Abstract

Cholesteatoma of the ear can lead to life-threatening complications and its only treatment is surgery. The smallest remnants of cholesteatoma can lead to recurrence of this disease. Therefore, the optical properties of this tissue are of high importance to identify and remove all cholesteatoma during therapy. In this paper, we determine the absorption coefficient µa and scattering coefficient µs′ of cholesteatoma and bone samples in the wavelength range of 250 nm to 800 nm obtained during five surgeries. These values are determined by high precision integrating sphere measurements in combination with an optimized inverse Monte Carlo simulation (iMCS). To conserve the optical behavior of living tissues, the optical spectroscopy measurements are performed immediately after tissue removal and preparation. It is shown that in the near-UV and visible spectrum clear differences exist between cholesteatoma and bone tissue. While µa is decreasing homogeneously for cholesteatoma, it retains at the high level for bone in the region of 350 nm to 580 nm. Further, the results for the cholesteatoma measurements correspond to published healthy epidermis data. These differences in the optical parameters reveal the future possibility to detect and identify, automatically or semi-automatically, cholesteatoma tissue for active treatment decisions during image-guided surgery leading to a better surgical outcome.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Wide-field optical spectroscopy system integrating reflectance and spatial frequency domain imaging to measure attenuation-corrected intrinsic tissue fluorescence in radical prostatectomy specimens

Emile Beaulieu, Audrey Laurence, Mirela Birlea, Guillaume Sheehy, Leticia Angulo-Rodriguez, Mathieu Latour, Roula Albadine, Fred Saad, Dominique Trudel, and Frédéric Leblond
Biomed. Opt. Express 11(4) 2052-2072 (2020)

Optical characterization of porcine tissues from various organs in the 650–1100 nm range using time-domain diffuse spectroscopy

Sara Mosca, Pranav Lanka, Nick Stone, Sanathana Konugolu Venkata Sekar, Pavel Matousek, Gianluca Valentini, and Antonio Pifferi
Biomed. Opt. Express 11(3) 1697-1706 (2020)

Spatial frequency domain imaging for the longitudinal monitoring of vascularization during mouse femoral graft healing

Jingxuan Ren, Gabriel A. Ramirez, Ashley R. Proctor, Tong Tong Wu, Danielle S. W. Benoit, and Regine Choe
Biomed. Opt. Express 11(10) 5442-5455 (2020)

References

  • View by:
  • |
  • |
  • |

  1. F. C. Uecker, Hals-Nasen-Ohren-Heilkunde in Frage und Antwort: Fragen und Fallgeschichten zur Vorbereitung auf mündliche Prüfungen während des Semesters und Examen (Elsevier, Urban & Fischer Verlag, 2006).
  2. C. Dornelles, S. S. d. Costa, L. Meurer, and C. Schweiger, “Some considerations about acquired adult and pediatric cholesteatomas,” Rev. Bras. Otorrinolaringologia 71(4), 536–545 (2005).
    [Crossref]
  3. D. R. Fassett, P. Kan, S. S. Chin, and W. T. Couldwell, “Cholesteatoma of the clivus,” Skull Base 16(1), 45–47 (2006).
    [Crossref]
  4. H. Sudhoff and H. Hildmann, “Gegenwärtige theorien zur cholesteatomentstehung,” HNO 51(1), 71–83 (2003).
    [Crossref]
  5. J. A. Smith and C. J. Danner, “Complications of chronic otitis media and cholesteatoma,” Otolaryngol. Clin. North Am. 39(6), 1237–1255 (2006).
    [Crossref]
  6. P. Blanco, F. González, J. Holguín, and C. Guerra, “Surgical management of middle ear cholesteatoma and reconstruction at the same time,” Colomb. Med. (Cali) 45(3), 127–131 (2014).
  7. E. Olszewska, M. Wagner, M. Bernal-Sprekelsen, J. Ebmeyer, S. Dazert, H. Hildmann, and H. Sudhoff, “Etiopathogenesis of cholesteatoma,” Eur. Arch. Oto-Rhino-Laryngology Head & Neck 261(1), 6–24 (2004).
    [Crossref]
  8. T. Lister, P. A. Wright, and P. H. Chappell, “Optical properties of human skin,” J. Biomed. Opt. 17(9), 0909011 (2012).
    [Crossref]
  9. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref]
  10. W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
    [Crossref]
  11. E. V. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
    [Crossref]
  12. G. Zonios and A. Dimou, “Light scattering spectroscopy of human skin in vivo,” Opt. Express 17(3), 1256–1267 (2009).
    [Crossref]
  13. E. L. Wisotzky, F. C. Uecker, P. Arens, S. Dommerich, A. Hilsmann, and P. Eisert, “Intraoperative hyperspectral determination of human tissue properties,” J. Biomed. Opt. 23(9), 091409 (2018).
    [Crossref]
  14. E. L. Wisotzky, B. Kossack, F. C. Uecker, P. Arens, S. Dommerich, A. Hilsmann, and P. Eisert, “Validation of two techniques for intraoperative hyperspectral human tissue determination,” in Proceedings of SPIE, vol. 10951 (2019), p. 109511Z.
  15. J. E. East, J. L. Vleugels, P. Roelandt, P. Bhandari, R. Bisschops, E. Dekker, C. Hassan, G. Horgan, R. Kiesslich, and G. Longcroft-Wheaton et al., “Advanced endoscopic imaging: European society of gastrointestinal endoscopy (esge) technology review,” Endoscopy 48(11), 1029–1045 (2016).
    [Crossref]
  16. L. Svane-Knudsen, G. Halkier-Sørensen, P. Rasmussen, and V. D. Ottosen, “Cholesteatoma: a morphologic study of stratum corneum lipids,” Acta Oto-Laryngol. 121(5), 602–606 (2001).
    [Crossref]
  17. B. M. Tissue, Ultraviolet and Visible Absorption Spectroscopy (American Cancer Society, 2012), pp. 1–13.
  18. M. C. Meinke, G. J. Müller, J. Helfmann, and M. Friebel, “Optical properties of platelets and blood plasma and their influence on the optical behavior of whole blood in the visible to near infrared wavelength range,” J. Biomed. Opt. 12(1), 014024 (2007).
    [Crossref]
  19. S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13(4), 041302 (2008).
    [Crossref]
  20. M. Friebel, A. Roggan, G. J. Müller, and M. C. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using monte carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt. 11(3), 034021 (2006).
    [Crossref]
  21. A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. J. Mueller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4(1), 36–47 (1999).
    [Crossref]
  22. A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, “Optical properties of blood in the near-infrared spectral range,” in Optical Diagnostics of Living Cells and Biofluids, vol. 2678 (International Society for Optics and Photonics, 1996), pp. 314–325.
  23. L. L. Levy, N. Jiang, E. Smouha, R. Richards-Kortum, and A. G. Sikora, “Optical imaging with a high-resolution microendoscope to identify cholesteatoma of the middle ear,” The Laryngoscope 123(4), 1016–1020 (2013).
    [Crossref]
  24. E. L. Wisotzky, F. C. Uecker, S. Dommerich, A. Hilsmann, P. Eisert, and P. Arens, “Determination of optical properties of human tissues obtained from parotidectomy in the spectral range of 250 to 800 nm,” J. Biomed. Opt. 24(12), 1–7 (2019).
    [Crossref]
  25. M. Friebel, J. Helfmann, U. Netz, and M. C. Meinke, “Influence of oxygen saturation on the optical scattering properties of human red blood cells in the spectral range 250 to 2000 nm,” J. Biomed. Opt. 14(3), 034001 (2009).
    [Crossref]
  26. A. Roggan, O. Minet, C. Schröder, and G. Müller, “Measurements of optical tissue properties using integrating sphere technique,” in Medical optical tomography: functional imaging and monitoring, vol. 10311 (International Society for Optics and Photonics, 1993), p. 103110A.
  27. W. H. Press, W. H. Press, B. P. Flannery, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, and W. T. Vetterling, Numerical recipes in Pascal: the art of scientific computing, vol. 1 (Cambridge University Press, 1989).
  28. L. O. Svaasand, L. Norvang, E. Fiskerstrand, E. Stopps, M. Berns, and J. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Lasers Med. Sci. 10(1), 55–65 (1995).
    [Crossref]
  29. R. Marchesini, C. Clemente, E. Pignoli, and M. Brambilla, “Optical properties of in vitro epidermis and their possible relationship with optical properties of in vivo skin,” J. Photochem. Photobiol., B 16(2), 127–140 (1992).
    [Crossref]
  30. M. Van Gemert, S. L. Jacques, H. Sterenborg, and W. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36(12), 1146–1154 (1989).
    [Crossref]
  31. I. V. Meglinski and S. J. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions,” Physiol. Meas. 23(4), 741–753 (2002).
    [Crossref]
  32. R. Jackson, A. Addison, and P. Prinsley, “Cholesteatoma in children and adults: are there really any differences?” J. Laryngol. Otol. 132(7), 575–578 (2018).
    [Crossref]
  33. M. Stankovic, “Follow-up of cholesteatoma surgery: open versus closed tympanoplasty,” ORL 69(5), 299–305 (2007).
    [Crossref]
  34. E. Salomatina and A. Yaroslavsky, “Evaluation of the in vivo and ex vivo optical properties in a mouse ear model,” Phys. Med. Biol. 53(11), 2797–2807 (2008).
    [Crossref]
  35. E. Wisotzky, P. Arens, F. C. Uecker, A. Hilsmann, and P. Eisert, “A hyperspectral method to analyze optical tissue characteristics in vivo,” Int. J. Comput. Assist. Radiol. Surg. 13, S46–S47 (2018).
  36. E. L. Wisotzky, J.-C. Rosenthal, F. Schmid, M. Bauer, P. Eisert, A. Hilsmann, A. Schneider, and F. C. Uecker, “Interactive and multimodal-based augmented reality for remote assistance using a digital surgical microscope,” in IEEE Conference on Virtual Reality and 3D User Interfaces (VR), vol. 26 (2019), pp. 1477–1484.

2019 (1)

E. L. Wisotzky, F. C. Uecker, S. Dommerich, A. Hilsmann, P. Eisert, and P. Arens, “Determination of optical properties of human tissues obtained from parotidectomy in the spectral range of 250 to 800 nm,” J. Biomed. Opt. 24(12), 1–7 (2019).
[Crossref]

2018 (3)

R. Jackson, A. Addison, and P. Prinsley, “Cholesteatoma in children and adults: are there really any differences?” J. Laryngol. Otol. 132(7), 575–578 (2018).
[Crossref]

E. Wisotzky, P. Arens, F. C. Uecker, A. Hilsmann, and P. Eisert, “A hyperspectral method to analyze optical tissue characteristics in vivo,” Int. J. Comput. Assist. Radiol. Surg. 13, S46–S47 (2018).

E. L. Wisotzky, F. C. Uecker, P. Arens, S. Dommerich, A. Hilsmann, and P. Eisert, “Intraoperative hyperspectral determination of human tissue properties,” J. Biomed. Opt. 23(9), 091409 (2018).
[Crossref]

2016 (1)

J. E. East, J. L. Vleugels, P. Roelandt, P. Bhandari, R. Bisschops, E. Dekker, C. Hassan, G. Horgan, R. Kiesslich, and G. Longcroft-Wheaton et al., “Advanced endoscopic imaging: European society of gastrointestinal endoscopy (esge) technology review,” Endoscopy 48(11), 1029–1045 (2016).
[Crossref]

2014 (1)

P. Blanco, F. González, J. Holguín, and C. Guerra, “Surgical management of middle ear cholesteatoma and reconstruction at the same time,” Colomb. Med. (Cali) 45(3), 127–131 (2014).

2013 (2)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref]

L. L. Levy, N. Jiang, E. Smouha, R. Richards-Kortum, and A. G. Sikora, “Optical imaging with a high-resolution microendoscope to identify cholesteatoma of the middle ear,” The Laryngoscope 123(4), 1016–1020 (2013).
[Crossref]

2012 (1)

T. Lister, P. A. Wright, and P. H. Chappell, “Optical properties of human skin,” J. Biomed. Opt. 17(9), 0909011 (2012).
[Crossref]

2009 (2)

G. Zonios and A. Dimou, “Light scattering spectroscopy of human skin in vivo,” Opt. Express 17(3), 1256–1267 (2009).
[Crossref]

M. Friebel, J. Helfmann, U. Netz, and M. C. Meinke, “Influence of oxygen saturation on the optical scattering properties of human red blood cells in the spectral range 250 to 2000 nm,” J. Biomed. Opt. 14(3), 034001 (2009).
[Crossref]

2008 (2)

E. Salomatina and A. Yaroslavsky, “Evaluation of the in vivo and ex vivo optical properties in a mouse ear model,” Phys. Med. Biol. 53(11), 2797–2807 (2008).
[Crossref]

S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13(4), 041302 (2008).
[Crossref]

2007 (2)

M. C. Meinke, G. J. Müller, J. Helfmann, and M. Friebel, “Optical properties of platelets and blood plasma and their influence on the optical behavior of whole blood in the visible to near infrared wavelength range,” J. Biomed. Opt. 12(1), 014024 (2007).
[Crossref]

M. Stankovic, “Follow-up of cholesteatoma surgery: open versus closed tympanoplasty,” ORL 69(5), 299–305 (2007).
[Crossref]

2006 (4)

M. Friebel, A. Roggan, G. J. Müller, and M. C. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using monte carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt. 11(3), 034021 (2006).
[Crossref]

E. V. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref]

D. R. Fassett, P. Kan, S. S. Chin, and W. T. Couldwell, “Cholesteatoma of the clivus,” Skull Base 16(1), 45–47 (2006).
[Crossref]

J. A. Smith and C. J. Danner, “Complications of chronic otitis media and cholesteatoma,” Otolaryngol. Clin. North Am. 39(6), 1237–1255 (2006).
[Crossref]

2005 (1)

C. Dornelles, S. S. d. Costa, L. Meurer, and C. Schweiger, “Some considerations about acquired adult and pediatric cholesteatomas,” Rev. Bras. Otorrinolaringologia 71(4), 536–545 (2005).
[Crossref]

2004 (1)

E. Olszewska, M. Wagner, M. Bernal-Sprekelsen, J. Ebmeyer, S. Dazert, H. Hildmann, and H. Sudhoff, “Etiopathogenesis of cholesteatoma,” Eur. Arch. Oto-Rhino-Laryngology Head & Neck 261(1), 6–24 (2004).
[Crossref]

2003 (1)

H. Sudhoff and H. Hildmann, “Gegenwärtige theorien zur cholesteatomentstehung,” HNO 51(1), 71–83 (2003).
[Crossref]

2002 (1)

I. V. Meglinski and S. J. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions,” Physiol. Meas. 23(4), 741–753 (2002).
[Crossref]

2001 (1)

L. Svane-Knudsen, G. Halkier-Sørensen, P. Rasmussen, and V. D. Ottosen, “Cholesteatoma: a morphologic study of stratum corneum lipids,” Acta Oto-Laryngol. 121(5), 602–606 (2001).
[Crossref]

1999 (1)

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. J. Mueller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4(1), 36–47 (1999).
[Crossref]

1995 (1)

L. O. Svaasand, L. Norvang, E. Fiskerstrand, E. Stopps, M. Berns, and J. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Lasers Med. Sci. 10(1), 55–65 (1995).
[Crossref]

1992 (1)

R. Marchesini, C. Clemente, E. Pignoli, and M. Brambilla, “Optical properties of in vitro epidermis and their possible relationship with optical properties of in vivo skin,” J. Photochem. Photobiol., B 16(2), 127–140 (1992).
[Crossref]

1990 (1)

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

1989 (1)

M. Van Gemert, S. L. Jacques, H. Sterenborg, and W. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36(12), 1146–1154 (1989).
[Crossref]

Addison, A.

R. Jackson, A. Addison, and P. Prinsley, “Cholesteatoma in children and adults: are there really any differences?” J. Laryngol. Otol. 132(7), 575–578 (2018).
[Crossref]

Arens, P.

E. L. Wisotzky, F. C. Uecker, S. Dommerich, A. Hilsmann, P. Eisert, and P. Arens, “Determination of optical properties of human tissues obtained from parotidectomy in the spectral range of 250 to 800 nm,” J. Biomed. Opt. 24(12), 1–7 (2019).
[Crossref]

E. Wisotzky, P. Arens, F. C. Uecker, A. Hilsmann, and P. Eisert, “A hyperspectral method to analyze optical tissue characteristics in vivo,” Int. J. Comput. Assist. Radiol. Surg. 13, S46–S47 (2018).

E. L. Wisotzky, F. C. Uecker, P. Arens, S. Dommerich, A. Hilsmann, and P. Eisert, “Intraoperative hyperspectral determination of human tissue properties,” J. Biomed. Opt. 23(9), 091409 (2018).
[Crossref]

E. L. Wisotzky, B. Kossack, F. C. Uecker, P. Arens, S. Dommerich, A. Hilsmann, and P. Eisert, “Validation of two techniques for intraoperative hyperspectral human tissue determination,” in Proceedings of SPIE, vol. 10951 (2019), p. 109511Z.

Bauer, M.

E. L. Wisotzky, J.-C. Rosenthal, F. Schmid, M. Bauer, P. Eisert, A. Hilsmann, A. Schneider, and F. C. Uecker, “Interactive and multimodal-based augmented reality for remote assistance using a digital surgical microscope,” in IEEE Conference on Virtual Reality and 3D User Interfaces (VR), vol. 26 (2019), pp. 1477–1484.

Bernal-Sprekelsen, M.

E. Olszewska, M. Wagner, M. Bernal-Sprekelsen, J. Ebmeyer, S. Dazert, H. Hildmann, and H. Sudhoff, “Etiopathogenesis of cholesteatoma,” Eur. Arch. Oto-Rhino-Laryngology Head & Neck 261(1), 6–24 (2004).
[Crossref]

Berns, M.

L. O. Svaasand, L. Norvang, E. Fiskerstrand, E. Stopps, M. Berns, and J. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Lasers Med. Sci. 10(1), 55–65 (1995).
[Crossref]

Bhandari, P.

J. E. East, J. L. Vleugels, P. Roelandt, P. Bhandari, R. Bisschops, E. Dekker, C. Hassan, G. Horgan, R. Kiesslich, and G. Longcroft-Wheaton et al., “Advanced endoscopic imaging: European society of gastrointestinal endoscopy (esge) technology review,” Endoscopy 48(11), 1029–1045 (2016).
[Crossref]

Bisschops, R.

J. E. East, J. L. Vleugels, P. Roelandt, P. Bhandari, R. Bisschops, E. Dekker, C. Hassan, G. Horgan, R. Kiesslich, and G. Longcroft-Wheaton et al., “Advanced endoscopic imaging: European society of gastrointestinal endoscopy (esge) technology review,” Endoscopy 48(11), 1029–1045 (2016).
[Crossref]

Blanco, P.

P. Blanco, F. González, J. Holguín, and C. Guerra, “Surgical management of middle ear cholesteatoma and reconstruction at the same time,” Colomb. Med. (Cali) 45(3), 127–131 (2014).

Brambilla, M.

R. Marchesini, C. Clemente, E. Pignoli, and M. Brambilla, “Optical properties of in vitro epidermis and their possible relationship with optical properties of in vivo skin,” J. Photochem. Photobiol., B 16(2), 127–140 (1992).
[Crossref]

Chappell, P. H.

T. Lister, P. A. Wright, and P. H. Chappell, “Optical properties of human skin,” J. Biomed. Opt. 17(9), 0909011 (2012).
[Crossref]

Cheong, W.-F.

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

Chin, S. S.

D. R. Fassett, P. Kan, S. S. Chin, and W. T. Couldwell, “Cholesteatoma of the clivus,” Skull Base 16(1), 45–47 (2006).
[Crossref]

Clemente, C.

R. Marchesini, C. Clemente, E. Pignoli, and M. Brambilla, “Optical properties of in vitro epidermis and their possible relationship with optical properties of in vivo skin,” J. Photochem. Photobiol., B 16(2), 127–140 (1992).
[Crossref]

Couldwell, W. T.

D. R. Fassett, P. Kan, S. S. Chin, and W. T. Couldwell, “Cholesteatoma of the clivus,” Skull Base 16(1), 45–47 (2006).
[Crossref]

d. Costa, S. S.

C. Dornelles, S. S. d. Costa, L. Meurer, and C. Schweiger, “Some considerations about acquired adult and pediatric cholesteatomas,” Rev. Bras. Otorrinolaringologia 71(4), 536–545 (2005).
[Crossref]

Danner, C. J.

J. A. Smith and C. J. Danner, “Complications of chronic otitis media and cholesteatoma,” Otolaryngol. Clin. North Am. 39(6), 1237–1255 (2006).
[Crossref]

Dazert, S.

E. Olszewska, M. Wagner, M. Bernal-Sprekelsen, J. Ebmeyer, S. Dazert, H. Hildmann, and H. Sudhoff, “Etiopathogenesis of cholesteatoma,” Eur. Arch. Oto-Rhino-Laryngology Head & Neck 261(1), 6–24 (2004).
[Crossref]

Dekker, E.

J. E. East, J. L. Vleugels, P. Roelandt, P. Bhandari, R. Bisschops, E. Dekker, C. Hassan, G. Horgan, R. Kiesslich, and G. Longcroft-Wheaton et al., “Advanced endoscopic imaging: European society of gastrointestinal endoscopy (esge) technology review,” Endoscopy 48(11), 1029–1045 (2016).
[Crossref]

Dimou, A.

Dommerich, S.

E. L. Wisotzky, F. C. Uecker, S. Dommerich, A. Hilsmann, P. Eisert, and P. Arens, “Determination of optical properties of human tissues obtained from parotidectomy in the spectral range of 250 to 800 nm,” J. Biomed. Opt. 24(12), 1–7 (2019).
[Crossref]

E. L. Wisotzky, F. C. Uecker, P. Arens, S. Dommerich, A. Hilsmann, and P. Eisert, “Intraoperative hyperspectral determination of human tissue properties,” J. Biomed. Opt. 23(9), 091409 (2018).
[Crossref]

E. L. Wisotzky, B. Kossack, F. C. Uecker, P. Arens, S. Dommerich, A. Hilsmann, and P. Eisert, “Validation of two techniques for intraoperative hyperspectral human tissue determination,” in Proceedings of SPIE, vol. 10951 (2019), p. 109511Z.

Dornelles, C.

C. Dornelles, S. S. d. Costa, L. Meurer, and C. Schweiger, “Some considerations about acquired adult and pediatric cholesteatomas,” Rev. Bras. Otorrinolaringologia 71(4), 536–545 (2005).
[Crossref]

Dörschel, K.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. J. Mueller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4(1), 36–47 (1999).
[Crossref]

East, J. E.

J. E. East, J. L. Vleugels, P. Roelandt, P. Bhandari, R. Bisschops, E. Dekker, C. Hassan, G. Horgan, R. Kiesslich, and G. Longcroft-Wheaton et al., “Advanced endoscopic imaging: European society of gastrointestinal endoscopy (esge) technology review,” Endoscopy 48(11), 1029–1045 (2016).
[Crossref]

Ebmeyer, J.

E. Olszewska, M. Wagner, M. Bernal-Sprekelsen, J. Ebmeyer, S. Dazert, H. Hildmann, and H. Sudhoff, “Etiopathogenesis of cholesteatoma,” Eur. Arch. Oto-Rhino-Laryngology Head & Neck 261(1), 6–24 (2004).
[Crossref]

Eisert, P.

E. L. Wisotzky, F. C. Uecker, S. Dommerich, A. Hilsmann, P. Eisert, and P. Arens, “Determination of optical properties of human tissues obtained from parotidectomy in the spectral range of 250 to 800 nm,” J. Biomed. Opt. 24(12), 1–7 (2019).
[Crossref]

E. Wisotzky, P. Arens, F. C. Uecker, A. Hilsmann, and P. Eisert, “A hyperspectral method to analyze optical tissue characteristics in vivo,” Int. J. Comput. Assist. Radiol. Surg. 13, S46–S47 (2018).

E. L. Wisotzky, F. C. Uecker, P. Arens, S. Dommerich, A. Hilsmann, and P. Eisert, “Intraoperative hyperspectral determination of human tissue properties,” J. Biomed. Opt. 23(9), 091409 (2018).
[Crossref]

E. L. Wisotzky, B. Kossack, F. C. Uecker, P. Arens, S. Dommerich, A. Hilsmann, and P. Eisert, “Validation of two techniques for intraoperative hyperspectral human tissue determination,” in Proceedings of SPIE, vol. 10951 (2019), p. 109511Z.

E. L. Wisotzky, J.-C. Rosenthal, F. Schmid, M. Bauer, P. Eisert, A. Hilsmann, A. Schneider, and F. C. Uecker, “Interactive and multimodal-based augmented reality for remote assistance using a digital surgical microscope,” in IEEE Conference on Virtual Reality and 3D User Interfaces (VR), vol. 26 (2019), pp. 1477–1484.

Fassett, D. R.

D. R. Fassett, P. Kan, S. S. Chin, and W. T. Couldwell, “Cholesteatoma of the clivus,” Skull Base 16(1), 45–47 (2006).
[Crossref]

Fiskerstrand, E.

L. O. Svaasand, L. Norvang, E. Fiskerstrand, E. Stopps, M. Berns, and J. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Lasers Med. Sci. 10(1), 55–65 (1995).
[Crossref]

Flannery, B. P.

W. H. Press, W. H. Press, B. P. Flannery, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, and W. T. Vetterling, Numerical recipes in Pascal: the art of scientific computing, vol. 1 (Cambridge University Press, 1989).

W. H. Press, W. H. Press, B. P. Flannery, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, and W. T. Vetterling, Numerical recipes in Pascal: the art of scientific computing, vol. 1 (Cambridge University Press, 1989).

Friebel, M.

M. Friebel, J. Helfmann, U. Netz, and M. C. Meinke, “Influence of oxygen saturation on the optical scattering properties of human red blood cells in the spectral range 250 to 2000 nm,” J. Biomed. Opt. 14(3), 034001 (2009).
[Crossref]

M. C. Meinke, G. J. Müller, J. Helfmann, and M. Friebel, “Optical properties of platelets and blood plasma and their influence on the optical behavior of whole blood in the visible to near infrared wavelength range,” J. Biomed. Opt. 12(1), 014024 (2007).
[Crossref]

M. Friebel, A. Roggan, G. J. Müller, and M. C. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using monte carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt. 11(3), 034021 (2006).
[Crossref]

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. J. Mueller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4(1), 36–47 (1999).
[Crossref]

Goldbach, T.

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, “Optical properties of blood in the near-infrared spectral range,” in Optical Diagnostics of Living Cells and Biofluids, vol. 2678 (International Society for Optics and Photonics, 1996), pp. 314–325.

González, F.

P. Blanco, F. González, J. Holguín, and C. Guerra, “Surgical management of middle ear cholesteatoma and reconstruction at the same time,” Colomb. Med. (Cali) 45(3), 127–131 (2014).

Guerra, C.

P. Blanco, F. González, J. Holguín, and C. Guerra, “Surgical management of middle ear cholesteatoma and reconstruction at the same time,” Colomb. Med. (Cali) 45(3), 127–131 (2014).

Hahn, A.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. J. Mueller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4(1), 36–47 (1999).
[Crossref]

Halkier-Sørensen, G.

L. Svane-Knudsen, G. Halkier-Sørensen, P. Rasmussen, and V. D. Ottosen, “Cholesteatoma: a morphologic study of stratum corneum lipids,” Acta Oto-Laryngol. 121(5), 602–606 (2001).
[Crossref]

Hassan, C.

J. E. East, J. L. Vleugels, P. Roelandt, P. Bhandari, R. Bisschops, E. Dekker, C. Hassan, G. Horgan, R. Kiesslich, and G. Longcroft-Wheaton et al., “Advanced endoscopic imaging: European society of gastrointestinal endoscopy (esge) technology review,” Endoscopy 48(11), 1029–1045 (2016).
[Crossref]

Helfmann, J.

M. Friebel, J. Helfmann, U. Netz, and M. C. Meinke, “Influence of oxygen saturation on the optical scattering properties of human red blood cells in the spectral range 250 to 2000 nm,” J. Biomed. Opt. 14(3), 034001 (2009).
[Crossref]

M. C. Meinke, G. J. Müller, J. Helfmann, and M. Friebel, “Optical properties of platelets and blood plasma and their influence on the optical behavior of whole blood in the visible to near infrared wavelength range,” J. Biomed. Opt. 12(1), 014024 (2007).
[Crossref]

Hildmann, H.

E. Olszewska, M. Wagner, M. Bernal-Sprekelsen, J. Ebmeyer, S. Dazert, H. Hildmann, and H. Sudhoff, “Etiopathogenesis of cholesteatoma,” Eur. Arch. Oto-Rhino-Laryngology Head & Neck 261(1), 6–24 (2004).
[Crossref]

H. Sudhoff and H. Hildmann, “Gegenwärtige theorien zur cholesteatomentstehung,” HNO 51(1), 71–83 (2003).
[Crossref]

Hilsmann, A.

E. L. Wisotzky, F. C. Uecker, S. Dommerich, A. Hilsmann, P. Eisert, and P. Arens, “Determination of optical properties of human tissues obtained from parotidectomy in the spectral range of 250 to 800 nm,” J. Biomed. Opt. 24(12), 1–7 (2019).
[Crossref]

E. Wisotzky, P. Arens, F. C. Uecker, A. Hilsmann, and P. Eisert, “A hyperspectral method to analyze optical tissue characteristics in vivo,” Int. J. Comput. Assist. Radiol. Surg. 13, S46–S47 (2018).

E. L. Wisotzky, F. C. Uecker, P. Arens, S. Dommerich, A. Hilsmann, and P. Eisert, “Intraoperative hyperspectral determination of human tissue properties,” J. Biomed. Opt. 23(9), 091409 (2018).
[Crossref]

E. L. Wisotzky, B. Kossack, F. C. Uecker, P. Arens, S. Dommerich, A. Hilsmann, and P. Eisert, “Validation of two techniques for intraoperative hyperspectral human tissue determination,” in Proceedings of SPIE, vol. 10951 (2019), p. 109511Z.

E. L. Wisotzky, J.-C. Rosenthal, F. Schmid, M. Bauer, P. Eisert, A. Hilsmann, A. Schneider, and F. C. Uecker, “Interactive and multimodal-based augmented reality for remote assistance using a digital surgical microscope,” in IEEE Conference on Virtual Reality and 3D User Interfaces (VR), vol. 26 (2019), pp. 1477–1484.

Holguín, J.

P. Blanco, F. González, J. Holguín, and C. Guerra, “Surgical management of middle ear cholesteatoma and reconstruction at the same time,” Colomb. Med. (Cali) 45(3), 127–131 (2014).

Horgan, G.

J. E. East, J. L. Vleugels, P. Roelandt, P. Bhandari, R. Bisschops, E. Dekker, C. Hassan, G. Horgan, R. Kiesslich, and G. Longcroft-Wheaton et al., “Advanced endoscopic imaging: European society of gastrointestinal endoscopy (esge) technology review,” Endoscopy 48(11), 1029–1045 (2016).
[Crossref]

Jackson, R.

R. Jackson, A. Addison, and P. Prinsley, “Cholesteatoma in children and adults: are there really any differences?” J. Laryngol. Otol. 132(7), 575–578 (2018).
[Crossref]

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref]

S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13(4), 041302 (2008).
[Crossref]

M. Van Gemert, S. L. Jacques, H. Sterenborg, and W. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36(12), 1146–1154 (1989).
[Crossref]

Jiang, B.

E. V. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref]

Jiang, N.

L. L. Levy, N. Jiang, E. Smouha, R. Richards-Kortum, and A. G. Sikora, “Optical imaging with a high-resolution microendoscope to identify cholesteatoma of the middle ear,” The Laryngoscope 123(4), 1016–1020 (2013).
[Crossref]

Kan, P.

D. R. Fassett, P. Kan, S. S. Chin, and W. T. Couldwell, “Cholesteatoma of the clivus,” Skull Base 16(1), 45–47 (2006).
[Crossref]

Kiesslich, R.

J. E. East, J. L. Vleugels, P. Roelandt, P. Bhandari, R. Bisschops, E. Dekker, C. Hassan, G. Horgan, R. Kiesslich, and G. Longcroft-Wheaton et al., “Advanced endoscopic imaging: European society of gastrointestinal endoscopy (esge) technology review,” Endoscopy 48(11), 1029–1045 (2016).
[Crossref]

Kossack, B.

E. L. Wisotzky, B. Kossack, F. C. Uecker, P. Arens, S. Dommerich, A. Hilsmann, and P. Eisert, “Validation of two techniques for intraoperative hyperspectral human tissue determination,” in Proceedings of SPIE, vol. 10951 (2019), p. 109511Z.

Levy, L. L.

L. L. Levy, N. Jiang, E. Smouha, R. Richards-Kortum, and A. G. Sikora, “Optical imaging with a high-resolution microendoscope to identify cholesteatoma of the middle ear,” The Laryngoscope 123(4), 1016–1020 (2013).
[Crossref]

Lister, T.

T. Lister, P. A. Wright, and P. H. Chappell, “Optical properties of human skin,” J. Biomed. Opt. 17(9), 0909011 (2012).
[Crossref]

Longcroft-Wheaton et al., G.

J. E. East, J. L. Vleugels, P. Roelandt, P. Bhandari, R. Bisschops, E. Dekker, C. Hassan, G. Horgan, R. Kiesslich, and G. Longcroft-Wheaton et al., “Advanced endoscopic imaging: European society of gastrointestinal endoscopy (esge) technology review,” Endoscopy 48(11), 1029–1045 (2016).
[Crossref]

Marchesini, R.

R. Marchesini, C. Clemente, E. Pignoli, and M. Brambilla, “Optical properties of in vitro epidermis and their possible relationship with optical properties of in vivo skin,” J. Photochem. Photobiol., B 16(2), 127–140 (1992).
[Crossref]

Matcher, S. J.

I. V. Meglinski and S. J. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions,” Physiol. Meas. 23(4), 741–753 (2002).
[Crossref]

Meglinski, I. V.

I. V. Meglinski and S. J. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions,” Physiol. Meas. 23(4), 741–753 (2002).
[Crossref]

Meinke, M. C.

M. Friebel, J. Helfmann, U. Netz, and M. C. Meinke, “Influence of oxygen saturation on the optical scattering properties of human red blood cells in the spectral range 250 to 2000 nm,” J. Biomed. Opt. 14(3), 034001 (2009).
[Crossref]

M. C. Meinke, G. J. Müller, J. Helfmann, and M. Friebel, “Optical properties of platelets and blood plasma and their influence on the optical behavior of whole blood in the visible to near infrared wavelength range,” J. Biomed. Opt. 12(1), 014024 (2007).
[Crossref]

M. Friebel, A. Roggan, G. J. Müller, and M. C. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using monte carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt. 11(3), 034021 (2006).
[Crossref]

Meurer, L.

C. Dornelles, S. S. d. Costa, L. Meurer, and C. Schweiger, “Some considerations about acquired adult and pediatric cholesteatomas,” Rev. Bras. Otorrinolaringologia 71(4), 536–545 (2005).
[Crossref]

Minet, O.

A. Roggan, O. Minet, C. Schröder, and G. Müller, “Measurements of optical tissue properties using integrating sphere technique,” in Medical optical tomography: functional imaging and monitoring, vol. 10311 (International Society for Optics and Photonics, 1993), p. 103110A.

Mueller, G. J.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. J. Mueller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4(1), 36–47 (1999).
[Crossref]

Müller, G.

A. Roggan, O. Minet, C. Schröder, and G. Müller, “Measurements of optical tissue properties using integrating sphere technique,” in Medical optical tomography: functional imaging and monitoring, vol. 10311 (International Society for Optics and Photonics, 1993), p. 103110A.

Müller, G. J.

M. C. Meinke, G. J. Müller, J. Helfmann, and M. Friebel, “Optical properties of platelets and blood plasma and their influence on the optical behavior of whole blood in the visible to near infrared wavelength range,” J. Biomed. Opt. 12(1), 014024 (2007).
[Crossref]

M. Friebel, A. Roggan, G. J. Müller, and M. C. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using monte carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt. 11(3), 034021 (2006).
[Crossref]

Nelson, J.

L. O. Svaasand, L. Norvang, E. Fiskerstrand, E. Stopps, M. Berns, and J. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Lasers Med. Sci. 10(1), 55–65 (1995).
[Crossref]

Netz, U.

M. Friebel, J. Helfmann, U. Netz, and M. C. Meinke, “Influence of oxygen saturation on the optical scattering properties of human red blood cells in the spectral range 250 to 2000 nm,” J. Biomed. Opt. 14(3), 034001 (2009).
[Crossref]

Norvang, L.

L. O. Svaasand, L. Norvang, E. Fiskerstrand, E. Stopps, M. Berns, and J. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Lasers Med. Sci. 10(1), 55–65 (1995).
[Crossref]

Novak, J.

E. V. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref]

Olszewska, E.

E. Olszewska, M. Wagner, M. Bernal-Sprekelsen, J. Ebmeyer, S. Dazert, H. Hildmann, and H. Sudhoff, “Etiopathogenesis of cholesteatoma,” Eur. Arch. Oto-Rhino-Laryngology Head & Neck 261(1), 6–24 (2004).
[Crossref]

Ottosen, V. D.

L. Svane-Knudsen, G. Halkier-Sørensen, P. Rasmussen, and V. D. Ottosen, “Cholesteatoma: a morphologic study of stratum corneum lipids,” Acta Oto-Laryngol. 121(5), 602–606 (2001).
[Crossref]

Pignoli, E.

R. Marchesini, C. Clemente, E. Pignoli, and M. Brambilla, “Optical properties of in vitro epidermis and their possible relationship with optical properties of in vivo skin,” J. Photochem. Photobiol., B 16(2), 127–140 (1992).
[Crossref]

Pogue, B. W.

S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13(4), 041302 (2008).
[Crossref]

Prahl, S. A.

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

Press, W. H.

W. H. Press, W. H. Press, B. P. Flannery, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, and W. T. Vetterling, Numerical recipes in Pascal: the art of scientific computing, vol. 1 (Cambridge University Press, 1989).

W. H. Press, W. H. Press, B. P. Flannery, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, and W. T. Vetterling, Numerical recipes in Pascal: the art of scientific computing, vol. 1 (Cambridge University Press, 1989).

Prinsley, P.

R. Jackson, A. Addison, and P. Prinsley, “Cholesteatoma in children and adults: are there really any differences?” J. Laryngol. Otol. 132(7), 575–578 (2018).
[Crossref]

Rasmussen, P.

L. Svane-Knudsen, G. Halkier-Sørensen, P. Rasmussen, and V. D. Ottosen, “Cholesteatoma: a morphologic study of stratum corneum lipids,” Acta Oto-Laryngol. 121(5), 602–606 (2001).
[Crossref]

Richards-Kortum, R.

L. L. Levy, N. Jiang, E. Smouha, R. Richards-Kortum, and A. G. Sikora, “Optical imaging with a high-resolution microendoscope to identify cholesteatoma of the middle ear,” The Laryngoscope 123(4), 1016–1020 (2013).
[Crossref]

Roelandt, P.

J. E. East, J. L. Vleugels, P. Roelandt, P. Bhandari, R. Bisschops, E. Dekker, C. Hassan, G. Horgan, R. Kiesslich, and G. Longcroft-Wheaton et al., “Advanced endoscopic imaging: European society of gastrointestinal endoscopy (esge) technology review,” Endoscopy 48(11), 1029–1045 (2016).
[Crossref]

Roggan, A.

M. Friebel, A. Roggan, G. J. Müller, and M. C. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using monte carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt. 11(3), 034021 (2006).
[Crossref]

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. J. Mueller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4(1), 36–47 (1999).
[Crossref]

A. Roggan, O. Minet, C. Schröder, and G. Müller, “Measurements of optical tissue properties using integrating sphere technique,” in Medical optical tomography: functional imaging and monitoring, vol. 10311 (International Society for Optics and Photonics, 1993), p. 103110A.

Rosenthal, J.-C.

E. L. Wisotzky, J.-C. Rosenthal, F. Schmid, M. Bauer, P. Eisert, A. Hilsmann, A. Schneider, and F. C. Uecker, “Interactive and multimodal-based augmented reality for remote assistance using a digital surgical microscope,” in IEEE Conference on Virtual Reality and 3D User Interfaces (VR), vol. 26 (2019), pp. 1477–1484.

Salomatina, E.

E. Salomatina and A. Yaroslavsky, “Evaluation of the in vivo and ex vivo optical properties in a mouse ear model,” Phys. Med. Biol. 53(11), 2797–2807 (2008).
[Crossref]

Salomatina, E. V.

E. V. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref]

Schmid, F.

E. L. Wisotzky, J.-C. Rosenthal, F. Schmid, M. Bauer, P. Eisert, A. Hilsmann, A. Schneider, and F. C. Uecker, “Interactive and multimodal-based augmented reality for remote assistance using a digital surgical microscope,” in IEEE Conference on Virtual Reality and 3D User Interfaces (VR), vol. 26 (2019), pp. 1477–1484.

Schneider, A.

E. L. Wisotzky, J.-C. Rosenthal, F. Schmid, M. Bauer, P. Eisert, A. Hilsmann, A. Schneider, and F. C. Uecker, “Interactive and multimodal-based augmented reality for remote assistance using a digital surgical microscope,” in IEEE Conference on Virtual Reality and 3D User Interfaces (VR), vol. 26 (2019), pp. 1477–1484.

Schröder, C.

A. Roggan, O. Minet, C. Schröder, and G. Müller, “Measurements of optical tissue properties using integrating sphere technique,” in Medical optical tomography: functional imaging and monitoring, vol. 10311 (International Society for Optics and Photonics, 1993), p. 103110A.

Schwarzmaier, H.-J.

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, “Optical properties of blood in the near-infrared spectral range,” in Optical Diagnostics of Living Cells and Biofluids, vol. 2678 (International Society for Optics and Photonics, 1996), pp. 314–325.

Schweiger, C.

C. Dornelles, S. S. d. Costa, L. Meurer, and C. Schweiger, “Some considerations about acquired adult and pediatric cholesteatomas,” Rev. Bras. Otorrinolaringologia 71(4), 536–545 (2005).
[Crossref]

Sikora, A. G.

L. L. Levy, N. Jiang, E. Smouha, R. Richards-Kortum, and A. G. Sikora, “Optical imaging with a high-resolution microendoscope to identify cholesteatoma of the middle ear,” The Laryngoscope 123(4), 1016–1020 (2013).
[Crossref]

Smith, J. A.

J. A. Smith and C. J. Danner, “Complications of chronic otitis media and cholesteatoma,” Otolaryngol. Clin. North Am. 39(6), 1237–1255 (2006).
[Crossref]

Smouha, E.

L. L. Levy, N. Jiang, E. Smouha, R. Richards-Kortum, and A. G. Sikora, “Optical imaging with a high-resolution microendoscope to identify cholesteatoma of the middle ear,” The Laryngoscope 123(4), 1016–1020 (2013).
[Crossref]

Stankovic, M.

M. Stankovic, “Follow-up of cholesteatoma surgery: open versus closed tympanoplasty,” ORL 69(5), 299–305 (2007).
[Crossref]

Star, W.

M. Van Gemert, S. L. Jacques, H. Sterenborg, and W. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36(12), 1146–1154 (1989).
[Crossref]

Sterenborg, H.

M. Van Gemert, S. L. Jacques, H. Sterenborg, and W. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36(12), 1146–1154 (1989).
[Crossref]

Stopps, E.

L. O. Svaasand, L. Norvang, E. Fiskerstrand, E. Stopps, M. Berns, and J. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Lasers Med. Sci. 10(1), 55–65 (1995).
[Crossref]

Sudhoff, H.

E. Olszewska, M. Wagner, M. Bernal-Sprekelsen, J. Ebmeyer, S. Dazert, H. Hildmann, and H. Sudhoff, “Etiopathogenesis of cholesteatoma,” Eur. Arch. Oto-Rhino-Laryngology Head & Neck 261(1), 6–24 (2004).
[Crossref]

H. Sudhoff and H. Hildmann, “Gegenwärtige theorien zur cholesteatomentstehung,” HNO 51(1), 71–83 (2003).
[Crossref]

Svaasand, L. O.

L. O. Svaasand, L. Norvang, E. Fiskerstrand, E. Stopps, M. Berns, and J. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Lasers Med. Sci. 10(1), 55–65 (1995).
[Crossref]

Svane-Knudsen, L.

L. Svane-Knudsen, G. Halkier-Sørensen, P. Rasmussen, and V. D. Ottosen, “Cholesteatoma: a morphologic study of stratum corneum lipids,” Acta Oto-Laryngol. 121(5), 602–606 (2001).
[Crossref]

Teukolsky, S. A.

W. H. Press, W. H. Press, B. P. Flannery, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, and W. T. Vetterling, Numerical recipes in Pascal: the art of scientific computing, vol. 1 (Cambridge University Press, 1989).

Tissue, B. M.

B. M. Tissue, Ultraviolet and Visible Absorption Spectroscopy (American Cancer Society, 2012), pp. 1–13.

Uecker, F. C.

E. L. Wisotzky, F. C. Uecker, S. Dommerich, A. Hilsmann, P. Eisert, and P. Arens, “Determination of optical properties of human tissues obtained from parotidectomy in the spectral range of 250 to 800 nm,” J. Biomed. Opt. 24(12), 1–7 (2019).
[Crossref]

E. Wisotzky, P. Arens, F. C. Uecker, A. Hilsmann, and P. Eisert, “A hyperspectral method to analyze optical tissue characteristics in vivo,” Int. J. Comput. Assist. Radiol. Surg. 13, S46–S47 (2018).

E. L. Wisotzky, F. C. Uecker, P. Arens, S. Dommerich, A. Hilsmann, and P. Eisert, “Intraoperative hyperspectral determination of human tissue properties,” J. Biomed. Opt. 23(9), 091409 (2018).
[Crossref]

E. L. Wisotzky, B. Kossack, F. C. Uecker, P. Arens, S. Dommerich, A. Hilsmann, and P. Eisert, “Validation of two techniques for intraoperative hyperspectral human tissue determination,” in Proceedings of SPIE, vol. 10951 (2019), p. 109511Z.

F. C. Uecker, Hals-Nasen-Ohren-Heilkunde in Frage und Antwort: Fragen und Fallgeschichten zur Vorbereitung auf mündliche Prüfungen während des Semesters und Examen (Elsevier, Urban & Fischer Verlag, 2006).

E. L. Wisotzky, J.-C. Rosenthal, F. Schmid, M. Bauer, P. Eisert, A. Hilsmann, A. Schneider, and F. C. Uecker, “Interactive and multimodal-based augmented reality for remote assistance using a digital surgical microscope,” in IEEE Conference on Virtual Reality and 3D User Interfaces (VR), vol. 26 (2019), pp. 1477–1484.

Van Gemert, M.

M. Van Gemert, S. L. Jacques, H. Sterenborg, and W. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36(12), 1146–1154 (1989).
[Crossref]

Vetterling, W. T.

W. H. Press, W. H. Press, B. P. Flannery, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, and W. T. Vetterling, Numerical recipes in Pascal: the art of scientific computing, vol. 1 (Cambridge University Press, 1989).

W. H. Press, W. H. Press, B. P. Flannery, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, and W. T. Vetterling, Numerical recipes in Pascal: the art of scientific computing, vol. 1 (Cambridge University Press, 1989).

Vleugels, J. L.

J. E. East, J. L. Vleugels, P. Roelandt, P. Bhandari, R. Bisschops, E. Dekker, C. Hassan, G. Horgan, R. Kiesslich, and G. Longcroft-Wheaton et al., “Advanced endoscopic imaging: European society of gastrointestinal endoscopy (esge) technology review,” Endoscopy 48(11), 1029–1045 (2016).
[Crossref]

Wagner, M.

E. Olszewska, M. Wagner, M. Bernal-Sprekelsen, J. Ebmeyer, S. Dazert, H. Hildmann, and H. Sudhoff, “Etiopathogenesis of cholesteatoma,” Eur. Arch. Oto-Rhino-Laryngology Head & Neck 261(1), 6–24 (2004).
[Crossref]

Welch, A. J.

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

Wisotzky, E.

E. Wisotzky, P. Arens, F. C. Uecker, A. Hilsmann, and P. Eisert, “A hyperspectral method to analyze optical tissue characteristics in vivo,” Int. J. Comput. Assist. Radiol. Surg. 13, S46–S47 (2018).

Wisotzky, E. L.

E. L. Wisotzky, F. C. Uecker, S. Dommerich, A. Hilsmann, P. Eisert, and P. Arens, “Determination of optical properties of human tissues obtained from parotidectomy in the spectral range of 250 to 800 nm,” J. Biomed. Opt. 24(12), 1–7 (2019).
[Crossref]

E. L. Wisotzky, F. C. Uecker, P. Arens, S. Dommerich, A. Hilsmann, and P. Eisert, “Intraoperative hyperspectral determination of human tissue properties,” J. Biomed. Opt. 23(9), 091409 (2018).
[Crossref]

E. L. Wisotzky, B. Kossack, F. C. Uecker, P. Arens, S. Dommerich, A. Hilsmann, and P. Eisert, “Validation of two techniques for intraoperative hyperspectral human tissue determination,” in Proceedings of SPIE, vol. 10951 (2019), p. 109511Z.

E. L. Wisotzky, J.-C. Rosenthal, F. Schmid, M. Bauer, P. Eisert, A. Hilsmann, A. Schneider, and F. C. Uecker, “Interactive and multimodal-based augmented reality for remote assistance using a digital surgical microscope,” in IEEE Conference on Virtual Reality and 3D User Interfaces (VR), vol. 26 (2019), pp. 1477–1484.

Wright, P. A.

T. Lister, P. A. Wright, and P. H. Chappell, “Optical properties of human skin,” J. Biomed. Opt. 17(9), 0909011 (2012).
[Crossref]

Yaroslavsky, A.

E. Salomatina and A. Yaroslavsky, “Evaluation of the in vivo and ex vivo optical properties in a mouse ear model,” Phys. Med. Biol. 53(11), 2797–2807 (2008).
[Crossref]

Yaroslavsky, A. N.

E. V. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref]

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, “Optical properties of blood in the near-infrared spectral range,” in Optical Diagnostics of Living Cells and Biofluids, vol. 2678 (International Society for Optics and Photonics, 1996), pp. 314–325.

Yaroslavsky, I. V.

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, “Optical properties of blood in the near-infrared spectral range,” in Optical Diagnostics of Living Cells and Biofluids, vol. 2678 (International Society for Optics and Photonics, 1996), pp. 314–325.

Zonios, G.

Acta Oto-Laryngol. (1)

L. Svane-Knudsen, G. Halkier-Sørensen, P. Rasmussen, and V. D. Ottosen, “Cholesteatoma: a morphologic study of stratum corneum lipids,” Acta Oto-Laryngol. 121(5), 602–606 (2001).
[Crossref]

Colomb. Med. (Cali) (1)

P. Blanco, F. González, J. Holguín, and C. Guerra, “Surgical management of middle ear cholesteatoma and reconstruction at the same time,” Colomb. Med. (Cali) 45(3), 127–131 (2014).

Endoscopy (1)

J. E. East, J. L. Vleugels, P. Roelandt, P. Bhandari, R. Bisschops, E. Dekker, C. Hassan, G. Horgan, R. Kiesslich, and G. Longcroft-Wheaton et al., “Advanced endoscopic imaging: European society of gastrointestinal endoscopy (esge) technology review,” Endoscopy 48(11), 1029–1045 (2016).
[Crossref]

Eur. Arch. Oto-Rhino-Laryngology Head & Neck (1)

E. Olszewska, M. Wagner, M. Bernal-Sprekelsen, J. Ebmeyer, S. Dazert, H. Hildmann, and H. Sudhoff, “Etiopathogenesis of cholesteatoma,” Eur. Arch. Oto-Rhino-Laryngology Head & Neck 261(1), 6–24 (2004).
[Crossref]

HNO (1)

H. Sudhoff and H. Hildmann, “Gegenwärtige theorien zur cholesteatomentstehung,” HNO 51(1), 71–83 (2003).
[Crossref]

IEEE J. Quantum Electron. (1)

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

M. Van Gemert, S. L. Jacques, H. Sterenborg, and W. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36(12), 1146–1154 (1989).
[Crossref]

Int. J. Comput. Assist. Radiol. Surg. (1)

E. Wisotzky, P. Arens, F. C. Uecker, A. Hilsmann, and P. Eisert, “A hyperspectral method to analyze optical tissue characteristics in vivo,” Int. J. Comput. Assist. Radiol. Surg. 13, S46–S47 (2018).

J. Biomed. Opt. (9)

M. C. Meinke, G. J. Müller, J. Helfmann, and M. Friebel, “Optical properties of platelets and blood plasma and their influence on the optical behavior of whole blood in the visible to near infrared wavelength range,” J. Biomed. Opt. 12(1), 014024 (2007).
[Crossref]

S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13(4), 041302 (2008).
[Crossref]

M. Friebel, A. Roggan, G. J. Müller, and M. C. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using monte carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt. 11(3), 034021 (2006).
[Crossref]

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. J. Mueller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4(1), 36–47 (1999).
[Crossref]

E. L. Wisotzky, F. C. Uecker, S. Dommerich, A. Hilsmann, P. Eisert, and P. Arens, “Determination of optical properties of human tissues obtained from parotidectomy in the spectral range of 250 to 800 nm,” J. Biomed. Opt. 24(12), 1–7 (2019).
[Crossref]

M. Friebel, J. Helfmann, U. Netz, and M. C. Meinke, “Influence of oxygen saturation on the optical scattering properties of human red blood cells in the spectral range 250 to 2000 nm,” J. Biomed. Opt. 14(3), 034001 (2009).
[Crossref]

E. V. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref]

E. L. Wisotzky, F. C. Uecker, P. Arens, S. Dommerich, A. Hilsmann, and P. Eisert, “Intraoperative hyperspectral determination of human tissue properties,” J. Biomed. Opt. 23(9), 091409 (2018).
[Crossref]

T. Lister, P. A. Wright, and P. H. Chappell, “Optical properties of human skin,” J. Biomed. Opt. 17(9), 0909011 (2012).
[Crossref]

J. Laryngol. Otol. (1)

R. Jackson, A. Addison, and P. Prinsley, “Cholesteatoma in children and adults: are there really any differences?” J. Laryngol. Otol. 132(7), 575–578 (2018).
[Crossref]

J. Photochem. Photobiol., B (1)

R. Marchesini, C. Clemente, E. Pignoli, and M. Brambilla, “Optical properties of in vitro epidermis and their possible relationship with optical properties of in vivo skin,” J. Photochem. Photobiol., B 16(2), 127–140 (1992).
[Crossref]

Lasers Med. Sci. (1)

L. O. Svaasand, L. Norvang, E. Fiskerstrand, E. Stopps, M. Berns, and J. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Lasers Med. Sci. 10(1), 55–65 (1995).
[Crossref]

Opt. Express (1)

ORL (1)

M. Stankovic, “Follow-up of cholesteatoma surgery: open versus closed tympanoplasty,” ORL 69(5), 299–305 (2007).
[Crossref]

Otolaryngol. Clin. North Am. (1)

J. A. Smith and C. J. Danner, “Complications of chronic otitis media and cholesteatoma,” Otolaryngol. Clin. North Am. 39(6), 1237–1255 (2006).
[Crossref]

Phys. Med. Biol. (2)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref]

E. Salomatina and A. Yaroslavsky, “Evaluation of the in vivo and ex vivo optical properties in a mouse ear model,” Phys. Med. Biol. 53(11), 2797–2807 (2008).
[Crossref]

Physiol. Meas. (1)

I. V. Meglinski and S. J. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions,” Physiol. Meas. 23(4), 741–753 (2002).
[Crossref]

Rev. Bras. Otorrinolaringologia (1)

C. Dornelles, S. S. d. Costa, L. Meurer, and C. Schweiger, “Some considerations about acquired adult and pediatric cholesteatomas,” Rev. Bras. Otorrinolaringologia 71(4), 536–545 (2005).
[Crossref]

Skull Base (1)

D. R. Fassett, P. Kan, S. S. Chin, and W. T. Couldwell, “Cholesteatoma of the clivus,” Skull Base 16(1), 45–47 (2006).
[Crossref]

The Laryngoscope (1)

L. L. Levy, N. Jiang, E. Smouha, R. Richards-Kortum, and A. G. Sikora, “Optical imaging with a high-resolution microendoscope to identify cholesteatoma of the middle ear,” The Laryngoscope 123(4), 1016–1020 (2013).
[Crossref]

Other (7)

E. L. Wisotzky, J.-C. Rosenthal, F. Schmid, M. Bauer, P. Eisert, A. Hilsmann, A. Schneider, and F. C. Uecker, “Interactive and multimodal-based augmented reality for remote assistance using a digital surgical microscope,” in IEEE Conference on Virtual Reality and 3D User Interfaces (VR), vol. 26 (2019), pp. 1477–1484.

A. Roggan, O. Minet, C. Schröder, and G. Müller, “Measurements of optical tissue properties using integrating sphere technique,” in Medical optical tomography: functional imaging and monitoring, vol. 10311 (International Society for Optics and Photonics, 1993), p. 103110A.

W. H. Press, W. H. Press, B. P. Flannery, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, and W. T. Vetterling, Numerical recipes in Pascal: the art of scientific computing, vol. 1 (Cambridge University Press, 1989).

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, “Optical properties of blood in the near-infrared spectral range,” in Optical Diagnostics of Living Cells and Biofluids, vol. 2678 (International Society for Optics and Photonics, 1996), pp. 314–325.

E. L. Wisotzky, B. Kossack, F. C. Uecker, P. Arens, S. Dommerich, A. Hilsmann, and P. Eisert, “Validation of two techniques for intraoperative hyperspectral human tissue determination,” in Proceedings of SPIE, vol. 10951 (2019), p. 109511Z.

F. C. Uecker, Hals-Nasen-Ohren-Heilkunde in Frage und Antwort: Fragen und Fallgeschichten zur Vorbereitung auf mündliche Prüfungen während des Semesters und Examen (Elsevier, Urban & Fischer Verlag, 2006).

B. M. Tissue, Ultraviolet and Visible Absorption Spectroscopy (American Cancer Society, 2012), pp. 1–13.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. These images show the location (a) and anatomy (b) of the interventions. An open situs, where all relevant tissue structures are visible, is shown in (b). The position of this situs is shown in the left image marked with the dashed incision line (E). The corresponding CBCT images (c) and (d) show the location of the cholesteatoma in the left ear. The labels describe: A - external ear canal, B - brain, C - catilage, D - mastoid bone, E - incision line, F - musculus temporalis, G - skin, H - middle ear, 1 - tympanic membrane with titanium prosthesis, 2 - cholesteatoma with bone arrosion.
Fig. 2.
Fig. 2. This figure shows cholesteatoma samples of the four patients. The sample of (a) patient 1 and (b) patient 2 contain blood due to the extraction process, while the samples of (c) patient 3 and (d) patient 4 are nearly free of blood.
Fig. 3.
Fig. 3. Two analyzed bone chip samples of patient 1 and 2, respectively. The sample of patient 1 (a) contains a non-negligible amount of blood, while in the sample of patient 2 (b) nearly no blood is visible.
Fig. 4.
Fig. 4. These plots show the measured diffuse reflectance $R_d$ of one bone fragment (a) and of twelve bone chip samples, six from patient 1 (b) and patient 4 (c), respectively. Each curve in the plots corresponds to one measured sample spectrum. The trend of all curves is similar, but the intensity of reflectance $R_d$ differs. This is a result of the different sample quality, i.e. the bone fragment (a) as well as the bone chips (b) and (c) show different granularity, which effects the reflectance measurements.
Fig. 5.
Fig. 5. These plots show measured reflectance $R_d$ of cholesteatoma samples of two patients, P3 (a) and P4 (b). Each curve in the plots corresponds to one measured sample spectrum of the specific patient.
Fig. 6.
Fig. 6. These two plots exemplary show the results of the absorption coefficient $\mu _a$ of bone chips samples of patient 1 (a) and patient 2 (b). Each curve in the plots corresponds to one measured sample spectrum of the specific patient. As it can be seen at the peaks at 430 nm and around 550 nm, the influence of blood present in the sample plays a role for the results. In the sample of patient 1 (a) were more blood present as in the sample of patient 2 (b), cf. Fig. 3
Fig. 7.
Fig. 7. All plots show the results of the absorption coefficient $\mu _a$ of cholesteatoma of the four analyzed patients in the measured range of 250 nm to 800 nm. Each curve in the plots corresponds to one measured sample spectrum of the specific patient. The samples of patient 1 (a) and patient 2 (b) contained blood, where the samples of patient 2 (b) contained much more blood. The samples of patient 3 (c) and patient 4 (d) were nearly freed of blood, cf. Fig. 2.
Fig. 8.
Fig. 8. The plot shows the results of the average absorption coefficient $\mu _a$ of cholesteatoma and bone in the measured range of 250 nm to 800 nm for comparison. The dark curve shows the average progression of all analyzed samples of each tissue type and the brighter trend characterizes the standard deviation of the simulated results.
Fig. 9.
Fig. 9. In this plots the results of the scattering coefficient $\mu _s'$ of bone chips samples from patient 1 (a) and patient 2 (b) are shown. Each curve in the plots corresponds to one measured sample spectrum of the specific patient. In contrast to the results of $\mu _a$ , the effect of the blood in the samples is less strong and all spectra of both patients behave similar in shape and magnitude.
Fig. 10.
Fig. 10. All plots show the results of the scattering coefficient $\mu _s'$ of cholesteatoma of the analyzed blood-free samples in the measured range of 250 nm to 800 nm. Each curve in the plots corresponds to one measured sample spectrum of the specific patient. In plot (b) patient 4, the curves correspond to different measurement times after sample preparation (‘—’ directly after, ‘- - -’ 20 h after and ‘ $\cdots$ ’ 90 h after preparation, respectively).
Fig. 11.
Fig. 11. The plot shows the results of the average reduced scattering coefficient $\mu _s'$ of cholesteatoma and bone in the measured range of 250 nm to 800 nm for comparison. The dark curve shows the average progression of all analyzed samples of each tissue type and the brighter trend characterizes the standard deviation of the simulated results.
Fig. 12.
Fig. 12. The plots show the results of (a) the average absorption coefficient $\mu _a$ and (b) the average reduced scattering coefficient $\mu _s'$ of cholesteatoma compared to the results of epidermis presented by Meglinski & Matcher 2002 [31] for $\mu _a$ and Svaasand et al. 1995 [28] for $\mu _s'$ .

Metrics