Abstract

Emerging methods of anti-tumor therapies require new approaches to tumor response evaluation, especially enabling label-free diagnostics and in vivo utilization. Here, to assess the tumor early reaction and predict its long-term response, for the first time we apply in combination the recently developed OCT extensions - optical coherence angiography (OCA) and compressional optical coherence elastography (OCE), thus enabling complementary functional/microstructural tumor characterization. We study two vascular-targeted therapies of different types, (1) anti-angiogenic chemotherapy (ChT) and (2) photodynamic therapy (PDT), aimed to indirectly kill tumor cells through blood supply injury. Despite different mechanisms of anti-angiogenic action for ChT and PDT, in both cases OCA demonstrated high sensitivity to blood perfusion cessation. The new method of OCE-based morphological segmentation revealed very similar histological structure alterations. The OCE results showed high correlation with conventional histology in evaluating percentages of necrotic and viable tumor zones. Such possibilities make OCE an attractive tool enabling previously inaccessible in vivo monitoring of individual tumor response to therapies without taking multiple biopsies.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
In vivo spectral and fluorescence microscopy comparison of microvascular function after treatment with OXi4503, Sunitinib and their combination in Caki-2 tumors

Jennifer A. Lee, Nikolett M. Biel, Raymond T. Kozikowski, Dietmar W. Siemann, and Brian S. Sorg
Biomed. Opt. Express 5(6) 1965-1979 (2014)

OCT-elastography-based optical biopsy for breast cancer delineation and express assessment of morphological/molecular subtypes

Ekaterina V. Gubarkova, Alexander A. Sovetsky, Vladimir Yu. Zaitsev, Alexander L. Matveyev, Dmitry A. Vorontsov, Marina A. Sirotkina, Lev A. Matveev, Anton A. Plekhanov, Nadezhda P. Pavlova, Sergei S. Kuznetsov, Alexey Yu. Vorontsov, Elena V. Zagaynova, and Natalia D. Gladkova
Biomed. Opt. Express 10(5) 2244-2263 (2019)

Quantifying the vascular response to ischemia with speckle variance optical coherence tomography

Kristin M. Poole, Devin R. McCormack, Chetan A. Patil, Craig L. Duvall, and Melissa C. Skala
Biomed. Opt. Express 5(12) 4118-4130 (2014)

References

  • View by:
  • |
  • |
  • |

  1. H. Kang, H. Y. Lee, K. S. Lee, and J. H. Kim, “Imaging-based tumor treatment response evaluation: review of conventional, new, and emerging concepts,” Korean J. Radiol. 13(4), 371–390 (2012).
    [Crossref]
  2. E. A. Eisenhauer, P. Therasse, J. Bogaerts, L. H. Schwartz, D. Sargent, R. Ford, J. Dancey, S. Arbuck, S. Gwyther, M. Mooney, L. Rubinstein, L. Shankar, L. Dodd, R. Kaplan, D. Lacombe, and J. Verweij, “New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1),” Eur. J. Cancer 45(2), 228–247 (2009).
    [Crossref]
  3. V. Demidov, L. A. Matveev, O. Demidova, A. L. Matveyev, V. Y. Zaitsev, C. Flueraru, and I. A. Vitkin, “Analysis of low-scattering regions in optical coherence tomography: applications to neurography and lymphangiography,” Biomed. Opt. Express 10(8), 4207–4219 (2019).
    [Crossref]
  4. B. A. Standish, K. K. Lee, X. Jin, A. Mariampillai, N. R. Munce, M. F. Wood, B. C. Wilson, I. A. Vitkin, and V. X. Yang, “Interstitial Doppler optical coherence tomography as a local tumor necrosis predictor in photodynamic therapy of prostatic carcinoma: an in vivo study,” Cancer Res. 68(23), 9987–9995 (2008).
    [Crossref]
  5. M. A. Sirotkina, L. A. Matveev, M. V. Shirmanova, V. Y. Zaitsev, N. L. Buyanova, V. V. Elagin, G. V. Gelikonov, S. S. Kuznetsov, E. B. Kiseleva, A. A. Moiseev, S. V. Gamayunov, E. V. Zagaynova, F. I. Feldchtein, A. Vitkin, and N. D. Gladkova, “Photodynamic therapy monitoring with optical coherence angiography,” Sci. Rep. 7(1), 41506 (2017).
    [Crossref]
  6. M. A. Sirotkina, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, V. V. Elagin, S. S. Kuznetsov, G. V. Gelikonov, S. Y. Ksenofontov, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “Accurate early prediction of tumour response to PDT using optical coherence angiography,” Sci. Rep. 9(1), 6492 (2019).
    [Crossref]
  7. M. Muhsin, J. Graham, and P. Kirkpatrick, “Bevacizumab,” Nat. Rev. Drug Discov. 3(12), 995–996 (2004).
    [Crossref]
  8. N. Ferrara, K. J. Hillan, H. P. Gerber, and W. Novotny, “Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer,” Nat. Rev. Drug Discovery 3(5), 391–400 (2004).
    [Crossref]
  9. B. W. Henderson and T. J. Dougherty, “How does photodynamic therapy work?” Photochem. Photobiol. 55(1), 145–157 (1992).
    [Crossref]
  10. A. M. Fisher, A. L. Murphree, and C. J. Gomer, “Clinical and preclinical photodynamic therapy,” Lasers Surg. Med. 17(1), 2–31 (1995).
    [Crossref]
  11. J. M. Dąbrowski, B. Pucelik, A. Regiel-Futyra, M. Brindell, O. Mazuryk, A. Kyzioł, G. Stochel, W. Macyk, and L. G. Arnaut, “Engineering of relevant photodynamic processes through structural modifications of metallotetrapyrrolic photosensitizers,” Coord. Chem. Rev. 325, 67–101 (2016).
    [Crossref]
  12. B. Chen, B. W. Pogue, I. A. Goodwin, J. A. O’Hara, C. M. Wilmot, J. E. Hutchins, P. J. Hoopes, and T. Hasan, “Blood flow dynamics after photodynamic therapy with verteporfin in the RIF-1 tumor,” Radiat. Res. 160(4), 452–459 (2003).
    [Crossref]
  13. T. Jiang, A. Kambadakone, N. M. Kulkarni, A. X. Zhu, and D. V. Sahani, “Monitoring response to antiangiogenic treatment and predicting outcomes in advanced hepatocellular carcinoma using image biomarkers, CT perfusion, tumor density, and tumor size (RECIST),” Invest. Radiol. 47(1), 11–17 (2012).
    [Crossref]
  14. A. Mariampillai, M. K. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. D. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett. 35(8), 1257–1259 (2010).
    [Crossref]
  15. L. A. Matveev, V. Y. Zaitsev, G. V. Gelikonov, A. L. Matveyev, A. A. Moiseev, S. Y. Ksenofontov, V. M. Gelikonov, M. A. Sirotkina, N. D. Gladkova, V. Demidov, and A. Vitkin, “Hybrid M-mode-like OCT imaging of three-dimensional microvasculature in vivo using reference-free processing of complex valued B-scans,” Opt. Lett. 40(7), 1472–1475 (2015).
    [Crossref]
  16. A. V. Maslennikova, M. A. Sirotkina, A. A. Moiseev, E. S. Finagina, S. Y. Ksenofontov, G. V. Gelikonov, L. A. Matveev, E. B. Kiseleva, V. Y. Zaitsev, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “In-vivo longitudinal imaging of microvascular changes in irradiated oral mucosa of radiotherapy cancer patients using optical coherence tomography,” Sci. Rep. 7(1), 16505 (2017).
    [Crossref]
  17. A. Moiseev, S. Ksenofontov, M. Sirotkina, E. Kiseleva, M. Gorozhantseva, N. Shakhova, L. Matveev, V. Zaitsev, A. Matveyev, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Optical coherence tomography-based angiography device with real-time angiography B-scans visualization and hand-held probe for everyday clinical use,” J. Biophotonics 11(10), e201700292 (2018).
    [Crossref]
  18. P. Gong, S. Es’haghian, K. A. Harms, A. Murray, S. Rea, B. F. Kennedy, F. M. Wood, D. D. Sampson, and R. A. McLaughlin, “Optical coherence tomography for longitudinal monitoring of vasculature in scars treated with laser fractionation,” J. Biophotonics 9(6), 626–636 (2016).
    [Crossref]
  19. E. V. Gubarkova, F. I. Feldchtein, E. V. Zagaynova, S. V. Gamayunov, M. A. Sirotkina, E. S. Sedova, S. S. Kuznetsov, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, D. A. Karashtin, G. V. Gelikonov, L. Pires, A. Vitkin, and N. D. Gladkova, “Optical coherence angiography for pre-treatment assessment and treatment monitoring following photodynamic therapy: a basal cell carcinoma patient study,” Sci. Rep. 9(1), 18670 (2019).
    [Crossref]
  20. A. A. Plekhanov, E. V. Gubarkova, A. A. Sovietsky, V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, L. B. Timofeeva, S. S. Kuznetsov, E. V. Zagaynova, N. D. Gladkova, and M. A. Sirotkina, “Optical Coherence Elastography for Non-Invasive Monitoring of Tumor Elasticity under Chemotherapy: Pilot Study,” Sovrem. Tehnol. Med. 10(3), 43 (2018).
    [Crossref]
  21. A. A. Plekhanov, M. A. Sirotkina, A. A. Sovetsky, E. V. Gubarkova, E. B. Kiseleva, V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, S. S. Kuznetsov, E. V. Zagaynova, and N. D. Gladkova, “Optical coherence elastography as a new method for estimation of chemotherapy efficacy on triple-negative breast cancer in the experiment,” Proc. SPIE 11065, 1106506 (2019).
    [Crossref]
  22. S. Wang and K. V. Larin, “Optical coherence elastography for tissue characterization: a review,” J. Biophotonics 8(4), 279–302 (2015).
    [Crossref]
  23. K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
    [Crossref]
  24. W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins,” Biomed. Opt. Express 7(10), 4139–4153 (2016).
    [Crossref]
  25. K. V. Larin and D. D. Sampson, “Optical coherence elastography - OCT at work in tissue biomechanics [Invited],” Biomed. Opt. Express 8(2), 1172–1202 (2017).
    [Crossref]
  26. E. V. Gubarkova, A. A. Sovetsky, V. Y. Zaitsev, A. L. Matveyev, D. A. Vorontsov, M. A. Sirotkina, L. A. Matveev, A. A. Plekhanov, N. P. Pavlova, S. S. Kuznetsov, A. Y. Vorontsov, E. V. Zagaynova, and N. D. Gladkova, “OCT-elastography-based optical biopsy for breast cancer delineation and express assessment of morphological/molecular subtypes,” Biomed. Opt. Express 10(5), 2244–2263 (2019).
    [Crossref]
  27. A. A. Plekhanov, M. A. Sirotkina, A. A. Sovetsky, E. V. Gubarkova, S. S. Kuznetsov, A. L. Matveyev, L. A. Matveev, E. V. Zagaynova, N. D. Gladkova, and V. Y. Zaitsev, “Method for in vivo assessment of cancer tissue inhomogeneity and accurate histology-like morphological segmentation based on Optical Coherence Elastography,” Sci. Rep. (in press 2020, BioRxive doi: 10.1101/2020.02.06.937417).
  28. A. A. Moiseev, G. V. Gelikonov, D. A. Terpelov, P. A. Shilyagin, and V. M. Gelikonov, “Noniterative method of reconstruction optical coherence tomography images with improved lateral resolution in semitransparent media,” Laser Phys. Lett. 10(12), 125601 (2013).
    [Crossref]
  29. V. M. Gelikonov and G. V. Gelikonov, “New approach to cross-polarized optical coherence tomography based on orthogonal arbitrarily polarized modes,” Laser Phys. Lett. 3(9), 445–451 (2006).
    [Crossref]
  30. P. A. Shilyagin, L. A. Matveev, E. B. Kiseleva, A. A. Moiseev, V. Y. Zaitsev, A. A. Sovietsky, D. V. Shabanov, V. M. Gelikonov, K. S. Yashin, K. A. Achkasova, N. D. Gladkova, and G. V. Gelikonov, “Stabilization of the Scanning Pattern for Three-Dimensional Phase-Sensitive OCT Modalities: Angiography, Relaxography, and Monitoring of Slow Processes,” Sovrem. Tehnol. Med. 11(2), 25–34 (2019).
    [Crossref]
  31. A. Moiseev, L. Snopova, S. Kuznetsov, N. Buyanova, V. Elagin, M. Sirotkina, E. Kiseleva, L. Matveev, V. Zaitsev, F. Feldchtein, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Pixel classification method in optical coherence tomography for tumor segmentation and its complementary usage with OCT microangiography,” J. Biophotonics 11(4), e201700072 (2018).
    [Crossref]
  32. V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, V. M. Gelikonov, and A. Vitkin, “Deformation-induced speckle-pattern evolution and feasibility of correlational speckle tracking in optical coherence elastography,” J. Biomed. Opt. 20(7), 075006 (2015).
    [Crossref]
  33. V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, E. V. Gubarkova, N. D. Gladkova, and A. Vitkin, “Hybrid method of strain estimation in optical coherence elastography using combined sub-wavelength phase measurements and supra-pixel displacement tracking,” J. Biophotonics 9(5), 499–509 (2016).
    [Crossref]
  34. A. A. Sovetsky, A. L. Matveyev, L. A. Matveev, D. V. Shabanov, and V. Y. Zaitsev, “Manually-operated compressional optical coherence elastography with effective aperiodic averaging: demonstrations for corneal and cartilaginous tissues,” Laser Phys. Lett. 15(8), 085602 (2018).
    [Crossref]
  35. A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, G. V. Gelikonov, A. A. Moiseev, and V. Y. Zaitsev, “Vector method for strain estimation in phase-sensitive optical coherence elastography,” Laser Phys. Lett. 15(6), 065603 (2018).
    [Crossref]
  36. V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, A. A. Sovetsky, and A. Vitkin, “Optimized phase gradient measurements and phase-amplitude interplay in optical coherence elastography,” J. Biomed. Opt. 21(11), 116005 (2016).
    [Crossref]
  37. V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Sovetsky, M. A. Sirotkina, G. V. Gelikonov, E. V. Zagaynova, N. D. Gladkova, and A. Vitkin, “Practical obstacles and their mitigation strategies in compressional optical coherence elastography of biological tissues,” J. Innovative Opt. Health Sci. 10(06), 1742006 (2017).
    [Crossref]
  38. V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, O. I. Baum, A. I. Omelchenko, D. V. Shabanov, A. A. Sovetsky, A. V. Yuzhakov, A. A. Fedorov, V. I. Siplivy, A. V. Bolshunov, and E. N. Sobol, “Revealing structural modifications in thermomechanical reshaping of collagenous tissues using optical coherence elastography,” J. Biophotonics 12(3), e201800250 (2019).
    [Crossref]
  39. T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imag. 20(4), 260–274 (1998).
    [Crossref]
  40. V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Sovetsky, M. A. Sirotkina, G. V. Gelikonov, E. V. Zagaynova, and N. D. Gladkova, and A. Vitkin, Manifestations of nonlinear elasticity of biological tissues in compressional optical coherence elastography, European Conferences on Biomedical Optics (SPIE, 2017), Vol. 10413.
  41. A. A. Sovetsky, E. V. Gubarkova, L. A. Matveev, A. L. Matveyev, M. A. Sirotkina, N. D. Gladkova, and V. Y. Zaitsev, OCT-based characterization of the nonlinear properties of biological tissues in various states, SPIE Photonics Europe (SPIE, 2018), Vol. 10685.
  42. Y. Wang, L. Dong, Q. Bi, X. Li, D. Wu, X. Ge, X. Zhang, J. Fu, C. Zhang, C. Wang, and S. Li, “Investigation of the efficacy of a bevacizumab-cetuximab-cisplatin regimen in treating head and neck squamous cell carcinoma in mice,” Target. Oncol. 5(4), 237–243 (2010).
    [Crossref]
  43. S. Mallidi, K. Watanabe, D. Timerman, D. Schoenfeld, and T. Hasan, “Prediction of tumor recurrence and therapy monitoring using ultrasound-guided photoacoustic imaging,” Theranostics 5(3), 289–301 (2015).
    [Crossref]
  44. M. M. Tomayko and C. P. Reynolds, “Determination of subcutaneous tumor size in athymic (nude) mice,” Cancer Chemother. Pharmacol. 24(3), 148–154 (1989).
    [Crossref]
  45. T. Friess, W. Scheuer, and M. Hasmann, “Combination treatment with erlotinib and pertuzumab against human tumor xenografts is superior to monotherapy,” Clin. Cancer Res. 11(14), 5300–5309 (2005).
    [Crossref]
  46. T. Li, G. Kang, T. Wang, and H. Huang, “Tumor angiogenesis and anti-angiogenic gene therapy for cancer,” Oncol. Lett. 16(1), 687–702 (2018).
    [Crossref]
  47. B. W. Engbrecht, C. Menon, A. V. Kachur, S. M. Hahn, and D. L. Fraker, “Photofrin-mediated photodynamic therapy induces vascular occlusion and apoptosis in a human sarcoma xenograft model,” Cancer Res. 59(17), 4334–4342 (1999).
  48. E. J. Walker, H. Su, F. Shen, V. Degos, G. Amend, K. Jun, and W. L. Young, “Bevacizumab attenuates VEGF-induced angiogenesis and vascular malformations in the adult mouse brain,” Stroke 43(7), 1925–1930 (2012).
    [Crossref]
  49. A. X. Zhu, N. S. Holalkere, A. Muzikansky, K. Horgan, and D. V. Sahani, “Early antiangiogenic activity of bevacizumab evaluated by computed tomography perfusion scan in patients with advanced hepatocellular carcinoma,” Oncologist 13(2), 120–125 (2008).
    [Crossref]

2019 (7)

V. Demidov, L. A. Matveev, O. Demidova, A. L. Matveyev, V. Y. Zaitsev, C. Flueraru, and I. A. Vitkin, “Analysis of low-scattering regions in optical coherence tomography: applications to neurography and lymphangiography,” Biomed. Opt. Express 10(8), 4207–4219 (2019).
[Crossref]

M. A. Sirotkina, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, V. V. Elagin, S. S. Kuznetsov, G. V. Gelikonov, S. Y. Ksenofontov, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “Accurate early prediction of tumour response to PDT using optical coherence angiography,” Sci. Rep. 9(1), 6492 (2019).
[Crossref]

E. V. Gubarkova, F. I. Feldchtein, E. V. Zagaynova, S. V. Gamayunov, M. A. Sirotkina, E. S. Sedova, S. S. Kuznetsov, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, D. A. Karashtin, G. V. Gelikonov, L. Pires, A. Vitkin, and N. D. Gladkova, “Optical coherence angiography for pre-treatment assessment and treatment monitoring following photodynamic therapy: a basal cell carcinoma patient study,” Sci. Rep. 9(1), 18670 (2019).
[Crossref]

A. A. Plekhanov, M. A. Sirotkina, A. A. Sovetsky, E. V. Gubarkova, E. B. Kiseleva, V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, S. S. Kuznetsov, E. V. Zagaynova, and N. D. Gladkova, “Optical coherence elastography as a new method for estimation of chemotherapy efficacy on triple-negative breast cancer in the experiment,” Proc. SPIE 11065, 1106506 (2019).
[Crossref]

E. V. Gubarkova, A. A. Sovetsky, V. Y. Zaitsev, A. L. Matveyev, D. A. Vorontsov, M. A. Sirotkina, L. A. Matveev, A. A. Plekhanov, N. P. Pavlova, S. S. Kuznetsov, A. Y. Vorontsov, E. V. Zagaynova, and N. D. Gladkova, “OCT-elastography-based optical biopsy for breast cancer delineation and express assessment of morphological/molecular subtypes,” Biomed. Opt. Express 10(5), 2244–2263 (2019).
[Crossref]

P. A. Shilyagin, L. A. Matveev, E. B. Kiseleva, A. A. Moiseev, V. Y. Zaitsev, A. A. Sovietsky, D. V. Shabanov, V. M. Gelikonov, K. S. Yashin, K. A. Achkasova, N. D. Gladkova, and G. V. Gelikonov, “Stabilization of the Scanning Pattern for Three-Dimensional Phase-Sensitive OCT Modalities: Angiography, Relaxography, and Monitoring of Slow Processes,” Sovrem. Tehnol. Med. 11(2), 25–34 (2019).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, O. I. Baum, A. I. Omelchenko, D. V. Shabanov, A. A. Sovetsky, A. V. Yuzhakov, A. A. Fedorov, V. I. Siplivy, A. V. Bolshunov, and E. N. Sobol, “Revealing structural modifications in thermomechanical reshaping of collagenous tissues using optical coherence elastography,” J. Biophotonics 12(3), e201800250 (2019).
[Crossref]

2018 (6)

T. Li, G. Kang, T. Wang, and H. Huang, “Tumor angiogenesis and anti-angiogenic gene therapy for cancer,” Oncol. Lett. 16(1), 687–702 (2018).
[Crossref]

A. Moiseev, L. Snopova, S. Kuznetsov, N. Buyanova, V. Elagin, M. Sirotkina, E. Kiseleva, L. Matveev, V. Zaitsev, F. Feldchtein, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Pixel classification method in optical coherence tomography for tumor segmentation and its complementary usage with OCT microangiography,” J. Biophotonics 11(4), e201700072 (2018).
[Crossref]

A. A. Sovetsky, A. L. Matveyev, L. A. Matveev, D. V. Shabanov, and V. Y. Zaitsev, “Manually-operated compressional optical coherence elastography with effective aperiodic averaging: demonstrations for corneal and cartilaginous tissues,” Laser Phys. Lett. 15(8), 085602 (2018).
[Crossref]

A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, G. V. Gelikonov, A. A. Moiseev, and V. Y. Zaitsev, “Vector method for strain estimation in phase-sensitive optical coherence elastography,” Laser Phys. Lett. 15(6), 065603 (2018).
[Crossref]

A. A. Plekhanov, E. V. Gubarkova, A. A. Sovietsky, V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, L. B. Timofeeva, S. S. Kuznetsov, E. V. Zagaynova, N. D. Gladkova, and M. A. Sirotkina, “Optical Coherence Elastography for Non-Invasive Monitoring of Tumor Elasticity under Chemotherapy: Pilot Study,” Sovrem. Tehnol. Med. 10(3), 43 (2018).
[Crossref]

A. Moiseev, S. Ksenofontov, M. Sirotkina, E. Kiseleva, M. Gorozhantseva, N. Shakhova, L. Matveev, V. Zaitsev, A. Matveyev, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Optical coherence tomography-based angiography device with real-time angiography B-scans visualization and hand-held probe for everyday clinical use,” J. Biophotonics 11(10), e201700292 (2018).
[Crossref]

2017 (4)

K. V. Larin and D. D. Sampson, “Optical coherence elastography - OCT at work in tissue biomechanics [Invited],” Biomed. Opt. Express 8(2), 1172–1202 (2017).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Sovetsky, M. A. Sirotkina, G. V. Gelikonov, E. V. Zagaynova, N. D. Gladkova, and A. Vitkin, “Practical obstacles and their mitigation strategies in compressional optical coherence elastography of biological tissues,” J. Innovative Opt. Health Sci. 10(06), 1742006 (2017).
[Crossref]

M. A. Sirotkina, L. A. Matveev, M. V. Shirmanova, V. Y. Zaitsev, N. L. Buyanova, V. V. Elagin, G. V. Gelikonov, S. S. Kuznetsov, E. B. Kiseleva, A. A. Moiseev, S. V. Gamayunov, E. V. Zagaynova, F. I. Feldchtein, A. Vitkin, and N. D. Gladkova, “Photodynamic therapy monitoring with optical coherence angiography,” Sci. Rep. 7(1), 41506 (2017).
[Crossref]

A. V. Maslennikova, M. A. Sirotkina, A. A. Moiseev, E. S. Finagina, S. Y. Ksenofontov, G. V. Gelikonov, L. A. Matveev, E. B. Kiseleva, V. Y. Zaitsev, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “In-vivo longitudinal imaging of microvascular changes in irradiated oral mucosa of radiotherapy cancer patients using optical coherence tomography,” Sci. Rep. 7(1), 16505 (2017).
[Crossref]

2016 (5)

J. M. Dąbrowski, B. Pucelik, A. Regiel-Futyra, M. Brindell, O. Mazuryk, A. Kyzioł, G. Stochel, W. Macyk, and L. G. Arnaut, “Engineering of relevant photodynamic processes through structural modifications of metallotetrapyrrolic photosensitizers,” Coord. Chem. Rev. 325, 67–101 (2016).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, E. V. Gubarkova, N. D. Gladkova, and A. Vitkin, “Hybrid method of strain estimation in optical coherence elastography using combined sub-wavelength phase measurements and supra-pixel displacement tracking,” J. Biophotonics 9(5), 499–509 (2016).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, A. A. Sovetsky, and A. Vitkin, “Optimized phase gradient measurements and phase-amplitude interplay in optical coherence elastography,” J. Biomed. Opt. 21(11), 116005 (2016).
[Crossref]

W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins,” Biomed. Opt. Express 7(10), 4139–4153 (2016).
[Crossref]

P. Gong, S. Es’haghian, K. A. Harms, A. Murray, S. Rea, B. F. Kennedy, F. M. Wood, D. D. Sampson, and R. A. McLaughlin, “Optical coherence tomography for longitudinal monitoring of vasculature in scars treated with laser fractionation,” J. Biophotonics 9(6), 626–636 (2016).
[Crossref]

2015 (5)

S. Wang and K. V. Larin, “Optical coherence elastography for tissue characterization: a review,” J. Biophotonics 8(4), 279–302 (2015).
[Crossref]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, V. M. Gelikonov, and A. Vitkin, “Deformation-induced speckle-pattern evolution and feasibility of correlational speckle tracking in optical coherence elastography,” J. Biomed. Opt. 20(7), 075006 (2015).
[Crossref]

L. A. Matveev, V. Y. Zaitsev, G. V. Gelikonov, A. L. Matveyev, A. A. Moiseev, S. Y. Ksenofontov, V. M. Gelikonov, M. A. Sirotkina, N. D. Gladkova, V. Demidov, and A. Vitkin, “Hybrid M-mode-like OCT imaging of three-dimensional microvasculature in vivo using reference-free processing of complex valued B-scans,” Opt. Lett. 40(7), 1472–1475 (2015).
[Crossref]

S. Mallidi, K. Watanabe, D. Timerman, D. Schoenfeld, and T. Hasan, “Prediction of tumor recurrence and therapy monitoring using ultrasound-guided photoacoustic imaging,” Theranostics 5(3), 289–301 (2015).
[Crossref]

2013 (1)

A. A. Moiseev, G. V. Gelikonov, D. A. Terpelov, P. A. Shilyagin, and V. M. Gelikonov, “Noniterative method of reconstruction optical coherence tomography images with improved lateral resolution in semitransparent media,” Laser Phys. Lett. 10(12), 125601 (2013).
[Crossref]

2012 (3)

T. Jiang, A. Kambadakone, N. M. Kulkarni, A. X. Zhu, and D. V. Sahani, “Monitoring response to antiangiogenic treatment and predicting outcomes in advanced hepatocellular carcinoma using image biomarkers, CT perfusion, tumor density, and tumor size (RECIST),” Invest. Radiol. 47(1), 11–17 (2012).
[Crossref]

H. Kang, H. Y. Lee, K. S. Lee, and J. H. Kim, “Imaging-based tumor treatment response evaluation: review of conventional, new, and emerging concepts,” Korean J. Radiol. 13(4), 371–390 (2012).
[Crossref]

E. J. Walker, H. Su, F. Shen, V. Degos, G. Amend, K. Jun, and W. L. Young, “Bevacizumab attenuates VEGF-induced angiogenesis and vascular malformations in the adult mouse brain,” Stroke 43(7), 1925–1930 (2012).
[Crossref]

2010 (2)

Y. Wang, L. Dong, Q. Bi, X. Li, D. Wu, X. Ge, X. Zhang, J. Fu, C. Zhang, C. Wang, and S. Li, “Investigation of the efficacy of a bevacizumab-cetuximab-cisplatin regimen in treating head and neck squamous cell carcinoma in mice,” Target. Oncol. 5(4), 237–243 (2010).
[Crossref]

A. Mariampillai, M. K. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. D. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett. 35(8), 1257–1259 (2010).
[Crossref]

2009 (1)

E. A. Eisenhauer, P. Therasse, J. Bogaerts, L. H. Schwartz, D. Sargent, R. Ford, J. Dancey, S. Arbuck, S. Gwyther, M. Mooney, L. Rubinstein, L. Shankar, L. Dodd, R. Kaplan, D. Lacombe, and J. Verweij, “New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1),” Eur. J. Cancer 45(2), 228–247 (2009).
[Crossref]

2008 (2)

B. A. Standish, K. K. Lee, X. Jin, A. Mariampillai, N. R. Munce, M. F. Wood, B. C. Wilson, I. A. Vitkin, and V. X. Yang, “Interstitial Doppler optical coherence tomography as a local tumor necrosis predictor in photodynamic therapy of prostatic carcinoma: an in vivo study,” Cancer Res. 68(23), 9987–9995 (2008).
[Crossref]

A. X. Zhu, N. S. Holalkere, A. Muzikansky, K. Horgan, and D. V. Sahani, “Early antiangiogenic activity of bevacizumab evaluated by computed tomography perfusion scan in patients with advanced hepatocellular carcinoma,” Oncologist 13(2), 120–125 (2008).
[Crossref]

2006 (1)

V. M. Gelikonov and G. V. Gelikonov, “New approach to cross-polarized optical coherence tomography based on orthogonal arbitrarily polarized modes,” Laser Phys. Lett. 3(9), 445–451 (2006).
[Crossref]

2005 (1)

T. Friess, W. Scheuer, and M. Hasmann, “Combination treatment with erlotinib and pertuzumab against human tumor xenografts is superior to monotherapy,” Clin. Cancer Res. 11(14), 5300–5309 (2005).
[Crossref]

2004 (2)

M. Muhsin, J. Graham, and P. Kirkpatrick, “Bevacizumab,” Nat. Rev. Drug Discov. 3(12), 995–996 (2004).
[Crossref]

N. Ferrara, K. J. Hillan, H. P. Gerber, and W. Novotny, “Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer,” Nat. Rev. Drug Discovery 3(5), 391–400 (2004).
[Crossref]

2003 (1)

B. Chen, B. W. Pogue, I. A. Goodwin, J. A. O’Hara, C. M. Wilmot, J. E. Hutchins, P. J. Hoopes, and T. Hasan, “Blood flow dynamics after photodynamic therapy with verteporfin in the RIF-1 tumor,” Radiat. Res. 160(4), 452–459 (2003).
[Crossref]

1999 (1)

B. W. Engbrecht, C. Menon, A. V. Kachur, S. M. Hahn, and D. L. Fraker, “Photofrin-mediated photodynamic therapy induces vascular occlusion and apoptosis in a human sarcoma xenograft model,” Cancer Res. 59(17), 4334–4342 (1999).

1998 (1)

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imag. 20(4), 260–274 (1998).
[Crossref]

1995 (1)

A. M. Fisher, A. L. Murphree, and C. J. Gomer, “Clinical and preclinical photodynamic therapy,” Lasers Surg. Med. 17(1), 2–31 (1995).
[Crossref]

1992 (1)

B. W. Henderson and T. J. Dougherty, “How does photodynamic therapy work?” Photochem. Photobiol. 55(1), 145–157 (1992).
[Crossref]

1989 (1)

M. M. Tomayko and C. P. Reynolds, “Determination of subcutaneous tumor size in athymic (nude) mice,” Cancer Chemother. Pharmacol. 24(3), 148–154 (1989).
[Crossref]

Achkasova, K. A.

P. A. Shilyagin, L. A. Matveev, E. B. Kiseleva, A. A. Moiseev, V. Y. Zaitsev, A. A. Sovietsky, D. V. Shabanov, V. M. Gelikonov, K. S. Yashin, K. A. Achkasova, N. D. Gladkova, and G. V. Gelikonov, “Stabilization of the Scanning Pattern for Three-Dimensional Phase-Sensitive OCT Modalities: Angiography, Relaxography, and Monitoring of Slow Processes,” Sovrem. Tehnol. Med. 11(2), 25–34 (2019).
[Crossref]

Allen, W. M.

Amend, G.

E. J. Walker, H. Su, F. Shen, V. Degos, G. Amend, K. Jun, and W. L. Young, “Bevacizumab attenuates VEGF-induced angiogenesis and vascular malformations in the adult mouse brain,” Stroke 43(7), 1925–1930 (2012).
[Crossref]

Arbuck, S.

E. A. Eisenhauer, P. Therasse, J. Bogaerts, L. H. Schwartz, D. Sargent, R. Ford, J. Dancey, S. Arbuck, S. Gwyther, M. Mooney, L. Rubinstein, L. Shankar, L. Dodd, R. Kaplan, D. Lacombe, and J. Verweij, “New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1),” Eur. J. Cancer 45(2), 228–247 (2009).
[Crossref]

Arnaut, L. G.

J. M. Dąbrowski, B. Pucelik, A. Regiel-Futyra, M. Brindell, O. Mazuryk, A. Kyzioł, G. Stochel, W. Macyk, and L. G. Arnaut, “Engineering of relevant photodynamic processes through structural modifications of metallotetrapyrrolic photosensitizers,” Coord. Chem. Rev. 325, 67–101 (2016).
[Crossref]

Baum, O. I.

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, O. I. Baum, A. I. Omelchenko, D. V. Shabanov, A. A. Sovetsky, A. V. Yuzhakov, A. A. Fedorov, V. I. Siplivy, A. V. Bolshunov, and E. N. Sobol, “Revealing structural modifications in thermomechanical reshaping of collagenous tissues using optical coherence elastography,” J. Biophotonics 12(3), e201800250 (2019).
[Crossref]

Bi, Q.

Y. Wang, L. Dong, Q. Bi, X. Li, D. Wu, X. Ge, X. Zhang, J. Fu, C. Zhang, C. Wang, and S. Li, “Investigation of the efficacy of a bevacizumab-cetuximab-cisplatin regimen in treating head and neck squamous cell carcinoma in mice,” Target. Oncol. 5(4), 237–243 (2010).
[Crossref]

Bogaerts, J.

E. A. Eisenhauer, P. Therasse, J. Bogaerts, L. H. Schwartz, D. Sargent, R. Ford, J. Dancey, S. Arbuck, S. Gwyther, M. Mooney, L. Rubinstein, L. Shankar, L. Dodd, R. Kaplan, D. Lacombe, and J. Verweij, “New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1),” Eur. J. Cancer 45(2), 228–247 (2009).
[Crossref]

Bolshunov, A. V.

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, O. I. Baum, A. I. Omelchenko, D. V. Shabanov, A. A. Sovetsky, A. V. Yuzhakov, A. A. Fedorov, V. I. Siplivy, A. V. Bolshunov, and E. N. Sobol, “Revealing structural modifications in thermomechanical reshaping of collagenous tissues using optical coherence elastography,” J. Biophotonics 12(3), e201800250 (2019).
[Crossref]

Brindell, M.

J. M. Dąbrowski, B. Pucelik, A. Regiel-Futyra, M. Brindell, O. Mazuryk, A. Kyzioł, G. Stochel, W. Macyk, and L. G. Arnaut, “Engineering of relevant photodynamic processes through structural modifications of metallotetrapyrrolic photosensitizers,” Coord. Chem. Rev. 325, 67–101 (2016).
[Crossref]

Buyanova, N.

A. Moiseev, L. Snopova, S. Kuznetsov, N. Buyanova, V. Elagin, M. Sirotkina, E. Kiseleva, L. Matveev, V. Zaitsev, F. Feldchtein, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Pixel classification method in optical coherence tomography for tumor segmentation and its complementary usage with OCT microangiography,” J. Biophotonics 11(4), e201700072 (2018).
[Crossref]

Buyanova, N. L.

M. A. Sirotkina, L. A. Matveev, M. V. Shirmanova, V. Y. Zaitsev, N. L. Buyanova, V. V. Elagin, G. V. Gelikonov, S. S. Kuznetsov, E. B. Kiseleva, A. A. Moiseev, S. V. Gamayunov, E. V. Zagaynova, F. I. Feldchtein, A. Vitkin, and N. D. Gladkova, “Photodynamic therapy monitoring with optical coherence angiography,” Sci. Rep. 7(1), 41506 (2017).
[Crossref]

Chen, B.

B. Chen, B. W. Pogue, I. A. Goodwin, J. A. O’Hara, C. M. Wilmot, J. E. Hutchins, P. J. Hoopes, and T. Hasan, “Blood flow dynamics after photodynamic therapy with verteporfin in the RIF-1 tumor,” Radiat. Res. 160(4), 452–459 (2003).
[Crossref]

Chin, L.

W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins,” Biomed. Opt. Express 7(10), 4139–4153 (2016).
[Crossref]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref]

Dabrowski, J. M.

J. M. Dąbrowski, B. Pucelik, A. Regiel-Futyra, M. Brindell, O. Mazuryk, A. Kyzioł, G. Stochel, W. Macyk, and L. G. Arnaut, “Engineering of relevant photodynamic processes through structural modifications of metallotetrapyrrolic photosensitizers,” Coord. Chem. Rev. 325, 67–101 (2016).
[Crossref]

Dancey, J.

E. A. Eisenhauer, P. Therasse, J. Bogaerts, L. H. Schwartz, D. Sargent, R. Ford, J. Dancey, S. Arbuck, S. Gwyther, M. Mooney, L. Rubinstein, L. Shankar, L. Dodd, R. Kaplan, D. Lacombe, and J. Verweij, “New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1),” Eur. J. Cancer 45(2), 228–247 (2009).
[Crossref]

Degos, V.

E. J. Walker, H. Su, F. Shen, V. Degos, G. Amend, K. Jun, and W. L. Young, “Bevacizumab attenuates VEGF-induced angiogenesis and vascular malformations in the adult mouse brain,” Stroke 43(7), 1925–1930 (2012).
[Crossref]

Demidov, V.

Demidova, O.

Dodd, L.

E. A. Eisenhauer, P. Therasse, J. Bogaerts, L. H. Schwartz, D. Sargent, R. Ford, J. Dancey, S. Arbuck, S. Gwyther, M. Mooney, L. Rubinstein, L. Shankar, L. Dodd, R. Kaplan, D. Lacombe, and J. Verweij, “New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1),” Eur. J. Cancer 45(2), 228–247 (2009).
[Crossref]

Dong, L.

Y. Wang, L. Dong, Q. Bi, X. Li, D. Wu, X. Ge, X. Zhang, J. Fu, C. Zhang, C. Wang, and S. Li, “Investigation of the efficacy of a bevacizumab-cetuximab-cisplatin regimen in treating head and neck squamous cell carcinoma in mice,” Target. Oncol. 5(4), 237–243 (2010).
[Crossref]

Dougherty, T. J.

B. W. Henderson and T. J. Dougherty, “How does photodynamic therapy work?” Photochem. Photobiol. 55(1), 145–157 (1992).
[Crossref]

Eisenhauer, E. A.

E. A. Eisenhauer, P. Therasse, J. Bogaerts, L. H. Schwartz, D. Sargent, R. Ford, J. Dancey, S. Arbuck, S. Gwyther, M. Mooney, L. Rubinstein, L. Shankar, L. Dodd, R. Kaplan, D. Lacombe, and J. Verweij, “New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1),” Eur. J. Cancer 45(2), 228–247 (2009).
[Crossref]

Elagin, V.

A. Moiseev, L. Snopova, S. Kuznetsov, N. Buyanova, V. Elagin, M. Sirotkina, E. Kiseleva, L. Matveev, V. Zaitsev, F. Feldchtein, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Pixel classification method in optical coherence tomography for tumor segmentation and its complementary usage with OCT microangiography,” J. Biophotonics 11(4), e201700072 (2018).
[Crossref]

Elagin, V. V.

M. A. Sirotkina, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, V. V. Elagin, S. S. Kuznetsov, G. V. Gelikonov, S. Y. Ksenofontov, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “Accurate early prediction of tumour response to PDT using optical coherence angiography,” Sci. Rep. 9(1), 6492 (2019).
[Crossref]

M. A. Sirotkina, L. A. Matveev, M. V. Shirmanova, V. Y. Zaitsev, N. L. Buyanova, V. V. Elagin, G. V. Gelikonov, S. S. Kuznetsov, E. B. Kiseleva, A. A. Moiseev, S. V. Gamayunov, E. V. Zagaynova, F. I. Feldchtein, A. Vitkin, and N. D. Gladkova, “Photodynamic therapy monitoring with optical coherence angiography,” Sci. Rep. 7(1), 41506 (2017).
[Crossref]

Engbrecht, B. W.

B. W. Engbrecht, C. Menon, A. V. Kachur, S. M. Hahn, and D. L. Fraker, “Photofrin-mediated photodynamic therapy induces vascular occlusion and apoptosis in a human sarcoma xenograft model,” Cancer Res. 59(17), 4334–4342 (1999).

Es’haghian, S.

P. Gong, S. Es’haghian, K. A. Harms, A. Murray, S. Rea, B. F. Kennedy, F. M. Wood, D. D. Sampson, and R. A. McLaughlin, “Optical coherence tomography for longitudinal monitoring of vasculature in scars treated with laser fractionation,” J. Biophotonics 9(6), 626–636 (2016).
[Crossref]

Fedorov, A. A.

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, O. I. Baum, A. I. Omelchenko, D. V. Shabanov, A. A. Sovetsky, A. V. Yuzhakov, A. A. Fedorov, V. I. Siplivy, A. V. Bolshunov, and E. N. Sobol, “Revealing structural modifications in thermomechanical reshaping of collagenous tissues using optical coherence elastography,” J. Biophotonics 12(3), e201800250 (2019).
[Crossref]

Feldchtein, F.

A. Moiseev, L. Snopova, S. Kuznetsov, N. Buyanova, V. Elagin, M. Sirotkina, E. Kiseleva, L. Matveev, V. Zaitsev, F. Feldchtein, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Pixel classification method in optical coherence tomography for tumor segmentation and its complementary usage with OCT microangiography,” J. Biophotonics 11(4), e201700072 (2018).
[Crossref]

Feldchtein, F. I.

E. V. Gubarkova, F. I. Feldchtein, E. V. Zagaynova, S. V. Gamayunov, M. A. Sirotkina, E. S. Sedova, S. S. Kuznetsov, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, D. A. Karashtin, G. V. Gelikonov, L. Pires, A. Vitkin, and N. D. Gladkova, “Optical coherence angiography for pre-treatment assessment and treatment monitoring following photodynamic therapy: a basal cell carcinoma patient study,” Sci. Rep. 9(1), 18670 (2019).
[Crossref]

M. A. Sirotkina, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, V. V. Elagin, S. S. Kuznetsov, G. V. Gelikonov, S. Y. Ksenofontov, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “Accurate early prediction of tumour response to PDT using optical coherence angiography,” Sci. Rep. 9(1), 6492 (2019).
[Crossref]

M. A. Sirotkina, L. A. Matveev, M. V. Shirmanova, V. Y. Zaitsev, N. L. Buyanova, V. V. Elagin, G. V. Gelikonov, S. S. Kuznetsov, E. B. Kiseleva, A. A. Moiseev, S. V. Gamayunov, E. V. Zagaynova, F. I. Feldchtein, A. Vitkin, and N. D. Gladkova, “Photodynamic therapy monitoring with optical coherence angiography,” Sci. Rep. 7(1), 41506 (2017).
[Crossref]

A. V. Maslennikova, M. A. Sirotkina, A. A. Moiseev, E. S. Finagina, S. Y. Ksenofontov, G. V. Gelikonov, L. A. Matveev, E. B. Kiseleva, V. Y. Zaitsev, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “In-vivo longitudinal imaging of microvascular changes in irradiated oral mucosa of radiotherapy cancer patients using optical coherence tomography,” Sci. Rep. 7(1), 16505 (2017).
[Crossref]

Ferrara, N.

N. Ferrara, K. J. Hillan, H. P. Gerber, and W. Novotny, “Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer,” Nat. Rev. Drug Discovery 3(5), 391–400 (2004).
[Crossref]

Finagina, E. S.

A. V. Maslennikova, M. A. Sirotkina, A. A. Moiseev, E. S. Finagina, S. Y. Ksenofontov, G. V. Gelikonov, L. A. Matveev, E. B. Kiseleva, V. Y. Zaitsev, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “In-vivo longitudinal imaging of microvascular changes in irradiated oral mucosa of radiotherapy cancer patients using optical coherence tomography,” Sci. Rep. 7(1), 16505 (2017).
[Crossref]

Fisher, A. M.

A. M. Fisher, A. L. Murphree, and C. J. Gomer, “Clinical and preclinical photodynamic therapy,” Lasers Surg. Med. 17(1), 2–31 (1995).
[Crossref]

Flueraru, C.

Ford, R.

E. A. Eisenhauer, P. Therasse, J. Bogaerts, L. H. Schwartz, D. Sargent, R. Ford, J. Dancey, S. Arbuck, S. Gwyther, M. Mooney, L. Rubinstein, L. Shankar, L. Dodd, R. Kaplan, D. Lacombe, and J. Verweij, “New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1),” Eur. J. Cancer 45(2), 228–247 (2009).
[Crossref]

Fraker, D. L.

B. W. Engbrecht, C. Menon, A. V. Kachur, S. M. Hahn, and D. L. Fraker, “Photofrin-mediated photodynamic therapy induces vascular occlusion and apoptosis in a human sarcoma xenograft model,” Cancer Res. 59(17), 4334–4342 (1999).

Friess, T.

T. Friess, W. Scheuer, and M. Hasmann, “Combination treatment with erlotinib and pertuzumab against human tumor xenografts is superior to monotherapy,” Clin. Cancer Res. 11(14), 5300–5309 (2005).
[Crossref]

Fu, J.

Y. Wang, L. Dong, Q. Bi, X. Li, D. Wu, X. Ge, X. Zhang, J. Fu, C. Zhang, C. Wang, and S. Li, “Investigation of the efficacy of a bevacizumab-cetuximab-cisplatin regimen in treating head and neck squamous cell carcinoma in mice,” Target. Oncol. 5(4), 237–243 (2010).
[Crossref]

Gamayunov, S. V.

E. V. Gubarkova, F. I. Feldchtein, E. V. Zagaynova, S. V. Gamayunov, M. A. Sirotkina, E. S. Sedova, S. S. Kuznetsov, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, D. A. Karashtin, G. V. Gelikonov, L. Pires, A. Vitkin, and N. D. Gladkova, “Optical coherence angiography for pre-treatment assessment and treatment monitoring following photodynamic therapy: a basal cell carcinoma patient study,” Sci. Rep. 9(1), 18670 (2019).
[Crossref]

M. A. Sirotkina, L. A. Matveev, M. V. Shirmanova, V. Y. Zaitsev, N. L. Buyanova, V. V. Elagin, G. V. Gelikonov, S. S. Kuznetsov, E. B. Kiseleva, A. A. Moiseev, S. V. Gamayunov, E. V. Zagaynova, F. I. Feldchtein, A. Vitkin, and N. D. Gladkova, “Photodynamic therapy monitoring with optical coherence angiography,” Sci. Rep. 7(1), 41506 (2017).
[Crossref]

Garra, B. S.

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imag. 20(4), 260–274 (1998).
[Crossref]

Ge, X.

Y. Wang, L. Dong, Q. Bi, X. Li, D. Wu, X. Ge, X. Zhang, J. Fu, C. Zhang, C. Wang, and S. Li, “Investigation of the efficacy of a bevacizumab-cetuximab-cisplatin regimen in treating head and neck squamous cell carcinoma in mice,” Target. Oncol. 5(4), 237–243 (2010).
[Crossref]

Gelikonov, G.

A. Moiseev, S. Ksenofontov, M. Sirotkina, E. Kiseleva, M. Gorozhantseva, N. Shakhova, L. Matveev, V. Zaitsev, A. Matveyev, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Optical coherence tomography-based angiography device with real-time angiography B-scans visualization and hand-held probe for everyday clinical use,” J. Biophotonics 11(10), e201700292 (2018).
[Crossref]

A. Moiseev, L. Snopova, S. Kuznetsov, N. Buyanova, V. Elagin, M. Sirotkina, E. Kiseleva, L. Matveev, V. Zaitsev, F. Feldchtein, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Pixel classification method in optical coherence tomography for tumor segmentation and its complementary usage with OCT microangiography,” J. Biophotonics 11(4), e201700072 (2018).
[Crossref]

Gelikonov, G. V.

P. A. Shilyagin, L. A. Matveev, E. B. Kiseleva, A. A. Moiseev, V. Y. Zaitsev, A. A. Sovietsky, D. V. Shabanov, V. M. Gelikonov, K. S. Yashin, K. A. Achkasova, N. D. Gladkova, and G. V. Gelikonov, “Stabilization of the Scanning Pattern for Three-Dimensional Phase-Sensitive OCT Modalities: Angiography, Relaxography, and Monitoring of Slow Processes,” Sovrem. Tehnol. Med. 11(2), 25–34 (2019).
[Crossref]

E. V. Gubarkova, F. I. Feldchtein, E. V. Zagaynova, S. V. Gamayunov, M. A. Sirotkina, E. S. Sedova, S. S. Kuznetsov, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, D. A. Karashtin, G. V. Gelikonov, L. Pires, A. Vitkin, and N. D. Gladkova, “Optical coherence angiography for pre-treatment assessment and treatment monitoring following photodynamic therapy: a basal cell carcinoma patient study,” Sci. Rep. 9(1), 18670 (2019).
[Crossref]

M. A. Sirotkina, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, V. V. Elagin, S. S. Kuznetsov, G. V. Gelikonov, S. Y. Ksenofontov, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “Accurate early prediction of tumour response to PDT using optical coherence angiography,” Sci. Rep. 9(1), 6492 (2019).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, O. I. Baum, A. I. Omelchenko, D. V. Shabanov, A. A. Sovetsky, A. V. Yuzhakov, A. A. Fedorov, V. I. Siplivy, A. V. Bolshunov, and E. N. Sobol, “Revealing structural modifications in thermomechanical reshaping of collagenous tissues using optical coherence elastography,” J. Biophotonics 12(3), e201800250 (2019).
[Crossref]

A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, G. V. Gelikonov, A. A. Moiseev, and V. Y. Zaitsev, “Vector method for strain estimation in phase-sensitive optical coherence elastography,” Laser Phys. Lett. 15(6), 065603 (2018).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Sovetsky, M. A. Sirotkina, G. V. Gelikonov, E. V. Zagaynova, N. D. Gladkova, and A. Vitkin, “Practical obstacles and their mitigation strategies in compressional optical coherence elastography of biological tissues,” J. Innovative Opt. Health Sci. 10(06), 1742006 (2017).
[Crossref]

M. A. Sirotkina, L. A. Matveev, M. V. Shirmanova, V. Y. Zaitsev, N. L. Buyanova, V. V. Elagin, G. V. Gelikonov, S. S. Kuznetsov, E. B. Kiseleva, A. A. Moiseev, S. V. Gamayunov, E. V. Zagaynova, F. I. Feldchtein, A. Vitkin, and N. D. Gladkova, “Photodynamic therapy monitoring with optical coherence angiography,” Sci. Rep. 7(1), 41506 (2017).
[Crossref]

A. V. Maslennikova, M. A. Sirotkina, A. A. Moiseev, E. S. Finagina, S. Y. Ksenofontov, G. V. Gelikonov, L. A. Matveev, E. B. Kiseleva, V. Y. Zaitsev, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “In-vivo longitudinal imaging of microvascular changes in irradiated oral mucosa of radiotherapy cancer patients using optical coherence tomography,” Sci. Rep. 7(1), 16505 (2017).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, E. V. Gubarkova, N. D. Gladkova, and A. Vitkin, “Hybrid method of strain estimation in optical coherence elastography using combined sub-wavelength phase measurements and supra-pixel displacement tracking,” J. Biophotonics 9(5), 499–509 (2016).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, A. A. Sovetsky, and A. Vitkin, “Optimized phase gradient measurements and phase-amplitude interplay in optical coherence elastography,” J. Biomed. Opt. 21(11), 116005 (2016).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, V. M. Gelikonov, and A. Vitkin, “Deformation-induced speckle-pattern evolution and feasibility of correlational speckle tracking in optical coherence elastography,” J. Biomed. Opt. 20(7), 075006 (2015).
[Crossref]

L. A. Matveev, V. Y. Zaitsev, G. V. Gelikonov, A. L. Matveyev, A. A. Moiseev, S. Y. Ksenofontov, V. M. Gelikonov, M. A. Sirotkina, N. D. Gladkova, V. Demidov, and A. Vitkin, “Hybrid M-mode-like OCT imaging of three-dimensional microvasculature in vivo using reference-free processing of complex valued B-scans,” Opt. Lett. 40(7), 1472–1475 (2015).
[Crossref]

A. A. Moiseev, G. V. Gelikonov, D. A. Terpelov, P. A. Shilyagin, and V. M. Gelikonov, “Noniterative method of reconstruction optical coherence tomography images with improved lateral resolution in semitransparent media,” Laser Phys. Lett. 10(12), 125601 (2013).
[Crossref]

V. M. Gelikonov and G. V. Gelikonov, “New approach to cross-polarized optical coherence tomography based on orthogonal arbitrarily polarized modes,” Laser Phys. Lett. 3(9), 445–451 (2006).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Sovetsky, M. A. Sirotkina, G. V. Gelikonov, E. V. Zagaynova, and N. D. Gladkova, and A. Vitkin, Manifestations of nonlinear elasticity of biological tissues in compressional optical coherence elastography, European Conferences on Biomedical Optics (SPIE, 2017), Vol. 10413.

Gelikonov, V.

A. Moiseev, L. Snopova, S. Kuznetsov, N. Buyanova, V. Elagin, M. Sirotkina, E. Kiseleva, L. Matveev, V. Zaitsev, F. Feldchtein, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Pixel classification method in optical coherence tomography for tumor segmentation and its complementary usage with OCT microangiography,” J. Biophotonics 11(4), e201700072 (2018).
[Crossref]

A. Moiseev, S. Ksenofontov, M. Sirotkina, E. Kiseleva, M. Gorozhantseva, N. Shakhova, L. Matveev, V. Zaitsev, A. Matveyev, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Optical coherence tomography-based angiography device with real-time angiography B-scans visualization and hand-held probe for everyday clinical use,” J. Biophotonics 11(10), e201700292 (2018).
[Crossref]

Gelikonov, V. M.

P. A. Shilyagin, L. A. Matveev, E. B. Kiseleva, A. A. Moiseev, V. Y. Zaitsev, A. A. Sovietsky, D. V. Shabanov, V. M. Gelikonov, K. S. Yashin, K. A. Achkasova, N. D. Gladkova, and G. V. Gelikonov, “Stabilization of the Scanning Pattern for Three-Dimensional Phase-Sensitive OCT Modalities: Angiography, Relaxography, and Monitoring of Slow Processes,” Sovrem. Tehnol. Med. 11(2), 25–34 (2019).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, V. M. Gelikonov, and A. Vitkin, “Deformation-induced speckle-pattern evolution and feasibility of correlational speckle tracking in optical coherence elastography,” J. Biomed. Opt. 20(7), 075006 (2015).
[Crossref]

L. A. Matveev, V. Y. Zaitsev, G. V. Gelikonov, A. L. Matveyev, A. A. Moiseev, S. Y. Ksenofontov, V. M. Gelikonov, M. A. Sirotkina, N. D. Gladkova, V. Demidov, and A. Vitkin, “Hybrid M-mode-like OCT imaging of three-dimensional microvasculature in vivo using reference-free processing of complex valued B-scans,” Opt. Lett. 40(7), 1472–1475 (2015).
[Crossref]

A. A. Moiseev, G. V. Gelikonov, D. A. Terpelov, P. A. Shilyagin, and V. M. Gelikonov, “Noniterative method of reconstruction optical coherence tomography images with improved lateral resolution in semitransparent media,” Laser Phys. Lett. 10(12), 125601 (2013).
[Crossref]

V. M. Gelikonov and G. V. Gelikonov, “New approach to cross-polarized optical coherence tomography based on orthogonal arbitrarily polarized modes,” Laser Phys. Lett. 3(9), 445–451 (2006).
[Crossref]

Gerber, H. P.

N. Ferrara, K. J. Hillan, H. P. Gerber, and W. Novotny, “Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer,” Nat. Rev. Drug Discovery 3(5), 391–400 (2004).
[Crossref]

Gladkova, N.

A. Moiseev, S. Ksenofontov, M. Sirotkina, E. Kiseleva, M. Gorozhantseva, N. Shakhova, L. Matveev, V. Zaitsev, A. Matveyev, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Optical coherence tomography-based angiography device with real-time angiography B-scans visualization and hand-held probe for everyday clinical use,” J. Biophotonics 11(10), e201700292 (2018).
[Crossref]

A. Moiseev, L. Snopova, S. Kuznetsov, N. Buyanova, V. Elagin, M. Sirotkina, E. Kiseleva, L. Matveev, V. Zaitsev, F. Feldchtein, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Pixel classification method in optical coherence tomography for tumor segmentation and its complementary usage with OCT microangiography,” J. Biophotonics 11(4), e201700072 (2018).
[Crossref]

Gladkova, N. D.

P. A. Shilyagin, L. A. Matveev, E. B. Kiseleva, A. A. Moiseev, V. Y. Zaitsev, A. A. Sovietsky, D. V. Shabanov, V. M. Gelikonov, K. S. Yashin, K. A. Achkasova, N. D. Gladkova, and G. V. Gelikonov, “Stabilization of the Scanning Pattern for Three-Dimensional Phase-Sensitive OCT Modalities: Angiography, Relaxography, and Monitoring of Slow Processes,” Sovrem. Tehnol. Med. 11(2), 25–34 (2019).
[Crossref]

E. V. Gubarkova, A. A. Sovetsky, V. Y. Zaitsev, A. L. Matveyev, D. A. Vorontsov, M. A. Sirotkina, L. A. Matveev, A. A. Plekhanov, N. P. Pavlova, S. S. Kuznetsov, A. Y. Vorontsov, E. V. Zagaynova, and N. D. Gladkova, “OCT-elastography-based optical biopsy for breast cancer delineation and express assessment of morphological/molecular subtypes,” Biomed. Opt. Express 10(5), 2244–2263 (2019).
[Crossref]

E. V. Gubarkova, F. I. Feldchtein, E. V. Zagaynova, S. V. Gamayunov, M. A. Sirotkina, E. S. Sedova, S. S. Kuznetsov, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, D. A. Karashtin, G. V. Gelikonov, L. Pires, A. Vitkin, and N. D. Gladkova, “Optical coherence angiography for pre-treatment assessment and treatment monitoring following photodynamic therapy: a basal cell carcinoma patient study,” Sci. Rep. 9(1), 18670 (2019).
[Crossref]

A. A. Plekhanov, M. A. Sirotkina, A. A. Sovetsky, E. V. Gubarkova, E. B. Kiseleva, V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, S. S. Kuznetsov, E. V. Zagaynova, and N. D. Gladkova, “Optical coherence elastography as a new method for estimation of chemotherapy efficacy on triple-negative breast cancer in the experiment,” Proc. SPIE 11065, 1106506 (2019).
[Crossref]

M. A. Sirotkina, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, V. V. Elagin, S. S. Kuznetsov, G. V. Gelikonov, S. Y. Ksenofontov, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “Accurate early prediction of tumour response to PDT using optical coherence angiography,” Sci. Rep. 9(1), 6492 (2019).
[Crossref]

A. A. Plekhanov, E. V. Gubarkova, A. A. Sovietsky, V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, L. B. Timofeeva, S. S. Kuznetsov, E. V. Zagaynova, N. D. Gladkova, and M. A. Sirotkina, “Optical Coherence Elastography for Non-Invasive Monitoring of Tumor Elasticity under Chemotherapy: Pilot Study,” Sovrem. Tehnol. Med. 10(3), 43 (2018).
[Crossref]

M. A. Sirotkina, L. A. Matveev, M. V. Shirmanova, V. Y. Zaitsev, N. L. Buyanova, V. V. Elagin, G. V. Gelikonov, S. S. Kuznetsov, E. B. Kiseleva, A. A. Moiseev, S. V. Gamayunov, E. V. Zagaynova, F. I. Feldchtein, A. Vitkin, and N. D. Gladkova, “Photodynamic therapy monitoring with optical coherence angiography,” Sci. Rep. 7(1), 41506 (2017).
[Crossref]

A. V. Maslennikova, M. A. Sirotkina, A. A. Moiseev, E. S. Finagina, S. Y. Ksenofontov, G. V. Gelikonov, L. A. Matveev, E. B. Kiseleva, V. Y. Zaitsev, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “In-vivo longitudinal imaging of microvascular changes in irradiated oral mucosa of radiotherapy cancer patients using optical coherence tomography,” Sci. Rep. 7(1), 16505 (2017).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Sovetsky, M. A. Sirotkina, G. V. Gelikonov, E. V. Zagaynova, N. D. Gladkova, and A. Vitkin, “Practical obstacles and their mitigation strategies in compressional optical coherence elastography of biological tissues,” J. Innovative Opt. Health Sci. 10(06), 1742006 (2017).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, E. V. Gubarkova, N. D. Gladkova, and A. Vitkin, “Hybrid method of strain estimation in optical coherence elastography using combined sub-wavelength phase measurements and supra-pixel displacement tracking,” J. Biophotonics 9(5), 499–509 (2016).
[Crossref]

L. A. Matveev, V. Y. Zaitsev, G. V. Gelikonov, A. L. Matveyev, A. A. Moiseev, S. Y. Ksenofontov, V. M. Gelikonov, M. A. Sirotkina, N. D. Gladkova, V. Demidov, and A. Vitkin, “Hybrid M-mode-like OCT imaging of three-dimensional microvasculature in vivo using reference-free processing of complex valued B-scans,” Opt. Lett. 40(7), 1472–1475 (2015).
[Crossref]

A. A. Plekhanov, M. A. Sirotkina, A. A. Sovetsky, E. V. Gubarkova, S. S. Kuznetsov, A. L. Matveyev, L. A. Matveev, E. V. Zagaynova, N. D. Gladkova, and V. Y. Zaitsev, “Method for in vivo assessment of cancer tissue inhomogeneity and accurate histology-like morphological segmentation based on Optical Coherence Elastography,” Sci. Rep. (in press 2020, BioRxive doi: 10.1101/2020.02.06.937417).

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Sovetsky, M. A. Sirotkina, G. V. Gelikonov, E. V. Zagaynova, and N. D. Gladkova, and A. Vitkin, Manifestations of nonlinear elasticity of biological tissues in compressional optical coherence elastography, European Conferences on Biomedical Optics (SPIE, 2017), Vol. 10413.

A. A. Sovetsky, E. V. Gubarkova, L. A. Matveev, A. L. Matveyev, M. A. Sirotkina, N. D. Gladkova, and V. Y. Zaitsev, OCT-based characterization of the nonlinear properties of biological tissues in various states, SPIE Photonics Europe (SPIE, 2018), Vol. 10685.

Gomer, C. J.

A. M. Fisher, A. L. Murphree, and C. J. Gomer, “Clinical and preclinical photodynamic therapy,” Lasers Surg. Med. 17(1), 2–31 (1995).
[Crossref]

Gong, P.

P. Gong, S. Es’haghian, K. A. Harms, A. Murray, S. Rea, B. F. Kennedy, F. M. Wood, D. D. Sampson, and R. A. McLaughlin, “Optical coherence tomography for longitudinal monitoring of vasculature in scars treated with laser fractionation,” J. Biophotonics 9(6), 626–636 (2016).
[Crossref]

Goodwin, I. A.

B. Chen, B. W. Pogue, I. A. Goodwin, J. A. O’Hara, C. M. Wilmot, J. E. Hutchins, P. J. Hoopes, and T. Hasan, “Blood flow dynamics after photodynamic therapy with verteporfin in the RIF-1 tumor,” Radiat. Res. 160(4), 452–459 (2003).
[Crossref]

Gorozhantseva, M.

A. Moiseev, S. Ksenofontov, M. Sirotkina, E. Kiseleva, M. Gorozhantseva, N. Shakhova, L. Matveev, V. Zaitsev, A. Matveyev, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Optical coherence tomography-based angiography device with real-time angiography B-scans visualization and hand-held probe for everyday clinical use,” J. Biophotonics 11(10), e201700292 (2018).
[Crossref]

Graham, J.

M. Muhsin, J. Graham, and P. Kirkpatrick, “Bevacizumab,” Nat. Rev. Drug Discov. 3(12), 995–996 (2004).
[Crossref]

Gubarkova, E. V.

E. V. Gubarkova, F. I. Feldchtein, E. V. Zagaynova, S. V. Gamayunov, M. A. Sirotkina, E. S. Sedova, S. S. Kuznetsov, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, D. A. Karashtin, G. V. Gelikonov, L. Pires, A. Vitkin, and N. D. Gladkova, “Optical coherence angiography for pre-treatment assessment and treatment monitoring following photodynamic therapy: a basal cell carcinoma patient study,” Sci. Rep. 9(1), 18670 (2019).
[Crossref]

A. A. Plekhanov, M. A. Sirotkina, A. A. Sovetsky, E. V. Gubarkova, E. B. Kiseleva, V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, S. S. Kuznetsov, E. V. Zagaynova, and N. D. Gladkova, “Optical coherence elastography as a new method for estimation of chemotherapy efficacy on triple-negative breast cancer in the experiment,” Proc. SPIE 11065, 1106506 (2019).
[Crossref]

E. V. Gubarkova, A. A. Sovetsky, V. Y. Zaitsev, A. L. Matveyev, D. A. Vorontsov, M. A. Sirotkina, L. A. Matveev, A. A. Plekhanov, N. P. Pavlova, S. S. Kuznetsov, A. Y. Vorontsov, E. V. Zagaynova, and N. D. Gladkova, “OCT-elastography-based optical biopsy for breast cancer delineation and express assessment of morphological/molecular subtypes,” Biomed. Opt. Express 10(5), 2244–2263 (2019).
[Crossref]

A. A. Plekhanov, E. V. Gubarkova, A. A. Sovietsky, V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, L. B. Timofeeva, S. S. Kuznetsov, E. V. Zagaynova, N. D. Gladkova, and M. A. Sirotkina, “Optical Coherence Elastography for Non-Invasive Monitoring of Tumor Elasticity under Chemotherapy: Pilot Study,” Sovrem. Tehnol. Med. 10(3), 43 (2018).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Sovetsky, M. A. Sirotkina, G. V. Gelikonov, E. V. Zagaynova, N. D. Gladkova, and A. Vitkin, “Practical obstacles and their mitigation strategies in compressional optical coherence elastography of biological tissues,” J. Innovative Opt. Health Sci. 10(06), 1742006 (2017).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, E. V. Gubarkova, N. D. Gladkova, and A. Vitkin, “Hybrid method of strain estimation in optical coherence elastography using combined sub-wavelength phase measurements and supra-pixel displacement tracking,” J. Biophotonics 9(5), 499–509 (2016).
[Crossref]

A. A. Plekhanov, M. A. Sirotkina, A. A. Sovetsky, E. V. Gubarkova, S. S. Kuznetsov, A. L. Matveyev, L. A. Matveev, E. V. Zagaynova, N. D. Gladkova, and V. Y. Zaitsev, “Method for in vivo assessment of cancer tissue inhomogeneity and accurate histology-like morphological segmentation based on Optical Coherence Elastography,” Sci. Rep. (in press 2020, BioRxive doi: 10.1101/2020.02.06.937417).

A. A. Sovetsky, E. V. Gubarkova, L. A. Matveev, A. L. Matveyev, M. A. Sirotkina, N. D. Gladkova, and V. Y. Zaitsev, OCT-based characterization of the nonlinear properties of biological tissues in various states, SPIE Photonics Europe (SPIE, 2018), Vol. 10685.

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Sovetsky, M. A. Sirotkina, G. V. Gelikonov, E. V. Zagaynova, and N. D. Gladkova, and A. Vitkin, Manifestations of nonlinear elasticity of biological tissues in compressional optical coherence elastography, European Conferences on Biomedical Optics (SPIE, 2017), Vol. 10413.

Gwyther, S.

E. A. Eisenhauer, P. Therasse, J. Bogaerts, L. H. Schwartz, D. Sargent, R. Ford, J. Dancey, S. Arbuck, S. Gwyther, M. Mooney, L. Rubinstein, L. Shankar, L. Dodd, R. Kaplan, D. Lacombe, and J. Verweij, “New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1),” Eur. J. Cancer 45(2), 228–247 (2009).
[Crossref]

Hahn, S. M.

B. W. Engbrecht, C. Menon, A. V. Kachur, S. M. Hahn, and D. L. Fraker, “Photofrin-mediated photodynamic therapy induces vascular occlusion and apoptosis in a human sarcoma xenograft model,” Cancer Res. 59(17), 4334–4342 (1999).

Hall, T.

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imag. 20(4), 260–274 (1998).
[Crossref]

Harms, K. A.

P. Gong, S. Es’haghian, K. A. Harms, A. Murray, S. Rea, B. F. Kennedy, F. M. Wood, D. D. Sampson, and R. A. McLaughlin, “Optical coherence tomography for longitudinal monitoring of vasculature in scars treated with laser fractionation,” J. Biophotonics 9(6), 626–636 (2016).
[Crossref]

Hasan, T.

S. Mallidi, K. Watanabe, D. Timerman, D. Schoenfeld, and T. Hasan, “Prediction of tumor recurrence and therapy monitoring using ultrasound-guided photoacoustic imaging,” Theranostics 5(3), 289–301 (2015).
[Crossref]

B. Chen, B. W. Pogue, I. A. Goodwin, J. A. O’Hara, C. M. Wilmot, J. E. Hutchins, P. J. Hoopes, and T. Hasan, “Blood flow dynamics after photodynamic therapy with verteporfin in the RIF-1 tumor,” Radiat. Res. 160(4), 452–459 (2003).
[Crossref]

Hasmann, M.

T. Friess, W. Scheuer, and M. Hasmann, “Combination treatment with erlotinib and pertuzumab against human tumor xenografts is superior to monotherapy,” Clin. Cancer Res. 11(14), 5300–5309 (2005).
[Crossref]

Henderson, B. W.

B. W. Henderson and T. J. Dougherty, “How does photodynamic therapy work?” Photochem. Photobiol. 55(1), 145–157 (1992).
[Crossref]

Hillan, K. J.

N. Ferrara, K. J. Hillan, H. P. Gerber, and W. Novotny, “Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer,” Nat. Rev. Drug Discovery 3(5), 391–400 (2004).
[Crossref]

Holalkere, N. S.

A. X. Zhu, N. S. Holalkere, A. Muzikansky, K. Horgan, and D. V. Sahani, “Early antiangiogenic activity of bevacizumab evaluated by computed tomography perfusion scan in patients with advanced hepatocellular carcinoma,” Oncologist 13(2), 120–125 (2008).
[Crossref]

Hoopes, P. J.

B. Chen, B. W. Pogue, I. A. Goodwin, J. A. O’Hara, C. M. Wilmot, J. E. Hutchins, P. J. Hoopes, and T. Hasan, “Blood flow dynamics after photodynamic therapy with verteporfin in the RIF-1 tumor,” Radiat. Res. 160(4), 452–459 (2003).
[Crossref]

Horgan, K.

A. X. Zhu, N. S. Holalkere, A. Muzikansky, K. Horgan, and D. V. Sahani, “Early antiangiogenic activity of bevacizumab evaluated by computed tomography perfusion scan in patients with advanced hepatocellular carcinoma,” Oncologist 13(2), 120–125 (2008).
[Crossref]

Huang, H.

T. Li, G. Kang, T. Wang, and H. Huang, “Tumor angiogenesis and anti-angiogenic gene therapy for cancer,” Oncol. Lett. 16(1), 687–702 (2018).
[Crossref]

Hutchins, J. E.

B. Chen, B. W. Pogue, I. A. Goodwin, J. A. O’Hara, C. M. Wilmot, J. E. Hutchins, P. J. Hoopes, and T. Hasan, “Blood flow dynamics after photodynamic therapy with verteporfin in the RIF-1 tumor,” Radiat. Res. 160(4), 452–459 (2003).
[Crossref]

Jarvi, M.

Jiang, T.

T. Jiang, A. Kambadakone, N. M. Kulkarni, A. X. Zhu, and D. V. Sahani, “Monitoring response to antiangiogenic treatment and predicting outcomes in advanced hepatocellular carcinoma using image biomarkers, CT perfusion, tumor density, and tumor size (RECIST),” Invest. Radiol. 47(1), 11–17 (2012).
[Crossref]

Jin, X.

B. A. Standish, K. K. Lee, X. Jin, A. Mariampillai, N. R. Munce, M. F. Wood, B. C. Wilson, I. A. Vitkin, and V. X. Yang, “Interstitial Doppler optical coherence tomography as a local tumor necrosis predictor in photodynamic therapy of prostatic carcinoma: an in vivo study,” Cancer Res. 68(23), 9987–9995 (2008).
[Crossref]

Jun, K.

E. J. Walker, H. Su, F. Shen, V. Degos, G. Amend, K. Jun, and W. L. Young, “Bevacizumab attenuates VEGF-induced angiogenesis and vascular malformations in the adult mouse brain,” Stroke 43(7), 1925–1930 (2012).
[Crossref]

Kachur, A. V.

B. W. Engbrecht, C. Menon, A. V. Kachur, S. M. Hahn, and D. L. Fraker, “Photofrin-mediated photodynamic therapy induces vascular occlusion and apoptosis in a human sarcoma xenograft model,” Cancer Res. 59(17), 4334–4342 (1999).

Kallel, F.

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imag. 20(4), 260–274 (1998).
[Crossref]

Kambadakone, A.

T. Jiang, A. Kambadakone, N. M. Kulkarni, A. X. Zhu, and D. V. Sahani, “Monitoring response to antiangiogenic treatment and predicting outcomes in advanced hepatocellular carcinoma using image biomarkers, CT perfusion, tumor density, and tumor size (RECIST),” Invest. Radiol. 47(1), 11–17 (2012).
[Crossref]

Kang, G.

T. Li, G. Kang, T. Wang, and H. Huang, “Tumor angiogenesis and anti-angiogenic gene therapy for cancer,” Oncol. Lett. 16(1), 687–702 (2018).
[Crossref]

Kang, H.

H. Kang, H. Y. Lee, K. S. Lee, and J. H. Kim, “Imaging-based tumor treatment response evaluation: review of conventional, new, and emerging concepts,” Korean J. Radiol. 13(4), 371–390 (2012).
[Crossref]

Kaplan, R.

E. A. Eisenhauer, P. Therasse, J. Bogaerts, L. H. Schwartz, D. Sargent, R. Ford, J. Dancey, S. Arbuck, S. Gwyther, M. Mooney, L. Rubinstein, L. Shankar, L. Dodd, R. Kaplan, D. Lacombe, and J. Verweij, “New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1),” Eur. J. Cancer 45(2), 228–247 (2009).
[Crossref]

Karashtin, D. A.

E. V. Gubarkova, F. I. Feldchtein, E. V. Zagaynova, S. V. Gamayunov, M. A. Sirotkina, E. S. Sedova, S. S. Kuznetsov, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, D. A. Karashtin, G. V. Gelikonov, L. Pires, A. Vitkin, and N. D. Gladkova, “Optical coherence angiography for pre-treatment assessment and treatment monitoring following photodynamic therapy: a basal cell carcinoma patient study,” Sci. Rep. 9(1), 18670 (2019).
[Crossref]

Kennedy, B. F.

W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins,” Biomed. Opt. Express 7(10), 4139–4153 (2016).
[Crossref]

P. Gong, S. Es’haghian, K. A. Harms, A. Murray, S. Rea, B. F. Kennedy, F. M. Wood, D. D. Sampson, and R. A. McLaughlin, “Optical coherence tomography for longitudinal monitoring of vasculature in scars treated with laser fractionation,” J. Biophotonics 9(6), 626–636 (2016).
[Crossref]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref]

Kennedy, K. M.

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref]

Kim, J. H.

H. Kang, H. Y. Lee, K. S. Lee, and J. H. Kim, “Imaging-based tumor treatment response evaluation: review of conventional, new, and emerging concepts,” Korean J. Radiol. 13(4), 371–390 (2012).
[Crossref]

Kirk, R. W.

Kirkpatrick, P.

M. Muhsin, J. Graham, and P. Kirkpatrick, “Bevacizumab,” Nat. Rev. Drug Discov. 3(12), 995–996 (2004).
[Crossref]

Kiseleva, E.

A. Moiseev, S. Ksenofontov, M. Sirotkina, E. Kiseleva, M. Gorozhantseva, N. Shakhova, L. Matveev, V. Zaitsev, A. Matveyev, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Optical coherence tomography-based angiography device with real-time angiography B-scans visualization and hand-held probe for everyday clinical use,” J. Biophotonics 11(10), e201700292 (2018).
[Crossref]

A. Moiseev, L. Snopova, S. Kuznetsov, N. Buyanova, V. Elagin, M. Sirotkina, E. Kiseleva, L. Matveev, V. Zaitsev, F. Feldchtein, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Pixel classification method in optical coherence tomography for tumor segmentation and its complementary usage with OCT microangiography,” J. Biophotonics 11(4), e201700072 (2018).
[Crossref]

Kiseleva, E. B.

P. A. Shilyagin, L. A. Matveev, E. B. Kiseleva, A. A. Moiseev, V. Y. Zaitsev, A. A. Sovietsky, D. V. Shabanov, V. M. Gelikonov, K. S. Yashin, K. A. Achkasova, N. D. Gladkova, and G. V. Gelikonov, “Stabilization of the Scanning Pattern for Three-Dimensional Phase-Sensitive OCT Modalities: Angiography, Relaxography, and Monitoring of Slow Processes,” Sovrem. Tehnol. Med. 11(2), 25–34 (2019).
[Crossref]

A. A. Plekhanov, M. A. Sirotkina, A. A. Sovetsky, E. V. Gubarkova, E. B. Kiseleva, V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, S. S. Kuznetsov, E. V. Zagaynova, and N. D. Gladkova, “Optical coherence elastography as a new method for estimation of chemotherapy efficacy on triple-negative breast cancer in the experiment,” Proc. SPIE 11065, 1106506 (2019).
[Crossref]

A. V. Maslennikova, M. A. Sirotkina, A. A. Moiseev, E. S. Finagina, S. Y. Ksenofontov, G. V. Gelikonov, L. A. Matveev, E. B. Kiseleva, V. Y. Zaitsev, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “In-vivo longitudinal imaging of microvascular changes in irradiated oral mucosa of radiotherapy cancer patients using optical coherence tomography,” Sci. Rep. 7(1), 16505 (2017).
[Crossref]

M. A. Sirotkina, L. A. Matveev, M. V. Shirmanova, V. Y. Zaitsev, N. L. Buyanova, V. V. Elagin, G. V. Gelikonov, S. S. Kuznetsov, E. B. Kiseleva, A. A. Moiseev, S. V. Gamayunov, E. V. Zagaynova, F. I. Feldchtein, A. Vitkin, and N. D. Gladkova, “Photodynamic therapy monitoring with optical coherence angiography,” Sci. Rep. 7(1), 41506 (2017).
[Crossref]

Krouskop, T. A.

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imag. 20(4), 260–274 (1998).
[Crossref]

Ksenofontov, S.

A. Moiseev, S. Ksenofontov, M. Sirotkina, E. Kiseleva, M. Gorozhantseva, N. Shakhova, L. Matveev, V. Zaitsev, A. Matveyev, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Optical coherence tomography-based angiography device with real-time angiography B-scans visualization and hand-held probe for everyday clinical use,” J. Biophotonics 11(10), e201700292 (2018).
[Crossref]

Ksenofontov, S. Y.

M. A. Sirotkina, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, V. V. Elagin, S. S. Kuznetsov, G. V. Gelikonov, S. Y. Ksenofontov, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “Accurate early prediction of tumour response to PDT using optical coherence angiography,” Sci. Rep. 9(1), 6492 (2019).
[Crossref]

A. V. Maslennikova, M. A. Sirotkina, A. A. Moiseev, E. S. Finagina, S. Y. Ksenofontov, G. V. Gelikonov, L. A. Matveev, E. B. Kiseleva, V. Y. Zaitsev, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “In-vivo longitudinal imaging of microvascular changes in irradiated oral mucosa of radiotherapy cancer patients using optical coherence tomography,” Sci. Rep. 7(1), 16505 (2017).
[Crossref]

L. A. Matveev, V. Y. Zaitsev, G. V. Gelikonov, A. L. Matveyev, A. A. Moiseev, S. Y. Ksenofontov, V. M. Gelikonov, M. A. Sirotkina, N. D. Gladkova, V. Demidov, and A. Vitkin, “Hybrid M-mode-like OCT imaging of three-dimensional microvasculature in vivo using reference-free processing of complex valued B-scans,” Opt. Lett. 40(7), 1472–1475 (2015).
[Crossref]

Kulkarni, N. M.

T. Jiang, A. Kambadakone, N. M. Kulkarni, A. X. Zhu, and D. V. Sahani, “Monitoring response to antiangiogenic treatment and predicting outcomes in advanced hepatocellular carcinoma using image biomarkers, CT perfusion, tumor density, and tumor size (RECIST),” Invest. Radiol. 47(1), 11–17 (2012).
[Crossref]

Kuznetsov, S.

A. Moiseev, L. Snopova, S. Kuznetsov, N. Buyanova, V. Elagin, M. Sirotkina, E. Kiseleva, L. Matveev, V. Zaitsev, F. Feldchtein, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Pixel classification method in optical coherence tomography for tumor segmentation and its complementary usage with OCT microangiography,” J. Biophotonics 11(4), e201700072 (2018).
[Crossref]

Kuznetsov, S. S.

E. V. Gubarkova, A. A. Sovetsky, V. Y. Zaitsev, A. L. Matveyev, D. A. Vorontsov, M. A. Sirotkina, L. A. Matveev, A. A. Plekhanov, N. P. Pavlova, S. S. Kuznetsov, A. Y. Vorontsov, E. V. Zagaynova, and N. D. Gladkova, “OCT-elastography-based optical biopsy for breast cancer delineation and express assessment of morphological/molecular subtypes,” Biomed. Opt. Express 10(5), 2244–2263 (2019).
[Crossref]

A. A. Plekhanov, M. A. Sirotkina, A. A. Sovetsky, E. V. Gubarkova, E. B. Kiseleva, V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, S. S. Kuznetsov, E. V. Zagaynova, and N. D. Gladkova, “Optical coherence elastography as a new method for estimation of chemotherapy efficacy on triple-negative breast cancer in the experiment,” Proc. SPIE 11065, 1106506 (2019).
[Crossref]

E. V. Gubarkova, F. I. Feldchtein, E. V. Zagaynova, S. V. Gamayunov, M. A. Sirotkina, E. S. Sedova, S. S. Kuznetsov, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, D. A. Karashtin, G. V. Gelikonov, L. Pires, A. Vitkin, and N. D. Gladkova, “Optical coherence angiography for pre-treatment assessment and treatment monitoring following photodynamic therapy: a basal cell carcinoma patient study,” Sci. Rep. 9(1), 18670 (2019).
[Crossref]

M. A. Sirotkina, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, V. V. Elagin, S. S. Kuznetsov, G. V. Gelikonov, S. Y. Ksenofontov, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “Accurate early prediction of tumour response to PDT using optical coherence angiography,” Sci. Rep. 9(1), 6492 (2019).
[Crossref]

A. A. Plekhanov, E. V. Gubarkova, A. A. Sovietsky, V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, L. B. Timofeeva, S. S. Kuznetsov, E. V. Zagaynova, N. D. Gladkova, and M. A. Sirotkina, “Optical Coherence Elastography for Non-Invasive Monitoring of Tumor Elasticity under Chemotherapy: Pilot Study,” Sovrem. Tehnol. Med. 10(3), 43 (2018).
[Crossref]

M. A. Sirotkina, L. A. Matveev, M. V. Shirmanova, V. Y. Zaitsev, N. L. Buyanova, V. V. Elagin, G. V. Gelikonov, S. S. Kuznetsov, E. B. Kiseleva, A. A. Moiseev, S. V. Gamayunov, E. V. Zagaynova, F. I. Feldchtein, A. Vitkin, and N. D. Gladkova, “Photodynamic therapy monitoring with optical coherence angiography,” Sci. Rep. 7(1), 41506 (2017).
[Crossref]

A. A. Plekhanov, M. A. Sirotkina, A. A. Sovetsky, E. V. Gubarkova, S. S. Kuznetsov, A. L. Matveyev, L. A. Matveev, E. V. Zagaynova, N. D. Gladkova, and V. Y. Zaitsev, “Method for in vivo assessment of cancer tissue inhomogeneity and accurate histology-like morphological segmentation based on Optical Coherence Elastography,” Sci. Rep. (in press 2020, BioRxive doi: 10.1101/2020.02.06.937417).

Kyziol, A.

J. M. Dąbrowski, B. Pucelik, A. Regiel-Futyra, M. Brindell, O. Mazuryk, A. Kyzioł, G. Stochel, W. Macyk, and L. G. Arnaut, “Engineering of relevant photodynamic processes through structural modifications of metallotetrapyrrolic photosensitizers,” Coord. Chem. Rev. 325, 67–101 (2016).
[Crossref]

Lacombe, D.

E. A. Eisenhauer, P. Therasse, J. Bogaerts, L. H. Schwartz, D. Sargent, R. Ford, J. Dancey, S. Arbuck, S. Gwyther, M. Mooney, L. Rubinstein, L. Shankar, L. Dodd, R. Kaplan, D. Lacombe, and J. Verweij, “New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1),” Eur. J. Cancer 45(2), 228–247 (2009).
[Crossref]

Larin, K. V.

K. V. Larin and D. D. Sampson, “Optical coherence elastography - OCT at work in tissue biomechanics [Invited],” Biomed. Opt. Express 8(2), 1172–1202 (2017).
[Crossref]

S. Wang and K. V. Larin, “Optical coherence elastography for tissue characterization: a review,” J. Biophotonics 8(4), 279–302 (2015).
[Crossref]

Latham, B.

W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins,” Biomed. Opt. Express 7(10), 4139–4153 (2016).
[Crossref]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref]

Lee, H. Y.

H. Kang, H. Y. Lee, K. S. Lee, and J. H. Kim, “Imaging-based tumor treatment response evaluation: review of conventional, new, and emerging concepts,” Korean J. Radiol. 13(4), 371–390 (2012).
[Crossref]

Lee, K.

Lee, K. K.

B. A. Standish, K. K. Lee, X. Jin, A. Mariampillai, N. R. Munce, M. F. Wood, B. C. Wilson, I. A. Vitkin, and V. X. Yang, “Interstitial Doppler optical coherence tomography as a local tumor necrosis predictor in photodynamic therapy of prostatic carcinoma: an in vivo study,” Cancer Res. 68(23), 9987–9995 (2008).
[Crossref]

Lee, K. S.

H. Kang, H. Y. Lee, K. S. Lee, and J. H. Kim, “Imaging-based tumor treatment response evaluation: review of conventional, new, and emerging concepts,” Korean J. Radiol. 13(4), 371–390 (2012).
[Crossref]

Leung, M. K. K.

Li, S.

Y. Wang, L. Dong, Q. Bi, X. Li, D. Wu, X. Ge, X. Zhang, J. Fu, C. Zhang, C. Wang, and S. Li, “Investigation of the efficacy of a bevacizumab-cetuximab-cisplatin regimen in treating head and neck squamous cell carcinoma in mice,” Target. Oncol. 5(4), 237–243 (2010).
[Crossref]

Li, T.

T. Li, G. Kang, T. Wang, and H. Huang, “Tumor angiogenesis and anti-angiogenic gene therapy for cancer,” Oncol. Lett. 16(1), 687–702 (2018).
[Crossref]

Li, X.

Y. Wang, L. Dong, Q. Bi, X. Li, D. Wu, X. Ge, X. Zhang, J. Fu, C. Zhang, C. Wang, and S. Li, “Investigation of the efficacy of a bevacizumab-cetuximab-cisplatin regimen in treating head and neck squamous cell carcinoma in mice,” Target. Oncol. 5(4), 237–243 (2010).
[Crossref]

Macyk, W.

J. M. Dąbrowski, B. Pucelik, A. Regiel-Futyra, M. Brindell, O. Mazuryk, A. Kyzioł, G. Stochel, W. Macyk, and L. G. Arnaut, “Engineering of relevant photodynamic processes through structural modifications of metallotetrapyrrolic photosensitizers,” Coord. Chem. Rev. 325, 67–101 (2016).
[Crossref]

Mallidi, S.

S. Mallidi, K. Watanabe, D. Timerman, D. Schoenfeld, and T. Hasan, “Prediction of tumor recurrence and therapy monitoring using ultrasound-guided photoacoustic imaging,” Theranostics 5(3), 289–301 (2015).
[Crossref]

Mariampillai, A.

A. Mariampillai, M. K. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. D. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett. 35(8), 1257–1259 (2010).
[Crossref]

B. A. Standish, K. K. Lee, X. Jin, A. Mariampillai, N. R. Munce, M. F. Wood, B. C. Wilson, I. A. Vitkin, and V. X. Yang, “Interstitial Doppler optical coherence tomography as a local tumor necrosis predictor in photodynamic therapy of prostatic carcinoma: an in vivo study,” Cancer Res. 68(23), 9987–9995 (2008).
[Crossref]

Maslennikova, A. V.

A. V. Maslennikova, M. A. Sirotkina, A. A. Moiseev, E. S. Finagina, S. Y. Ksenofontov, G. V. Gelikonov, L. A. Matveev, E. B. Kiseleva, V. Y. Zaitsev, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “In-vivo longitudinal imaging of microvascular changes in irradiated oral mucosa of radiotherapy cancer patients using optical coherence tomography,” Sci. Rep. 7(1), 16505 (2017).
[Crossref]

Matveev, L.

A. Moiseev, S. Ksenofontov, M. Sirotkina, E. Kiseleva, M. Gorozhantseva, N. Shakhova, L. Matveev, V. Zaitsev, A. Matveyev, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Optical coherence tomography-based angiography device with real-time angiography B-scans visualization and hand-held probe for everyday clinical use,” J. Biophotonics 11(10), e201700292 (2018).
[Crossref]

A. Moiseev, L. Snopova, S. Kuznetsov, N. Buyanova, V. Elagin, M. Sirotkina, E. Kiseleva, L. Matveev, V. Zaitsev, F. Feldchtein, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Pixel classification method in optical coherence tomography for tumor segmentation and its complementary usage with OCT microangiography,” J. Biophotonics 11(4), e201700072 (2018).
[Crossref]

Matveev, L. A.

E. V. Gubarkova, A. A. Sovetsky, V. Y. Zaitsev, A. L. Matveyev, D. A. Vorontsov, M. A. Sirotkina, L. A. Matveev, A. A. Plekhanov, N. P. Pavlova, S. S. Kuznetsov, A. Y. Vorontsov, E. V. Zagaynova, and N. D. Gladkova, “OCT-elastography-based optical biopsy for breast cancer delineation and express assessment of morphological/molecular subtypes,” Biomed. Opt. Express 10(5), 2244–2263 (2019).
[Crossref]

P. A. Shilyagin, L. A. Matveev, E. B. Kiseleva, A. A. Moiseev, V. Y. Zaitsev, A. A. Sovietsky, D. V. Shabanov, V. M. Gelikonov, K. S. Yashin, K. A. Achkasova, N. D. Gladkova, and G. V. Gelikonov, “Stabilization of the Scanning Pattern for Three-Dimensional Phase-Sensitive OCT Modalities: Angiography, Relaxography, and Monitoring of Slow Processes,” Sovrem. Tehnol. Med. 11(2), 25–34 (2019).
[Crossref]

A. A. Plekhanov, M. A. Sirotkina, A. A. Sovetsky, E. V. Gubarkova, E. B. Kiseleva, V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, S. S. Kuznetsov, E. V. Zagaynova, and N. D. Gladkova, “Optical coherence elastography as a new method for estimation of chemotherapy efficacy on triple-negative breast cancer in the experiment,” Proc. SPIE 11065, 1106506 (2019).
[Crossref]

E. V. Gubarkova, F. I. Feldchtein, E. V. Zagaynova, S. V. Gamayunov, M. A. Sirotkina, E. S. Sedova, S. S. Kuznetsov, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, D. A. Karashtin, G. V. Gelikonov, L. Pires, A. Vitkin, and N. D. Gladkova, “Optical coherence angiography for pre-treatment assessment and treatment monitoring following photodynamic therapy: a basal cell carcinoma patient study,” Sci. Rep. 9(1), 18670 (2019).
[Crossref]

V. Demidov, L. A. Matveev, O. Demidova, A. L. Matveyev, V. Y. Zaitsev, C. Flueraru, and I. A. Vitkin, “Analysis of low-scattering regions in optical coherence tomography: applications to neurography and lymphangiography,” Biomed. Opt. Express 10(8), 4207–4219 (2019).
[Crossref]

M. A. Sirotkina, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, V. V. Elagin, S. S. Kuznetsov, G. V. Gelikonov, S. Y. Ksenofontov, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “Accurate early prediction of tumour response to PDT using optical coherence angiography,” Sci. Rep. 9(1), 6492 (2019).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, O. I. Baum, A. I. Omelchenko, D. V. Shabanov, A. A. Sovetsky, A. V. Yuzhakov, A. A. Fedorov, V. I. Siplivy, A. V. Bolshunov, and E. N. Sobol, “Revealing structural modifications in thermomechanical reshaping of collagenous tissues using optical coherence elastography,” J. Biophotonics 12(3), e201800250 (2019).
[Crossref]

A. A. Plekhanov, E. V. Gubarkova, A. A. Sovietsky, V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, L. B. Timofeeva, S. S. Kuznetsov, E. V. Zagaynova, N. D. Gladkova, and M. A. Sirotkina, “Optical Coherence Elastography for Non-Invasive Monitoring of Tumor Elasticity under Chemotherapy: Pilot Study,” Sovrem. Tehnol. Med. 10(3), 43 (2018).
[Crossref]

A. A. Sovetsky, A. L. Matveyev, L. A. Matveev, D. V. Shabanov, and V. Y. Zaitsev, “Manually-operated compressional optical coherence elastography with effective aperiodic averaging: demonstrations for corneal and cartilaginous tissues,” Laser Phys. Lett. 15(8), 085602 (2018).
[Crossref]

A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, G. V. Gelikonov, A. A. Moiseev, and V. Y. Zaitsev, “Vector method for strain estimation in phase-sensitive optical coherence elastography,” Laser Phys. Lett. 15(6), 065603 (2018).
[Crossref]

M. A. Sirotkina, L. A. Matveev, M. V. Shirmanova, V. Y. Zaitsev, N. L. Buyanova, V. V. Elagin, G. V. Gelikonov, S. S. Kuznetsov, E. B. Kiseleva, A. A. Moiseev, S. V. Gamayunov, E. V. Zagaynova, F. I. Feldchtein, A. Vitkin, and N. D. Gladkova, “Photodynamic therapy monitoring with optical coherence angiography,” Sci. Rep. 7(1), 41506 (2017).
[Crossref]

A. V. Maslennikova, M. A. Sirotkina, A. A. Moiseev, E. S. Finagina, S. Y. Ksenofontov, G. V. Gelikonov, L. A. Matveev, E. B. Kiseleva, V. Y. Zaitsev, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “In-vivo longitudinal imaging of microvascular changes in irradiated oral mucosa of radiotherapy cancer patients using optical coherence tomography,” Sci. Rep. 7(1), 16505 (2017).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Sovetsky, M. A. Sirotkina, G. V. Gelikonov, E. V. Zagaynova, N. D. Gladkova, and A. Vitkin, “Practical obstacles and their mitigation strategies in compressional optical coherence elastography of biological tissues,” J. Innovative Opt. Health Sci. 10(06), 1742006 (2017).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, A. A. Sovetsky, and A. Vitkin, “Optimized phase gradient measurements and phase-amplitude interplay in optical coherence elastography,” J. Biomed. Opt. 21(11), 116005 (2016).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, E. V. Gubarkova, N. D. Gladkova, and A. Vitkin, “Hybrid method of strain estimation in optical coherence elastography using combined sub-wavelength phase measurements and supra-pixel displacement tracking,” J. Biophotonics 9(5), 499–509 (2016).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, V. M. Gelikonov, and A. Vitkin, “Deformation-induced speckle-pattern evolution and feasibility of correlational speckle tracking in optical coherence elastography,” J. Biomed. Opt. 20(7), 075006 (2015).
[Crossref]

L. A. Matveev, V. Y. Zaitsev, G. V. Gelikonov, A. L. Matveyev, A. A. Moiseev, S. Y. Ksenofontov, V. M. Gelikonov, M. A. Sirotkina, N. D. Gladkova, V. Demidov, and A. Vitkin, “Hybrid M-mode-like OCT imaging of three-dimensional microvasculature in vivo using reference-free processing of complex valued B-scans,” Opt. Lett. 40(7), 1472–1475 (2015).
[Crossref]

A. A. Plekhanov, M. A. Sirotkina, A. A. Sovetsky, E. V. Gubarkova, S. S. Kuznetsov, A. L. Matveyev, L. A. Matveev, E. V. Zagaynova, N. D. Gladkova, and V. Y. Zaitsev, “Method for in vivo assessment of cancer tissue inhomogeneity and accurate histology-like morphological segmentation based on Optical Coherence Elastography,” Sci. Rep. (in press 2020, BioRxive doi: 10.1101/2020.02.06.937417).

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Sovetsky, M. A. Sirotkina, G. V. Gelikonov, E. V. Zagaynova, and N. D. Gladkova, and A. Vitkin, Manifestations of nonlinear elasticity of biological tissues in compressional optical coherence elastography, European Conferences on Biomedical Optics (SPIE, 2017), Vol. 10413.

A. A. Sovetsky, E. V. Gubarkova, L. A. Matveev, A. L. Matveyev, M. A. Sirotkina, N. D. Gladkova, and V. Y. Zaitsev, OCT-based characterization of the nonlinear properties of biological tissues in various states, SPIE Photonics Europe (SPIE, 2018), Vol. 10685.

Matveyev, A.

A. Moiseev, S. Ksenofontov, M. Sirotkina, E. Kiseleva, M. Gorozhantseva, N. Shakhova, L. Matveev, V. Zaitsev, A. Matveyev, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Optical coherence tomography-based angiography device with real-time angiography B-scans visualization and hand-held probe for everyday clinical use,” J. Biophotonics 11(10), e201700292 (2018).
[Crossref]

Matveyev, A. L.

V. Demidov, L. A. Matveev, O. Demidova, A. L. Matveyev, V. Y. Zaitsev, C. Flueraru, and I. A. Vitkin, “Analysis of low-scattering regions in optical coherence tomography: applications to neurography and lymphangiography,” Biomed. Opt. Express 10(8), 4207–4219 (2019).
[Crossref]

A. A. Plekhanov, M. A. Sirotkina, A. A. Sovetsky, E. V. Gubarkova, E. B. Kiseleva, V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, S. S. Kuznetsov, E. V. Zagaynova, and N. D. Gladkova, “Optical coherence elastography as a new method for estimation of chemotherapy efficacy on triple-negative breast cancer in the experiment,” Proc. SPIE 11065, 1106506 (2019).
[Crossref]

E. V. Gubarkova, A. A. Sovetsky, V. Y. Zaitsev, A. L. Matveyev, D. A. Vorontsov, M. A. Sirotkina, L. A. Matveev, A. A. Plekhanov, N. P. Pavlova, S. S. Kuznetsov, A. Y. Vorontsov, E. V. Zagaynova, and N. D. Gladkova, “OCT-elastography-based optical biopsy for breast cancer delineation and express assessment of morphological/molecular subtypes,” Biomed. Opt. Express 10(5), 2244–2263 (2019).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, O. I. Baum, A. I. Omelchenko, D. V. Shabanov, A. A. Sovetsky, A. V. Yuzhakov, A. A. Fedorov, V. I. Siplivy, A. V. Bolshunov, and E. N. Sobol, “Revealing structural modifications in thermomechanical reshaping of collagenous tissues using optical coherence elastography,” J. Biophotonics 12(3), e201800250 (2019).
[Crossref]

A. A. Plekhanov, E. V. Gubarkova, A. A. Sovietsky, V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, L. B. Timofeeva, S. S. Kuznetsov, E. V. Zagaynova, N. D. Gladkova, and M. A. Sirotkina, “Optical Coherence Elastography for Non-Invasive Monitoring of Tumor Elasticity under Chemotherapy: Pilot Study,” Sovrem. Tehnol. Med. 10(3), 43 (2018).
[Crossref]

A. A. Sovetsky, A. L. Matveyev, L. A. Matveev, D. V. Shabanov, and V. Y. Zaitsev, “Manually-operated compressional optical coherence elastography with effective aperiodic averaging: demonstrations for corneal and cartilaginous tissues,” Laser Phys. Lett. 15(8), 085602 (2018).
[Crossref]

A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, G. V. Gelikonov, A. A. Moiseev, and V. Y. Zaitsev, “Vector method for strain estimation in phase-sensitive optical coherence elastography,” Laser Phys. Lett. 15(6), 065603 (2018).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Sovetsky, M. A. Sirotkina, G. V. Gelikonov, E. V. Zagaynova, N. D. Gladkova, and A. Vitkin, “Practical obstacles and their mitigation strategies in compressional optical coherence elastography of biological tissues,” J. Innovative Opt. Health Sci. 10(06), 1742006 (2017).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, A. A. Sovetsky, and A. Vitkin, “Optimized phase gradient measurements and phase-amplitude interplay in optical coherence elastography,” J. Biomed. Opt. 21(11), 116005 (2016).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, E. V. Gubarkova, N. D. Gladkova, and A. Vitkin, “Hybrid method of strain estimation in optical coherence elastography using combined sub-wavelength phase measurements and supra-pixel displacement tracking,” J. Biophotonics 9(5), 499–509 (2016).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, V. M. Gelikonov, and A. Vitkin, “Deformation-induced speckle-pattern evolution and feasibility of correlational speckle tracking in optical coherence elastography,” J. Biomed. Opt. 20(7), 075006 (2015).
[Crossref]

L. A. Matveev, V. Y. Zaitsev, G. V. Gelikonov, A. L. Matveyev, A. A. Moiseev, S. Y. Ksenofontov, V. M. Gelikonov, M. A. Sirotkina, N. D. Gladkova, V. Demidov, and A. Vitkin, “Hybrid M-mode-like OCT imaging of three-dimensional microvasculature in vivo using reference-free processing of complex valued B-scans,” Opt. Lett. 40(7), 1472–1475 (2015).
[Crossref]

A. A. Plekhanov, M. A. Sirotkina, A. A. Sovetsky, E. V. Gubarkova, S. S. Kuznetsov, A. L. Matveyev, L. A. Matveev, E. V. Zagaynova, N. D. Gladkova, and V. Y. Zaitsev, “Method for in vivo assessment of cancer tissue inhomogeneity and accurate histology-like morphological segmentation based on Optical Coherence Elastography,” Sci. Rep. (in press 2020, BioRxive doi: 10.1101/2020.02.06.937417).

A. A. Sovetsky, E. V. Gubarkova, L. A. Matveev, A. L. Matveyev, M. A. Sirotkina, N. D. Gladkova, and V. Y. Zaitsev, OCT-based characterization of the nonlinear properties of biological tissues in various states, SPIE Photonics Europe (SPIE, 2018), Vol. 10685.

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Sovetsky, M. A. Sirotkina, G. V. Gelikonov, E. V. Zagaynova, and N. D. Gladkova, and A. Vitkin, Manifestations of nonlinear elasticity of biological tissues in compressional optical coherence elastography, European Conferences on Biomedical Optics (SPIE, 2017), Vol. 10413.

Mazuryk, O.

J. M. Dąbrowski, B. Pucelik, A. Regiel-Futyra, M. Brindell, O. Mazuryk, A. Kyzioł, G. Stochel, W. Macyk, and L. G. Arnaut, “Engineering of relevant photodynamic processes through structural modifications of metallotetrapyrrolic photosensitizers,” Coord. Chem. Rev. 325, 67–101 (2016).
[Crossref]

McLaughlin, R. A.

P. Gong, S. Es’haghian, K. A. Harms, A. Murray, S. Rea, B. F. Kennedy, F. M. Wood, D. D. Sampson, and R. A. McLaughlin, “Optical coherence tomography for longitudinal monitoring of vasculature in scars treated with laser fractionation,” J. Biophotonics 9(6), 626–636 (2016).
[Crossref]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref]

Menon, C.

B. W. Engbrecht, C. Menon, A. V. Kachur, S. M. Hahn, and D. L. Fraker, “Photofrin-mediated photodynamic therapy induces vascular occlusion and apoptosis in a human sarcoma xenograft model,” Cancer Res. 59(17), 4334–4342 (1999).

Moiseev, A.

A. Moiseev, L. Snopova, S. Kuznetsov, N. Buyanova, V. Elagin, M. Sirotkina, E. Kiseleva, L. Matveev, V. Zaitsev, F. Feldchtein, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Pixel classification method in optical coherence tomography for tumor segmentation and its complementary usage with OCT microangiography,” J. Biophotonics 11(4), e201700072 (2018).
[Crossref]

A. Moiseev, S. Ksenofontov, M. Sirotkina, E. Kiseleva, M. Gorozhantseva, N. Shakhova, L. Matveev, V. Zaitsev, A. Matveyev, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Optical coherence tomography-based angiography device with real-time angiography B-scans visualization and hand-held probe for everyday clinical use,” J. Biophotonics 11(10), e201700292 (2018).
[Crossref]

Moiseev, A. A.

M. A. Sirotkina, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, V. V. Elagin, S. S. Kuznetsov, G. V. Gelikonov, S. Y. Ksenofontov, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “Accurate early prediction of tumour response to PDT using optical coherence angiography,” Sci. Rep. 9(1), 6492 (2019).
[Crossref]

P. A. Shilyagin, L. A. Matveev, E. B. Kiseleva, A. A. Moiseev, V. Y. Zaitsev, A. A. Sovietsky, D. V. Shabanov, V. M. Gelikonov, K. S. Yashin, K. A. Achkasova, N. D. Gladkova, and G. V. Gelikonov, “Stabilization of the Scanning Pattern for Three-Dimensional Phase-Sensitive OCT Modalities: Angiography, Relaxography, and Monitoring of Slow Processes,” Sovrem. Tehnol. Med. 11(2), 25–34 (2019).
[Crossref]

E. V. Gubarkova, F. I. Feldchtein, E. V. Zagaynova, S. V. Gamayunov, M. A. Sirotkina, E. S. Sedova, S. S. Kuznetsov, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, D. A. Karashtin, G. V. Gelikonov, L. Pires, A. Vitkin, and N. D. Gladkova, “Optical coherence angiography for pre-treatment assessment and treatment monitoring following photodynamic therapy: a basal cell carcinoma patient study,” Sci. Rep. 9(1), 18670 (2019).
[Crossref]

A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, G. V. Gelikonov, A. A. Moiseev, and V. Y. Zaitsev, “Vector method for strain estimation in phase-sensitive optical coherence elastography,” Laser Phys. Lett. 15(6), 065603 (2018).
[Crossref]

M. A. Sirotkina, L. A. Matveev, M. V. Shirmanova, V. Y. Zaitsev, N. L. Buyanova, V. V. Elagin, G. V. Gelikonov, S. S. Kuznetsov, E. B. Kiseleva, A. A. Moiseev, S. V. Gamayunov, E. V. Zagaynova, F. I. Feldchtein, A. Vitkin, and N. D. Gladkova, “Photodynamic therapy monitoring with optical coherence angiography,” Sci. Rep. 7(1), 41506 (2017).
[Crossref]

A. V. Maslennikova, M. A. Sirotkina, A. A. Moiseev, E. S. Finagina, S. Y. Ksenofontov, G. V. Gelikonov, L. A. Matveev, E. B. Kiseleva, V. Y. Zaitsev, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “In-vivo longitudinal imaging of microvascular changes in irradiated oral mucosa of radiotherapy cancer patients using optical coherence tomography,” Sci. Rep. 7(1), 16505 (2017).
[Crossref]

L. A. Matveev, V. Y. Zaitsev, G. V. Gelikonov, A. L. Matveyev, A. A. Moiseev, S. Y. Ksenofontov, V. M. Gelikonov, M. A. Sirotkina, N. D. Gladkova, V. Demidov, and A. Vitkin, “Hybrid M-mode-like OCT imaging of three-dimensional microvasculature in vivo using reference-free processing of complex valued B-scans,” Opt. Lett. 40(7), 1472–1475 (2015).
[Crossref]

A. A. Moiseev, G. V. Gelikonov, D. A. Terpelov, P. A. Shilyagin, and V. M. Gelikonov, “Noniterative method of reconstruction optical coherence tomography images with improved lateral resolution in semitransparent media,” Laser Phys. Lett. 10(12), 125601 (2013).
[Crossref]

Mooney, M.

E. A. Eisenhauer, P. Therasse, J. Bogaerts, L. H. Schwartz, D. Sargent, R. Ford, J. Dancey, S. Arbuck, S. Gwyther, M. Mooney, L. Rubinstein, L. Shankar, L. Dodd, R. Kaplan, D. Lacombe, and J. Verweij, “New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1),” Eur. J. Cancer 45(2), 228–247 (2009).
[Crossref]

Muhsin, M.

M. Muhsin, J. Graham, and P. Kirkpatrick, “Bevacizumab,” Nat. Rev. Drug Discov. 3(12), 995–996 (2004).
[Crossref]

Munce, N. R.

B. A. Standish, K. K. Lee, X. Jin, A. Mariampillai, N. R. Munce, M. F. Wood, B. C. Wilson, I. A. Vitkin, and V. X. Yang, “Interstitial Doppler optical coherence tomography as a local tumor necrosis predictor in photodynamic therapy of prostatic carcinoma: an in vivo study,” Cancer Res. 68(23), 9987–9995 (2008).
[Crossref]

Murphree, A. L.

A. M. Fisher, A. L. Murphree, and C. J. Gomer, “Clinical and preclinical photodynamic therapy,” Lasers Surg. Med. 17(1), 2–31 (1995).
[Crossref]

Murray, A.

P. Gong, S. Es’haghian, K. A. Harms, A. Murray, S. Rea, B. F. Kennedy, F. M. Wood, D. D. Sampson, and R. A. McLaughlin, “Optical coherence tomography for longitudinal monitoring of vasculature in scars treated with laser fractionation,” J. Biophotonics 9(6), 626–636 (2016).
[Crossref]

Muzikansky, A.

A. X. Zhu, N. S. Holalkere, A. Muzikansky, K. Horgan, and D. V. Sahani, “Early antiangiogenic activity of bevacizumab evaluated by computed tomography perfusion scan in patients with advanced hepatocellular carcinoma,” Oncologist 13(2), 120–125 (2008).
[Crossref]

Novotny, W.

N. Ferrara, K. J. Hillan, H. P. Gerber, and W. Novotny, “Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer,” Nat. Rev. Drug Discovery 3(5), 391–400 (2004).
[Crossref]

O’Hara, J. A.

B. Chen, B. W. Pogue, I. A. Goodwin, J. A. O’Hara, C. M. Wilmot, J. E. Hutchins, P. J. Hoopes, and T. Hasan, “Blood flow dynamics after photodynamic therapy with verteporfin in the RIF-1 tumor,” Radiat. Res. 160(4), 452–459 (2003).
[Crossref]

Omelchenko, A. I.

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, O. I. Baum, A. I. Omelchenko, D. V. Shabanov, A. A. Sovetsky, A. V. Yuzhakov, A. A. Fedorov, V. I. Siplivy, A. V. Bolshunov, and E. N. Sobol, “Revealing structural modifications in thermomechanical reshaping of collagenous tissues using optical coherence elastography,” J. Biophotonics 12(3), e201800250 (2019).
[Crossref]

Pavlova, N. P.

Pires, L.

E. V. Gubarkova, F. I. Feldchtein, E. V. Zagaynova, S. V. Gamayunov, M. A. Sirotkina, E. S. Sedova, S. S. Kuznetsov, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, D. A. Karashtin, G. V. Gelikonov, L. Pires, A. Vitkin, and N. D. Gladkova, “Optical coherence angiography for pre-treatment assessment and treatment monitoring following photodynamic therapy: a basal cell carcinoma patient study,” Sci. Rep. 9(1), 18670 (2019).
[Crossref]

Plekhanov, A. A.

A. A. Plekhanov, M. A. Sirotkina, A. A. Sovetsky, E. V. Gubarkova, E. B. Kiseleva, V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, S. S. Kuznetsov, E. V. Zagaynova, and N. D. Gladkova, “Optical coherence elastography as a new method for estimation of chemotherapy efficacy on triple-negative breast cancer in the experiment,” Proc. SPIE 11065, 1106506 (2019).
[Crossref]

E. V. Gubarkova, A. A. Sovetsky, V. Y. Zaitsev, A. L. Matveyev, D. A. Vorontsov, M. A. Sirotkina, L. A. Matveev, A. A. Plekhanov, N. P. Pavlova, S. S. Kuznetsov, A. Y. Vorontsov, E. V. Zagaynova, and N. D. Gladkova, “OCT-elastography-based optical biopsy for breast cancer delineation and express assessment of morphological/molecular subtypes,” Biomed. Opt. Express 10(5), 2244–2263 (2019).
[Crossref]

A. A. Plekhanov, E. V. Gubarkova, A. A. Sovietsky, V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, L. B. Timofeeva, S. S. Kuznetsov, E. V. Zagaynova, N. D. Gladkova, and M. A. Sirotkina, “Optical Coherence Elastography for Non-Invasive Monitoring of Tumor Elasticity under Chemotherapy: Pilot Study,” Sovrem. Tehnol. Med. 10(3), 43 (2018).
[Crossref]

A. A. Plekhanov, M. A. Sirotkina, A. A. Sovetsky, E. V. Gubarkova, S. S. Kuznetsov, A. L. Matveyev, L. A. Matveev, E. V. Zagaynova, N. D. Gladkova, and V. Y. Zaitsev, “Method for in vivo assessment of cancer tissue inhomogeneity and accurate histology-like morphological segmentation based on Optical Coherence Elastography,” Sci. Rep. (in press 2020, BioRxive doi: 10.1101/2020.02.06.937417).

Pogue, B. W.

B. Chen, B. W. Pogue, I. A. Goodwin, J. A. O’Hara, C. M. Wilmot, J. E. Hutchins, P. J. Hoopes, and T. Hasan, “Blood flow dynamics after photodynamic therapy with verteporfin in the RIF-1 tumor,” Radiat. Res. 160(4), 452–459 (2003).
[Crossref]

Pucelik, B.

J. M. Dąbrowski, B. Pucelik, A. Regiel-Futyra, M. Brindell, O. Mazuryk, A. Kyzioł, G. Stochel, W. Macyk, and L. G. Arnaut, “Engineering of relevant photodynamic processes through structural modifications of metallotetrapyrrolic photosensitizers,” Coord. Chem. Rev. 325, 67–101 (2016).
[Crossref]

Rea, S.

P. Gong, S. Es’haghian, K. A. Harms, A. Murray, S. Rea, B. F. Kennedy, F. M. Wood, D. D. Sampson, and R. A. McLaughlin, “Optical coherence tomography for longitudinal monitoring of vasculature in scars treated with laser fractionation,” J. Biophotonics 9(6), 626–636 (2016).
[Crossref]

Regiel-Futyra, A.

J. M. Dąbrowski, B. Pucelik, A. Regiel-Futyra, M. Brindell, O. Mazuryk, A. Kyzioł, G. Stochel, W. Macyk, and L. G. Arnaut, “Engineering of relevant photodynamic processes through structural modifications of metallotetrapyrrolic photosensitizers,” Coord. Chem. Rev. 325, 67–101 (2016).
[Crossref]

Reynolds, C. P.

M. M. Tomayko and C. P. Reynolds, “Determination of subcutaneous tumor size in athymic (nude) mice,” Cancer Chemother. Pharmacol. 24(3), 148–154 (1989).
[Crossref]

Rubinstein, L.

E. A. Eisenhauer, P. Therasse, J. Bogaerts, L. H. Schwartz, D. Sargent, R. Ford, J. Dancey, S. Arbuck, S. Gwyther, M. Mooney, L. Rubinstein, L. Shankar, L. Dodd, R. Kaplan, D. Lacombe, and J. Verweij, “New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1),” Eur. J. Cancer 45(2), 228–247 (2009).
[Crossref]

Sahani, D. V.

T. Jiang, A. Kambadakone, N. M. Kulkarni, A. X. Zhu, and D. V. Sahani, “Monitoring response to antiangiogenic treatment and predicting outcomes in advanced hepatocellular carcinoma using image biomarkers, CT perfusion, tumor density, and tumor size (RECIST),” Invest. Radiol. 47(1), 11–17 (2012).
[Crossref]

A. X. Zhu, N. S. Holalkere, A. Muzikansky, K. Horgan, and D. V. Sahani, “Early antiangiogenic activity of bevacizumab evaluated by computed tomography perfusion scan in patients with advanced hepatocellular carcinoma,” Oncologist 13(2), 120–125 (2008).
[Crossref]

Sampson, D. D.

K. V. Larin and D. D. Sampson, “Optical coherence elastography - OCT at work in tissue biomechanics [Invited],” Biomed. Opt. Express 8(2), 1172–1202 (2017).
[Crossref]

W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins,” Biomed. Opt. Express 7(10), 4139–4153 (2016).
[Crossref]

P. Gong, S. Es’haghian, K. A. Harms, A. Murray, S. Rea, B. F. Kennedy, F. M. Wood, D. D. Sampson, and R. A. McLaughlin, “Optical coherence tomography for longitudinal monitoring of vasculature in scars treated with laser fractionation,” J. Biophotonics 9(6), 626–636 (2016).
[Crossref]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref]

Sargent, D.

E. A. Eisenhauer, P. Therasse, J. Bogaerts, L. H. Schwartz, D. Sargent, R. Ford, J. Dancey, S. Arbuck, S. Gwyther, M. Mooney, L. Rubinstein, L. Shankar, L. Dodd, R. Kaplan, D. Lacombe, and J. Verweij, “New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1),” Eur. J. Cancer 45(2), 228–247 (2009).
[Crossref]

Saunders, C. M.

W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins,” Biomed. Opt. Express 7(10), 4139–4153 (2016).
[Crossref]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref]

Scheuer, W.

T. Friess, W. Scheuer, and M. Hasmann, “Combination treatment with erlotinib and pertuzumab against human tumor xenografts is superior to monotherapy,” Clin. Cancer Res. 11(14), 5300–5309 (2005).
[Crossref]

Schoenfeld, D.

S. Mallidi, K. Watanabe, D. Timerman, D. Schoenfeld, and T. Hasan, “Prediction of tumor recurrence and therapy monitoring using ultrasound-guided photoacoustic imaging,” Theranostics 5(3), 289–301 (2015).
[Crossref]

Schwartz, L. H.

E. A. Eisenhauer, P. Therasse, J. Bogaerts, L. H. Schwartz, D. Sargent, R. Ford, J. Dancey, S. Arbuck, S. Gwyther, M. Mooney, L. Rubinstein, L. Shankar, L. Dodd, R. Kaplan, D. Lacombe, and J. Verweij, “New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1),” Eur. J. Cancer 45(2), 228–247 (2009).
[Crossref]

Sedova, E. S.

E. V. Gubarkova, F. I. Feldchtein, E. V. Zagaynova, S. V. Gamayunov, M. A. Sirotkina, E. S. Sedova, S. S. Kuznetsov, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, D. A. Karashtin, G. V. Gelikonov, L. Pires, A. Vitkin, and N. D. Gladkova, “Optical coherence angiography for pre-treatment assessment and treatment monitoring following photodynamic therapy: a basal cell carcinoma patient study,” Sci. Rep. 9(1), 18670 (2019).
[Crossref]

Shabanov, D. V.

P. A. Shilyagin, L. A. Matveev, E. B. Kiseleva, A. A. Moiseev, V. Y. Zaitsev, A. A. Sovietsky, D. V. Shabanov, V. M. Gelikonov, K. S. Yashin, K. A. Achkasova, N. D. Gladkova, and G. V. Gelikonov, “Stabilization of the Scanning Pattern for Three-Dimensional Phase-Sensitive OCT Modalities: Angiography, Relaxography, and Monitoring of Slow Processes,” Sovrem. Tehnol. Med. 11(2), 25–34 (2019).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, O. I. Baum, A. I. Omelchenko, D. V. Shabanov, A. A. Sovetsky, A. V. Yuzhakov, A. A. Fedorov, V. I. Siplivy, A. V. Bolshunov, and E. N. Sobol, “Revealing structural modifications in thermomechanical reshaping of collagenous tissues using optical coherence elastography,” J. Biophotonics 12(3), e201800250 (2019).
[Crossref]

A. A. Sovetsky, A. L. Matveyev, L. A. Matveev, D. V. Shabanov, and V. Y. Zaitsev, “Manually-operated compressional optical coherence elastography with effective aperiodic averaging: demonstrations for corneal and cartilaginous tissues,” Laser Phys. Lett. 15(8), 085602 (2018).
[Crossref]

Shakhova, N.

A. Moiseev, S. Ksenofontov, M. Sirotkina, E. Kiseleva, M. Gorozhantseva, N. Shakhova, L. Matveev, V. Zaitsev, A. Matveyev, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Optical coherence tomography-based angiography device with real-time angiography B-scans visualization and hand-held probe for everyday clinical use,” J. Biophotonics 11(10), e201700292 (2018).
[Crossref]

Shankar, L.

E. A. Eisenhauer, P. Therasse, J. Bogaerts, L. H. Schwartz, D. Sargent, R. Ford, J. Dancey, S. Arbuck, S. Gwyther, M. Mooney, L. Rubinstein, L. Shankar, L. Dodd, R. Kaplan, D. Lacombe, and J. Verweij, “New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1),” Eur. J. Cancer 45(2), 228–247 (2009).
[Crossref]

Shen, F.

E. J. Walker, H. Su, F. Shen, V. Degos, G. Amend, K. Jun, and W. L. Young, “Bevacizumab attenuates VEGF-induced angiogenesis and vascular malformations in the adult mouse brain,” Stroke 43(7), 1925–1930 (2012).
[Crossref]

Shilyagin, P. A.

P. A. Shilyagin, L. A. Matveev, E. B. Kiseleva, A. A. Moiseev, V. Y. Zaitsev, A. A. Sovietsky, D. V. Shabanov, V. M. Gelikonov, K. S. Yashin, K. A. Achkasova, N. D. Gladkova, and G. V. Gelikonov, “Stabilization of the Scanning Pattern for Three-Dimensional Phase-Sensitive OCT Modalities: Angiography, Relaxography, and Monitoring of Slow Processes,” Sovrem. Tehnol. Med. 11(2), 25–34 (2019).
[Crossref]

A. A. Moiseev, G. V. Gelikonov, D. A. Terpelov, P. A. Shilyagin, and V. M. Gelikonov, “Noniterative method of reconstruction optical coherence tomography images with improved lateral resolution in semitransparent media,” Laser Phys. Lett. 10(12), 125601 (2013).
[Crossref]

Shirmanova, M. V.

M. A. Sirotkina, L. A. Matveev, M. V. Shirmanova, V. Y. Zaitsev, N. L. Buyanova, V. V. Elagin, G. V. Gelikonov, S. S. Kuznetsov, E. B. Kiseleva, A. A. Moiseev, S. V. Gamayunov, E. V. Zagaynova, F. I. Feldchtein, A. Vitkin, and N. D. Gladkova, “Photodynamic therapy monitoring with optical coherence angiography,” Sci. Rep. 7(1), 41506 (2017).
[Crossref]

Siplivy, V. I.

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, O. I. Baum, A. I. Omelchenko, D. V. Shabanov, A. A. Sovetsky, A. V. Yuzhakov, A. A. Fedorov, V. I. Siplivy, A. V. Bolshunov, and E. N. Sobol, “Revealing structural modifications in thermomechanical reshaping of collagenous tissues using optical coherence elastography,” J. Biophotonics 12(3), e201800250 (2019).
[Crossref]

Sirotkina, M.

A. Moiseev, S. Ksenofontov, M. Sirotkina, E. Kiseleva, M. Gorozhantseva, N. Shakhova, L. Matveev, V. Zaitsev, A. Matveyev, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Optical coherence tomography-based angiography device with real-time angiography B-scans visualization and hand-held probe for everyday clinical use,” J. Biophotonics 11(10), e201700292 (2018).
[Crossref]

A. Moiseev, L. Snopova, S. Kuznetsov, N. Buyanova, V. Elagin, M. Sirotkina, E. Kiseleva, L. Matveev, V. Zaitsev, F. Feldchtein, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Pixel classification method in optical coherence tomography for tumor segmentation and its complementary usage with OCT microangiography,” J. Biophotonics 11(4), e201700072 (2018).
[Crossref]

Sirotkina, M. A.

E. V. Gubarkova, F. I. Feldchtein, E. V. Zagaynova, S. V. Gamayunov, M. A. Sirotkina, E. S. Sedova, S. S. Kuznetsov, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, D. A. Karashtin, G. V. Gelikonov, L. Pires, A. Vitkin, and N. D. Gladkova, “Optical coherence angiography for pre-treatment assessment and treatment monitoring following photodynamic therapy: a basal cell carcinoma patient study,” Sci. Rep. 9(1), 18670 (2019).
[Crossref]

A. A. Plekhanov, M. A. Sirotkina, A. A. Sovetsky, E. V. Gubarkova, E. B. Kiseleva, V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, S. S. Kuznetsov, E. V. Zagaynova, and N. D. Gladkova, “Optical coherence elastography as a new method for estimation of chemotherapy efficacy on triple-negative breast cancer in the experiment,” Proc. SPIE 11065, 1106506 (2019).
[Crossref]

E. V. Gubarkova, A. A. Sovetsky, V. Y. Zaitsev, A. L. Matveyev, D. A. Vorontsov, M. A. Sirotkina, L. A. Matveev, A. A. Plekhanov, N. P. Pavlova, S. S. Kuznetsov, A. Y. Vorontsov, E. V. Zagaynova, and N. D. Gladkova, “OCT-elastography-based optical biopsy for breast cancer delineation and express assessment of morphological/molecular subtypes,” Biomed. Opt. Express 10(5), 2244–2263 (2019).
[Crossref]

M. A. Sirotkina, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, V. V. Elagin, S. S. Kuznetsov, G. V. Gelikonov, S. Y. Ksenofontov, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “Accurate early prediction of tumour response to PDT using optical coherence angiography,” Sci. Rep. 9(1), 6492 (2019).
[Crossref]

A. A. Plekhanov, E. V. Gubarkova, A. A. Sovietsky, V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, L. B. Timofeeva, S. S. Kuznetsov, E. V. Zagaynova, N. D. Gladkova, and M. A. Sirotkina, “Optical Coherence Elastography for Non-Invasive Monitoring of Tumor Elasticity under Chemotherapy: Pilot Study,” Sovrem. Tehnol. Med. 10(3), 43 (2018).
[Crossref]

M. A. Sirotkina, L. A. Matveev, M. V. Shirmanova, V. Y. Zaitsev, N. L. Buyanova, V. V. Elagin, G. V. Gelikonov, S. S. Kuznetsov, E. B. Kiseleva, A. A. Moiseev, S. V. Gamayunov, E. V. Zagaynova, F. I. Feldchtein, A. Vitkin, and N. D. Gladkova, “Photodynamic therapy monitoring with optical coherence angiography,” Sci. Rep. 7(1), 41506 (2017).
[Crossref]

A. V. Maslennikova, M. A. Sirotkina, A. A. Moiseev, E. S. Finagina, S. Y. Ksenofontov, G. V. Gelikonov, L. A. Matveev, E. B. Kiseleva, V. Y. Zaitsev, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “In-vivo longitudinal imaging of microvascular changes in irradiated oral mucosa of radiotherapy cancer patients using optical coherence tomography,” Sci. Rep. 7(1), 16505 (2017).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Sovetsky, M. A. Sirotkina, G. V. Gelikonov, E. V. Zagaynova, N. D. Gladkova, and A. Vitkin, “Practical obstacles and their mitigation strategies in compressional optical coherence elastography of biological tissues,” J. Innovative Opt. Health Sci. 10(06), 1742006 (2017).
[Crossref]

L. A. Matveev, V. Y. Zaitsev, G. V. Gelikonov, A. L. Matveyev, A. A. Moiseev, S. Y. Ksenofontov, V. M. Gelikonov, M. A. Sirotkina, N. D. Gladkova, V. Demidov, and A. Vitkin, “Hybrid M-mode-like OCT imaging of three-dimensional microvasculature in vivo using reference-free processing of complex valued B-scans,” Opt. Lett. 40(7), 1472–1475 (2015).
[Crossref]

A. A. Plekhanov, M. A. Sirotkina, A. A. Sovetsky, E. V. Gubarkova, S. S. Kuznetsov, A. L. Matveyev, L. A. Matveev, E. V. Zagaynova, N. D. Gladkova, and V. Y. Zaitsev, “Method for in vivo assessment of cancer tissue inhomogeneity and accurate histology-like morphological segmentation based on Optical Coherence Elastography,” Sci. Rep. (in press 2020, BioRxive doi: 10.1101/2020.02.06.937417).

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Sovetsky, M. A. Sirotkina, G. V. Gelikonov, E. V. Zagaynova, and N. D. Gladkova, and A. Vitkin, Manifestations of nonlinear elasticity of biological tissues in compressional optical coherence elastography, European Conferences on Biomedical Optics (SPIE, 2017), Vol. 10413.

A. A. Sovetsky, E. V. Gubarkova, L. A. Matveev, A. L. Matveyev, M. A. Sirotkina, N. D. Gladkova, and V. Y. Zaitsev, OCT-based characterization of the nonlinear properties of biological tissues in various states, SPIE Photonics Europe (SPIE, 2018), Vol. 10685.

Snopova, L.

A. Moiseev, L. Snopova, S. Kuznetsov, N. Buyanova, V. Elagin, M. Sirotkina, E. Kiseleva, L. Matveev, V. Zaitsev, F. Feldchtein, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Pixel classification method in optical coherence tomography for tumor segmentation and its complementary usage with OCT microangiography,” J. Biophotonics 11(4), e201700072 (2018).
[Crossref]

Sobol, E. N.

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, O. I. Baum, A. I. Omelchenko, D. V. Shabanov, A. A. Sovetsky, A. V. Yuzhakov, A. A. Fedorov, V. I. Siplivy, A. V. Bolshunov, and E. N. Sobol, “Revealing structural modifications in thermomechanical reshaping of collagenous tissues using optical coherence elastography,” J. Biophotonics 12(3), e201800250 (2019).
[Crossref]

Sovetsky, A. A.

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, O. I. Baum, A. I. Omelchenko, D. V. Shabanov, A. A. Sovetsky, A. V. Yuzhakov, A. A. Fedorov, V. I. Siplivy, A. V. Bolshunov, and E. N. Sobol, “Revealing structural modifications in thermomechanical reshaping of collagenous tissues using optical coherence elastography,” J. Biophotonics 12(3), e201800250 (2019).
[Crossref]

E. V. Gubarkova, A. A. Sovetsky, V. Y. Zaitsev, A. L. Matveyev, D. A. Vorontsov, M. A. Sirotkina, L. A. Matveev, A. A. Plekhanov, N. P. Pavlova, S. S. Kuznetsov, A. Y. Vorontsov, E. V. Zagaynova, and N. D. Gladkova, “OCT-elastography-based optical biopsy for breast cancer delineation and express assessment of morphological/molecular subtypes,” Biomed. Opt. Express 10(5), 2244–2263 (2019).
[Crossref]

A. A. Plekhanov, M. A. Sirotkina, A. A. Sovetsky, E. V. Gubarkova, E. B. Kiseleva, V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, S. S. Kuznetsov, E. V. Zagaynova, and N. D. Gladkova, “Optical coherence elastography as a new method for estimation of chemotherapy efficacy on triple-negative breast cancer in the experiment,” Proc. SPIE 11065, 1106506 (2019).
[Crossref]

A. A. Sovetsky, A. L. Matveyev, L. A. Matveev, D. V. Shabanov, and V. Y. Zaitsev, “Manually-operated compressional optical coherence elastography with effective aperiodic averaging: demonstrations for corneal and cartilaginous tissues,” Laser Phys. Lett. 15(8), 085602 (2018).
[Crossref]

A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, G. V. Gelikonov, A. A. Moiseev, and V. Y. Zaitsev, “Vector method for strain estimation in phase-sensitive optical coherence elastography,” Laser Phys. Lett. 15(6), 065603 (2018).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Sovetsky, M. A. Sirotkina, G. V. Gelikonov, E. V. Zagaynova, N. D. Gladkova, and A. Vitkin, “Practical obstacles and their mitigation strategies in compressional optical coherence elastography of biological tissues,” J. Innovative Opt. Health Sci. 10(06), 1742006 (2017).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, A. A. Sovetsky, and A. Vitkin, “Optimized phase gradient measurements and phase-amplitude interplay in optical coherence elastography,” J. Biomed. Opt. 21(11), 116005 (2016).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Sovetsky, M. A. Sirotkina, G. V. Gelikonov, E. V. Zagaynova, and N. D. Gladkova, and A. Vitkin, Manifestations of nonlinear elasticity of biological tissues in compressional optical coherence elastography, European Conferences on Biomedical Optics (SPIE, 2017), Vol. 10413.

A. A. Sovetsky, E. V. Gubarkova, L. A. Matveev, A. L. Matveyev, M. A. Sirotkina, N. D. Gladkova, and V. Y. Zaitsev, OCT-based characterization of the nonlinear properties of biological tissues in various states, SPIE Photonics Europe (SPIE, 2018), Vol. 10685.

A. A. Plekhanov, M. A. Sirotkina, A. A. Sovetsky, E. V. Gubarkova, S. S. Kuznetsov, A. L. Matveyev, L. A. Matveev, E. V. Zagaynova, N. D. Gladkova, and V. Y. Zaitsev, “Method for in vivo assessment of cancer tissue inhomogeneity and accurate histology-like morphological segmentation based on Optical Coherence Elastography,” Sci. Rep. (in press 2020, BioRxive doi: 10.1101/2020.02.06.937417).

Sovietsky, A. A.

P. A. Shilyagin, L. A. Matveev, E. B. Kiseleva, A. A. Moiseev, V. Y. Zaitsev, A. A. Sovietsky, D. V. Shabanov, V. M. Gelikonov, K. S. Yashin, K. A. Achkasova, N. D. Gladkova, and G. V. Gelikonov, “Stabilization of the Scanning Pattern for Three-Dimensional Phase-Sensitive OCT Modalities: Angiography, Relaxography, and Monitoring of Slow Processes,” Sovrem. Tehnol. Med. 11(2), 25–34 (2019).
[Crossref]

A. A. Plekhanov, E. V. Gubarkova, A. A. Sovietsky, V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, L. B. Timofeeva, S. S. Kuznetsov, E. V. Zagaynova, N. D. Gladkova, and M. A. Sirotkina, “Optical Coherence Elastography for Non-Invasive Monitoring of Tumor Elasticity under Chemotherapy: Pilot Study,” Sovrem. Tehnol. Med. 10(3), 43 (2018).
[Crossref]

Standish, B. A.

A. Mariampillai, M. K. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. D. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett. 35(8), 1257–1259 (2010).
[Crossref]

B. A. Standish, K. K. Lee, X. Jin, A. Mariampillai, N. R. Munce, M. F. Wood, B. C. Wilson, I. A. Vitkin, and V. X. Yang, “Interstitial Doppler optical coherence tomography as a local tumor necrosis predictor in photodynamic therapy of prostatic carcinoma: an in vivo study,” Cancer Res. 68(23), 9987–9995 (2008).
[Crossref]

Stochel, G.

J. M. Dąbrowski, B. Pucelik, A. Regiel-Futyra, M. Brindell, O. Mazuryk, A. Kyzioł, G. Stochel, W. Macyk, and L. G. Arnaut, “Engineering of relevant photodynamic processes through structural modifications of metallotetrapyrrolic photosensitizers,” Coord. Chem. Rev. 325, 67–101 (2016).
[Crossref]

Su, H.

E. J. Walker, H. Su, F. Shen, V. Degos, G. Amend, K. Jun, and W. L. Young, “Bevacizumab attenuates VEGF-induced angiogenesis and vascular malformations in the adult mouse brain,” Stroke 43(7), 1925–1930 (2012).
[Crossref]

Terpelov, D. A.

A. A. Moiseev, G. V. Gelikonov, D. A. Terpelov, P. A. Shilyagin, and V. M. Gelikonov, “Noniterative method of reconstruction optical coherence tomography images with improved lateral resolution in semitransparent media,” Laser Phys. Lett. 10(12), 125601 (2013).
[Crossref]

Therasse, P.

E. A. Eisenhauer, P. Therasse, J. Bogaerts, L. H. Schwartz, D. Sargent, R. Ford, J. Dancey, S. Arbuck, S. Gwyther, M. Mooney, L. Rubinstein, L. Shankar, L. Dodd, R. Kaplan, D. Lacombe, and J. Verweij, “New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1),” Eur. J. Cancer 45(2), 228–247 (2009).
[Crossref]

Timerman, D.

S. Mallidi, K. Watanabe, D. Timerman, D. Schoenfeld, and T. Hasan, “Prediction of tumor recurrence and therapy monitoring using ultrasound-guided photoacoustic imaging,” Theranostics 5(3), 289–301 (2015).
[Crossref]

Timofeeva, L. B.

A. A. Plekhanov, E. V. Gubarkova, A. A. Sovietsky, V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, L. B. Timofeeva, S. S. Kuznetsov, E. V. Zagaynova, N. D. Gladkova, and M. A. Sirotkina, “Optical Coherence Elastography for Non-Invasive Monitoring of Tumor Elasticity under Chemotherapy: Pilot Study,” Sovrem. Tehnol. Med. 10(3), 43 (2018).
[Crossref]

Tomayko, M. M.

M. M. Tomayko and C. P. Reynolds, “Determination of subcutaneous tumor size in athymic (nude) mice,” Cancer Chemother. Pharmacol. 24(3), 148–154 (1989).
[Crossref]

Verweij, J.

E. A. Eisenhauer, P. Therasse, J. Bogaerts, L. H. Schwartz, D. Sargent, R. Ford, J. Dancey, S. Arbuck, S. Gwyther, M. Mooney, L. Rubinstein, L. Shankar, L. Dodd, R. Kaplan, D. Lacombe, and J. Verweij, “New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1),” Eur. J. Cancer 45(2), 228–247 (2009).
[Crossref]

Vitkin, A.

M. A. Sirotkina, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, V. V. Elagin, S. S. Kuznetsov, G. V. Gelikonov, S. Y. Ksenofontov, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “Accurate early prediction of tumour response to PDT using optical coherence angiography,” Sci. Rep. 9(1), 6492 (2019).
[Crossref]

E. V. Gubarkova, F. I. Feldchtein, E. V. Zagaynova, S. V. Gamayunov, M. A. Sirotkina, E. S. Sedova, S. S. Kuznetsov, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, D. A. Karashtin, G. V. Gelikonov, L. Pires, A. Vitkin, and N. D. Gladkova, “Optical coherence angiography for pre-treatment assessment and treatment monitoring following photodynamic therapy: a basal cell carcinoma patient study,” Sci. Rep. 9(1), 18670 (2019).
[Crossref]

A. Moiseev, L. Snopova, S. Kuznetsov, N. Buyanova, V. Elagin, M. Sirotkina, E. Kiseleva, L. Matveev, V. Zaitsev, F. Feldchtein, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Pixel classification method in optical coherence tomography for tumor segmentation and its complementary usage with OCT microangiography,” J. Biophotonics 11(4), e201700072 (2018).
[Crossref]

A. Moiseev, S. Ksenofontov, M. Sirotkina, E. Kiseleva, M. Gorozhantseva, N. Shakhova, L. Matveev, V. Zaitsev, A. Matveyev, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Optical coherence tomography-based angiography device with real-time angiography B-scans visualization and hand-held probe for everyday clinical use,” J. Biophotonics 11(10), e201700292 (2018).
[Crossref]

A. V. Maslennikova, M. A. Sirotkina, A. A. Moiseev, E. S. Finagina, S. Y. Ksenofontov, G. V. Gelikonov, L. A. Matveev, E. B. Kiseleva, V. Y. Zaitsev, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “In-vivo longitudinal imaging of microvascular changes in irradiated oral mucosa of radiotherapy cancer patients using optical coherence tomography,” Sci. Rep. 7(1), 16505 (2017).
[Crossref]

M. A. Sirotkina, L. A. Matveev, M. V. Shirmanova, V. Y. Zaitsev, N. L. Buyanova, V. V. Elagin, G. V. Gelikonov, S. S. Kuznetsov, E. B. Kiseleva, A. A. Moiseev, S. V. Gamayunov, E. V. Zagaynova, F. I. Feldchtein, A. Vitkin, and N. D. Gladkova, “Photodynamic therapy monitoring with optical coherence angiography,” Sci. Rep. 7(1), 41506 (2017).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Sovetsky, M. A. Sirotkina, G. V. Gelikonov, E. V. Zagaynova, N. D. Gladkova, and A. Vitkin, “Practical obstacles and their mitigation strategies in compressional optical coherence elastography of biological tissues,” J. Innovative Opt. Health Sci. 10(06), 1742006 (2017).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, A. A. Sovetsky, and A. Vitkin, “Optimized phase gradient measurements and phase-amplitude interplay in optical coherence elastography,” J. Biomed. Opt. 21(11), 116005 (2016).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, E. V. Gubarkova, N. D. Gladkova, and A. Vitkin, “Hybrid method of strain estimation in optical coherence elastography using combined sub-wavelength phase measurements and supra-pixel displacement tracking,” J. Biophotonics 9(5), 499–509 (2016).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, V. M. Gelikonov, and A. Vitkin, “Deformation-induced speckle-pattern evolution and feasibility of correlational speckle tracking in optical coherence elastography,” J. Biomed. Opt. 20(7), 075006 (2015).
[Crossref]

L. A. Matveev, V. Y. Zaitsev, G. V. Gelikonov, A. L. Matveyev, A. A. Moiseev, S. Y. Ksenofontov, V. M. Gelikonov, M. A. Sirotkina, N. D. Gladkova, V. Demidov, and A. Vitkin, “Hybrid M-mode-like OCT imaging of three-dimensional microvasculature in vivo using reference-free processing of complex valued B-scans,” Opt. Lett. 40(7), 1472–1475 (2015).
[Crossref]

A. Mariampillai, M. K. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. D. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett. 35(8), 1257–1259 (2010).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Sovetsky, M. A. Sirotkina, G. V. Gelikonov, E. V. Zagaynova, and N. D. Gladkova, and A. Vitkin, Manifestations of nonlinear elasticity of biological tissues in compressional optical coherence elastography, European Conferences on Biomedical Optics (SPIE, 2017), Vol. 10413.

Vitkin, I. A.

V. Demidov, L. A. Matveev, O. Demidova, A. L. Matveyev, V. Y. Zaitsev, C. Flueraru, and I. A. Vitkin, “Analysis of low-scattering regions in optical coherence tomography: applications to neurography and lymphangiography,” Biomed. Opt. Express 10(8), 4207–4219 (2019).
[Crossref]

B. A. Standish, K. K. Lee, X. Jin, A. Mariampillai, N. R. Munce, M. F. Wood, B. C. Wilson, I. A. Vitkin, and V. X. Yang, “Interstitial Doppler optical coherence tomography as a local tumor necrosis predictor in photodynamic therapy of prostatic carcinoma: an in vivo study,” Cancer Res. 68(23), 9987–9995 (2008).
[Crossref]

Vorontsov, A. Y.

Vorontsov, D. A.

Walker, E. J.

E. J. Walker, H. Su, F. Shen, V. Degos, G. Amend, K. Jun, and W. L. Young, “Bevacizumab attenuates VEGF-induced angiogenesis and vascular malformations in the adult mouse brain,” Stroke 43(7), 1925–1930 (2012).
[Crossref]

Wang, C.

Y. Wang, L. Dong, Q. Bi, X. Li, D. Wu, X. Ge, X. Zhang, J. Fu, C. Zhang, C. Wang, and S. Li, “Investigation of the efficacy of a bevacizumab-cetuximab-cisplatin regimen in treating head and neck squamous cell carcinoma in mice,” Target. Oncol. 5(4), 237–243 (2010).
[Crossref]

Wang, S.

S. Wang and K. V. Larin, “Optical coherence elastography for tissue characterization: a review,” J. Biophotonics 8(4), 279–302 (2015).
[Crossref]

Wang, T.

T. Li, G. Kang, T. Wang, and H. Huang, “Tumor angiogenesis and anti-angiogenic gene therapy for cancer,” Oncol. Lett. 16(1), 687–702 (2018).
[Crossref]

Wang, Y.

Y. Wang, L. Dong, Q. Bi, X. Li, D. Wu, X. Ge, X. Zhang, J. Fu, C. Zhang, C. Wang, and S. Li, “Investigation of the efficacy of a bevacizumab-cetuximab-cisplatin regimen in treating head and neck squamous cell carcinoma in mice,” Target. Oncol. 5(4), 237–243 (2010).
[Crossref]

Watanabe, K.

S. Mallidi, K. Watanabe, D. Timerman, D. Schoenfeld, and T. Hasan, “Prediction of tumor recurrence and therapy monitoring using ultrasound-guided photoacoustic imaging,” Theranostics 5(3), 289–301 (2015).
[Crossref]

Wheeler, T. M.

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imag. 20(4), 260–274 (1998).
[Crossref]

Wijesinghe, P.

Wilmot, C. M.

B. Chen, B. W. Pogue, I. A. Goodwin, J. A. O’Hara, C. M. Wilmot, J. E. Hutchins, P. J. Hoopes, and T. Hasan, “Blood flow dynamics after photodynamic therapy with verteporfin in the RIF-1 tumor,” Radiat. Res. 160(4), 452–459 (2003).
[Crossref]

Wilson, B. C.

A. Mariampillai, M. K. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. D. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett. 35(8), 1257–1259 (2010).
[Crossref]

B. A. Standish, K. K. Lee, X. Jin, A. Mariampillai, N. R. Munce, M. F. Wood, B. C. Wilson, I. A. Vitkin, and V. X. Yang, “Interstitial Doppler optical coherence tomography as a local tumor necrosis predictor in photodynamic therapy of prostatic carcinoma: an in vivo study,” Cancer Res. 68(23), 9987–9995 (2008).
[Crossref]

Wood, F. M.

P. Gong, S. Es’haghian, K. A. Harms, A. Murray, S. Rea, B. F. Kennedy, F. M. Wood, D. D. Sampson, and R. A. McLaughlin, “Optical coherence tomography for longitudinal monitoring of vasculature in scars treated with laser fractionation,” J. Biophotonics 9(6), 626–636 (2016).
[Crossref]

Wood, M. F.

B. A. Standish, K. K. Lee, X. Jin, A. Mariampillai, N. R. Munce, M. F. Wood, B. C. Wilson, I. A. Vitkin, and V. X. Yang, “Interstitial Doppler optical coherence tomography as a local tumor necrosis predictor in photodynamic therapy of prostatic carcinoma: an in vivo study,” Cancer Res. 68(23), 9987–9995 (2008).
[Crossref]

Wu, D.

Y. Wang, L. Dong, Q. Bi, X. Li, D. Wu, X. Ge, X. Zhang, J. Fu, C. Zhang, C. Wang, and S. Li, “Investigation of the efficacy of a bevacizumab-cetuximab-cisplatin regimen in treating head and neck squamous cell carcinoma in mice,” Target. Oncol. 5(4), 237–243 (2010).
[Crossref]

Yang, V. X.

B. A. Standish, K. K. Lee, X. Jin, A. Mariampillai, N. R. Munce, M. F. Wood, B. C. Wilson, I. A. Vitkin, and V. X. Yang, “Interstitial Doppler optical coherence tomography as a local tumor necrosis predictor in photodynamic therapy of prostatic carcinoma: an in vivo study,” Cancer Res. 68(23), 9987–9995 (2008).
[Crossref]

Yang, V. X. D.

Yashin, K. S.

P. A. Shilyagin, L. A. Matveev, E. B. Kiseleva, A. A. Moiseev, V. Y. Zaitsev, A. A. Sovietsky, D. V. Shabanov, V. M. Gelikonov, K. S. Yashin, K. A. Achkasova, N. D. Gladkova, and G. V. Gelikonov, “Stabilization of the Scanning Pattern for Three-Dimensional Phase-Sensitive OCT Modalities: Angiography, Relaxography, and Monitoring of Slow Processes,” Sovrem. Tehnol. Med. 11(2), 25–34 (2019).
[Crossref]

Young, W. L.

E. J. Walker, H. Su, F. Shen, V. Degos, G. Amend, K. Jun, and W. L. Young, “Bevacizumab attenuates VEGF-induced angiogenesis and vascular malformations in the adult mouse brain,” Stroke 43(7), 1925–1930 (2012).
[Crossref]

Yuzhakov, A. V.

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, O. I. Baum, A. I. Omelchenko, D. V. Shabanov, A. A. Sovetsky, A. V. Yuzhakov, A. A. Fedorov, V. I. Siplivy, A. V. Bolshunov, and E. N. Sobol, “Revealing structural modifications in thermomechanical reshaping of collagenous tissues using optical coherence elastography,” J. Biophotonics 12(3), e201800250 (2019).
[Crossref]

Zagaynova, E.

A. Moiseev, L. Snopova, S. Kuznetsov, N. Buyanova, V. Elagin, M. Sirotkina, E. Kiseleva, L. Matveev, V. Zaitsev, F. Feldchtein, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Pixel classification method in optical coherence tomography for tumor segmentation and its complementary usage with OCT microangiography,” J. Biophotonics 11(4), e201700072 (2018).
[Crossref]

A. Moiseev, S. Ksenofontov, M. Sirotkina, E. Kiseleva, M. Gorozhantseva, N. Shakhova, L. Matveev, V. Zaitsev, A. Matveyev, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Optical coherence tomography-based angiography device with real-time angiography B-scans visualization and hand-held probe for everyday clinical use,” J. Biophotonics 11(10), e201700292 (2018).
[Crossref]

Zagaynova, E. V.

M. A. Sirotkina, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, V. V. Elagin, S. S. Kuznetsov, G. V. Gelikonov, S. Y. Ksenofontov, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “Accurate early prediction of tumour response to PDT using optical coherence angiography,” Sci. Rep. 9(1), 6492 (2019).
[Crossref]

E. V. Gubarkova, A. A. Sovetsky, V. Y. Zaitsev, A. L. Matveyev, D. A. Vorontsov, M. A. Sirotkina, L. A. Matveev, A. A. Plekhanov, N. P. Pavlova, S. S. Kuznetsov, A. Y. Vorontsov, E. V. Zagaynova, and N. D. Gladkova, “OCT-elastography-based optical biopsy for breast cancer delineation and express assessment of morphological/molecular subtypes,” Biomed. Opt. Express 10(5), 2244–2263 (2019).
[Crossref]

E. V. Gubarkova, F. I. Feldchtein, E. V. Zagaynova, S. V. Gamayunov, M. A. Sirotkina, E. S. Sedova, S. S. Kuznetsov, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, D. A. Karashtin, G. V. Gelikonov, L. Pires, A. Vitkin, and N. D. Gladkova, “Optical coherence angiography for pre-treatment assessment and treatment monitoring following photodynamic therapy: a basal cell carcinoma patient study,” Sci. Rep. 9(1), 18670 (2019).
[Crossref]

A. A. Plekhanov, M. A. Sirotkina, A. A. Sovetsky, E. V. Gubarkova, E. B. Kiseleva, V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, S. S. Kuznetsov, E. V. Zagaynova, and N. D. Gladkova, “Optical coherence elastography as a new method for estimation of chemotherapy efficacy on triple-negative breast cancer in the experiment,” Proc. SPIE 11065, 1106506 (2019).
[Crossref]

A. A. Plekhanov, E. V. Gubarkova, A. A. Sovietsky, V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, L. B. Timofeeva, S. S. Kuznetsov, E. V. Zagaynova, N. D. Gladkova, and M. A. Sirotkina, “Optical Coherence Elastography for Non-Invasive Monitoring of Tumor Elasticity under Chemotherapy: Pilot Study,” Sovrem. Tehnol. Med. 10(3), 43 (2018).
[Crossref]

M. A. Sirotkina, L. A. Matveev, M. V. Shirmanova, V. Y. Zaitsev, N. L. Buyanova, V. V. Elagin, G. V. Gelikonov, S. S. Kuznetsov, E. B. Kiseleva, A. A. Moiseev, S. V. Gamayunov, E. V. Zagaynova, F. I. Feldchtein, A. Vitkin, and N. D. Gladkova, “Photodynamic therapy monitoring with optical coherence angiography,” Sci. Rep. 7(1), 41506 (2017).
[Crossref]

A. V. Maslennikova, M. A. Sirotkina, A. A. Moiseev, E. S. Finagina, S. Y. Ksenofontov, G. V. Gelikonov, L. A. Matveev, E. B. Kiseleva, V. Y. Zaitsev, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “In-vivo longitudinal imaging of microvascular changes in irradiated oral mucosa of radiotherapy cancer patients using optical coherence tomography,” Sci. Rep. 7(1), 16505 (2017).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Sovetsky, M. A. Sirotkina, G. V. Gelikonov, E. V. Zagaynova, N. D. Gladkova, and A. Vitkin, “Practical obstacles and their mitigation strategies in compressional optical coherence elastography of biological tissues,” J. Innovative Opt. Health Sci. 10(06), 1742006 (2017).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Sovetsky, M. A. Sirotkina, G. V. Gelikonov, E. V. Zagaynova, and N. D. Gladkova, and A. Vitkin, Manifestations of nonlinear elasticity of biological tissues in compressional optical coherence elastography, European Conferences on Biomedical Optics (SPIE, 2017), Vol. 10413.

A. A. Plekhanov, M. A. Sirotkina, A. A. Sovetsky, E. V. Gubarkova, S. S. Kuznetsov, A. L. Matveyev, L. A. Matveev, E. V. Zagaynova, N. D. Gladkova, and V. Y. Zaitsev, “Method for in vivo assessment of cancer tissue inhomogeneity and accurate histology-like morphological segmentation based on Optical Coherence Elastography,” Sci. Rep. (in press 2020, BioRxive doi: 10.1101/2020.02.06.937417).

Zaitsev, V.

A. Moiseev, L. Snopova, S. Kuznetsov, N. Buyanova, V. Elagin, M. Sirotkina, E. Kiseleva, L. Matveev, V. Zaitsev, F. Feldchtein, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Pixel classification method in optical coherence tomography for tumor segmentation and its complementary usage with OCT microangiography,” J. Biophotonics 11(4), e201700072 (2018).
[Crossref]

A. Moiseev, S. Ksenofontov, M. Sirotkina, E. Kiseleva, M. Gorozhantseva, N. Shakhova, L. Matveev, V. Zaitsev, A. Matveyev, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Optical coherence tomography-based angiography device with real-time angiography B-scans visualization and hand-held probe for everyday clinical use,” J. Biophotonics 11(10), e201700292 (2018).
[Crossref]

Zaitsev, V. Y.

M. A. Sirotkina, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, V. V. Elagin, S. S. Kuznetsov, G. V. Gelikonov, S. Y. Ksenofontov, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “Accurate early prediction of tumour response to PDT using optical coherence angiography,” Sci. Rep. 9(1), 6492 (2019).
[Crossref]

V. Demidov, L. A. Matveev, O. Demidova, A. L. Matveyev, V. Y. Zaitsev, C. Flueraru, and I. A. Vitkin, “Analysis of low-scattering regions in optical coherence tomography: applications to neurography and lymphangiography,” Biomed. Opt. Express 10(8), 4207–4219 (2019).
[Crossref]

P. A. Shilyagin, L. A. Matveev, E. B. Kiseleva, A. A. Moiseev, V. Y. Zaitsev, A. A. Sovietsky, D. V. Shabanov, V. M. Gelikonov, K. S. Yashin, K. A. Achkasova, N. D. Gladkova, and G. V. Gelikonov, “Stabilization of the Scanning Pattern for Three-Dimensional Phase-Sensitive OCT Modalities: Angiography, Relaxography, and Monitoring of Slow Processes,” Sovrem. Tehnol. Med. 11(2), 25–34 (2019).
[Crossref]

E. V. Gubarkova, F. I. Feldchtein, E. V. Zagaynova, S. V. Gamayunov, M. A. Sirotkina, E. S. Sedova, S. S. Kuznetsov, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, D. A. Karashtin, G. V. Gelikonov, L. Pires, A. Vitkin, and N. D. Gladkova, “Optical coherence angiography for pre-treatment assessment and treatment monitoring following photodynamic therapy: a basal cell carcinoma patient study,” Sci. Rep. 9(1), 18670 (2019).
[Crossref]

A. A. Plekhanov, M. A. Sirotkina, A. A. Sovetsky, E. V. Gubarkova, E. B. Kiseleva, V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, S. S. Kuznetsov, E. V. Zagaynova, and N. D. Gladkova, “Optical coherence elastography as a new method for estimation of chemotherapy efficacy on triple-negative breast cancer in the experiment,” Proc. SPIE 11065, 1106506 (2019).
[Crossref]

E. V. Gubarkova, A. A. Sovetsky, V. Y. Zaitsev, A. L. Matveyev, D. A. Vorontsov, M. A. Sirotkina, L. A. Matveev, A. A. Plekhanov, N. P. Pavlova, S. S. Kuznetsov, A. Y. Vorontsov, E. V. Zagaynova, and N. D. Gladkova, “OCT-elastography-based optical biopsy for breast cancer delineation and express assessment of morphological/molecular subtypes,” Biomed. Opt. Express 10(5), 2244–2263 (2019).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, O. I. Baum, A. I. Omelchenko, D. V. Shabanov, A. A. Sovetsky, A. V. Yuzhakov, A. A. Fedorov, V. I. Siplivy, A. V. Bolshunov, and E. N. Sobol, “Revealing structural modifications in thermomechanical reshaping of collagenous tissues using optical coherence elastography,” J. Biophotonics 12(3), e201800250 (2019).
[Crossref]

A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, G. V. Gelikonov, A. A. Moiseev, and V. Y. Zaitsev, “Vector method for strain estimation in phase-sensitive optical coherence elastography,” Laser Phys. Lett. 15(6), 065603 (2018).
[Crossref]

A. A. Plekhanov, E. V. Gubarkova, A. A. Sovietsky, V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, L. B. Timofeeva, S. S. Kuznetsov, E. V. Zagaynova, N. D. Gladkova, and M. A. Sirotkina, “Optical Coherence Elastography for Non-Invasive Monitoring of Tumor Elasticity under Chemotherapy: Pilot Study,” Sovrem. Tehnol. Med. 10(3), 43 (2018).
[Crossref]

A. A. Sovetsky, A. L. Matveyev, L. A. Matveev, D. V. Shabanov, and V. Y. Zaitsev, “Manually-operated compressional optical coherence elastography with effective aperiodic averaging: demonstrations for corneal and cartilaginous tissues,” Laser Phys. Lett. 15(8), 085602 (2018).
[Crossref]

M. A. Sirotkina, L. A. Matveev, M. V. Shirmanova, V. Y. Zaitsev, N. L. Buyanova, V. V. Elagin, G. V. Gelikonov, S. S. Kuznetsov, E. B. Kiseleva, A. A. Moiseev, S. V. Gamayunov, E. V. Zagaynova, F. I. Feldchtein, A. Vitkin, and N. D. Gladkova, “Photodynamic therapy monitoring with optical coherence angiography,” Sci. Rep. 7(1), 41506 (2017).
[Crossref]

A. V. Maslennikova, M. A. Sirotkina, A. A. Moiseev, E. S. Finagina, S. Y. Ksenofontov, G. V. Gelikonov, L. A. Matveev, E. B. Kiseleva, V. Y. Zaitsev, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “In-vivo longitudinal imaging of microvascular changes in irradiated oral mucosa of radiotherapy cancer patients using optical coherence tomography,” Sci. Rep. 7(1), 16505 (2017).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Sovetsky, M. A. Sirotkina, G. V. Gelikonov, E. V. Zagaynova, N. D. Gladkova, and A. Vitkin, “Practical obstacles and their mitigation strategies in compressional optical coherence elastography of biological tissues,” J. Innovative Opt. Health Sci. 10(06), 1742006 (2017).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, A. A. Sovetsky, and A. Vitkin, “Optimized phase gradient measurements and phase-amplitude interplay in optical coherence elastography,” J. Biomed. Opt. 21(11), 116005 (2016).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, E. V. Gubarkova, N. D. Gladkova, and A. Vitkin, “Hybrid method of strain estimation in optical coherence elastography using combined sub-wavelength phase measurements and supra-pixel displacement tracking,” J. Biophotonics 9(5), 499–509 (2016).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, V. M. Gelikonov, and A. Vitkin, “Deformation-induced speckle-pattern evolution and feasibility of correlational speckle tracking in optical coherence elastography,” J. Biomed. Opt. 20(7), 075006 (2015).
[Crossref]

L. A. Matveev, V. Y. Zaitsev, G. V. Gelikonov, A. L. Matveyev, A. A. Moiseev, S. Y. Ksenofontov, V. M. Gelikonov, M. A. Sirotkina, N. D. Gladkova, V. Demidov, and A. Vitkin, “Hybrid M-mode-like OCT imaging of three-dimensional microvasculature in vivo using reference-free processing of complex valued B-scans,” Opt. Lett. 40(7), 1472–1475 (2015).
[Crossref]

A. A. Plekhanov, M. A. Sirotkina, A. A. Sovetsky, E. V. Gubarkova, S. S. Kuznetsov, A. L. Matveyev, L. A. Matveev, E. V. Zagaynova, N. D. Gladkova, and V. Y. Zaitsev, “Method for in vivo assessment of cancer tissue inhomogeneity and accurate histology-like morphological segmentation based on Optical Coherence Elastography,” Sci. Rep. (in press 2020, BioRxive doi: 10.1101/2020.02.06.937417).

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Sovetsky, M. A. Sirotkina, G. V. Gelikonov, E. V. Zagaynova, and N. D. Gladkova, and A. Vitkin, Manifestations of nonlinear elasticity of biological tissues in compressional optical coherence elastography, European Conferences on Biomedical Optics (SPIE, 2017), Vol. 10413.

A. A. Sovetsky, E. V. Gubarkova, L. A. Matveev, A. L. Matveyev, M. A. Sirotkina, N. D. Gladkova, and V. Y. Zaitsev, OCT-based characterization of the nonlinear properties of biological tissues in various states, SPIE Photonics Europe (SPIE, 2018), Vol. 10685.

Zhang, C.

Y. Wang, L. Dong, Q. Bi, X. Li, D. Wu, X. Ge, X. Zhang, J. Fu, C. Zhang, C. Wang, and S. Li, “Investigation of the efficacy of a bevacizumab-cetuximab-cisplatin regimen in treating head and neck squamous cell carcinoma in mice,” Target. Oncol. 5(4), 237–243 (2010).
[Crossref]

Zhang, X.

Y. Wang, L. Dong, Q. Bi, X. Li, D. Wu, X. Ge, X. Zhang, J. Fu, C. Zhang, C. Wang, and S. Li, “Investigation of the efficacy of a bevacizumab-cetuximab-cisplatin regimen in treating head and neck squamous cell carcinoma in mice,” Target. Oncol. 5(4), 237–243 (2010).
[Crossref]

Zhu, A. X.

T. Jiang, A. Kambadakone, N. M. Kulkarni, A. X. Zhu, and D. V. Sahani, “Monitoring response to antiangiogenic treatment and predicting outcomes in advanced hepatocellular carcinoma using image biomarkers, CT perfusion, tumor density, and tumor size (RECIST),” Invest. Radiol. 47(1), 11–17 (2012).
[Crossref]

A. X. Zhu, N. S. Holalkere, A. Muzikansky, K. Horgan, and D. V. Sahani, “Early antiangiogenic activity of bevacizumab evaluated by computed tomography perfusion scan in patients with advanced hepatocellular carcinoma,” Oncologist 13(2), 120–125 (2008).
[Crossref]

Biomed. Opt. Express (4)

Cancer Chemother. Pharmacol. (1)

M. M. Tomayko and C. P. Reynolds, “Determination of subcutaneous tumor size in athymic (nude) mice,” Cancer Chemother. Pharmacol. 24(3), 148–154 (1989).
[Crossref]

Cancer Res. (2)

B. W. Engbrecht, C. Menon, A. V. Kachur, S. M. Hahn, and D. L. Fraker, “Photofrin-mediated photodynamic therapy induces vascular occlusion and apoptosis in a human sarcoma xenograft model,” Cancer Res. 59(17), 4334–4342 (1999).

B. A. Standish, K. K. Lee, X. Jin, A. Mariampillai, N. R. Munce, M. F. Wood, B. C. Wilson, I. A. Vitkin, and V. X. Yang, “Interstitial Doppler optical coherence tomography as a local tumor necrosis predictor in photodynamic therapy of prostatic carcinoma: an in vivo study,” Cancer Res. 68(23), 9987–9995 (2008).
[Crossref]

Clin. Cancer Res. (1)

T. Friess, W. Scheuer, and M. Hasmann, “Combination treatment with erlotinib and pertuzumab against human tumor xenografts is superior to monotherapy,” Clin. Cancer Res. 11(14), 5300–5309 (2005).
[Crossref]

Coord. Chem. Rev. (1)

J. M. Dąbrowski, B. Pucelik, A. Regiel-Futyra, M. Brindell, O. Mazuryk, A. Kyzioł, G. Stochel, W. Macyk, and L. G. Arnaut, “Engineering of relevant photodynamic processes through structural modifications of metallotetrapyrrolic photosensitizers,” Coord. Chem. Rev. 325, 67–101 (2016).
[Crossref]

Eur. J. Cancer (1)

E. A. Eisenhauer, P. Therasse, J. Bogaerts, L. H. Schwartz, D. Sargent, R. Ford, J. Dancey, S. Arbuck, S. Gwyther, M. Mooney, L. Rubinstein, L. Shankar, L. Dodd, R. Kaplan, D. Lacombe, and J. Verweij, “New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1),” Eur. J. Cancer 45(2), 228–247 (2009).
[Crossref]

Invest. Radiol. (1)

T. Jiang, A. Kambadakone, N. M. Kulkarni, A. X. Zhu, and D. V. Sahani, “Monitoring response to antiangiogenic treatment and predicting outcomes in advanced hepatocellular carcinoma using image biomarkers, CT perfusion, tumor density, and tumor size (RECIST),” Invest. Radiol. 47(1), 11–17 (2012).
[Crossref]

J. Biomed. Opt. (2)

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, V. M. Gelikonov, and A. Vitkin, “Deformation-induced speckle-pattern evolution and feasibility of correlational speckle tracking in optical coherence elastography,” J. Biomed. Opt. 20(7), 075006 (2015).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, A. A. Sovetsky, and A. Vitkin, “Optimized phase gradient measurements and phase-amplitude interplay in optical coherence elastography,” J. Biomed. Opt. 21(11), 116005 (2016).
[Crossref]

J. Biophotonics (6)

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, O. I. Baum, A. I. Omelchenko, D. V. Shabanov, A. A. Sovetsky, A. V. Yuzhakov, A. A. Fedorov, V. I. Siplivy, A. V. Bolshunov, and E. N. Sobol, “Revealing structural modifications in thermomechanical reshaping of collagenous tissues using optical coherence elastography,” J. Biophotonics 12(3), e201800250 (2019).
[Crossref]

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, G. V. Gelikonov, E. V. Gubarkova, N. D. Gladkova, and A. Vitkin, “Hybrid method of strain estimation in optical coherence elastography using combined sub-wavelength phase measurements and supra-pixel displacement tracking,” J. Biophotonics 9(5), 499–509 (2016).
[Crossref]

S. Wang and K. V. Larin, “Optical coherence elastography for tissue characterization: a review,” J. Biophotonics 8(4), 279–302 (2015).
[Crossref]

A. Moiseev, S. Ksenofontov, M. Sirotkina, E. Kiseleva, M. Gorozhantseva, N. Shakhova, L. Matveev, V. Zaitsev, A. Matveyev, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Optical coherence tomography-based angiography device with real-time angiography B-scans visualization and hand-held probe for everyday clinical use,” J. Biophotonics 11(10), e201700292 (2018).
[Crossref]

P. Gong, S. Es’haghian, K. A. Harms, A. Murray, S. Rea, B. F. Kennedy, F. M. Wood, D. D. Sampson, and R. A. McLaughlin, “Optical coherence tomography for longitudinal monitoring of vasculature in scars treated with laser fractionation,” J. Biophotonics 9(6), 626–636 (2016).
[Crossref]

A. Moiseev, L. Snopova, S. Kuznetsov, N. Buyanova, V. Elagin, M. Sirotkina, E. Kiseleva, L. Matveev, V. Zaitsev, F. Feldchtein, E. Zagaynova, V. Gelikonov, N. Gladkova, A. Vitkin, and G. Gelikonov, “Pixel classification method in optical coherence tomography for tumor segmentation and its complementary usage with OCT microangiography,” J. Biophotonics 11(4), e201700072 (2018).
[Crossref]

J. Innovative Opt. Health Sci. (1)

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Sovetsky, M. A. Sirotkina, G. V. Gelikonov, E. V. Zagaynova, N. D. Gladkova, and A. Vitkin, “Practical obstacles and their mitigation strategies in compressional optical coherence elastography of biological tissues,” J. Innovative Opt. Health Sci. 10(06), 1742006 (2017).
[Crossref]

Korean J. Radiol. (1)

H. Kang, H. Y. Lee, K. S. Lee, and J. H. Kim, “Imaging-based tumor treatment response evaluation: review of conventional, new, and emerging concepts,” Korean J. Radiol. 13(4), 371–390 (2012).
[Crossref]

Laser Phys. Lett. (4)

A. A. Moiseev, G. V. Gelikonov, D. A. Terpelov, P. A. Shilyagin, and V. M. Gelikonov, “Noniterative method of reconstruction optical coherence tomography images with improved lateral resolution in semitransparent media,” Laser Phys. Lett. 10(12), 125601 (2013).
[Crossref]

V. M. Gelikonov and G. V. Gelikonov, “New approach to cross-polarized optical coherence tomography based on orthogonal arbitrarily polarized modes,” Laser Phys. Lett. 3(9), 445–451 (2006).
[Crossref]

A. A. Sovetsky, A. L. Matveyev, L. A. Matveev, D. V. Shabanov, and V. Y. Zaitsev, “Manually-operated compressional optical coherence elastography with effective aperiodic averaging: demonstrations for corneal and cartilaginous tissues,” Laser Phys. Lett. 15(8), 085602 (2018).
[Crossref]

A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, G. V. Gelikonov, A. A. Moiseev, and V. Y. Zaitsev, “Vector method for strain estimation in phase-sensitive optical coherence elastography,” Laser Phys. Lett. 15(6), 065603 (2018).
[Crossref]

Lasers Surg. Med. (1)

A. M. Fisher, A. L. Murphree, and C. J. Gomer, “Clinical and preclinical photodynamic therapy,” Lasers Surg. Med. 17(1), 2–31 (1995).
[Crossref]

Nat. Rev. Drug Discov. (1)

M. Muhsin, J. Graham, and P. Kirkpatrick, “Bevacizumab,” Nat. Rev. Drug Discov. 3(12), 995–996 (2004).
[Crossref]

Nat. Rev. Drug Discovery (1)

N. Ferrara, K. J. Hillan, H. P. Gerber, and W. Novotny, “Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer,” Nat. Rev. Drug Discovery 3(5), 391–400 (2004).
[Crossref]

Oncol. Lett. (1)

T. Li, G. Kang, T. Wang, and H. Huang, “Tumor angiogenesis and anti-angiogenic gene therapy for cancer,” Oncol. Lett. 16(1), 687–702 (2018).
[Crossref]

Oncologist (1)

A. X. Zhu, N. S. Holalkere, A. Muzikansky, K. Horgan, and D. V. Sahani, “Early antiangiogenic activity of bevacizumab evaluated by computed tomography perfusion scan in patients with advanced hepatocellular carcinoma,” Oncologist 13(2), 120–125 (2008).
[Crossref]

Opt. Lett. (2)

Photochem. Photobiol. (1)

B. W. Henderson and T. J. Dougherty, “How does photodynamic therapy work?” Photochem. Photobiol. 55(1), 145–157 (1992).
[Crossref]

Proc. SPIE (1)

A. A. Plekhanov, M. A. Sirotkina, A. A. Sovetsky, E. V. Gubarkova, E. B. Kiseleva, V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, S. S. Kuznetsov, E. V. Zagaynova, and N. D. Gladkova, “Optical coherence elastography as a new method for estimation of chemotherapy efficacy on triple-negative breast cancer in the experiment,” Proc. SPIE 11065, 1106506 (2019).
[Crossref]

Radiat. Res. (1)

B. Chen, B. W. Pogue, I. A. Goodwin, J. A. O’Hara, C. M. Wilmot, J. E. Hutchins, P. J. Hoopes, and T. Hasan, “Blood flow dynamics after photodynamic therapy with verteporfin in the RIF-1 tumor,” Radiat. Res. 160(4), 452–459 (2003).
[Crossref]

Sci. Rep. (5)

M. A. Sirotkina, L. A. Matveev, M. V. Shirmanova, V. Y. Zaitsev, N. L. Buyanova, V. V. Elagin, G. V. Gelikonov, S. S. Kuznetsov, E. B. Kiseleva, A. A. Moiseev, S. V. Gamayunov, E. V. Zagaynova, F. I. Feldchtein, A. Vitkin, and N. D. Gladkova, “Photodynamic therapy monitoring with optical coherence angiography,” Sci. Rep. 7(1), 41506 (2017).
[Crossref]

M. A. Sirotkina, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, V. V. Elagin, S. S. Kuznetsov, G. V. Gelikonov, S. Y. Ksenofontov, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “Accurate early prediction of tumour response to PDT using optical coherence angiography,” Sci. Rep. 9(1), 6492 (2019).
[Crossref]

A. V. Maslennikova, M. A. Sirotkina, A. A. Moiseev, E. S. Finagina, S. Y. Ksenofontov, G. V. Gelikonov, L. A. Matveev, E. B. Kiseleva, V. Y. Zaitsev, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “In-vivo longitudinal imaging of microvascular changes in irradiated oral mucosa of radiotherapy cancer patients using optical coherence tomography,” Sci. Rep. 7(1), 16505 (2017).
[Crossref]

E. V. Gubarkova, F. I. Feldchtein, E. V. Zagaynova, S. V. Gamayunov, M. A. Sirotkina, E. S. Sedova, S. S. Kuznetsov, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, D. A. Karashtin, G. V. Gelikonov, L. Pires, A. Vitkin, and N. D. Gladkova, “Optical coherence angiography for pre-treatment assessment and treatment monitoring following photodynamic therapy: a basal cell carcinoma patient study,” Sci. Rep. 9(1), 18670 (2019).
[Crossref]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref]

Sovrem. Tehnol. Med. (2)

P. A. Shilyagin, L. A. Matveev, E. B. Kiseleva, A. A. Moiseev, V. Y. Zaitsev, A. A. Sovietsky, D. V. Shabanov, V. M. Gelikonov, K. S. Yashin, K. A. Achkasova, N. D. Gladkova, and G. V. Gelikonov, “Stabilization of the Scanning Pattern for Three-Dimensional Phase-Sensitive OCT Modalities: Angiography, Relaxography, and Monitoring of Slow Processes,” Sovrem. Tehnol. Med. 11(2), 25–34 (2019).
[Crossref]

A. A. Plekhanov, E. V. Gubarkova, A. A. Sovietsky, V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, L. B. Timofeeva, S. S. Kuznetsov, E. V. Zagaynova, N. D. Gladkova, and M. A. Sirotkina, “Optical Coherence Elastography for Non-Invasive Monitoring of Tumor Elasticity under Chemotherapy: Pilot Study,” Sovrem. Tehnol. Med. 10(3), 43 (2018).
[Crossref]

Stroke (1)

E. J. Walker, H. Su, F. Shen, V. Degos, G. Amend, K. Jun, and W. L. Young, “Bevacizumab attenuates VEGF-induced angiogenesis and vascular malformations in the adult mouse brain,” Stroke 43(7), 1925–1930 (2012).
[Crossref]

Target. Oncol. (1)

Y. Wang, L. Dong, Q. Bi, X. Li, D. Wu, X. Ge, X. Zhang, J. Fu, C. Zhang, C. Wang, and S. Li, “Investigation of the efficacy of a bevacizumab-cetuximab-cisplatin regimen in treating head and neck squamous cell carcinoma in mice,” Target. Oncol. 5(4), 237–243 (2010).
[Crossref]

Theranostics (1)

S. Mallidi, K. Watanabe, D. Timerman, D. Schoenfeld, and T. Hasan, “Prediction of tumor recurrence and therapy monitoring using ultrasound-guided photoacoustic imaging,” Theranostics 5(3), 289–301 (2015).
[Crossref]

Ultrason. Imag. (1)

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imag. 20(4), 260–274 (1998).
[Crossref]

Other (3)

V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, E. V. Gubarkova, A. A. Sovetsky, M. A. Sirotkina, G. V. Gelikonov, E. V. Zagaynova, and N. D. Gladkova, and A. Vitkin, Manifestations of nonlinear elasticity of biological tissues in compressional optical coherence elastography, European Conferences on Biomedical Optics (SPIE, 2017), Vol. 10413.

A. A. Sovetsky, E. V. Gubarkova, L. A. Matveev, A. L. Matveyev, M. A. Sirotkina, N. D. Gladkova, and V. Y. Zaitsev, OCT-based characterization of the nonlinear properties of biological tissues in various states, SPIE Photonics Europe (SPIE, 2018), Vol. 10685.

A. A. Plekhanov, M. A. Sirotkina, A. A. Sovetsky, E. V. Gubarkova, S. S. Kuznetsov, A. L. Matveyev, L. A. Matveev, E. V. Zagaynova, N. D. Gladkova, and V. Y. Zaitsev, “Method for in vivo assessment of cancer tissue inhomogeneity and accurate histology-like morphological segmentation based on Optical Coherence Elastography,” Sci. Rep. (in press 2020, BioRxive doi: 10.1101/2020.02.06.937417).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Schematic of OCA data acquisition and signal processing.
Fig. 2.
Fig. 2. Schematic of OCE data acquisition and signal processing.
Fig. 3.
Fig. 3. Design of experiments on chemotherapy (ChT).
Fig. 4.
Fig. 4. Design of experiments on photodynamic therapy (PDT).
Fig. 5.
Fig. 5. Effect of ChT on tumor CT26. (a) Monitoring of relative tumor volume changes for bevacizumab (n = 10) and control (n = 10) groups. Data are shown as mean ± SD. Asterisks * denote statistically significant difference between bevacizumab and control groups, p ≤ 0.05. (b) Histological images (H&E) of control and bevacizumab-treated tumors. Blue arrows indicate viable tumor cells; orange arrows indicate desquamation of the endothelium of the vascular wall and moderate plethora of blood vessels; black arrows indicate hemorrhages and edema; yellow arrows indicate ischemic necrosis of the tumor cells.
Fig. 6.
Fig. 6. Monitoring of tumor’s blood vessel reaction to anti-angiogenic ChT with bevacizumab by means of (a) in vivo real time OCA imaging; (b) corresponding fluorescent images and (c) IHC images (CD31 staining of blood vessels) in control tumors and 5 days post start of ChT. (d) perfused vessels density, determined on OCA and fluorescent images, (e) vascular density, determined on IHC images.
Fig. 7.
Fig. 7. In vivo OCE monitoring of tumor response to ChT for control and bevacizumab-treated tumors at 3 time points: (a) Stiffness-percentage graphs illustrating the shift of the normalized stiffness spectrum (total area under the curve is 100%) to lower values for bevacizumab-treated tumors (gray lines) in compered with control tumor (black lines); (b) Segmented OCE images demonstrating various tumor zones (viable tumor cells, dystrophic tumor cells, edema and necrosis of tumor cells); (c) Percentages of pixels (left vertical axes) belonging to different stiffness ranges for the control group and bevacizumab-treated one (blue, light blue, yellow and red columns). The dashed purple lines and right vertical axes show percentage of perfused vessels density. Asterisk * indicates statistically significant difference in the areas of necrotic tumor cells between the bevacizumab and control groups, p ≤ 0.05. The color palette on the right indicates the stiffness ranges corresponding to each color in the bar graphs and segmented OCE images.
Fig. 8.
Fig. 8. Effect of PDT on CT26. (a) Monitoring of relative tumor volume changes for responders (n = 7), non-responders (n = 3) and control (n = 10) tumors. Data are shown as mean ± SD. Tumor growth was statistically significant inhibited by PDT in the responders. Asterisk * denotes statistically significant difference of responders and non-responders from control ones (p ≤ 0.05) and # denotes statistically significant difference of responders from non-responders (p ≤ 0.05). (b) H&E histological images of CT26 tumors. Black arrows indicate hemorrhage; green arrows indicate vascular thrombosis; blue arrows indicate viable tumor cells; white arrows show clusters of dystrophic tumor cells; yellow arrows show necrosis of tumor cells.
Fig. 9.
Fig. 9. Monitoring of early tumor’s blood vessels reaction to vascular-targeted PDT by means of (a) in vivo real time OCA imaging, (b) corresponding fluorescent images and (c) IHC images (by CD31 staining) of blood vessels in control tumors and 24 hours post PDT, (d) – perfused vessels density, determined on OCA and fluorescence images, (e) vascular density, determined on IHC images.
Fig. 10.
Fig. 10. In vivo OCE monitoring of tumor response to PDT: (a) Stiffness-percentage graphs illustrating the shift of the stiffness spectrum (total area under the curves is 100%), (b) Segmented OCE images demonstrated various tumor zones (viable tumor cells, dystrophic tumor cells, edema and necrosis of tumor cells); (c) Percentage of pixels (left vertical axes) belonging to the specific stiffness ranges for different morphological zones (blue, light blue, yellow and red columns). The dashed purple lines and right vertical axes show percentage of perfused vessels density. No significant stiffness changes were noted in the control tumors with strong dominance of viable tumor zone, whereas for non-responders and responders, the most stiff viable tumor zones (blue color) in (b) and (c) strongly diminished at day 6 post PDT, when responders showed total necrosis (red color) on the segmented OCE images. Asterisk * denotes statistically significant difference of responders from non-responders in percentage of the necrosis area, p ≤ 0.05. # denotes statistically significant difference of non-responders from responders in percentage of the viable tumor cells, p ≤ 0.05.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

% T G I = ( 1 ( V T V T 0 ) / V T 0 ( V C V C 0 ) / V C 0 ) × 100 % ,