Abstract

We demonstrate a novel and simple means to fabricate optical fiber immunosensors based on Fabry-Perot (F-P) interferometers using polydimethylsiloxane (PDMS) as support for bioactive lipids. The sensors are fabricated following a straightforward dip-coating method producing PDMS end-capped devices. A biosensing platform is realized by subsequent functionalization of the PDMS cap with a previously characterized bioactive lipid antigen cocktail from Mycobacterium fortuitum, used as a surrogate source of antigens for tuberculosis diagnosis. After functionalization of the PDMS, the F-P sensors were immersed in different antibody-containing sera and the registered changes in their spectral features were associated to the interactions between the active lipids and the serum antibodies. Our results show that the proposed PDMS end-capped F-P immunosensors perform well differentiating antibody-containing sera. Furthermore, they offer attractive attributes such as label-free operation, real-time detection capabilities and they are also reusable. The proposed sensors, therefore, serve as an enabling optical immunosensing technique offering excellent potential for developing novel lipidomic analytical tools.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Human heart failure biomarker immunosensor based on excessively tilted fiber gratings

Binbin Luo, Shengxi Wu, Zhonghao Zhang, Wengen Zou, Shenghui Shi, Mingfu Zhao, Nianbing Zhong, Yong Liu, Xue Zou, Lingling Wang, Weina Chai, Chuanmin Hu, and Lin Zhang
Biomed. Opt. Express 8(1) 57-67 (2017)

Microfiber coupler based label-free immunosensor

Lin Bo, Christy Charlton O’Mahony, Yuliya Semenova, Niamh Gilmartin, Pengfei Wang, and Gerald Farrell
Opt. Express 22(7) 8150-8155 (2014)

Optical waveguide light-mode spectroscopy immunosensors for environmental monitoring

András Székács, Nóra Adányi, Inna Székács, Krisztina Majer-Baranyi, and István Szendrő
Appl. Opt. 48(4) B151-B158 (2009)

References

  • View by:
  • |
  • |
  • |

  1. K. Menghrajani, “Fibre-optic Fabry–Perot sensors: an introduction,” (2018).
  2. X. Tan, Y. Geng, X. Li, Y. Deng, Z. Yin, and R. Gao, “UV-curable polymer microhemisphere-based fiber-optic Fabry–Perot interferometer for simultaneous measurement of refractive index and temperature,” IEEE Photonics J. 6(4), 1–8 (2014).
    [Crossref]
  3. X.-Y. Zhang, Y.-S. Yu, C.-C. Zhu, C. Chen, R. Yang, Y. Xue, Q.-D. Chen, and H.-B. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
    [Crossref]
  4. I. Hernández-Romano, M. A. Cruz-Garcia, C. Moreno-Hernández, D. Monzón-Hernández, E. O. López-Figueroa, O. E. Paredes-Gallardo, M. Torres-Cisneros, and J. Villatoro, “Optical fiber temperature sensor based on a microcavity with polymer overlay,” Opt. Express 24(5), 5654–5661 (2016).
    [Crossref]
  5. O. Arrizabalaga, J. Velasco, J. Zubia, I. S. de Ocáriz, and J. Villatoro, “Miniature interferometric humidity sensor based on an off-center polymer cap onto optical fiber facet,” Sens. Actuators, B 297, 126700 (2019).
    [Crossref]
  6. M. Li, Y. Liu, S. Qu, and Y. Li, “Fiber-optic sensor tip for measuring temperature and liquid refractive index,” Opt. Eng. 53(11), 116110 (2014).
    [Crossref]
  7. A. Guermat, A. Guessoum, N.-E. Demagh, M. Zaboub, and Z. Bouhafs, “Fibre-optic temperature and pressure sensor based on a deformable concave micro-mirror,” Sens. Actuators, A 270, 205–213 (2018).
    [Crossref]
  8. J.-F. Hu and C.-P. Yu, “Microlens-based fiber Fabry-Pérot interferometer for the measurement of the concentration of sugar solution,” in 2014 OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology, (IEEE, 2014), pp. 821–822.
  9. Y.-T. Tseng, Y.-J. Chuang, Y.-C. Wu, C.-S. Yang, M.-C. Wang, and F.-G. Tseng, “A gold-nanoparticle-enhanced immune sensor based on fiber optic interferometry,” Nanotechnology 19(34), 345501 (2008).
    [Crossref]
  10. L. Chen, C. Chan, R. Menon, P. Balamurali, W. Wong, X. Ang, P. Hu, M. Shaillender, B. Neu, P. Zu, Z. Tou, C. Poh, and K. Leong, “Fabry–Perot fiber-optic immunosensor based on suspended layer-by-layer (chitosan/polystyrene sulfonate) membrane,” Sens. Actuators, B 188, 185–192 (2013).
    [Crossref]
  11. R. B. Queirós, S. Silva, J. Noronha, O. Frazão, P. Jorge, G. Aguilar, P. Marques, and M. G. F. Sales, “Microcystin-lr detection in water by the Fabry–Pérot interferometer using an optical fibre coated with a sol–gel imprinted sensing membrane,” Biosens. Bioelectron. 26(9), 3932–3937 (2011).
    [Crossref]
  12. K. F. Lei, “Microfluidic Systems for Diagnostic Applications: A Review,” J. Lab. Autom. 17(5), 330–347 (2012).
    [Crossref]
  13. S. Agrawal, K. Paknikar, and D. Bodas, “Development of immunosensor using magnetic nanoparticles and circular microchannels in PDMS,” Microelectron. Eng. 115, 66–69 (2014).
    [Crossref]
  14. J. N. Patel, B. L. Gray, B. Kaminska, and B. D. Gates, “Flexible glucose sensor utilizing multilayer pdms process,” in 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (IEEE, 2008), pp. 5749–5752.
  15. F. Gaudiiere, I. Masson, S. Morin-Grognet, O. Thoumire, J.-P. Vannier, H. Atmani, G. Ladama, and B. Labat, “Mechano-chemical control of cell behaviour by elastomer templates coated with biomimetic Layer-by-Layer nanofilms,” Soft Matter 8(32), 8327–8337 (2012).
    [Crossref]
  16. J. Friend and L. Yeo, “Fabrication of microfluidic devices using polydimethylsiloxane,” Biomicrofluidics 4(2), 026502 (2010).
    [Crossref]
  17. K. Jiang, P. C. Thomas, S. P. Forry, D. L. DeVoe, and S. R. Raghavan, “Microfluidic synthesis of monodisperse PDMS microbeads as discrete oxygen sensors,” Soft Matter 8(4), 923–926 (2012).
    [Crossref]
  18. C. Badre, J. P. Chapelab, and S. Yang, “Selective dry and reversible transfer-printing of nanoparticles on top of PDMS wrinkles,” Soft Matter 7(21), 9886–9889 (2011).
    [Crossref]
  19. D. Bodas and C. Khan-Malek, “Hydrophilization and hydrophobic recovery of PDMS by oxygen plasma and chemical treatment-an sem investigation,” Sens. Actuators, B 123(1), 368–373 (2007).
    [Crossref]
  20. E. Jastrzebska, A. Zuchowska, S. Flis, P. Sokolowska, M. Bulka, A. Dybko, and Z. Brzozka, “Biological characterization of the modified poly (dimethylsiloxane) surfaces based on cell attachment and toxicity assays,” Biomicrofluidics 12(4), 044105 (2018).
    [Crossref]
  21. T. Goda, T. Konno, M. Takai, T. Moro, and K. Ishihara, “Biomimetic phosphorylcholine polymer grafting from polydimethylsiloxane surface using photo-induced polymerization,” Biomaterials 27(30), 5151–5160 (2006).
    [Crossref]
  22. F. Tian, J. Lyu, J. Shi, F. Tan, and M. Yang, “A polymeric microfluidic device integrated with nanoporous alumina membranes for simultaneous detection of multiple foodborne pathogens,” Sens. Actuators, B 225, 312–318 (2016).
    [Crossref]
  23. J.-H. Seo, T. Shibayama, M. Takai, and K. Ishihara, “Quick and simple modification of a poly (dimethylsiloxane) surface by optimized molecular design of the anti-biofouling phospholipid copolymer,” Soft Matter 7(6), 2968–2976 (2011).
    [Crossref]
  24. D. L. Nelson, A. L. Lehninger, and M. M. Cox, Lehninger Principles of Biochemistry (Macmillan, 2008).
  25. X. Tan, M. K. Khaing Oo, Y. Gong, Y. Li, H. Zhu, and X. Fan, “Glass capillary based microfluidic elisa for rapid diagnostics,” Analyst 142(13), 2378–2385 (2017).
    [Crossref]
  26. F. Hou, Q. Zhang, J. Yang, X. Li, X. Yang, S. Wang, and Z. Cheng, “Development of a microplate reader compatible microfluidic chip for ELISA,” Biomed. Microdevices 14(4), 729–737 (2012).
    [Crossref]
  27. L. Escamilla, R. Mancilla, W. Glender, and L.-M. López-Marín, “Mycobacterium fortuitum glycolipids for the serodiagnosis of pulmonary tuberculosis,” Am. J. Respir. Crit. Care Med. 154(6), 1864–1867 (1996).
    [Crossref]
  28. L. M. López-Marín, E. Segura, C. Hermida-Escobedo, A. Lemassu, and M. C. Salinas-Carmona, “6, 6’-dimycoloyl trehalose from a rapidly growing mycobacterium: an alternative antigen for tuberculosis serodiagnosis,” FEMS Immunol. Med. Microbiol. 36(1-2), 47–54 (2003).
    [Crossref]
  29. X.-Y. Zhang, Y.-S. Yu, C.-C. Zhu, C. Chen, R. Yang, Y. Xue, Q.-D. Chen, and H.-B. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
    [Crossref]
  30. V. A. Márquez-Cruz and J. A. Hernández-Cordero, “Fiber optic Fabry-Perot sensor for surface tension analysis,” Opt. Express 22(3), 3028–3038 (2014).
    [Crossref]
  31. T. Kohl and C. Ascoli, “Protocol: Indirect Immunometric ELISA,” Cold Spring Harb Protoc. 125, 1128–1129 (2003).
  32. S. Liu, Z. Deng, J. Li, J. Wang, N. Huang, R. Cui, Q. Zhang, J. Mei, W. Zhou, C. Zhang, Q. Ye, and J. Tian, “Measurement of the refractive index of whole blood and its components for a continuous spectral region,” J. Biomed. Opt. 24(3), 1–5 (2019).
    [Crossref]
  33. H. Li, L. Lin, and S. Xie, “Refractive index of human whole blood with different types in the visible and near-infrared ranges,” in Laser-Tissue Interaction XI: Photochemical, Photothermal, and Photomechanical, vol. 3914 (International Society for Optics and Photonics, 2000), pp. 517–521.
  34. R. Bruck, E. Melnik, P. Muellner, R. Hainberger, and M. Lämmerhofer, “Integrated polymer-based Mach-Zehnder interferometer label-free streptavidin biosensor compatible with injection molding,” Biosens. Bioelectron. 26(9), 3832–3837 (2011).
    [Crossref]
  35. B. E. Schubert and D. Floreano, “Variable stiffness material based on rigid low-melting-point-alloy microstructures embedded in soft poly (dimethylsiloxane) (PDMS),” RSC Adv. 3(46), 24671–24679 (2013).
    [Crossref]
  36. B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
    [Crossref]
  37. D. C. Company, “Sylgard 184 silicone elastomer,” (2017).
  38. K. Wysokiński, D. Budnicki, J. Fidelus, Ł. Szostkiewicz, Ł. Ostrowski, M. Murawski, M. Staniszewski, M. Staniszewska, M. Napierała, and T. Nasiłowski, “Dual-core all-fiber integrated immunosensor for detection of protein antigens,” Biosens. Bioelectron. 114, 22–29 (2018).
    [Crossref]

2019 (2)

O. Arrizabalaga, J. Velasco, J. Zubia, I. S. de Ocáriz, and J. Villatoro, “Miniature interferometric humidity sensor based on an off-center polymer cap onto optical fiber facet,” Sens. Actuators, B 297, 126700 (2019).
[Crossref]

S. Liu, Z. Deng, J. Li, J. Wang, N. Huang, R. Cui, Q. Zhang, J. Mei, W. Zhou, C. Zhang, Q. Ye, and J. Tian, “Measurement of the refractive index of whole blood and its components for a continuous spectral region,” J. Biomed. Opt. 24(3), 1–5 (2019).
[Crossref]

2018 (3)

K. Wysokiński, D. Budnicki, J. Fidelus, Ł. Szostkiewicz, Ł. Ostrowski, M. Murawski, M. Staniszewski, M. Staniszewska, M. Napierała, and T. Nasiłowski, “Dual-core all-fiber integrated immunosensor for detection of protein antigens,” Biosens. Bioelectron. 114, 22–29 (2018).
[Crossref]

A. Guermat, A. Guessoum, N.-E. Demagh, M. Zaboub, and Z. Bouhafs, “Fibre-optic temperature and pressure sensor based on a deformable concave micro-mirror,” Sens. Actuators, A 270, 205–213 (2018).
[Crossref]

E. Jastrzebska, A. Zuchowska, S. Flis, P. Sokolowska, M. Bulka, A. Dybko, and Z. Brzozka, “Biological characterization of the modified poly (dimethylsiloxane) surfaces based on cell attachment and toxicity assays,” Biomicrofluidics 12(4), 044105 (2018).
[Crossref]

2017 (1)

X. Tan, M. K. Khaing Oo, Y. Gong, Y. Li, H. Zhu, and X. Fan, “Glass capillary based microfluidic elisa for rapid diagnostics,” Analyst 142(13), 2378–2385 (2017).
[Crossref]

2016 (2)

F. Tian, J. Lyu, J. Shi, F. Tan, and M. Yang, “A polymeric microfluidic device integrated with nanoporous alumina membranes for simultaneous detection of multiple foodborne pathogens,” Sens. Actuators, B 225, 312–318 (2016).
[Crossref]

I. Hernández-Romano, M. A. Cruz-Garcia, C. Moreno-Hernández, D. Monzón-Hernández, E. O. López-Figueroa, O. E. Paredes-Gallardo, M. Torres-Cisneros, and J. Villatoro, “Optical fiber temperature sensor based on a microcavity with polymer overlay,” Opt. Express 24(5), 5654–5661 (2016).
[Crossref]

2014 (6)

S. Agrawal, K. Paknikar, and D. Bodas, “Development of immunosensor using magnetic nanoparticles and circular microchannels in PDMS,” Microelectron. Eng. 115, 66–69 (2014).
[Crossref]

M. Li, Y. Liu, S. Qu, and Y. Li, “Fiber-optic sensor tip for measuring temperature and liquid refractive index,” Opt. Eng. 53(11), 116110 (2014).
[Crossref]

X. Tan, Y. Geng, X. Li, Y. Deng, Z. Yin, and R. Gao, “UV-curable polymer microhemisphere-based fiber-optic Fabry–Perot interferometer for simultaneous measurement of refractive index and temperature,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

X.-Y. Zhang, Y.-S. Yu, C.-C. Zhu, C. Chen, R. Yang, Y. Xue, Q.-D. Chen, and H.-B. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

X.-Y. Zhang, Y.-S. Yu, C.-C. Zhu, C. Chen, R. Yang, Y. Xue, Q.-D. Chen, and H.-B. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

V. A. Márquez-Cruz and J. A. Hernández-Cordero, “Fiber optic Fabry-Perot sensor for surface tension analysis,” Opt. Express 22(3), 3028–3038 (2014).
[Crossref]

2013 (2)

B. E. Schubert and D. Floreano, “Variable stiffness material based on rigid low-melting-point-alloy microstructures embedded in soft poly (dimethylsiloxane) (PDMS),” RSC Adv. 3(46), 24671–24679 (2013).
[Crossref]

L. Chen, C. Chan, R. Menon, P. Balamurali, W. Wong, X. Ang, P. Hu, M. Shaillender, B. Neu, P. Zu, Z. Tou, C. Poh, and K. Leong, “Fabry–Perot fiber-optic immunosensor based on suspended layer-by-layer (chitosan/polystyrene sulfonate) membrane,” Sens. Actuators, B 188, 185–192 (2013).
[Crossref]

2012 (4)

F. Gaudiiere, I. Masson, S. Morin-Grognet, O. Thoumire, J.-P. Vannier, H. Atmani, G. Ladama, and B. Labat, “Mechano-chemical control of cell behaviour by elastomer templates coated with biomimetic Layer-by-Layer nanofilms,” Soft Matter 8(32), 8327–8337 (2012).
[Crossref]

K. F. Lei, “Microfluidic Systems for Diagnostic Applications: A Review,” J. Lab. Autom. 17(5), 330–347 (2012).
[Crossref]

K. Jiang, P. C. Thomas, S. P. Forry, D. L. DeVoe, and S. R. Raghavan, “Microfluidic synthesis of monodisperse PDMS microbeads as discrete oxygen sensors,” Soft Matter 8(4), 923–926 (2012).
[Crossref]

F. Hou, Q. Zhang, J. Yang, X. Li, X. Yang, S. Wang, and Z. Cheng, “Development of a microplate reader compatible microfluidic chip for ELISA,” Biomed. Microdevices 14(4), 729–737 (2012).
[Crossref]

2011 (4)

J.-H. Seo, T. Shibayama, M. Takai, and K. Ishihara, “Quick and simple modification of a poly (dimethylsiloxane) surface by optimized molecular design of the anti-biofouling phospholipid copolymer,” Soft Matter 7(6), 2968–2976 (2011).
[Crossref]

R. Bruck, E. Melnik, P. Muellner, R. Hainberger, and M. Lämmerhofer, “Integrated polymer-based Mach-Zehnder interferometer label-free streptavidin biosensor compatible with injection molding,” Biosens. Bioelectron. 26(9), 3832–3837 (2011).
[Crossref]

C. Badre, J. P. Chapelab, and S. Yang, “Selective dry and reversible transfer-printing of nanoparticles on top of PDMS wrinkles,” Soft Matter 7(21), 9886–9889 (2011).
[Crossref]

R. B. Queirós, S. Silva, J. Noronha, O. Frazão, P. Jorge, G. Aguilar, P. Marques, and M. G. F. Sales, “Microcystin-lr detection in water by the Fabry–Pérot interferometer using an optical fibre coated with a sol–gel imprinted sensing membrane,” Biosens. Bioelectron. 26(9), 3932–3937 (2011).
[Crossref]

2010 (2)

J. Friend and L. Yeo, “Fabrication of microfluidic devices using polydimethylsiloxane,” Biomicrofluidics 4(2), 026502 (2010).
[Crossref]

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

2008 (1)

Y.-T. Tseng, Y.-J. Chuang, Y.-C. Wu, C.-S. Yang, M.-C. Wang, and F.-G. Tseng, “A gold-nanoparticle-enhanced immune sensor based on fiber optic interferometry,” Nanotechnology 19(34), 345501 (2008).
[Crossref]

2007 (1)

D. Bodas and C. Khan-Malek, “Hydrophilization and hydrophobic recovery of PDMS by oxygen plasma and chemical treatment-an sem investigation,” Sens. Actuators, B 123(1), 368–373 (2007).
[Crossref]

2006 (1)

T. Goda, T. Konno, M. Takai, T. Moro, and K. Ishihara, “Biomimetic phosphorylcholine polymer grafting from polydimethylsiloxane surface using photo-induced polymerization,” Biomaterials 27(30), 5151–5160 (2006).
[Crossref]

2003 (2)

L. M. López-Marín, E. Segura, C. Hermida-Escobedo, A. Lemassu, and M. C. Salinas-Carmona, “6, 6’-dimycoloyl trehalose from a rapidly growing mycobacterium: an alternative antigen for tuberculosis serodiagnosis,” FEMS Immunol. Med. Microbiol. 36(1-2), 47–54 (2003).
[Crossref]

T. Kohl and C. Ascoli, “Protocol: Indirect Immunometric ELISA,” Cold Spring Harb Protoc. 125, 1128–1129 (2003).

1996 (1)

L. Escamilla, R. Mancilla, W. Glender, and L.-M. López-Marín, “Mycobacterium fortuitum glycolipids for the serodiagnosis of pulmonary tuberculosis,” Am. J. Respir. Crit. Care Med. 154(6), 1864–1867 (1996).
[Crossref]

Agrawal, S.

S. Agrawal, K. Paknikar, and D. Bodas, “Development of immunosensor using magnetic nanoparticles and circular microchannels in PDMS,” Microelectron. Eng. 115, 66–69 (2014).
[Crossref]

Aguilar, G.

R. B. Queirós, S. Silva, J. Noronha, O. Frazão, P. Jorge, G. Aguilar, P. Marques, and M. G. F. Sales, “Microcystin-lr detection in water by the Fabry–Pérot interferometer using an optical fibre coated with a sol–gel imprinted sensing membrane,” Biosens. Bioelectron. 26(9), 3932–3937 (2011).
[Crossref]

Ang, X.

L. Chen, C. Chan, R. Menon, P. Balamurali, W. Wong, X. Ang, P. Hu, M. Shaillender, B. Neu, P. Zu, Z. Tou, C. Poh, and K. Leong, “Fabry–Perot fiber-optic immunosensor based on suspended layer-by-layer (chitosan/polystyrene sulfonate) membrane,” Sens. Actuators, B 188, 185–192 (2013).
[Crossref]

Arrizabalaga, O.

O. Arrizabalaga, J. Velasco, J. Zubia, I. S. de Ocáriz, and J. Villatoro, “Miniature interferometric humidity sensor based on an off-center polymer cap onto optical fiber facet,” Sens. Actuators, B 297, 126700 (2019).
[Crossref]

Ascoli, C.

T. Kohl and C. Ascoli, “Protocol: Indirect Immunometric ELISA,” Cold Spring Harb Protoc. 125, 1128–1129 (2003).

Atmani, H.

F. Gaudiiere, I. Masson, S. Morin-Grognet, O. Thoumire, J.-P. Vannier, H. Atmani, G. Ladama, and B. Labat, “Mechano-chemical control of cell behaviour by elastomer templates coated with biomimetic Layer-by-Layer nanofilms,” Soft Matter 8(32), 8327–8337 (2012).
[Crossref]

Badre, C.

C. Badre, J. P. Chapelab, and S. Yang, “Selective dry and reversible transfer-printing of nanoparticles on top of PDMS wrinkles,” Soft Matter 7(21), 9886–9889 (2011).
[Crossref]

Balamurali, P.

L. Chen, C. Chan, R. Menon, P. Balamurali, W. Wong, X. Ang, P. Hu, M. Shaillender, B. Neu, P. Zu, Z. Tou, C. Poh, and K. Leong, “Fabry–Perot fiber-optic immunosensor based on suspended layer-by-layer (chitosan/polystyrene sulfonate) membrane,” Sens. Actuators, B 188, 185–192 (2013).
[Crossref]

Bodas, D.

S. Agrawal, K. Paknikar, and D. Bodas, “Development of immunosensor using magnetic nanoparticles and circular microchannels in PDMS,” Microelectron. Eng. 115, 66–69 (2014).
[Crossref]

D. Bodas and C. Khan-Malek, “Hydrophilization and hydrophobic recovery of PDMS by oxygen plasma and chemical treatment-an sem investigation,” Sens. Actuators, B 123(1), 368–373 (2007).
[Crossref]

Bouhafs, Z.

A. Guermat, A. Guessoum, N.-E. Demagh, M. Zaboub, and Z. Bouhafs, “Fibre-optic temperature and pressure sensor based on a deformable concave micro-mirror,” Sens. Actuators, A 270, 205–213 (2018).
[Crossref]

Bruck, R.

R. Bruck, E. Melnik, P. Muellner, R. Hainberger, and M. Lämmerhofer, “Integrated polymer-based Mach-Zehnder interferometer label-free streptavidin biosensor compatible with injection molding,” Biosens. Bioelectron. 26(9), 3832–3837 (2011).
[Crossref]

Brzozka, Z.

E. Jastrzebska, A. Zuchowska, S. Flis, P. Sokolowska, M. Bulka, A. Dybko, and Z. Brzozka, “Biological characterization of the modified poly (dimethylsiloxane) surfaces based on cell attachment and toxicity assays,” Biomicrofluidics 12(4), 044105 (2018).
[Crossref]

Budnicki, D.

K. Wysokiński, D. Budnicki, J. Fidelus, Ł. Szostkiewicz, Ł. Ostrowski, M. Murawski, M. Staniszewski, M. Staniszewska, M. Napierała, and T. Nasiłowski, “Dual-core all-fiber integrated immunosensor for detection of protein antigens,” Biosens. Bioelectron. 114, 22–29 (2018).
[Crossref]

Bulka, M.

E. Jastrzebska, A. Zuchowska, S. Flis, P. Sokolowska, M. Bulka, A. Dybko, and Z. Brzozka, “Biological characterization of the modified poly (dimethylsiloxane) surfaces based on cell attachment and toxicity assays,” Biomicrofluidics 12(4), 044105 (2018).
[Crossref]

Chan, C.

L. Chen, C. Chan, R. Menon, P. Balamurali, W. Wong, X. Ang, P. Hu, M. Shaillender, B. Neu, P. Zu, Z. Tou, C. Poh, and K. Leong, “Fabry–Perot fiber-optic immunosensor based on suspended layer-by-layer (chitosan/polystyrene sulfonate) membrane,” Sens. Actuators, B 188, 185–192 (2013).
[Crossref]

Chapelab, J. P.

C. Badre, J. P. Chapelab, and S. Yang, “Selective dry and reversible transfer-printing of nanoparticles on top of PDMS wrinkles,” Soft Matter 7(21), 9886–9889 (2011).
[Crossref]

Chen, C.

X.-Y. Zhang, Y.-S. Yu, C.-C. Zhu, C. Chen, R. Yang, Y. Xue, Q.-D. Chen, and H.-B. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

X.-Y. Zhang, Y.-S. Yu, C.-C. Zhu, C. Chen, R. Yang, Y. Xue, Q.-D. Chen, and H.-B. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Chen, L.

L. Chen, C. Chan, R. Menon, P. Balamurali, W. Wong, X. Ang, P. Hu, M. Shaillender, B. Neu, P. Zu, Z. Tou, C. Poh, and K. Leong, “Fabry–Perot fiber-optic immunosensor based on suspended layer-by-layer (chitosan/polystyrene sulfonate) membrane,” Sens. Actuators, B 188, 185–192 (2013).
[Crossref]

Chen, Q.-D.

X.-Y. Zhang, Y.-S. Yu, C.-C. Zhu, C. Chen, R. Yang, Y. Xue, Q.-D. Chen, and H.-B. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

X.-Y. Zhang, Y.-S. Yu, C.-C. Zhu, C. Chen, R. Yang, Y. Xue, Q.-D. Chen, and H.-B. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Cheng, Z.

F. Hou, Q. Zhang, J. Yang, X. Li, X. Yang, S. Wang, and Z. Cheng, “Development of a microplate reader compatible microfluidic chip for ELISA,” Biomed. Microdevices 14(4), 729–737 (2012).
[Crossref]

Chuang, Y.-J.

Y.-T. Tseng, Y.-J. Chuang, Y.-C. Wu, C.-S. Yang, M.-C. Wang, and F.-G. Tseng, “A gold-nanoparticle-enhanced immune sensor based on fiber optic interferometry,” Nanotechnology 19(34), 345501 (2008).
[Crossref]

Company, D. C.

D. C. Company, “Sylgard 184 silicone elastomer,” (2017).

Cox, M. M.

D. L. Nelson, A. L. Lehninger, and M. M. Cox, Lehninger Principles of Biochemistry (Macmillan, 2008).

Cruz-Garcia, M. A.

Cui, R.

S. Liu, Z. Deng, J. Li, J. Wang, N. Huang, R. Cui, Q. Zhang, J. Mei, W. Zhou, C. Zhang, Q. Ye, and J. Tian, “Measurement of the refractive index of whole blood and its components for a continuous spectral region,” J. Biomed. Opt. 24(3), 1–5 (2019).
[Crossref]

de Ocáriz, I. S.

O. Arrizabalaga, J. Velasco, J. Zubia, I. S. de Ocáriz, and J. Villatoro, “Miniature interferometric humidity sensor based on an off-center polymer cap onto optical fiber facet,” Sens. Actuators, B 297, 126700 (2019).
[Crossref]

Demagh, N.-E.

A. Guermat, A. Guessoum, N.-E. Demagh, M. Zaboub, and Z. Bouhafs, “Fibre-optic temperature and pressure sensor based on a deformable concave micro-mirror,” Sens. Actuators, A 270, 205–213 (2018).
[Crossref]

Deng, Y.

X. Tan, Y. Geng, X. Li, Y. Deng, Z. Yin, and R. Gao, “UV-curable polymer microhemisphere-based fiber-optic Fabry–Perot interferometer for simultaneous measurement of refractive index and temperature,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

Deng, Z.

S. Liu, Z. Deng, J. Li, J. Wang, N. Huang, R. Cui, Q. Zhang, J. Mei, W. Zhou, C. Zhang, Q. Ye, and J. Tian, “Measurement of the refractive index of whole blood and its components for a continuous spectral region,” J. Biomed. Opt. 24(3), 1–5 (2019).
[Crossref]

DeVoe, D. L.

K. Jiang, P. C. Thomas, S. P. Forry, D. L. DeVoe, and S. R. Raghavan, “Microfluidic synthesis of monodisperse PDMS microbeads as discrete oxygen sensors,” Soft Matter 8(4), 923–926 (2012).
[Crossref]

Dybko, A.

E. Jastrzebska, A. Zuchowska, S. Flis, P. Sokolowska, M. Bulka, A. Dybko, and Z. Brzozka, “Biological characterization of the modified poly (dimethylsiloxane) surfaces based on cell attachment and toxicity assays,” Biomicrofluidics 12(4), 044105 (2018).
[Crossref]

Escamilla, L.

L. Escamilla, R. Mancilla, W. Glender, and L.-M. López-Marín, “Mycobacterium fortuitum glycolipids for the serodiagnosis of pulmonary tuberculosis,” Am. J. Respir. Crit. Care Med. 154(6), 1864–1867 (1996).
[Crossref]

Fan, X.

X. Tan, M. K. Khaing Oo, Y. Gong, Y. Li, H. Zhu, and X. Fan, “Glass capillary based microfluidic elisa for rapid diagnostics,” Analyst 142(13), 2378–2385 (2017).
[Crossref]

Fidelus, J.

K. Wysokiński, D. Budnicki, J. Fidelus, Ł. Szostkiewicz, Ł. Ostrowski, M. Murawski, M. Staniszewski, M. Staniszewska, M. Napierała, and T. Nasiłowski, “Dual-core all-fiber integrated immunosensor for detection of protein antigens,” Biosens. Bioelectron. 114, 22–29 (2018).
[Crossref]

Flis, S.

E. Jastrzebska, A. Zuchowska, S. Flis, P. Sokolowska, M. Bulka, A. Dybko, and Z. Brzozka, “Biological characterization of the modified poly (dimethylsiloxane) surfaces based on cell attachment and toxicity assays,” Biomicrofluidics 12(4), 044105 (2018).
[Crossref]

Floreano, D.

B. E. Schubert and D. Floreano, “Variable stiffness material based on rigid low-melting-point-alloy microstructures embedded in soft poly (dimethylsiloxane) (PDMS),” RSC Adv. 3(46), 24671–24679 (2013).
[Crossref]

Forry, S. P.

K. Jiang, P. C. Thomas, S. P. Forry, D. L. DeVoe, and S. R. Raghavan, “Microfluidic synthesis of monodisperse PDMS microbeads as discrete oxygen sensors,” Soft Matter 8(4), 923–926 (2012).
[Crossref]

Frazão, O.

R. B. Queirós, S. Silva, J. Noronha, O. Frazão, P. Jorge, G. Aguilar, P. Marques, and M. G. F. Sales, “Microcystin-lr detection in water by the Fabry–Pérot interferometer using an optical fibre coated with a sol–gel imprinted sensing membrane,” Biosens. Bioelectron. 26(9), 3932–3937 (2011).
[Crossref]

Friend, J.

J. Friend and L. Yeo, “Fabrication of microfluidic devices using polydimethylsiloxane,” Biomicrofluidics 4(2), 026502 (2010).
[Crossref]

Gao, R.

X. Tan, Y. Geng, X. Li, Y. Deng, Z. Yin, and R. Gao, “UV-curable polymer microhemisphere-based fiber-optic Fabry–Perot interferometer for simultaneous measurement of refractive index and temperature,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

Gates, B. D.

J. N. Patel, B. L. Gray, B. Kaminska, and B. D. Gates, “Flexible glucose sensor utilizing multilayer pdms process,” in 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (IEEE, 2008), pp. 5749–5752.

Gaudiiere, F.

F. Gaudiiere, I. Masson, S. Morin-Grognet, O. Thoumire, J.-P. Vannier, H. Atmani, G. Ladama, and B. Labat, “Mechano-chemical control of cell behaviour by elastomer templates coated with biomimetic Layer-by-Layer nanofilms,” Soft Matter 8(32), 8327–8337 (2012).
[Crossref]

Geng, Y.

X. Tan, Y. Geng, X. Li, Y. Deng, Z. Yin, and R. Gao, “UV-curable polymer microhemisphere-based fiber-optic Fabry–Perot interferometer for simultaneous measurement of refractive index and temperature,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

Glender, W.

L. Escamilla, R. Mancilla, W. Glender, and L.-M. López-Marín, “Mycobacterium fortuitum glycolipids for the serodiagnosis of pulmonary tuberculosis,” Am. J. Respir. Crit. Care Med. 154(6), 1864–1867 (1996).
[Crossref]

Goda, T.

T. Goda, T. Konno, M. Takai, T. Moro, and K. Ishihara, “Biomimetic phosphorylcholine polymer grafting from polydimethylsiloxane surface using photo-induced polymerization,” Biomaterials 27(30), 5151–5160 (2006).
[Crossref]

Gong, Q.

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Gong, Y.

X. Tan, M. K. Khaing Oo, Y. Gong, Y. Li, H. Zhu, and X. Fan, “Glass capillary based microfluidic elisa for rapid diagnostics,” Analyst 142(13), 2378–2385 (2017).
[Crossref]

Gray, B. L.

J. N. Patel, B. L. Gray, B. Kaminska, and B. D. Gates, “Flexible glucose sensor utilizing multilayer pdms process,” in 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (IEEE, 2008), pp. 5749–5752.

Guermat, A.

A. Guermat, A. Guessoum, N.-E. Demagh, M. Zaboub, and Z. Bouhafs, “Fibre-optic temperature and pressure sensor based on a deformable concave micro-mirror,” Sens. Actuators, A 270, 205–213 (2018).
[Crossref]

Guessoum, A.

A. Guermat, A. Guessoum, N.-E. Demagh, M. Zaboub, and Z. Bouhafs, “Fibre-optic temperature and pressure sensor based on a deformable concave micro-mirror,” Sens. Actuators, A 270, 205–213 (2018).
[Crossref]

Hainberger, R.

R. Bruck, E. Melnik, P. Muellner, R. Hainberger, and M. Lämmerhofer, “Integrated polymer-based Mach-Zehnder interferometer label-free streptavidin biosensor compatible with injection molding,” Biosens. Bioelectron. 26(9), 3832–3837 (2011).
[Crossref]

Hermida-Escobedo, C.

L. M. López-Marín, E. Segura, C. Hermida-Escobedo, A. Lemassu, and M. C. Salinas-Carmona, “6, 6’-dimycoloyl trehalose from a rapidly growing mycobacterium: an alternative antigen for tuberculosis serodiagnosis,” FEMS Immunol. Med. Microbiol. 36(1-2), 47–54 (2003).
[Crossref]

Hernández-Cordero, J. A.

Hernández-Romano, I.

Hou, F.

F. Hou, Q. Zhang, J. Yang, X. Li, X. Yang, S. Wang, and Z. Cheng, “Development of a microplate reader compatible microfluidic chip for ELISA,” Biomed. Microdevices 14(4), 729–737 (2012).
[Crossref]

Hu, J.-F.

J.-F. Hu and C.-P. Yu, “Microlens-based fiber Fabry-Pérot interferometer for the measurement of the concentration of sugar solution,” in 2014 OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology, (IEEE, 2014), pp. 821–822.

Hu, P.

L. Chen, C. Chan, R. Menon, P. Balamurali, W. Wong, X. Ang, P. Hu, M. Shaillender, B. Neu, P. Zu, Z. Tou, C. Poh, and K. Leong, “Fabry–Perot fiber-optic immunosensor based on suspended layer-by-layer (chitosan/polystyrene sulfonate) membrane,” Sens. Actuators, B 188, 185–192 (2013).
[Crossref]

Huang, N.

S. Liu, Z. Deng, J. Li, J. Wang, N. Huang, R. Cui, Q. Zhang, J. Mei, W. Zhou, C. Zhang, Q. Ye, and J. Tian, “Measurement of the refractive index of whole blood and its components for a continuous spectral region,” J. Biomed. Opt. 24(3), 1–5 (2019).
[Crossref]

Ishihara, K.

J.-H. Seo, T. Shibayama, M. Takai, and K. Ishihara, “Quick and simple modification of a poly (dimethylsiloxane) surface by optimized molecular design of the anti-biofouling phospholipid copolymer,” Soft Matter 7(6), 2968–2976 (2011).
[Crossref]

T. Goda, T. Konno, M. Takai, T. Moro, and K. Ishihara, “Biomimetic phosphorylcholine polymer grafting from polydimethylsiloxane surface using photo-induced polymerization,” Biomaterials 27(30), 5151–5160 (2006).
[Crossref]

Jastrzebska, E.

E. Jastrzebska, A. Zuchowska, S. Flis, P. Sokolowska, M. Bulka, A. Dybko, and Z. Brzozka, “Biological characterization of the modified poly (dimethylsiloxane) surfaces based on cell attachment and toxicity assays,” Biomicrofluidics 12(4), 044105 (2018).
[Crossref]

Jiang, K.

K. Jiang, P. C. Thomas, S. P. Forry, D. L. DeVoe, and S. R. Raghavan, “Microfluidic synthesis of monodisperse PDMS microbeads as discrete oxygen sensors,” Soft Matter 8(4), 923–926 (2012).
[Crossref]

Jiang, X.-F.

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Jorge, P.

R. B. Queirós, S. Silva, J. Noronha, O. Frazão, P. Jorge, G. Aguilar, P. Marques, and M. G. F. Sales, “Microcystin-lr detection in water by the Fabry–Pérot interferometer using an optical fibre coated with a sol–gel imprinted sensing membrane,” Biosens. Bioelectron. 26(9), 3932–3937 (2011).
[Crossref]

Kaminska, B.

J. N. Patel, B. L. Gray, B. Kaminska, and B. D. Gates, “Flexible glucose sensor utilizing multilayer pdms process,” in 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (IEEE, 2008), pp. 5749–5752.

Khaing Oo, M. K.

X. Tan, M. K. Khaing Oo, Y. Gong, Y. Li, H. Zhu, and X. Fan, “Glass capillary based microfluidic elisa for rapid diagnostics,” Analyst 142(13), 2378–2385 (2017).
[Crossref]

Khan-Malek, C.

D. Bodas and C. Khan-Malek, “Hydrophilization and hydrophobic recovery of PDMS by oxygen plasma and chemical treatment-an sem investigation,” Sens. Actuators, B 123(1), 368–373 (2007).
[Crossref]

Kohl, T.

T. Kohl and C. Ascoli, “Protocol: Indirect Immunometric ELISA,” Cold Spring Harb Protoc. 125, 1128–1129 (2003).

Konno, T.

T. Goda, T. Konno, M. Takai, T. Moro, and K. Ishihara, “Biomimetic phosphorylcholine polymer grafting from polydimethylsiloxane surface using photo-induced polymerization,” Biomaterials 27(30), 5151–5160 (2006).
[Crossref]

Labat, B.

F. Gaudiiere, I. Masson, S. Morin-Grognet, O. Thoumire, J.-P. Vannier, H. Atmani, G. Ladama, and B. Labat, “Mechano-chemical control of cell behaviour by elastomer templates coated with biomimetic Layer-by-Layer nanofilms,” Soft Matter 8(32), 8327–8337 (2012).
[Crossref]

Ladama, G.

F. Gaudiiere, I. Masson, S. Morin-Grognet, O. Thoumire, J.-P. Vannier, H. Atmani, G. Ladama, and B. Labat, “Mechano-chemical control of cell behaviour by elastomer templates coated with biomimetic Layer-by-Layer nanofilms,” Soft Matter 8(32), 8327–8337 (2012).
[Crossref]

Lämmerhofer, M.

R. Bruck, E. Melnik, P. Muellner, R. Hainberger, and M. Lämmerhofer, “Integrated polymer-based Mach-Zehnder interferometer label-free streptavidin biosensor compatible with injection molding,” Biosens. Bioelectron. 26(9), 3832–3837 (2011).
[Crossref]

Lehninger, A. L.

D. L. Nelson, A. L. Lehninger, and M. M. Cox, Lehninger Principles of Biochemistry (Macmillan, 2008).

Lei, K. F.

K. F. Lei, “Microfluidic Systems for Diagnostic Applications: A Review,” J. Lab. Autom. 17(5), 330–347 (2012).
[Crossref]

Lemassu, A.

L. M. López-Marín, E. Segura, C. Hermida-Escobedo, A. Lemassu, and M. C. Salinas-Carmona, “6, 6’-dimycoloyl trehalose from a rapidly growing mycobacterium: an alternative antigen for tuberculosis serodiagnosis,” FEMS Immunol. Med. Microbiol. 36(1-2), 47–54 (2003).
[Crossref]

Leong, K.

L. Chen, C. Chan, R. Menon, P. Balamurali, W. Wong, X. Ang, P. Hu, M. Shaillender, B. Neu, P. Zu, Z. Tou, C. Poh, and K. Leong, “Fabry–Perot fiber-optic immunosensor based on suspended layer-by-layer (chitosan/polystyrene sulfonate) membrane,” Sens. Actuators, B 188, 185–192 (2013).
[Crossref]

Li, B.-B.

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Li, H.

H. Li, L. Lin, and S. Xie, “Refractive index of human whole blood with different types in the visible and near-infrared ranges,” in Laser-Tissue Interaction XI: Photochemical, Photothermal, and Photomechanical, vol. 3914 (International Society for Optics and Photonics, 2000), pp. 517–521.

Li, J.

S. Liu, Z. Deng, J. Li, J. Wang, N. Huang, R. Cui, Q. Zhang, J. Mei, W. Zhou, C. Zhang, Q. Ye, and J. Tian, “Measurement of the refractive index of whole blood and its components for a continuous spectral region,” J. Biomed. Opt. 24(3), 1–5 (2019).
[Crossref]

Li, M.

M. Li, Y. Liu, S. Qu, and Y. Li, “Fiber-optic sensor tip for measuring temperature and liquid refractive index,” Opt. Eng. 53(11), 116110 (2014).
[Crossref]

Li, X.

X. Tan, Y. Geng, X. Li, Y. Deng, Z. Yin, and R. Gao, “UV-curable polymer microhemisphere-based fiber-optic Fabry–Perot interferometer for simultaneous measurement of refractive index and temperature,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

F. Hou, Q. Zhang, J. Yang, X. Li, X. Yang, S. Wang, and Z. Cheng, “Development of a microplate reader compatible microfluidic chip for ELISA,” Biomed. Microdevices 14(4), 729–737 (2012).
[Crossref]

Li, Y.

X. Tan, M. K. Khaing Oo, Y. Gong, Y. Li, H. Zhu, and X. Fan, “Glass capillary based microfluidic elisa for rapid diagnostics,” Analyst 142(13), 2378–2385 (2017).
[Crossref]

M. Li, Y. Liu, S. Qu, and Y. Li, “Fiber-optic sensor tip for measuring temperature and liquid refractive index,” Opt. Eng. 53(11), 116110 (2014).
[Crossref]

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Lin, L.

H. Li, L. Lin, and S. Xie, “Refractive index of human whole blood with different types in the visible and near-infrared ranges,” in Laser-Tissue Interaction XI: Photochemical, Photothermal, and Photomechanical, vol. 3914 (International Society for Optics and Photonics, 2000), pp. 517–521.

Liu, S.

S. Liu, Z. Deng, J. Li, J. Wang, N. Huang, R. Cui, Q. Zhang, J. Mei, W. Zhou, C. Zhang, Q. Ye, and J. Tian, “Measurement of the refractive index of whole blood and its components for a continuous spectral region,” J. Biomed. Opt. 24(3), 1–5 (2019).
[Crossref]

Liu, Y.

M. Li, Y. Liu, S. Qu, and Y. Li, “Fiber-optic sensor tip for measuring temperature and liquid refractive index,” Opt. Eng. 53(11), 116110 (2014).
[Crossref]

López-Figueroa, E. O.

López-Marín, L. M.

L. M. López-Marín, E. Segura, C. Hermida-Escobedo, A. Lemassu, and M. C. Salinas-Carmona, “6, 6’-dimycoloyl trehalose from a rapidly growing mycobacterium: an alternative antigen for tuberculosis serodiagnosis,” FEMS Immunol. Med. Microbiol. 36(1-2), 47–54 (2003).
[Crossref]

López-Marín, L.-M.

L. Escamilla, R. Mancilla, W. Glender, and L.-M. López-Marín, “Mycobacterium fortuitum glycolipids for the serodiagnosis of pulmonary tuberculosis,” Am. J. Respir. Crit. Care Med. 154(6), 1864–1867 (1996).
[Crossref]

Lyu, J.

F. Tian, J. Lyu, J. Shi, F. Tan, and M. Yang, “A polymeric microfluidic device integrated with nanoporous alumina membranes for simultaneous detection of multiple foodborne pathogens,” Sens. Actuators, B 225, 312–318 (2016).
[Crossref]

Mancilla, R.

L. Escamilla, R. Mancilla, W. Glender, and L.-M. López-Marín, “Mycobacterium fortuitum glycolipids for the serodiagnosis of pulmonary tuberculosis,” Am. J. Respir. Crit. Care Med. 154(6), 1864–1867 (1996).
[Crossref]

Marques, P.

R. B. Queirós, S. Silva, J. Noronha, O. Frazão, P. Jorge, G. Aguilar, P. Marques, and M. G. F. Sales, “Microcystin-lr detection in water by the Fabry–Pérot interferometer using an optical fibre coated with a sol–gel imprinted sensing membrane,” Biosens. Bioelectron. 26(9), 3932–3937 (2011).
[Crossref]

Márquez-Cruz, V. A.

Masson, I.

F. Gaudiiere, I. Masson, S. Morin-Grognet, O. Thoumire, J.-P. Vannier, H. Atmani, G. Ladama, and B. Labat, “Mechano-chemical control of cell behaviour by elastomer templates coated with biomimetic Layer-by-Layer nanofilms,” Soft Matter 8(32), 8327–8337 (2012).
[Crossref]

Mei, J.

S. Liu, Z. Deng, J. Li, J. Wang, N. Huang, R. Cui, Q. Zhang, J. Mei, W. Zhou, C. Zhang, Q. Ye, and J. Tian, “Measurement of the refractive index of whole blood and its components for a continuous spectral region,” J. Biomed. Opt. 24(3), 1–5 (2019).
[Crossref]

Melnik, E.

R. Bruck, E. Melnik, P. Muellner, R. Hainberger, and M. Lämmerhofer, “Integrated polymer-based Mach-Zehnder interferometer label-free streptavidin biosensor compatible with injection molding,” Biosens. Bioelectron. 26(9), 3832–3837 (2011).
[Crossref]

Menghrajani, K.

K. Menghrajani, “Fibre-optic Fabry–Perot sensors: an introduction,” (2018).

Menon, R.

L. Chen, C. Chan, R. Menon, P. Balamurali, W. Wong, X. Ang, P. Hu, M. Shaillender, B. Neu, P. Zu, Z. Tou, C. Poh, and K. Leong, “Fabry–Perot fiber-optic immunosensor based on suspended layer-by-layer (chitosan/polystyrene sulfonate) membrane,” Sens. Actuators, B 188, 185–192 (2013).
[Crossref]

Monzón-Hernández, D.

Moreno-Hernández, C.

Morin-Grognet, S.

F. Gaudiiere, I. Masson, S. Morin-Grognet, O. Thoumire, J.-P. Vannier, H. Atmani, G. Ladama, and B. Labat, “Mechano-chemical control of cell behaviour by elastomer templates coated with biomimetic Layer-by-Layer nanofilms,” Soft Matter 8(32), 8327–8337 (2012).
[Crossref]

Moro, T.

T. Goda, T. Konno, M. Takai, T. Moro, and K. Ishihara, “Biomimetic phosphorylcholine polymer grafting from polydimethylsiloxane surface using photo-induced polymerization,” Biomaterials 27(30), 5151–5160 (2006).
[Crossref]

Muellner, P.

R. Bruck, E. Melnik, P. Muellner, R. Hainberger, and M. Lämmerhofer, “Integrated polymer-based Mach-Zehnder interferometer label-free streptavidin biosensor compatible with injection molding,” Biosens. Bioelectron. 26(9), 3832–3837 (2011).
[Crossref]

Murawski, M.

K. Wysokiński, D. Budnicki, J. Fidelus, Ł. Szostkiewicz, Ł. Ostrowski, M. Murawski, M. Staniszewski, M. Staniszewska, M. Napierała, and T. Nasiłowski, “Dual-core all-fiber integrated immunosensor for detection of protein antigens,” Biosens. Bioelectron. 114, 22–29 (2018).
[Crossref]

Napierala, M.

K. Wysokiński, D. Budnicki, J. Fidelus, Ł. Szostkiewicz, Ł. Ostrowski, M. Murawski, M. Staniszewski, M. Staniszewska, M. Napierała, and T. Nasiłowski, “Dual-core all-fiber integrated immunosensor for detection of protein antigens,” Biosens. Bioelectron. 114, 22–29 (2018).
[Crossref]

Nasilowski, T.

K. Wysokiński, D. Budnicki, J. Fidelus, Ł. Szostkiewicz, Ł. Ostrowski, M. Murawski, M. Staniszewski, M. Staniszewska, M. Napierała, and T. Nasiłowski, “Dual-core all-fiber integrated immunosensor for detection of protein antigens,” Biosens. Bioelectron. 114, 22–29 (2018).
[Crossref]

Nelson, D. L.

D. L. Nelson, A. L. Lehninger, and M. M. Cox, Lehninger Principles of Biochemistry (Macmillan, 2008).

Neu, B.

L. Chen, C. Chan, R. Menon, P. Balamurali, W. Wong, X. Ang, P. Hu, M. Shaillender, B. Neu, P. Zu, Z. Tou, C. Poh, and K. Leong, “Fabry–Perot fiber-optic immunosensor based on suspended layer-by-layer (chitosan/polystyrene sulfonate) membrane,” Sens. Actuators, B 188, 185–192 (2013).
[Crossref]

Noronha, J.

R. B. Queirós, S. Silva, J. Noronha, O. Frazão, P. Jorge, G. Aguilar, P. Marques, and M. G. F. Sales, “Microcystin-lr detection in water by the Fabry–Pérot interferometer using an optical fibre coated with a sol–gel imprinted sensing membrane,” Biosens. Bioelectron. 26(9), 3932–3937 (2011).
[Crossref]

Ostrowski, L.

K. Wysokiński, D. Budnicki, J. Fidelus, Ł. Szostkiewicz, Ł. Ostrowski, M. Murawski, M. Staniszewski, M. Staniszewska, M. Napierała, and T. Nasiłowski, “Dual-core all-fiber integrated immunosensor for detection of protein antigens,” Biosens. Bioelectron. 114, 22–29 (2018).
[Crossref]

Paknikar, K.

S. Agrawal, K. Paknikar, and D. Bodas, “Development of immunosensor using magnetic nanoparticles and circular microchannels in PDMS,” Microelectron. Eng. 115, 66–69 (2014).
[Crossref]

Paredes-Gallardo, O. E.

Patel, J. N.

J. N. Patel, B. L. Gray, B. Kaminska, and B. D. Gates, “Flexible glucose sensor utilizing multilayer pdms process,” in 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (IEEE, 2008), pp. 5749–5752.

Poh, C.

L. Chen, C. Chan, R. Menon, P. Balamurali, W. Wong, X. Ang, P. Hu, M. Shaillender, B. Neu, P. Zu, Z. Tou, C. Poh, and K. Leong, “Fabry–Perot fiber-optic immunosensor based on suspended layer-by-layer (chitosan/polystyrene sulfonate) membrane,” Sens. Actuators, B 188, 185–192 (2013).
[Crossref]

Qu, S.

M. Li, Y. Liu, S. Qu, and Y. Li, “Fiber-optic sensor tip for measuring temperature and liquid refractive index,” Opt. Eng. 53(11), 116110 (2014).
[Crossref]

Queirós, R. B.

R. B. Queirós, S. Silva, J. Noronha, O. Frazão, P. Jorge, G. Aguilar, P. Marques, and M. G. F. Sales, “Microcystin-lr detection in water by the Fabry–Pérot interferometer using an optical fibre coated with a sol–gel imprinted sensing membrane,” Biosens. Bioelectron. 26(9), 3932–3937 (2011).
[Crossref]

Raghavan, S. R.

K. Jiang, P. C. Thomas, S. P. Forry, D. L. DeVoe, and S. R. Raghavan, “Microfluidic synthesis of monodisperse PDMS microbeads as discrete oxygen sensors,” Soft Matter 8(4), 923–926 (2012).
[Crossref]

Sales, M. G. F.

R. B. Queirós, S. Silva, J. Noronha, O. Frazão, P. Jorge, G. Aguilar, P. Marques, and M. G. F. Sales, “Microcystin-lr detection in water by the Fabry–Pérot interferometer using an optical fibre coated with a sol–gel imprinted sensing membrane,” Biosens. Bioelectron. 26(9), 3932–3937 (2011).
[Crossref]

Salinas-Carmona, M. C.

L. M. López-Marín, E. Segura, C. Hermida-Escobedo, A. Lemassu, and M. C. Salinas-Carmona, “6, 6’-dimycoloyl trehalose from a rapidly growing mycobacterium: an alternative antigen for tuberculosis serodiagnosis,” FEMS Immunol. Med. Microbiol. 36(1-2), 47–54 (2003).
[Crossref]

Schubert, B. E.

B. E. Schubert and D. Floreano, “Variable stiffness material based on rigid low-melting-point-alloy microstructures embedded in soft poly (dimethylsiloxane) (PDMS),” RSC Adv. 3(46), 24671–24679 (2013).
[Crossref]

Segura, E.

L. M. López-Marín, E. Segura, C. Hermida-Escobedo, A. Lemassu, and M. C. Salinas-Carmona, “6, 6’-dimycoloyl trehalose from a rapidly growing mycobacterium: an alternative antigen for tuberculosis serodiagnosis,” FEMS Immunol. Med. Microbiol. 36(1-2), 47–54 (2003).
[Crossref]

Seo, J.-H.

J.-H. Seo, T. Shibayama, M. Takai, and K. Ishihara, “Quick and simple modification of a poly (dimethylsiloxane) surface by optimized molecular design of the anti-biofouling phospholipid copolymer,” Soft Matter 7(6), 2968–2976 (2011).
[Crossref]

Shaillender, M.

L. Chen, C. Chan, R. Menon, P. Balamurali, W. Wong, X. Ang, P. Hu, M. Shaillender, B. Neu, P. Zu, Z. Tou, C. Poh, and K. Leong, “Fabry–Perot fiber-optic immunosensor based on suspended layer-by-layer (chitosan/polystyrene sulfonate) membrane,” Sens. Actuators, B 188, 185–192 (2013).
[Crossref]

Shi, J.

F. Tian, J. Lyu, J. Shi, F. Tan, and M. Yang, “A polymeric microfluidic device integrated with nanoporous alumina membranes for simultaneous detection of multiple foodborne pathogens,” Sens. Actuators, B 225, 312–318 (2016).
[Crossref]

Shibayama, T.

J.-H. Seo, T. Shibayama, M. Takai, and K. Ishihara, “Quick and simple modification of a poly (dimethylsiloxane) surface by optimized molecular design of the anti-biofouling phospholipid copolymer,” Soft Matter 7(6), 2968–2976 (2011).
[Crossref]

Silva, S.

R. B. Queirós, S. Silva, J. Noronha, O. Frazão, P. Jorge, G. Aguilar, P. Marques, and M. G. F. Sales, “Microcystin-lr detection in water by the Fabry–Pérot interferometer using an optical fibre coated with a sol–gel imprinted sensing membrane,” Biosens. Bioelectron. 26(9), 3932–3937 (2011).
[Crossref]

Sokolowska, P.

E. Jastrzebska, A. Zuchowska, S. Flis, P. Sokolowska, M. Bulka, A. Dybko, and Z. Brzozka, “Biological characterization of the modified poly (dimethylsiloxane) surfaces based on cell attachment and toxicity assays,” Biomicrofluidics 12(4), 044105 (2018).
[Crossref]

Staniszewska, M.

K. Wysokiński, D. Budnicki, J. Fidelus, Ł. Szostkiewicz, Ł. Ostrowski, M. Murawski, M. Staniszewski, M. Staniszewska, M. Napierała, and T. Nasiłowski, “Dual-core all-fiber integrated immunosensor for detection of protein antigens,” Biosens. Bioelectron. 114, 22–29 (2018).
[Crossref]

Staniszewski, M.

K. Wysokiński, D. Budnicki, J. Fidelus, Ł. Szostkiewicz, Ł. Ostrowski, M. Murawski, M. Staniszewski, M. Staniszewska, M. Napierała, and T. Nasiłowski, “Dual-core all-fiber integrated immunosensor for detection of protein antigens,” Biosens. Bioelectron. 114, 22–29 (2018).
[Crossref]

Sun, H.-B.

X.-Y. Zhang, Y.-S. Yu, C.-C. Zhu, C. Chen, R. Yang, Y. Xue, Q.-D. Chen, and H.-B. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

X.-Y. Zhang, Y.-S. Yu, C.-C. Zhu, C. Chen, R. Yang, Y. Xue, Q.-D. Chen, and H.-B. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Szostkiewicz, L.

K. Wysokiński, D. Budnicki, J. Fidelus, Ł. Szostkiewicz, Ł. Ostrowski, M. Murawski, M. Staniszewski, M. Staniszewska, M. Napierała, and T. Nasiłowski, “Dual-core all-fiber integrated immunosensor for detection of protein antigens,” Biosens. Bioelectron. 114, 22–29 (2018).
[Crossref]

Takai, M.

J.-H. Seo, T. Shibayama, M. Takai, and K. Ishihara, “Quick and simple modification of a poly (dimethylsiloxane) surface by optimized molecular design of the anti-biofouling phospholipid copolymer,” Soft Matter 7(6), 2968–2976 (2011).
[Crossref]

T. Goda, T. Konno, M. Takai, T. Moro, and K. Ishihara, “Biomimetic phosphorylcholine polymer grafting from polydimethylsiloxane surface using photo-induced polymerization,” Biomaterials 27(30), 5151–5160 (2006).
[Crossref]

Tan, F.

F. Tian, J. Lyu, J. Shi, F. Tan, and M. Yang, “A polymeric microfluidic device integrated with nanoporous alumina membranes for simultaneous detection of multiple foodborne pathogens,” Sens. Actuators, B 225, 312–318 (2016).
[Crossref]

Tan, X.

X. Tan, M. K. Khaing Oo, Y. Gong, Y. Li, H. Zhu, and X. Fan, “Glass capillary based microfluidic elisa for rapid diagnostics,” Analyst 142(13), 2378–2385 (2017).
[Crossref]

X. Tan, Y. Geng, X. Li, Y. Deng, Z. Yin, and R. Gao, “UV-curable polymer microhemisphere-based fiber-optic Fabry–Perot interferometer for simultaneous measurement of refractive index and temperature,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

Thomas, P. C.

K. Jiang, P. C. Thomas, S. P. Forry, D. L. DeVoe, and S. R. Raghavan, “Microfluidic synthesis of monodisperse PDMS microbeads as discrete oxygen sensors,” Soft Matter 8(4), 923–926 (2012).
[Crossref]

Thoumire, O.

F. Gaudiiere, I. Masson, S. Morin-Grognet, O. Thoumire, J.-P. Vannier, H. Atmani, G. Ladama, and B. Labat, “Mechano-chemical control of cell behaviour by elastomer templates coated with biomimetic Layer-by-Layer nanofilms,” Soft Matter 8(32), 8327–8337 (2012).
[Crossref]

Tian, F.

F. Tian, J. Lyu, J. Shi, F. Tan, and M. Yang, “A polymeric microfluidic device integrated with nanoporous alumina membranes for simultaneous detection of multiple foodborne pathogens,” Sens. Actuators, B 225, 312–318 (2016).
[Crossref]

Tian, J.

S. Liu, Z. Deng, J. Li, J. Wang, N. Huang, R. Cui, Q. Zhang, J. Mei, W. Zhou, C. Zhang, Q. Ye, and J. Tian, “Measurement of the refractive index of whole blood and its components for a continuous spectral region,” J. Biomed. Opt. 24(3), 1–5 (2019).
[Crossref]

Torres-Cisneros, M.

Tou, Z.

L. Chen, C. Chan, R. Menon, P. Balamurali, W. Wong, X. Ang, P. Hu, M. Shaillender, B. Neu, P. Zu, Z. Tou, C. Poh, and K. Leong, “Fabry–Perot fiber-optic immunosensor based on suspended layer-by-layer (chitosan/polystyrene sulfonate) membrane,” Sens. Actuators, B 188, 185–192 (2013).
[Crossref]

Tseng, F.-G.

Y.-T. Tseng, Y.-J. Chuang, Y.-C. Wu, C.-S. Yang, M.-C. Wang, and F.-G. Tseng, “A gold-nanoparticle-enhanced immune sensor based on fiber optic interferometry,” Nanotechnology 19(34), 345501 (2008).
[Crossref]

Tseng, Y.-T.

Y.-T. Tseng, Y.-J. Chuang, Y.-C. Wu, C.-S. Yang, M.-C. Wang, and F.-G. Tseng, “A gold-nanoparticle-enhanced immune sensor based on fiber optic interferometry,” Nanotechnology 19(34), 345501 (2008).
[Crossref]

Vannier, J.-P.

F. Gaudiiere, I. Masson, S. Morin-Grognet, O. Thoumire, J.-P. Vannier, H. Atmani, G. Ladama, and B. Labat, “Mechano-chemical control of cell behaviour by elastomer templates coated with biomimetic Layer-by-Layer nanofilms,” Soft Matter 8(32), 8327–8337 (2012).
[Crossref]

Velasco, J.

O. Arrizabalaga, J. Velasco, J. Zubia, I. S. de Ocáriz, and J. Villatoro, “Miniature interferometric humidity sensor based on an off-center polymer cap onto optical fiber facet,” Sens. Actuators, B 297, 126700 (2019).
[Crossref]

Villatoro, J.

O. Arrizabalaga, J. Velasco, J. Zubia, I. S. de Ocáriz, and J. Villatoro, “Miniature interferometric humidity sensor based on an off-center polymer cap onto optical fiber facet,” Sens. Actuators, B 297, 126700 (2019).
[Crossref]

I. Hernández-Romano, M. A. Cruz-Garcia, C. Moreno-Hernández, D. Monzón-Hernández, E. O. López-Figueroa, O. E. Paredes-Gallardo, M. Torres-Cisneros, and J. Villatoro, “Optical fiber temperature sensor based on a microcavity with polymer overlay,” Opt. Express 24(5), 5654–5661 (2016).
[Crossref]

Wang, J.

S. Liu, Z. Deng, J. Li, J. Wang, N. Huang, R. Cui, Q. Zhang, J. Mei, W. Zhou, C. Zhang, Q. Ye, and J. Tian, “Measurement of the refractive index of whole blood and its components for a continuous spectral region,” J. Biomed. Opt. 24(3), 1–5 (2019).
[Crossref]

Wang, M.-C.

Y.-T. Tseng, Y.-J. Chuang, Y.-C. Wu, C.-S. Yang, M.-C. Wang, and F.-G. Tseng, “A gold-nanoparticle-enhanced immune sensor based on fiber optic interferometry,” Nanotechnology 19(34), 345501 (2008).
[Crossref]

Wang, Q.-Y.

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Wang, S.

F. Hou, Q. Zhang, J. Yang, X. Li, X. Yang, S. Wang, and Z. Cheng, “Development of a microplate reader compatible microfluidic chip for ELISA,” Biomed. Microdevices 14(4), 729–737 (2012).
[Crossref]

Wong, W.

L. Chen, C. Chan, R. Menon, P. Balamurali, W. Wong, X. Ang, P. Hu, M. Shaillender, B. Neu, P. Zu, Z. Tou, C. Poh, and K. Leong, “Fabry–Perot fiber-optic immunosensor based on suspended layer-by-layer (chitosan/polystyrene sulfonate) membrane,” Sens. Actuators, B 188, 185–192 (2013).
[Crossref]

Wu, Y.-C.

Y.-T. Tseng, Y.-J. Chuang, Y.-C. Wu, C.-S. Yang, M.-C. Wang, and F.-G. Tseng, “A gold-nanoparticle-enhanced immune sensor based on fiber optic interferometry,” Nanotechnology 19(34), 345501 (2008).
[Crossref]

Wysokinski, K.

K. Wysokiński, D. Budnicki, J. Fidelus, Ł. Szostkiewicz, Ł. Ostrowski, M. Murawski, M. Staniszewski, M. Staniszewska, M. Napierała, and T. Nasiłowski, “Dual-core all-fiber integrated immunosensor for detection of protein antigens,” Biosens. Bioelectron. 114, 22–29 (2018).
[Crossref]

Xiao, L.

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Xiao, Y.-F.

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Xie, S.

H. Li, L. Lin, and S. Xie, “Refractive index of human whole blood with different types in the visible and near-infrared ranges,” in Laser-Tissue Interaction XI: Photochemical, Photothermal, and Photomechanical, vol. 3914 (International Society for Optics and Photonics, 2000), pp. 517–521.

Xue, Y.

X.-Y. Zhang, Y.-S. Yu, C.-C. Zhu, C. Chen, R. Yang, Y. Xue, Q.-D. Chen, and H.-B. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

X.-Y. Zhang, Y.-S. Yu, C.-C. Zhu, C. Chen, R. Yang, Y. Xue, Q.-D. Chen, and H.-B. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Yang, C.-S.

Y.-T. Tseng, Y.-J. Chuang, Y.-C. Wu, C.-S. Yang, M.-C. Wang, and F.-G. Tseng, “A gold-nanoparticle-enhanced immune sensor based on fiber optic interferometry,” Nanotechnology 19(34), 345501 (2008).
[Crossref]

Yang, J.

F. Hou, Q. Zhang, J. Yang, X. Li, X. Yang, S. Wang, and Z. Cheng, “Development of a microplate reader compatible microfluidic chip for ELISA,” Biomed. Microdevices 14(4), 729–737 (2012).
[Crossref]

Yang, M.

F. Tian, J. Lyu, J. Shi, F. Tan, and M. Yang, “A polymeric microfluidic device integrated with nanoporous alumina membranes for simultaneous detection of multiple foodborne pathogens,” Sens. Actuators, B 225, 312–318 (2016).
[Crossref]

Yang, R.

X.-Y. Zhang, Y.-S. Yu, C.-C. Zhu, C. Chen, R. Yang, Y. Xue, Q.-D. Chen, and H.-B. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

X.-Y. Zhang, Y.-S. Yu, C.-C. Zhu, C. Chen, R. Yang, Y. Xue, Q.-D. Chen, and H.-B. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Yang, S.

C. Badre, J. P. Chapelab, and S. Yang, “Selective dry and reversible transfer-printing of nanoparticles on top of PDMS wrinkles,” Soft Matter 7(21), 9886–9889 (2011).
[Crossref]

Yang, X.

F. Hou, Q. Zhang, J. Yang, X. Li, X. Yang, S. Wang, and Z. Cheng, “Development of a microplate reader compatible microfluidic chip for ELISA,” Biomed. Microdevices 14(4), 729–737 (2012).
[Crossref]

Ye, Q.

S. Liu, Z. Deng, J. Li, J. Wang, N. Huang, R. Cui, Q. Zhang, J. Mei, W. Zhou, C. Zhang, Q. Ye, and J. Tian, “Measurement of the refractive index of whole blood and its components for a continuous spectral region,” J. Biomed. Opt. 24(3), 1–5 (2019).
[Crossref]

Yeo, L.

J. Friend and L. Yeo, “Fabrication of microfluidic devices using polydimethylsiloxane,” Biomicrofluidics 4(2), 026502 (2010).
[Crossref]

Yin, Z.

X. Tan, Y. Geng, X. Li, Y. Deng, Z. Yin, and R. Gao, “UV-curable polymer microhemisphere-based fiber-optic Fabry–Perot interferometer for simultaneous measurement of refractive index and temperature,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

Yu, C.-P.

J.-F. Hu and C.-P. Yu, “Microlens-based fiber Fabry-Pérot interferometer for the measurement of the concentration of sugar solution,” in 2014 OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology, (IEEE, 2014), pp. 821–822.

Yu, Y.-S.

X.-Y. Zhang, Y.-S. Yu, C.-C. Zhu, C. Chen, R. Yang, Y. Xue, Q.-D. Chen, and H.-B. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

X.-Y. Zhang, Y.-S. Yu, C.-C. Zhu, C. Chen, R. Yang, Y. Xue, Q.-D. Chen, and H.-B. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Zaboub, M.

A. Guermat, A. Guessoum, N.-E. Demagh, M. Zaboub, and Z. Bouhafs, “Fibre-optic temperature and pressure sensor based on a deformable concave micro-mirror,” Sens. Actuators, A 270, 205–213 (2018).
[Crossref]

Zhang, C.

S. Liu, Z. Deng, J. Li, J. Wang, N. Huang, R. Cui, Q. Zhang, J. Mei, W. Zhou, C. Zhang, Q. Ye, and J. Tian, “Measurement of the refractive index of whole blood and its components for a continuous spectral region,” J. Biomed. Opt. 24(3), 1–5 (2019).
[Crossref]

Zhang, Q.

S. Liu, Z. Deng, J. Li, J. Wang, N. Huang, R. Cui, Q. Zhang, J. Mei, W. Zhou, C. Zhang, Q. Ye, and J. Tian, “Measurement of the refractive index of whole blood and its components for a continuous spectral region,” J. Biomed. Opt. 24(3), 1–5 (2019).
[Crossref]

F. Hou, Q. Zhang, J. Yang, X. Li, X. Yang, S. Wang, and Z. Cheng, “Development of a microplate reader compatible microfluidic chip for ELISA,” Biomed. Microdevices 14(4), 729–737 (2012).
[Crossref]

Zhang, X.-Y.

X.-Y. Zhang, Y.-S. Yu, C.-C. Zhu, C. Chen, R. Yang, Y. Xue, Q.-D. Chen, and H.-B. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

X.-Y. Zhang, Y.-S. Yu, C.-C. Zhu, C. Chen, R. Yang, Y. Xue, Q.-D. Chen, and H.-B. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Zhou, W.

S. Liu, Z. Deng, J. Li, J. Wang, N. Huang, R. Cui, Q. Zhang, J. Mei, W. Zhou, C. Zhang, Q. Ye, and J. Tian, “Measurement of the refractive index of whole blood and its components for a continuous spectral region,” J. Biomed. Opt. 24(3), 1–5 (2019).
[Crossref]

Zhu, C.-C.

X.-Y. Zhang, Y.-S. Yu, C.-C. Zhu, C. Chen, R. Yang, Y. Xue, Q.-D. Chen, and H.-B. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

X.-Y. Zhang, Y.-S. Yu, C.-C. Zhu, C. Chen, R. Yang, Y. Xue, Q.-D. Chen, and H.-B. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Zhu, H.

X. Tan, M. K. Khaing Oo, Y. Gong, Y. Li, H. Zhu, and X. Fan, “Glass capillary based microfluidic elisa for rapid diagnostics,” Analyst 142(13), 2378–2385 (2017).
[Crossref]

Zu, P.

L. Chen, C. Chan, R. Menon, P. Balamurali, W. Wong, X. Ang, P. Hu, M. Shaillender, B. Neu, P. Zu, Z. Tou, C. Poh, and K. Leong, “Fabry–Perot fiber-optic immunosensor based on suspended layer-by-layer (chitosan/polystyrene sulfonate) membrane,” Sens. Actuators, B 188, 185–192 (2013).
[Crossref]

Zubia, J.

O. Arrizabalaga, J. Velasco, J. Zubia, I. S. de Ocáriz, and J. Villatoro, “Miniature interferometric humidity sensor based on an off-center polymer cap onto optical fiber facet,” Sens. Actuators, B 297, 126700 (2019).
[Crossref]

Zuchowska, A.

E. Jastrzebska, A. Zuchowska, S. Flis, P. Sokolowska, M. Bulka, A. Dybko, and Z. Brzozka, “Biological characterization of the modified poly (dimethylsiloxane) surfaces based on cell attachment and toxicity assays,” Biomicrofluidics 12(4), 044105 (2018).
[Crossref]

Am. J. Respir. Crit. Care Med. (1)

L. Escamilla, R. Mancilla, W. Glender, and L.-M. López-Marín, “Mycobacterium fortuitum glycolipids for the serodiagnosis of pulmonary tuberculosis,” Am. J. Respir. Crit. Care Med. 154(6), 1864–1867 (1996).
[Crossref]

Analyst (1)

X. Tan, M. K. Khaing Oo, Y. Gong, Y. Li, H. Zhu, and X. Fan, “Glass capillary based microfluidic elisa for rapid diagnostics,” Analyst 142(13), 2378–2385 (2017).
[Crossref]

Appl. Phys. Lett. (1)

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Biomaterials (1)

T. Goda, T. Konno, M. Takai, T. Moro, and K. Ishihara, “Biomimetic phosphorylcholine polymer grafting from polydimethylsiloxane surface using photo-induced polymerization,” Biomaterials 27(30), 5151–5160 (2006).
[Crossref]

Biomed. Microdevices (1)

F. Hou, Q. Zhang, J. Yang, X. Li, X. Yang, S. Wang, and Z. Cheng, “Development of a microplate reader compatible microfluidic chip for ELISA,” Biomed. Microdevices 14(4), 729–737 (2012).
[Crossref]

Biomicrofluidics (2)

J. Friend and L. Yeo, “Fabrication of microfluidic devices using polydimethylsiloxane,” Biomicrofluidics 4(2), 026502 (2010).
[Crossref]

E. Jastrzebska, A. Zuchowska, S. Flis, P. Sokolowska, M. Bulka, A. Dybko, and Z. Brzozka, “Biological characterization of the modified poly (dimethylsiloxane) surfaces based on cell attachment and toxicity assays,” Biomicrofluidics 12(4), 044105 (2018).
[Crossref]

Biosens. Bioelectron. (3)

R. B. Queirós, S. Silva, J. Noronha, O. Frazão, P. Jorge, G. Aguilar, P. Marques, and M. G. F. Sales, “Microcystin-lr detection in water by the Fabry–Pérot interferometer using an optical fibre coated with a sol–gel imprinted sensing membrane,” Biosens. Bioelectron. 26(9), 3932–3937 (2011).
[Crossref]

K. Wysokiński, D. Budnicki, J. Fidelus, Ł. Szostkiewicz, Ł. Ostrowski, M. Murawski, M. Staniszewski, M. Staniszewska, M. Napierała, and T. Nasiłowski, “Dual-core all-fiber integrated immunosensor for detection of protein antigens,” Biosens. Bioelectron. 114, 22–29 (2018).
[Crossref]

R. Bruck, E. Melnik, P. Muellner, R. Hainberger, and M. Lämmerhofer, “Integrated polymer-based Mach-Zehnder interferometer label-free streptavidin biosensor compatible with injection molding,” Biosens. Bioelectron. 26(9), 3832–3837 (2011).
[Crossref]

Cold Spring Harb Protoc. (1)

T. Kohl and C. Ascoli, “Protocol: Indirect Immunometric ELISA,” Cold Spring Harb Protoc. 125, 1128–1129 (2003).

FEMS Immunol. Med. Microbiol. (1)

L. M. López-Marín, E. Segura, C. Hermida-Escobedo, A. Lemassu, and M. C. Salinas-Carmona, “6, 6’-dimycoloyl trehalose from a rapidly growing mycobacterium: an alternative antigen for tuberculosis serodiagnosis,” FEMS Immunol. Med. Microbiol. 36(1-2), 47–54 (2003).
[Crossref]

IEEE Photonics J. (1)

X. Tan, Y. Geng, X. Li, Y. Deng, Z. Yin, and R. Gao, “UV-curable polymer microhemisphere-based fiber-optic Fabry–Perot interferometer for simultaneous measurement of refractive index and temperature,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (2)

X.-Y. Zhang, Y.-S. Yu, C.-C. Zhu, C. Chen, R. Yang, Y. Xue, Q.-D. Chen, and H.-B. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

X.-Y. Zhang, Y.-S. Yu, C.-C. Zhu, C. Chen, R. Yang, Y. Xue, Q.-D. Chen, and H.-B. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

J. Biomed. Opt. (1)

S. Liu, Z. Deng, J. Li, J. Wang, N. Huang, R. Cui, Q. Zhang, J. Mei, W. Zhou, C. Zhang, Q. Ye, and J. Tian, “Measurement of the refractive index of whole blood and its components for a continuous spectral region,” J. Biomed. Opt. 24(3), 1–5 (2019).
[Crossref]

J. Lab. Autom. (1)

K. F. Lei, “Microfluidic Systems for Diagnostic Applications: A Review,” J. Lab. Autom. 17(5), 330–347 (2012).
[Crossref]

Microelectron. Eng. (1)

S. Agrawal, K. Paknikar, and D. Bodas, “Development of immunosensor using magnetic nanoparticles and circular microchannels in PDMS,” Microelectron. Eng. 115, 66–69 (2014).
[Crossref]

Nanotechnology (1)

Y.-T. Tseng, Y.-J. Chuang, Y.-C. Wu, C.-S. Yang, M.-C. Wang, and F.-G. Tseng, “A gold-nanoparticle-enhanced immune sensor based on fiber optic interferometry,” Nanotechnology 19(34), 345501 (2008).
[Crossref]

Opt. Eng. (1)

M. Li, Y. Liu, S. Qu, and Y. Li, “Fiber-optic sensor tip for measuring temperature and liquid refractive index,” Opt. Eng. 53(11), 116110 (2014).
[Crossref]

Opt. Express (2)

RSC Adv. (1)

B. E. Schubert and D. Floreano, “Variable stiffness material based on rigid low-melting-point-alloy microstructures embedded in soft poly (dimethylsiloxane) (PDMS),” RSC Adv. 3(46), 24671–24679 (2013).
[Crossref]

Sens. Actuators, A (1)

A. Guermat, A. Guessoum, N.-E. Demagh, M. Zaboub, and Z. Bouhafs, “Fibre-optic temperature and pressure sensor based on a deformable concave micro-mirror,” Sens. Actuators, A 270, 205–213 (2018).
[Crossref]

Sens. Actuators, B (4)

O. Arrizabalaga, J. Velasco, J. Zubia, I. S. de Ocáriz, and J. Villatoro, “Miniature interferometric humidity sensor based on an off-center polymer cap onto optical fiber facet,” Sens. Actuators, B 297, 126700 (2019).
[Crossref]

L. Chen, C. Chan, R. Menon, P. Balamurali, W. Wong, X. Ang, P. Hu, M. Shaillender, B. Neu, P. Zu, Z. Tou, C. Poh, and K. Leong, “Fabry–Perot fiber-optic immunosensor based on suspended layer-by-layer (chitosan/polystyrene sulfonate) membrane,” Sens. Actuators, B 188, 185–192 (2013).
[Crossref]

D. Bodas and C. Khan-Malek, “Hydrophilization and hydrophobic recovery of PDMS by oxygen plasma and chemical treatment-an sem investigation,” Sens. Actuators, B 123(1), 368–373 (2007).
[Crossref]

F. Tian, J. Lyu, J. Shi, F. Tan, and M. Yang, “A polymeric microfluidic device integrated with nanoporous alumina membranes for simultaneous detection of multiple foodborne pathogens,” Sens. Actuators, B 225, 312–318 (2016).
[Crossref]

Soft Matter (4)

J.-H. Seo, T. Shibayama, M. Takai, and K. Ishihara, “Quick and simple modification of a poly (dimethylsiloxane) surface by optimized molecular design of the anti-biofouling phospholipid copolymer,” Soft Matter 7(6), 2968–2976 (2011).
[Crossref]

K. Jiang, P. C. Thomas, S. P. Forry, D. L. DeVoe, and S. R. Raghavan, “Microfluidic synthesis of monodisperse PDMS microbeads as discrete oxygen sensors,” Soft Matter 8(4), 923–926 (2012).
[Crossref]

C. Badre, J. P. Chapelab, and S. Yang, “Selective dry and reversible transfer-printing of nanoparticles on top of PDMS wrinkles,” Soft Matter 7(21), 9886–9889 (2011).
[Crossref]

F. Gaudiiere, I. Masson, S. Morin-Grognet, O. Thoumire, J.-P. Vannier, H. Atmani, G. Ladama, and B. Labat, “Mechano-chemical control of cell behaviour by elastomer templates coated with biomimetic Layer-by-Layer nanofilms,” Soft Matter 8(32), 8327–8337 (2012).
[Crossref]

Other (6)

K. Menghrajani, “Fibre-optic Fabry–Perot sensors: an introduction,” (2018).

J.-F. Hu and C.-P. Yu, “Microlens-based fiber Fabry-Pérot interferometer for the measurement of the concentration of sugar solution,” in 2014 OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology, (IEEE, 2014), pp. 821–822.

J. N. Patel, B. L. Gray, B. Kaminska, and B. D. Gates, “Flexible glucose sensor utilizing multilayer pdms process,” in 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (IEEE, 2008), pp. 5749–5752.

D. L. Nelson, A. L. Lehninger, and M. M. Cox, Lehninger Principles of Biochemistry (Macmillan, 2008).

H. Li, L. Lin, and S. Xie, “Refractive index of human whole blood with different types in the visible and near-infrared ranges,” in Laser-Tissue Interaction XI: Photochemical, Photothermal, and Photomechanical, vol. 3914 (International Society for Optics and Photonics, 2000), pp. 517–521.

D. C. Company, “Sylgard 184 silicone elastomer,” (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Image (a) and schematic representation (b) of the fabricated fiber optic sensor. The end-cap at the tip of the fiber forms a Fabry-Pérot interferometer. The dashed blue lines depict the core and the cladding of the optical fiber.
Fig. 2.
Fig. 2. ELISA results for antibody capture by the mycobacterial lipid antigen deposited onto PDMS. Results are shown for control, Pre-immune $(PS)$ and specific antibody-containing Hyper-immune $(HS)$ sera from lipid-immunized rabbits. (a) Results for $64(\mu g/ 100\mu L)$ of mycobacterial lipid antigens deposited onto PDMS at 2-fold serial dilution of sera ($1:100$ to $1:12800(\mu L/ \mu L)$). (b) Results for lipid antigens deposited at increased concentrations ($0$-$64(\mu g / 100 \mu L)$), keeping a serum dilution of $1:400(\mu L/\mu L)$. Each bar represents the mean OD $\pm$ the standard errors from triplicate measurements.
Fig. 3.
Fig. 3. Procedure for functionalization of the FFPI sensor and for direct immunoassay tests (see text for details).
Fig. 4.
Fig. 4. Interference patterns obtained during the end-cap deposition on the tips of single-mode fibers. The shadows on the curves represent the standard deviation from three different fabricated sensors. The images show the fiber tip during immersion, after extraction from the PDMS, and at the initial and final moments of the curing process (see text for details).
Fig. 5.
Fig. 5. (a) Spectral response of the fabricated end-capped sensor at different stages of the immunoassay: functionalization with antigenic lipids and immersion in Pre-immune and Hype-immune sera. The dashed and the continuous lines represent the first and last acquired interference pattern, respectively. (b) Wavelength shift ($\Delta \lambda$) during detection of antigen-antibody binding on PDMS. Curves A, B and C show the performance of untreated (i.e., without the lipid antigen) sensors during incubation in PBS (T=37 ${}^\circ$C) (A), control $(PS)$ (B) and specific antibody-containing Hyper-immune $(HS)$ (C) sera from lipid-immunized rabbits ($1 : 400(\mu L/ \mu L)$). Curves D and E were obtained with functionalized sensors immersed in $PS$ (D) and $HS$ (E) sera (see text for details). The shadows on the curves represent the standard deviation from triplicate measurements.

Tables (1)

Tables Icon

Table 1. Wavelength shifts ( Δ λ ) achieved for the different immunoassays during incubation

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I R = r 1 2 + 2 r 1 r 2 cos ( ϕ ) + r 2 2 1 + 2 r 1 r 2 cos ( ϕ ) + r 1 2 r 2 2
ϕ = 4 π n 1 L 0 λ
Δ λ = λ ( n 1 + Δ L ) ( L 0 + Δ n ) n 1 L 0
Δ L = L b i o + ( α L Δ T L 0 )
Δ n = n b i o + ( α n Δ T n 1 )
Δ λ = 3.04 n m + ( 46.38 x 10 3 ) L b i o + ( 1.1 x 10 6 ) n b i o