415–417 (1983).
    [Crossref]
  4. P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vis. 1(1), 1 (2001).
    [Crossref]
  5. P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19(1), 137 (2002).
    [Crossref]
  6. D. R. Williams, P. Artal, R. Navarro, M. J. Mcmahon, and D. H. Brainard, “Off-axis optical quality and retinal sampling in the human eye,” Vision Res. 36(8), 1103–1114 (1996).
    [Crossref]
  7. P. Artal, S. Marcos, R. Navarro, and D. R. Williams, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A 12(2), 195–201 (1995).
    [Crossref]
  8. L. Lundstrom, S. Manzanera, P. M. Prieto, D. B. Ayala, N. Gorceix, J. Gustafsson, P. Unsbo, and P. Artal, “Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye,” Opt. Express 15(20), 12654–12661 (2007).
    [Crossref]
  9. B. Jay, D. J. Apple, and J. Sims, “Remembrances of things past: Harold Ridley and the Invention of the Intraocular Lens,” Surv. Ophthalmol. 40(4), 279–292 (1996).
    [Crossref]
  10. P. Artal, S. Marcos, R. Navarro, I. Miranda, and M. Ferro, “Through focus image quality of eyes implanted with monofocal and multifocal intraocular lenses,” Opt. Eng. 34(3), 772–779 (1995).
    [Crossref]
  11. A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal Optical Aberrations and Retinal Image Quality in Patients in Whom Monofocal Intraocular Lenses Were Implanted,” Arch. Ophthalmol. 120(9), 1143–1151 (2002).
    [Crossref]
  12. D. H. Chang and K. M. Rocha, “Intraocular lens optics and aberrations,” Curr. Opin. Ophthalmol. 27(4), 298–303 (2016).
    [Crossref]
  13. Y. Z. Wang, L. N. Thibos, and A. Bradley, “Effects of refractive error on detection acuity and resolution acuity in peripheral vision,” Invest. Ophthalmol. Visual Sci. 38, 2134–2143 (1997).
  14. M. Millodot, C. Johnson, A. Lamont, and H. Leibowitz, “Effect of dioptrics on peripheral visual acuity,” Vision Res. 15(12), 1357–1362 (1975).
    [Crossref]
  15. E. Aulhorn and H. Harms, “Visual Perimetry,” in Visual Psychophysics, D. Jameson and L. M. Hurvich, eds. (Springer: Berlin Heidelberg, 1972), pp. 102–145.
  16. R. Rosén, L. Lundström, and P. Unsbo, “Influence of optical defocus on peripheral vision,” Invest. Ophthalmol. Visual Sci. 52(1), 318–323 (2011).
    [Crossref]
  17. R. S. Anderson, “The selective effect of optical defocus on detection and resolution acuity in peripheral vision,” Curr. Eye Res. 15(3), 351–353 (1996).
    [Crossref]
  18. A. Bowers, E. Peli, J. Elgin, G. McGwin, and C. Owsley, “On-road driving with moderate visual field loss,” Optom. Vis. Sci. 82(8), 657–667 (2005).
    [Crossref]
  19. C. Owsley and G. McGwin, “Vision and driving,” Vision Res. 50(23), 2348–2361 (2010).
    [Crossref]
  20. B. Wolfe, J. Dobres, R. Rosenholtz, and B. Reimer, “More than the Useful Field: Considering peripheral vision in driving,” Appl. Ergon. 65, 316–325 (2017).
    [Crossref]
  21. B. Jaeken, S. Mirabet, J. M. Marín, and P. Artal, “Comparison of the optical image quality in the periphery of phakic and pseudophakic eyes,” Invest. Ophthalmol. Vis. Sci. 54(5), 3594–3599 (2013).
    [Crossref]
  22. J. Tabernero, A. Ohlendorf, M. D. Fischer, A. R. Bruckmann, U. Schiefer, and F. Schaeffel, “Peripheral refraction in pseudophakic eyes measured by infrared scanning photoretinoscopy,” J. Cataract Refractive Surg. 38(5), 807–815 (2012).
    [Crossref]
  23. R. Navarro, J. Santamaría, and J. Bescós, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2(8), 1273 (1985).
    [Crossref]
  24. C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrickson, and R. E. Kalina, “Distribution of Cones in Human and Monkey Retina: Individual Variability and Radial Asymmetry,” Science 236(4801), 579–582 (1987).
    [Crossref]
  25. D. H. Brainard, “The Psychophysics Toolbox,” Spatial Vis. 10(4), 433 (1997).
    [Crossref]
  26. J. Gustafsson, E. Terenius, J. Buchheister, and P. Unsbo, “Peripheral astigmatism in emmetropic eyes,” Oph. Phys. Optics 21(5), 393–400 (2001).
    [Crossref]
  27. J. Polans, B. Jaeken, R. P. McNabb, P. Artal, and J. A. Izatt, “Wide-field optical model of the human eye with asymmetrically tilted and decentered lens that reproduces measured ocular aberrations,” Optica 2(2), 124 (2015).
    [Crossref]
  28. B. Jaeken and P. Artal, “Optical quality of emmetropic and myopic eyes in the periphery measured with high-angular resolution,” Invest. Ophthalmol. Visual Sci. 53(7), 3405–3413 (2012).
    [Crossref]
  29. D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, and R. A. Riley, “Eye shape in emmetropia and myopia,” Invest. Ophthalmol. Visual Sci. 45(10), 3380–3386 (2004).
    [Crossref]

2017 (1)

B. Wolfe, J. Dobres, R. Rosenholtz, and B. Reimer, “More than the Useful Field: Considering peripheral vision in driving,” Appl. Ergon. 65, 316–325 (2017).
[Crossref]

2016 (1)

D. H. Chang and K. M. Rocha, “Intraocular lens optics and aberrations,” Curr. Opin. Ophthalmol. 27(4), 298–303 (2016).
[Crossref]

2015 (1)

2013 (1)

B. Jaeken, S. Mirabet, J. M. Marín, and P. Artal, “Comparison of the optical image quality in the periphery of phakic and pseudophakic eyes,” Invest. Ophthalmol. Vis. Sci. 54(5), 3594–3599 (2013).
[Crossref]

2012 (2)

J. Tabernero, A. Ohlendorf, M. D. Fischer, A. R. Bruckmann, U. Schiefer, and F. Schaeffel, “Peripheral refraction in pseudophakic eyes measured by infrared scanning photoretinoscopy,” J. Cataract Refractive Surg. 38(5), 807–815 (2012).
[Crossref]

B. Jaeken and P. Artal, “Optical quality of emmetropic and myopic eyes in the periphery measured with high-angular resolution,” Invest. Ophthalmol. Visual Sci. 53(7), 3405–3413 (2012).
[Crossref]

2011 (1)

R. Rosén, L. Lundström, and P. Unsbo, “Influence of optical defocus on peripheral vision,” Invest. Ophthalmol. Visual Sci. 52(1), 318–323 (2011).
[Crossref]

2010 (1)

C. Owsley and G. McGwin, “Vision and driving,” Vision Res. 50(23), 2348–2361 (2010).
[Crossref]

2008 (1)

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Visual Sci. 49(6), 2531–2540 (2008).
[Crossref]

2007 (1)

2005 (1)

A. Bowers, E. Peli, J. Elgin, G. McGwin, and C. Owsley, “On-road driving with moderate visual field loss,” Optom. Vis. Sci. 82(8), 657–667 (2005).
[Crossref]

2004 (1)

D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, and R. A. Riley, “Eye shape in emmetropia and myopia,” Invest. Ophthalmol. Visual Sci. 45(10), 3380–3386 (2004).
[Crossref]

2002 (2)

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal Optical Aberrations and Retinal Image Quality in Patients in Whom Monofocal Intraocular Lenses Were Implanted,” Arch. Ophthalmol. 120(9), 1143–1151 (2002).
[Crossref]

P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19(1), 137 (2002).
[Crossref]

2001 (2)

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vis. 1(1), 1 (2001).
[Crossref]

J. Gustafsson, E. Terenius, J. Buchheister, and P. Unsbo, “Peripheral astigmatism in emmetropic eyes,” Oph. Phys. Optics 21(5), 393–400 (2001).
[Crossref]

1997 (2)

D. H. Brainard, “The Psychophysics Toolbox,” Spatial Vis. 10(4), 433 (1997).
[Crossref]

Y. Z. Wang, L. N. Thibos, and A. Bradley, “Effects of refractive error on detection acuity and resolution acuity in peripheral vision,” Invest. Ophthalmol. Visual Sci. 38, 2134–2143 (1997).

1996 (3)

R. S. Anderson, “The selective effect of optical defocus on detection and resolution acuity in peripheral vision,” Curr. Eye Res. 15(3), 351–353 (1996).
[Crossref]

D. R. Williams, P. Artal, R. Navarro, M. J. Mcmahon, and D. H. Brainard, “Off-axis optical quality and retinal sampling in the human eye,” Vision Res. 36(8), 1103–1114 (1996).
[Crossref]

B. Jay, D. J. Apple, and J. Sims, “Remembrances of things past: Harold Ridley and the Invention of the Intraocular Lens,” Surv. Ophthalmol. 40(4), 279–292 (1996).
[Crossref]

1995 (2)

P. Artal, S. Marcos, R. Navarro, I. Miranda, and M. Ferro, “Through focus image quality of eyes implanted with monofocal and multifocal intraocular lenses,” Opt. Eng. 34(3), 772–779 (1995).
[Crossref]

P. Artal, S. Marcos, R. Navarro, and D. R. Williams, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A 12(2), 195–201 (1995).
[Crossref]

1987 (1)

C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrickson, and R. E. Kalina, “Distribution of Cones in Human and Monkey Retina: Individual Variability and Radial Asymmetry,” Science 236(4801), 579–582 (1987).
[Crossref]

1985 (1)

1983 (1)

M. Delaye and A. Tardieu, “Short-range oder of crystallin proteins accounts for eye lens transparency,” Nature 302(5907), 415–417 (1983).
[Crossref]

1981 (1)

P. P. Fagerholm, B. T. Philipson, and B. Lindström, “Normal human lens-the distribution of protein,” Exp. Eye Res. 33(6), 615–620 (1981).
[Crossref]

1975 (1)

M. Millodot, C. Johnson, A. Lamont, and H. Leibowitz, “Effect of dioptrics on peripheral visual acuity,” Vision Res. 15(12), 1357–1362 (1975).
[Crossref]

Anderson, R. S.

R. S. Anderson, “The selective effect of optical defocus on detection and resolution acuity in peripheral vision,” Curr. Eye Res. 15(3), 351–353 (1996).
[Crossref]

Apple, D. J.

B. Jay, D. J. Apple, and J. Sims, “Remembrances of things past: Harold Ridley and the Invention of the Intraocular Lens,” Surv. Ophthalmol. 40(4), 279–292 (1996).
[Crossref]

Artal, P.

J. Polans, B. Jaeken, R. P. McNabb, P. Artal, and J. A. Izatt, “Wide-field optical model of the human eye with asymmetrically tilted and decentered lens that reproduces measured ocular aberrations,” Optica 2(2), 124 (2015).
[Crossref]

B. Jaeken, S. Mirabet, J. M. Marín, and P. Artal, “Comparison of the optical image quality in the periphery of phakic and pseudophakic eyes,” Invest. Ophthalmol. Vis. Sci. 54(5), 3594–3599 (2013).
[Crossref]

B. Jaeken and P. Artal, “Optical quality of emmetropic and myopic eyes in the periphery measured with high-angular resolution,” Invest. Ophthalmol. Visual Sci. 53(7), 3405–3413 (2012).
[Crossref]

L. Lundstrom, S. Manzanera, P. M. Prieto, D. B. Ayala, N. Gorceix, J. Gustafsson, P. Unsbo, and P. Artal, “Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye,” Opt. Express 15(20), 12654–12661 (2007).
[Crossref]

P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19(1), 137 (2002).
[Crossref]

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal Optical Aberrations and Retinal Image Quality in Patients in Whom Monofocal Intraocular Lenses Were Implanted,” Arch. Ophthalmol. 120(9), 1143–1151 (2002).
[Crossref]

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vis. 1(1), 1 (2001).
[Crossref]

D. R. Williams, P. Artal, R. Navarro, M. J. Mcmahon, and D. H. Brainard, “Off-axis optical quality and retinal sampling in the human eye,” Vision Res. 36(8), 1103–1114 (1996).
[Crossref]

P. Artal, S. Marcos, R. Navarro, I. Miranda, and M. Ferro, “Through focus image quality of eyes implanted with monofocal and multifocal intraocular lenses,” Opt. Eng. 34(3), 772–779 (1995).
[Crossref]

P. Artal, S. Marcos, R. Navarro, and D. R. Williams, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A 12(2), 195–201 (1995).
[Crossref]

Atchison, D. A.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Visual Sci. 49(6), 2531–2540 (2008).
[Crossref]

D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, and R. A. Riley, “Eye shape in emmetropia and myopia,” Invest. Ophthalmol. Visual Sci. 45(10), 3380–3386 (2004).
[Crossref]

Aulhorn, E.

E. Aulhorn and H. Harms, “Visual Perimetry,” in Visual Psychophysics, D. Jameson and L. M. Hurvich, eds. (Springer: Berlin Heidelberg, 1972), pp. 102–145.

Ayala, D. B.

Berrio, E.

P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19(1), 137 (2002).
[Crossref]

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vis. 1(1), 1 (2001).
[Crossref]

Bescós, J.

Bowers, A.

A. Bowers, E. Peli, J. Elgin, G. McGwin, and C. Owsley, “On-road driving with moderate visual field loss,” Optom. Vis. Sci. 82(8), 657–667 (2005).
[Crossref]

Bradley, A.

Y. Z. Wang, L. N. Thibos, and A. Bradley, “Effects of refractive error on detection acuity and resolution acuity in peripheral vision,” Invest. Ophthalmol. Visual Sci. 38, 2134–2143 (1997).

Brainard, D. H.

D. H. Brainard, “The Psychophysics Toolbox,” Spatial Vis. 10(4), 433 (1997).
[Crossref]

D. R. Williams, P. Artal, R. Navarro, M. J. Mcmahon, and D. H. Brainard, “Off-axis optical quality and retinal sampling in the human eye,” Vision Res. 36(8), 1103–1114 (1996).
[Crossref]

Bruckmann, A. R.

J. Tabernero, A. Ohlendorf, M. D. Fischer, A. R. Bruckmann, U. Schiefer, and F. Schaeffel, “Peripheral refraction in pseudophakic eyes measured by infrared scanning photoretinoscopy,” J. Cataract Refractive Surg. 38(5), 807–815 (2012).
[Crossref]

Buchheister, J.

J. Gustafsson, E. Terenius, J. Buchheister, and P. Unsbo, “Peripheral astigmatism in emmetropic eyes,” Oph. Phys. Optics 21(5), 393–400 (2001).
[Crossref]

Chang, D. H.

D. H. Chang and K. M. Rocha, “Intraocular lens optics and aberrations,” Curr. Opin. Ophthalmol. 27(4), 298–303 (2016).
[Crossref]

Curcio, C. A.

C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrickson, and R. E. Kalina, “Distribution of Cones in Human and Monkey Retina: Individual Variability and Radial Asymmetry,” Science 236(4801), 579–582 (1987).
[Crossref]

Delaye, M.

M. Delaye and A. Tardieu, “Short-range oder of crystallin proteins accounts for eye lens transparency,” Nature 302(5907), 415–417 (1983).
[Crossref]

Dobres, J.

B. Wolfe, J. Dobres, R. Rosenholtz, and B. Reimer, “More than the Useful Field: Considering peripheral vision in driving,” Appl. Ergon. 65, 316–325 (2017).
[Crossref]

Elgin, J.

A. Bowers, E. Peli, J. Elgin, G. McGwin, and C. Owsley, “On-road driving with moderate visual field loss,” Optom. Vis. Sci. 82(8), 657–667 (2005).
[Crossref]

Fagerholm, P. P.

P. P. Fagerholm, B. T. Philipson, and B. Lindström, “Normal human lens-the distribution of protein,” Exp. Eye Res. 33(6), 615–620 (1981).
[Crossref]

Ferro, M.

P. Artal, S. Marcos, R. Navarro, I. Miranda, and M. Ferro, “Through focus image quality of eyes implanted with monofocal and multifocal intraocular lenses,” Opt. Eng. 34(3), 772–779 (1995).
[Crossref]

Fischer, M. D.

J. Tabernero, A. Ohlendorf, M. D. Fischer, A. R. Bruckmann, U. Schiefer, and F. Schaeffel, “Peripheral refraction in pseudophakic eyes measured by infrared scanning photoretinoscopy,” J. Cataract Refractive Surg. 38(5), 807–815 (2012).
[Crossref]

Geraghty, E.

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal Optical Aberrations and Retinal Image Quality in Patients in Whom Monofocal Intraocular Lenses Were Implanted,” Arch. Ophthalmol. 120(9), 1143–1151 (2002).
[Crossref]

Gorceix, N.

Guirao, A.

P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19(1), 137 (2002).
[Crossref]

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal Optical Aberrations and Retinal Image Quality in Patients in Whom Monofocal Intraocular Lenses Were Implanted,” Arch. Ophthalmol. 120(9), 1143–1151 (2002).
[Crossref]

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vis. 1(1), 1 (2001).
[Crossref]

Gustafsson, J.

Harms, H.

E. Aulhorn and H. Harms, “Visual Perimetry,” in Visual Psychophysics, D. Jameson and L. M. Hurvich, eds. (Springer: Berlin Heidelberg, 1972), pp. 102–145.

Hendrickson, A. E.

C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrickson, and R. E. Kalina, “Distribution of Cones in Human and Monkey Retina: Individual Variability and Radial Asymmetry,” Science 236(4801), 579–582 (1987).
[Crossref]

Izatt, J. A.

Jaeken, B.

J. Polans, B. Jaeken, R. P. McNabb, P. Artal, and J. A. Izatt, “Wide-field optical model of the human eye with asymmetrically tilted and decentered lens that reproduces measured ocular aberrations,” Optica 2(2), 124 (2015).
[Crossref]

B. Jaeken, S. Mirabet, J. M. Marín, and P. Artal, “Comparison of the optical image quality in the periphery of phakic and pseudophakic eyes,” Invest. Ophthalmol. Vis. Sci. 54(5), 3594–3599 (2013).
[Crossref]

B. Jaeken and P. Artal, “Optical quality of emmetropic and myopic eyes in the periphery measured with high-angular resolution,” Invest. Ophthalmol. Visual Sci. 53(7), 3405–3413 (2012).
[Crossref]

Jay, B.

B. Jay, D. J. Apple, and J. Sims, “Remembrances of things past: Harold Ridley and the Invention of the Intraocular Lens,” Surv. Ophthalmol. 40(4), 279–292 (1996).
[Crossref]

Johnson, C.

M. Millodot, C. Johnson, A. Lamont, and H. Leibowitz, “Effect of dioptrics on peripheral visual acuity,” Vision Res. 15(12), 1357–1362 (1975).
[Crossref]

Jones, C. E.

D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, and R. A. Riley, “Eye shape in emmetropia and myopia,” Invest. Ophthalmol. Visual Sci. 45(10), 3380–3386 (2004).
[Crossref]

Kalina, R. E.

C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrickson, and R. E. Kalina, “Distribution of Cones in Human and Monkey Retina: Individual Variability and Radial Asymmetry,” Science 236(4801), 579–582 (1987).
[Crossref]

Kasthurirangan, S.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Visual Sci. 49(6), 2531–2540 (2008).
[Crossref]

Lamont, A.

M. Millodot, C. Johnson, A. Lamont, and H. Leibowitz, “Effect of dioptrics on peripheral visual acuity,” Vision Res. 15(12), 1357–1362 (1975).
[Crossref]

Leibowitz, H.

M. Millodot, C. Johnson, A. Lamont, and H. Leibowitz, “Effect of dioptrics on peripheral visual acuity,” Vision Res. 15(12), 1357–1362 (1975).
[Crossref]

Lindström, B.

P. P. Fagerholm, B. T. Philipson, and B. Lindström, “Normal human lens-the distribution of protein,” Exp. Eye Res. 33(6), 615–620 (1981).
[Crossref]

Lundstrom, L.

Lundström, L.

R. Rosén, L. Lundström, and P. Unsbo, “Influence of optical defocus on peripheral vision,” Invest. Ophthalmol. Visual Sci. 52(1), 318–323 (2011).
[Crossref]

Manzanera, S.

Marcos, S.

P. Artal, S. Marcos, R. Navarro, and D. R. Williams, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A 12(2), 195–201 (1995).
[Crossref]

P. Artal, S. Marcos, R. Navarro, I. Miranda, and M. Ferro, “Through focus image quality of eyes implanted with monofocal and multifocal intraocular lenses,” Opt. Eng. 34(3), 772–779 (1995).
[Crossref]

Marín, J. M.

B. Jaeken, S. Mirabet, J. M. Marín, and P. Artal, “Comparison of the optical image quality in the periphery of phakic and pseudophakic eyes,” Invest. Ophthalmol. Vis. Sci. 54(5), 3594–3599 (2013).
[Crossref]

Markwell, E. L.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Visual Sci. 49(6), 2531–2540 (2008).
[Crossref]

McGwin, G.

C. Owsley and G. McGwin, “Vision and driving,” Vision Res. 50(23), 2348–2361 (2010).
[Crossref]

A. Bowers, E. Peli, J. Elgin, G. McGwin, and C. Owsley, “On-road driving with moderate visual field loss,” Optom. Vis. Sci. 82(8), 657–667 (2005).
[Crossref]

Mcmahon, M. J.

D. R. Williams, P. Artal, R. Navarro, M. J. Mcmahon, and D. H. Brainard, “Off-axis optical quality and retinal sampling in the human eye,” Vision Res. 36(8), 1103–1114 (1996).
[Crossref]

McNabb, R. P.

Millodot, M.

M. Millodot, C. Johnson, A. Lamont, and H. Leibowitz, “Effect of dioptrics on peripheral visual acuity,” Vision Res. 15(12), 1357–1362 (1975).
[Crossref]

Mirabet, S.

B. Jaeken, S. Mirabet, J. M. Marín, and P. Artal, “Comparison of the optical image quality in the periphery of phakic and pseudophakic eyes,” Invest. Ophthalmol. Vis. Sci. 54(5), 3594–3599 (2013).
[Crossref]

Miranda, I.

P. Artal, S. Marcos, R. Navarro, I. Miranda, and M. Ferro, “Through focus image quality of eyes implanted with monofocal and multifocal intraocular lenses,” Opt. Eng. 34(3), 772–779 (1995).
[Crossref]

Navarro, R.

D. R. Williams, P. Artal, R. Navarro, M. J. Mcmahon, and D. H. Brainard, “Off-axis optical quality and retinal sampling in the human eye,” Vision Res. 36(8), 1103–1114 (1996).
[Crossref]

P. Artal, S. Marcos, R. Navarro, I. Miranda, and M. Ferro, “Through focus image quality of eyes implanted with monofocal and multifocal intraocular lenses,” Opt. Eng. 34(3), 772–779 (1995).
[Crossref]

P. Artal, S. Marcos, R. Navarro, and D. R. Williams, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A 12(2), 195–201 (1995).
[Crossref]

R. Navarro, J. Santamaría, and J. Bescós, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2(8), 1273 (1985).
[Crossref]

Norrby, S.

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal Optical Aberrations and Retinal Image Quality in Patients in Whom Monofocal Intraocular Lenses Were Implanted,” Arch. Ophthalmol. 120(9), 1143–1151 (2002).
[Crossref]

Ohlendorf, A.

J. Tabernero, A. Ohlendorf, M. D. Fischer, A. R. Bruckmann, U. Schiefer, and F. Schaeffel, “Peripheral refraction in pseudophakic eyes measured by infrared scanning photoretinoscopy,” J. Cataract Refractive Surg. 38(5), 807–815 (2012).
[Crossref]

Owsley, C.

C. Owsley and G. McGwin, “Vision and driving,” Vision Res. 50(23), 2348–2361 (2010).
[Crossref]

A. Bowers, E. Peli, J. Elgin, G. McGwin, and C. Owsley, “On-road driving with moderate visual field loss,” Optom. Vis. Sci. 82(8), 657–667 (2005).
[Crossref]

Packer, O.

C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrickson, and R. E. Kalina, “Distribution of Cones in Human and Monkey Retina: Individual Variability and Radial Asymmetry,” Science 236(4801), 579–582 (1987).
[Crossref]

Peli, E.

A. Bowers, E. Peli, J. Elgin, G. McGwin, and C. Owsley, “On-road driving with moderate visual field loss,” Optom. Vis. Sci. 82(8), 657–667 (2005).
[Crossref]

Philipson, B. T.

P. P. Fagerholm, B. T. Philipson, and B. Lindström, “Normal human lens-the distribution of protein,” Exp. Eye Res. 33(6), 615–620 (1981).
[Crossref]

Piers, P.

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal Optical Aberrations and Retinal Image Quality in Patients in Whom Monofocal Intraocular Lenses Were Implanted,” Arch. Ophthalmol. 120(9), 1143–1151 (2002).
[Crossref]

P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19(1), 137 (2002).
[Crossref]

Polans, J.

Pope, J. M.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Visual Sci. 49(6), 2531–2540 (2008).
[Crossref]

D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, and R. A. Riley, “Eye shape in emmetropia and myopia,” Invest. Ophthalmol. Visual Sci. 45(10), 3380–3386 (2004).
[Crossref]

Prieto, P. M.

Pritchard, N.

D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, and R. A. Riley, “Eye shape in emmetropia and myopia,” Invest. Ophthalmol. Visual Sci. 45(10), 3380–3386 (2004).
[Crossref]

Redondo, M.

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal Optical Aberrations and Retinal Image Quality in Patients in Whom Monofocal Intraocular Lenses Were Implanted,” Arch. Ophthalmol. 120(9), 1143–1151 (2002).
[Crossref]

Reimer, B.

B. Wolfe, J. Dobres, R. Rosenholtz, and B. Reimer, “More than the Useful Field: Considering peripheral vision in driving,” Appl. Ergon. 65, 316–325 (2017).
[Crossref]

Riley, R. A.

D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, and R. A. Riley, “Eye shape in emmetropia and myopia,” Invest. Ophthalmol. Visual Sci. 45(10), 3380–3386 (2004).
[Crossref]

Rocha, K. M.

D. H. Chang and K. M. Rocha, “Intraocular lens optics and aberrations,” Curr. Opin. Ophthalmol. 27(4), 298–303 (2016).
[Crossref]

Rosén, R.

R. Rosén, L. Lundström, and P. Unsbo, “Influence of optical defocus on peripheral vision,” Invest. Ophthalmol. Visual Sci. 52(1), 318–323 (2011).
[Crossref]

Rosenholtz, R.

B. Wolfe, J. Dobres, R. Rosenholtz, and B. Reimer, “More than the Useful Field: Considering peripheral vision in driving,” Appl. Ergon. 65, 316–325 (2017).
[Crossref]

Santamaría, J.

Schaeffel, F.

J. Tabernero, A. Ohlendorf, M. D. Fischer, A. R. Bruckmann, U. Schiefer, and F. Schaeffel, “Peripheral refraction in pseudophakic eyes measured by infrared scanning photoretinoscopy,” J. Cataract Refractive Surg. 38(5), 807–815 (2012).
[Crossref]

Schiefer, U.

J. Tabernero, A. Ohlendorf, M. D. Fischer, A. R. Bruckmann, U. Schiefer, and F. Schaeffel, “Peripheral refraction in pseudophakic eyes measured by infrared scanning photoretinoscopy,” J. Cataract Refractive Surg. 38(5), 807–815 (2012).
[Crossref]

Schmid, K. L.

D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, and R. A. Riley, “Eye shape in emmetropia and myopia,” Invest. Ophthalmol. Visual Sci. 45(10), 3380–3386 (2004).
[Crossref]

Sims, J.

B. Jay, D. J. Apple, and J. Sims, “Remembrances of things past: Harold Ridley and the Invention of the Intraocular Lens,” Surv. Ophthalmol. 40(4), 279–292 (1996).
[Crossref]

Sloan, K. R.

C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrickson, and R. E. Kalina, “Distribution of Cones in Human and Monkey Retina: Individual Variability and Radial Asymmetry,” Science 236(4801), 579–582 (1987).
[Crossref]

Strugnell, W. E.

D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, and R. A. Riley, “Eye shape in emmetropia and myopia,” Invest. Ophthalmol. Visual Sci. 45(10), 3380–3386 (2004).
[Crossref]

Tabernero, J.

J. Tabernero, A. Ohlendorf, M. D. Fischer, A. R. Bruckmann, U. Schiefer, and F. Schaeffel, “Peripheral refraction in pseudophakic eyes measured by infrared scanning photoretinoscopy,” J. Cataract Refractive Surg. 38(5), 807–815 (2012).
[Crossref]

Tardieu, A.

M. Delaye and A. Tardieu, “Short-range oder of crystallin proteins accounts for eye lens transparency,” Nature 302(5907), 415–417 (1983).
[Crossref]

Terenius, E.

J. Gustafsson, E. Terenius, J. Buchheister, and P. Unsbo, “Peripheral astigmatism in emmetropic eyes,” Oph. Phys. Optics 21(5), 393–400 (2001).
[Crossref]

Thibos, L. N.

Y. Z. Wang, L. N. Thibos, and A. Bradley, “Effects of refractive error on detection acuity and resolution acuity in peripheral vision,” Invest. Ophthalmol. Visual Sci. 38, 2134–2143 (1997).

Unsbo, P.

R. Rosén, L. Lundström, and P. Unsbo, “Influence of optical defocus on peripheral vision,” Invest. Ophthalmol. Visual Sci. 52(1), 318–323 (2011).
[Crossref]

L. Lundstrom, S. Manzanera, P. M. Prieto, D. B. Ayala, N. Gorceix, J. Gustafsson, P. Unsbo, and P. Artal, “Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye,” Opt. Express 15(20), 12654–12661 (2007).
[Crossref]

J. Gustafsson, E. Terenius, J. Buchheister, and P. Unsbo, “Peripheral astigmatism in emmetropic eyes,” Oph. Phys. Optics 21(5), 393–400 (2001).
[Crossref]

Wang, Y. Z.

Y. Z. Wang, L. N. Thibos, and A. Bradley, “Effects of refractive error on detection acuity and resolution acuity in peripheral vision,” Invest. Ophthalmol. Visual Sci. 38, 2134–2143 (1997).

Williams, D. R.

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vis. 1(1), 1 (2001).
[Crossref]

D. R. Williams, P. Artal, R. Navarro, M. J. Mcmahon, and D. H. Brainard, “Off-axis optical quality and retinal sampling in the human eye,” Vision Res. 36(8), 1103–1114 (1996).
[Crossref]

P. Artal, S. Marcos, R. Navarro, and D. R. Williams, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A 12(2), 195–201 (1995).
[Crossref]

Wolfe, B.

B. Wolfe, J. Dobres, R. Rosenholtz, and B. Reimer, “More than the Useful Field: Considering peripheral vision in driving,” Appl. Ergon. 65, 316–325 (2017).
[Crossref]

Appl. Ergon. (1)

B. Wolfe, J. Dobres, R. Rosenholtz, and B. Reimer, “More than the Useful Field: Considering peripheral vision in driving,” Appl. Ergon. 65, 316–325 (2017).
[Crossref]

Arch. Ophthalmol. (1)

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal Optical Aberrations and Retinal Image Quality in Patients in Whom Monofocal Intraocular Lenses Were Implanted,” Arch. Ophthalmol. 120(9), 1143–1151 (2002).
[Crossref]

Curr. Eye Res. (1)

R. S. Anderson, “The selective effect of optical defocus on detection and resolution acuity in peripheral vision,” Curr. Eye Res. 15(3), 351–353 (1996).
[Crossref]

Curr. Opin. Ophthalmol. (1)

D. H. Chang and K. M. Rocha, “Intraocular lens optics and aberrations,” Curr. Opin. Ophthalmol. 27(4), 298–303 (2016).
[Crossref]

Exp. Eye Res. (1)

P. P. Fagerholm, B. T. Philipson, and B. Lindström, “Normal human lens-the distribution of protein,” Exp. Eye Res. 33(6), 615–620 (1981).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (1)

B. Jaeken, S. Mirabet, J. M. Marín, and P. Artal, “Comparison of the optical image quality in the periphery of phakic and pseudophakic eyes,” Invest. Ophthalmol. Vis. Sci. 54(5), 3594–3599 (2013).
[Crossref]

Invest. Ophthalmol. Visual Sci. (5)

R. Rosén, L. Lundström, and P. Unsbo, “Influence of optical defocus on peripheral vision,” Invest. Ophthalmol. Visual Sci. 52(1), 318–323 (2011).
[Crossref]

B. Jaeken and P. Artal, “Optical quality of emmetropic and myopic eyes in the periphery measured with high-angular resolution,” Invest. Ophthalmol. Visual Sci. 53(7), 3405–3413 (2012).
[Crossref]

D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, and R. A. Riley, “Eye shape in emmetropia and myopia,” Invest. Ophthalmol. Visual Sci. 45(10), 3380–3386 (2004).
[Crossref]

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Visual Sci. 49(6), 2531–2540 (2008).
[Crossref]

Y. Z. Wang, L. N. Thibos, and A. Bradley, “Effects of refractive error on detection acuity and resolution acuity in peripheral vision,” Invest. Ophthalmol. Visual Sci. 38, 2134–2143 (1997).

J. Cataract Refractive Surg. (1)

J. Tabernero, A. Ohlendorf, M. D. Fischer, A. R. Bruckmann, U. Schiefer, and F. Schaeffel, “Peripheral refraction in pseudophakic eyes measured by infrared scanning photoretinoscopy,” J. Cataract Refractive Surg. 38(5), 807–815 (2012).
[Crossref]

J. Opt. Soc. Am. A (3)

J. Vis. (1)

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vis. 1(1), 1 (2001).
[Crossref]

Nature (1)

M. Delaye and A. Tardieu, “Short-range oder of crystallin proteins accounts for eye lens transparency,” Nature 302(5907), 415–417 (1983).
[Crossref]

Oph. Phys. Optics (1)

J. Gustafsson, E. Terenius, J. Buchheister, and P. Unsbo, “Peripheral astigmatism in emmetropic eyes,” Oph. Phys. Optics 21(5), 393–400 (2001).
[Crossref]

Opt. Eng. (1)

P. Artal, S. Marcos, R. Navarro, I. Miranda, and M. Ferro, “Through focus image quality of eyes implanted with monofocal and multifocal intraocular lenses,” Opt. Eng. 34(3), 772–779 (1995).
[Crossref]

Opt. Express (1)

Optica (1)

Optom. Vis. Sci. (1)

A. Bowers, E. Peli, J. Elgin, G. McGwin, and C. Owsley, “On-road driving with moderate visual field loss,” Optom. Vis. Sci. 82(8), 657–667 (2005).
[Crossref]

Science (1)

C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrickson, and R. E. Kalina, “Distribution of Cones in Human and Monkey Retina: Individual Variability and Radial Asymmetry,” Science 236(4801), 579–582 (1987).
[Crossref]

Spatial Vis. (1)

D. H. Brainard, “The Psychophysics Toolbox,” Spatial Vis. 10(4), 433 (1997).
[Crossref]

Surv. Ophthalmol. (1)

B. Jay, D. J. Apple, and J. Sims, “Remembrances of things past: Harold Ridley and the Invention of the Intraocular Lens,” Surv. Ophthalmol. 40(4), 279–292 (1996).
[Crossref]

Vision Res. (3)

C. Owsley and G. McGwin, “Vision and driving,” Vision Res. 50(23), 2348–2361 (2010).
[Crossref]

M. Millodot, C. Johnson, A. Lamont, and H. Leibowitz, “Effect of dioptrics on peripheral visual acuity,” Vision Res. 15(12), 1357–1362 (1975).
[Crossref]

D. R. Williams, P. Artal, R. Navarro, M. J. Mcmahon, and D. H. Brainard, “Off-axis optical quality and retinal sampling in the human eye,” Vision Res. 36(8), 1103–1114 (1996).
[Crossref]

Other (1)

E. Aulhorn and H. Harms, “Visual Perimetry,” in Visual Psychophysics, D. Jameson and L. M. Hurvich, eds. (Springer: Berlin Heidelberg, 1972), pp. 102–145.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Model for the natural eye (a) and the pseudophakic eye (b). Notice the change in field curvature in the periphery of the pseudophakic eye and the physical shape of the IOL compared to the natural lens.
Fig. 2.
Fig. 2. Schematic (left) and 3D rendering (right) of the constructed artificial eye. The camera detector is submerged in water and can be rotated at various field angles. The artificial eye is mounted on top of a rotational stage which allows rotation of the entire system in a 5 degrees step.
Fig. 3.
Fig. 3. Geometrical parameters of the artificial eye’s cornea (left) and 3D rendering of the IOL holder.
Fig. 4.
Fig. 4. Schematic of the psychophysical experiment. The trial lens was used to simulate the pseudophakic eye at φ=15° and φ=45°.
Fig. 5.
Fig. 5. Spot diagrams for the pseudophakic eye (top row) and the natural eye (bottom row), uncorrected (left column) and corrected for astigmatism (right column), at 45 degrees. The uncorrected size of the PSF in the phakic case is almost double in size horizontally.
Fig. 6.
Fig. 6. Image quality degradation towards the periphery of the visual field of the pseudophakic eye (0-40 degrees).
Fig. 7.
Fig. 7. Recorded PSFs (logarithm gray scale) for the IOL tested. Each image corresponds to a different eccentricity. From left to right: 0, 15, 30 and 45 degrees. Side of each image is 500µm on the camera plane, corresponding to 1.75 degrees of visual angle.
Fig. 8.
Fig. 8. Image captured at 45 degrees of visual angle with the physical eye model and the monofocal IOL, without cylindrical correction (left) and using a correcting cylindrical lens of -10D (right). The size of the letters of the first row is 1 degree.
Fig. 9.
Fig. 9. Boxplot showing sensitivity loss in dB at 15 degrees (open) and 45 degrees (filled).