Abstract

The early detection of microvascular changes in cancer diagnosis is needed in the clinic. A change in the vascular bifurcation density is a biomarker for the sprouting activity. Here, Optical-Resolution PhotoAcoustic Microscopy is used for quantitative vascular bifurcation mapping in 2D after the creation of Virtual Tubes out of Bifurcations. In stacks of OR-PAM images of the hemoglobin distribution, bifurcations become tubes and are selected by the 3D tubeness filter. These fast analyses will be compared to a classical approach and are easier to implement for functional analysis of the vascular bifurcation density in healthy and diseased tissues.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multi-parametric quantitative microvascular imaging with optical-resolution photoacoustic microscopy in vivo

Zhenyuan Yang, Jianhua Chen, Junjie Yao, Riqiang Lin, Jing Meng, Chengbo Liu, Jinhua Yang, Xiang Li, Lihong Wang, and Liang Song
Opt. Express 22(2) 1500-1511 (2014)

Photoacoustic microscopy: a potential new tool for evaluation of angiogenesis inhibitor

Sung-Liang Chen, Joseph Burnett, Duxin Sun, Xunbin Wei, Zhixing Xie, and Xueding Wang
Biomed. Opt. Express 4(11) 2657-2666 (2013)

Semi-anthropomorphic photoacoustic breast phantom

Maura Dantuma, Rianne van Dommelen, and Srirang Manohar
Biomed. Opt. Express 10(11) 5921-5939 (2019)

References

  • View by:
  • |
  • |
  • |

  1. I. Yamaga, N. Kawaguchi-Sakita, Y. Asao, Y. Matsumoto, A. Yoshikawa, T. Fukui, M. Takada, M. Kataoka, M. Kawashima, E. Fakhrejahani, S. Kanao, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, H. Haga, K. Togashi, T. Shiina, and M. Toi, “Vascular branching point counts using photoacoustic imaging in the superficial layer of the breast: A potential biomarker for breast cancer,” Photoacoustics 11(June), 6–13 (2018).
    [Crossref]
  2. V. Ntziachristos and D. Razansky, “Molecular Imaging by Means of Multispectral Optoacoustic Tomography (MSOT),” Chem. Rev. 110(5), 2783–2794 (2010).
    [Crossref]
  3. P. De Bonis, C. Anile, A. Pompucci, A. Fiorentino, M. Balducci, S. Chiesa, L. Lauriola, G. Maira, and A. Mangiola, “The influence of surgery on recurrence pattern of glioblastoma,” Clin. Neurol. Neurosurg. 115(1), 37–43 (2013).
    [Crossref]
  4. A. L. Bendinger, C. Glowa, J. Peter, and C. P. Karger, “Photoacoustic imaging to assess pixel-based sO2 distributions in experimental prostate tumors,” J. Biomed. Opt. 23(03), 1 (2018).
    [Crossref]
  5. E. I. Galanzha and V. P. Zharov, “In vivo photoacoustic and photothermal cytometry for monitoring multiple blood rheology parameters,” Cytometry, Part A 79A(10), 746–757 (2011).
    [Crossref]
  6. T. Jin, H. Guo, L. Yao, H. Xie, H. Jiang, and L. Xi, “Portable optical-resolution photoacoustic microscopy for volumetric imaging of multiscale organisms,” Journal of Biophotonics (November 1, 2017).
  7. J. Yao and L. V. Wang, “Sensitivity of photoacoustic microscopy,” Photoacoustics 2(2), 87–101 (2014).
    [Crossref]
  8. K. Park, J. Y. Kim, C. Lee, S. Jeon, G. Lim, and C. Kim, “Handheld photoacoustic microscopy probe,” Sci. Rep. 7(1), 1–15 (2017).
    [Crossref]
  9. A. Hariri, J. Lemaster, J. Wang, A. K. S. Jeevarathinam, D. L. Chao, and J. V. Jokerst, “The characterization of an economic and portable LED-based photoacoustic imaging system to facilitate molecular imaging,” Photoacoustics 9, 10–20 (2018).
    [Crossref]
  10. O. Hugon, B. van der Sanden B, M. Inglebert, O. Jacquin, C. Misbah, and E. Lacot, “Multi-wavelength photo-acoustic microscopy in the frequency domain for simultaneous excitation and detection of dyes,” Biomed. Opt. Express 10(2), 932–943 (2019).
    [Crossref]
  11. S. Soo, S. Choi, B. Lashkari, J. J. Weyers, A. Boyes, S. Soo, S. Choi, B. Lashkari, A. Mandelis, J. J. Weyers, A. Boyes, C. Yang, S. F. Foster, N. Alves-kotzev, and B. Courtney, “Photoacoustic radar : theory and cholesterol imaging,” SPIE BIO, 108781087812(2019).
  12. M. Voorn, U. Exner, and A. Rath, “Computers & Geosciences Multiscale Hessian fracture fi ltering for the enhancement and segmentation of narrow fractures in 3D image data,” Comput. Geosci. 57, 44–53 (2013).
    [Crossref]
  13. E. Zudaire, L. Gambardella, C. Kurcz, and S. Vermeren, “A computational tool for quantitative analysis of vascular networks,” PLoS One 6(11), e27385 (2011).
    [Crossref]
  14. C. Maric-Bilkan, “Sex differences in micro- and macro-vascular complications of diabetes mellitus,” Clin. Sci. 131(9), 833–846 (2017).
    [Crossref]
  15. T. J. MacGillivray, E. Trucco, J. R. Cameron, B. Dhillon, J. G. Houston, and E. J. R. Van Beek, “Retinal imaging as a source of biomarkers for diagnosis, characterization and prognosis of chronic illness or long-term conditions,” Br. J. Radiol. 87(1040), 20130832 (2014).
    [Crossref]
  16. M. Al-Sheikh, N. A. Iafe, N. Phasukkijwatana, S. R. Sadda, and D. Sarraf, “Biomarkers of Neovascular Activity in Age-Related Macular Degeneration Using Optical Coherence Tomography Angiography,” Retina 38(2), 220–230 (2018).
    [Crossref]

2019 (1)

2018 (4)

M. Al-Sheikh, N. A. Iafe, N. Phasukkijwatana, S. R. Sadda, and D. Sarraf, “Biomarkers of Neovascular Activity in Age-Related Macular Degeneration Using Optical Coherence Tomography Angiography,” Retina 38(2), 220–230 (2018).
[Crossref]

I. Yamaga, N. Kawaguchi-Sakita, Y. Asao, Y. Matsumoto, A. Yoshikawa, T. Fukui, M. Takada, M. Kataoka, M. Kawashima, E. Fakhrejahani, S. Kanao, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, H. Haga, K. Togashi, T. Shiina, and M. Toi, “Vascular branching point counts using photoacoustic imaging in the superficial layer of the breast: A potential biomarker for breast cancer,” Photoacoustics 11(June), 6–13 (2018).
[Crossref]

A. L. Bendinger, C. Glowa, J. Peter, and C. P. Karger, “Photoacoustic imaging to assess pixel-based sO2 distributions in experimental prostate tumors,” J. Biomed. Opt. 23(03), 1 (2018).
[Crossref]

A. Hariri, J. Lemaster, J. Wang, A. K. S. Jeevarathinam, D. L. Chao, and J. V. Jokerst, “The characterization of an economic and portable LED-based photoacoustic imaging system to facilitate molecular imaging,” Photoacoustics 9, 10–20 (2018).
[Crossref]

2017 (2)

K. Park, J. Y. Kim, C. Lee, S. Jeon, G. Lim, and C. Kim, “Handheld photoacoustic microscopy probe,” Sci. Rep. 7(1), 1–15 (2017).
[Crossref]

C. Maric-Bilkan, “Sex differences in micro- and macro-vascular complications of diabetes mellitus,” Clin. Sci. 131(9), 833–846 (2017).
[Crossref]

2014 (2)

T. J. MacGillivray, E. Trucco, J. R. Cameron, B. Dhillon, J. G. Houston, and E. J. R. Van Beek, “Retinal imaging as a source of biomarkers for diagnosis, characterization and prognosis of chronic illness or long-term conditions,” Br. J. Radiol. 87(1040), 20130832 (2014).
[Crossref]

J. Yao and L. V. Wang, “Sensitivity of photoacoustic microscopy,” Photoacoustics 2(2), 87–101 (2014).
[Crossref]

2013 (2)

P. De Bonis, C. Anile, A. Pompucci, A. Fiorentino, M. Balducci, S. Chiesa, L. Lauriola, G. Maira, and A. Mangiola, “The influence of surgery on recurrence pattern of glioblastoma,” Clin. Neurol. Neurosurg. 115(1), 37–43 (2013).
[Crossref]

M. Voorn, U. Exner, and A. Rath, “Computers & Geosciences Multiscale Hessian fracture fi ltering for the enhancement and segmentation of narrow fractures in 3D image data,” Comput. Geosci. 57, 44–53 (2013).
[Crossref]

2011 (2)

E. Zudaire, L. Gambardella, C. Kurcz, and S. Vermeren, “A computational tool for quantitative analysis of vascular networks,” PLoS One 6(11), e27385 (2011).
[Crossref]

E. I. Galanzha and V. P. Zharov, “In vivo photoacoustic and photothermal cytometry for monitoring multiple blood rheology parameters,” Cytometry, Part A 79A(10), 746–757 (2011).
[Crossref]

2010 (1)

V. Ntziachristos and D. Razansky, “Molecular Imaging by Means of Multispectral Optoacoustic Tomography (MSOT),” Chem. Rev. 110(5), 2783–2794 (2010).
[Crossref]

Al-Sheikh, M.

M. Al-Sheikh, N. A. Iafe, N. Phasukkijwatana, S. R. Sadda, and D. Sarraf, “Biomarkers of Neovascular Activity in Age-Related Macular Degeneration Using Optical Coherence Tomography Angiography,” Retina 38(2), 220–230 (2018).
[Crossref]

Alves-kotzev, N.

S. Soo, S. Choi, B. Lashkari, J. J. Weyers, A. Boyes, S. Soo, S. Choi, B. Lashkari, A. Mandelis, J. J. Weyers, A. Boyes, C. Yang, S. F. Foster, N. Alves-kotzev, and B. Courtney, “Photoacoustic radar : theory and cholesterol imaging,” SPIE BIO, 108781087812(2019).

Anile, C.

P. De Bonis, C. Anile, A. Pompucci, A. Fiorentino, M. Balducci, S. Chiesa, L. Lauriola, G. Maira, and A. Mangiola, “The influence of surgery on recurrence pattern of glioblastoma,” Clin. Neurol. Neurosurg. 115(1), 37–43 (2013).
[Crossref]

Asao, Y.

I. Yamaga, N. Kawaguchi-Sakita, Y. Asao, Y. Matsumoto, A. Yoshikawa, T. Fukui, M. Takada, M. Kataoka, M. Kawashima, E. Fakhrejahani, S. Kanao, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, H. Haga, K. Togashi, T. Shiina, and M. Toi, “Vascular branching point counts using photoacoustic imaging in the superficial layer of the breast: A potential biomarker for breast cancer,” Photoacoustics 11(June), 6–13 (2018).
[Crossref]

Balducci, M.

P. De Bonis, C. Anile, A. Pompucci, A. Fiorentino, M. Balducci, S. Chiesa, L. Lauriola, G. Maira, and A. Mangiola, “The influence of surgery on recurrence pattern of glioblastoma,” Clin. Neurol. Neurosurg. 115(1), 37–43 (2013).
[Crossref]

Bendinger, A. L.

A. L. Bendinger, C. Glowa, J. Peter, and C. P. Karger, “Photoacoustic imaging to assess pixel-based sO2 distributions in experimental prostate tumors,” J. Biomed. Opt. 23(03), 1 (2018).
[Crossref]

Boyes, A.

S. Soo, S. Choi, B. Lashkari, J. J. Weyers, A. Boyes, S. Soo, S. Choi, B. Lashkari, A. Mandelis, J. J. Weyers, A. Boyes, C. Yang, S. F. Foster, N. Alves-kotzev, and B. Courtney, “Photoacoustic radar : theory and cholesterol imaging,” SPIE BIO, 108781087812(2019).

S. Soo, S. Choi, B. Lashkari, J. J. Weyers, A. Boyes, S. Soo, S. Choi, B. Lashkari, A. Mandelis, J. J. Weyers, A. Boyes, C. Yang, S. F. Foster, N. Alves-kotzev, and B. Courtney, “Photoacoustic radar : theory and cholesterol imaging,” SPIE BIO, 108781087812(2019).

Cameron, J. R.

T. J. MacGillivray, E. Trucco, J. R. Cameron, B. Dhillon, J. G. Houston, and E. J. R. Van Beek, “Retinal imaging as a source of biomarkers for diagnosis, characterization and prognosis of chronic illness or long-term conditions,” Br. J. Radiol. 87(1040), 20130832 (2014).
[Crossref]

Chao, D. L.

A. Hariri, J. Lemaster, J. Wang, A. K. S. Jeevarathinam, D. L. Chao, and J. V. Jokerst, “The characterization of an economic and portable LED-based photoacoustic imaging system to facilitate molecular imaging,” Photoacoustics 9, 10–20 (2018).
[Crossref]

Chiesa, S.

P. De Bonis, C. Anile, A. Pompucci, A. Fiorentino, M. Balducci, S. Chiesa, L. Lauriola, G. Maira, and A. Mangiola, “The influence of surgery on recurrence pattern of glioblastoma,” Clin. Neurol. Neurosurg. 115(1), 37–43 (2013).
[Crossref]

Choi, S.

S. Soo, S. Choi, B. Lashkari, J. J. Weyers, A. Boyes, S. Soo, S. Choi, B. Lashkari, A. Mandelis, J. J. Weyers, A. Boyes, C. Yang, S. F. Foster, N. Alves-kotzev, and B. Courtney, “Photoacoustic radar : theory and cholesterol imaging,” SPIE BIO, 108781087812(2019).

S. Soo, S. Choi, B. Lashkari, J. J. Weyers, A. Boyes, S. Soo, S. Choi, B. Lashkari, A. Mandelis, J. J. Weyers, A. Boyes, C. Yang, S. F. Foster, N. Alves-kotzev, and B. Courtney, “Photoacoustic radar : theory and cholesterol imaging,” SPIE BIO, 108781087812(2019).

Courtney, B.

S. Soo, S. Choi, B. Lashkari, J. J. Weyers, A. Boyes, S. Soo, S. Choi, B. Lashkari, A. Mandelis, J. J. Weyers, A. Boyes, C. Yang, S. F. Foster, N. Alves-kotzev, and B. Courtney, “Photoacoustic radar : theory and cholesterol imaging,” SPIE BIO, 108781087812(2019).

De Bonis, P.

P. De Bonis, C. Anile, A. Pompucci, A. Fiorentino, M. Balducci, S. Chiesa, L. Lauriola, G. Maira, and A. Mangiola, “The influence of surgery on recurrence pattern of glioblastoma,” Clin. Neurol. Neurosurg. 115(1), 37–43 (2013).
[Crossref]

Dhillon, B.

T. J. MacGillivray, E. Trucco, J. R. Cameron, B. Dhillon, J. G. Houston, and E. J. R. Van Beek, “Retinal imaging as a source of biomarkers for diagnosis, characterization and prognosis of chronic illness or long-term conditions,” Br. J. Radiol. 87(1040), 20130832 (2014).
[Crossref]

Exner, U.

M. Voorn, U. Exner, and A. Rath, “Computers & Geosciences Multiscale Hessian fracture fi ltering for the enhancement and segmentation of narrow fractures in 3D image data,” Comput. Geosci. 57, 44–53 (2013).
[Crossref]

Fakhrejahani, E.

I. Yamaga, N. Kawaguchi-Sakita, Y. Asao, Y. Matsumoto, A. Yoshikawa, T. Fukui, M. Takada, M. Kataoka, M. Kawashima, E. Fakhrejahani, S. Kanao, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, H. Haga, K. Togashi, T. Shiina, and M. Toi, “Vascular branching point counts using photoacoustic imaging in the superficial layer of the breast: A potential biomarker for breast cancer,” Photoacoustics 11(June), 6–13 (2018).
[Crossref]

Fiorentino, A.

P. De Bonis, C. Anile, A. Pompucci, A. Fiorentino, M. Balducci, S. Chiesa, L. Lauriola, G. Maira, and A. Mangiola, “The influence of surgery on recurrence pattern of glioblastoma,” Clin. Neurol. Neurosurg. 115(1), 37–43 (2013).
[Crossref]

Foster, S. F.

S. Soo, S. Choi, B. Lashkari, J. J. Weyers, A. Boyes, S. Soo, S. Choi, B. Lashkari, A. Mandelis, J. J. Weyers, A. Boyes, C. Yang, S. F. Foster, N. Alves-kotzev, and B. Courtney, “Photoacoustic radar : theory and cholesterol imaging,” SPIE BIO, 108781087812(2019).

Fukui, T.

I. Yamaga, N. Kawaguchi-Sakita, Y. Asao, Y. Matsumoto, A. Yoshikawa, T. Fukui, M. Takada, M. Kataoka, M. Kawashima, E. Fakhrejahani, S. Kanao, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, H. Haga, K. Togashi, T. Shiina, and M. Toi, “Vascular branching point counts using photoacoustic imaging in the superficial layer of the breast: A potential biomarker for breast cancer,” Photoacoustics 11(June), 6–13 (2018).
[Crossref]

Galanzha, E. I.

E. I. Galanzha and V. P. Zharov, “In vivo photoacoustic and photothermal cytometry for monitoring multiple blood rheology parameters,” Cytometry, Part A 79A(10), 746–757 (2011).
[Crossref]

Gambardella, L.

E. Zudaire, L. Gambardella, C. Kurcz, and S. Vermeren, “A computational tool for quantitative analysis of vascular networks,” PLoS One 6(11), e27385 (2011).
[Crossref]

Glowa, C.

A. L. Bendinger, C. Glowa, J. Peter, and C. P. Karger, “Photoacoustic imaging to assess pixel-based sO2 distributions in experimental prostate tumors,” J. Biomed. Opt. 23(03), 1 (2018).
[Crossref]

Guo, H.

T. Jin, H. Guo, L. Yao, H. Xie, H. Jiang, and L. Xi, “Portable optical-resolution photoacoustic microscopy for volumetric imaging of multiscale organisms,” Journal of Biophotonics (November 1, 2017).

Haga, H.

I. Yamaga, N. Kawaguchi-Sakita, Y. Asao, Y. Matsumoto, A. Yoshikawa, T. Fukui, M. Takada, M. Kataoka, M. Kawashima, E. Fakhrejahani, S. Kanao, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, H. Haga, K. Togashi, T. Shiina, and M. Toi, “Vascular branching point counts using photoacoustic imaging in the superficial layer of the breast: A potential biomarker for breast cancer,” Photoacoustics 11(June), 6–13 (2018).
[Crossref]

Hariri, A.

A. Hariri, J. Lemaster, J. Wang, A. K. S. Jeevarathinam, D. L. Chao, and J. V. Jokerst, “The characterization of an economic and portable LED-based photoacoustic imaging system to facilitate molecular imaging,” Photoacoustics 9, 10–20 (2018).
[Crossref]

Houston, J. G.

T. J. MacGillivray, E. Trucco, J. R. Cameron, B. Dhillon, J. G. Houston, and E. J. R. Van Beek, “Retinal imaging as a source of biomarkers for diagnosis, characterization and prognosis of chronic illness or long-term conditions,” Br. J. Radiol. 87(1040), 20130832 (2014).
[Crossref]

Hugon, O.

Iafe, N. A.

M. Al-Sheikh, N. A. Iafe, N. Phasukkijwatana, S. R. Sadda, and D. Sarraf, “Biomarkers of Neovascular Activity in Age-Related Macular Degeneration Using Optical Coherence Tomography Angiography,” Retina 38(2), 220–230 (2018).
[Crossref]

Inglebert, M.

Jacquin, O.

Jeevarathinam, A. K. S.

A. Hariri, J. Lemaster, J. Wang, A. K. S. Jeevarathinam, D. L. Chao, and J. V. Jokerst, “The characterization of an economic and portable LED-based photoacoustic imaging system to facilitate molecular imaging,” Photoacoustics 9, 10–20 (2018).
[Crossref]

Jeon, S.

K. Park, J. Y. Kim, C. Lee, S. Jeon, G. Lim, and C. Kim, “Handheld photoacoustic microscopy probe,” Sci. Rep. 7(1), 1–15 (2017).
[Crossref]

Jiang, H.

T. Jin, H. Guo, L. Yao, H. Xie, H. Jiang, and L. Xi, “Portable optical-resolution photoacoustic microscopy for volumetric imaging of multiscale organisms,” Journal of Biophotonics (November 1, 2017).

Jin, T.

T. Jin, H. Guo, L. Yao, H. Xie, H. Jiang, and L. Xi, “Portable optical-resolution photoacoustic microscopy for volumetric imaging of multiscale organisms,” Journal of Biophotonics (November 1, 2017).

Jokerst, J. V.

A. Hariri, J. Lemaster, J. Wang, A. K. S. Jeevarathinam, D. L. Chao, and J. V. Jokerst, “The characterization of an economic and portable LED-based photoacoustic imaging system to facilitate molecular imaging,” Photoacoustics 9, 10–20 (2018).
[Crossref]

Kanao, S.

I. Yamaga, N. Kawaguchi-Sakita, Y. Asao, Y. Matsumoto, A. Yoshikawa, T. Fukui, M. Takada, M. Kataoka, M. Kawashima, E. Fakhrejahani, S. Kanao, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, H. Haga, K. Togashi, T. Shiina, and M. Toi, “Vascular branching point counts using photoacoustic imaging in the superficial layer of the breast: A potential biomarker for breast cancer,” Photoacoustics 11(June), 6–13 (2018).
[Crossref]

Karger, C. P.

A. L. Bendinger, C. Glowa, J. Peter, and C. P. Karger, “Photoacoustic imaging to assess pixel-based sO2 distributions in experimental prostate tumors,” J. Biomed. Opt. 23(03), 1 (2018).
[Crossref]

Kataoka, M.

I. Yamaga, N. Kawaguchi-Sakita, Y. Asao, Y. Matsumoto, A. Yoshikawa, T. Fukui, M. Takada, M. Kataoka, M. Kawashima, E. Fakhrejahani, S. Kanao, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, H. Haga, K. Togashi, T. Shiina, and M. Toi, “Vascular branching point counts using photoacoustic imaging in the superficial layer of the breast: A potential biomarker for breast cancer,” Photoacoustics 11(June), 6–13 (2018).
[Crossref]

Kawaguchi-Sakita, N.

I. Yamaga, N. Kawaguchi-Sakita, Y. Asao, Y. Matsumoto, A. Yoshikawa, T. Fukui, M. Takada, M. Kataoka, M. Kawashima, E. Fakhrejahani, S. Kanao, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, H. Haga, K. Togashi, T. Shiina, and M. Toi, “Vascular branching point counts using photoacoustic imaging in the superficial layer of the breast: A potential biomarker for breast cancer,” Photoacoustics 11(June), 6–13 (2018).
[Crossref]

Kawashima, M.

I. Yamaga, N. Kawaguchi-Sakita, Y. Asao, Y. Matsumoto, A. Yoshikawa, T. Fukui, M. Takada, M. Kataoka, M. Kawashima, E. Fakhrejahani, S. Kanao, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, H. Haga, K. Togashi, T. Shiina, and M. Toi, “Vascular branching point counts using photoacoustic imaging in the superficial layer of the breast: A potential biomarker for breast cancer,” Photoacoustics 11(June), 6–13 (2018).
[Crossref]

Kim, C.

K. Park, J. Y. Kim, C. Lee, S. Jeon, G. Lim, and C. Kim, “Handheld photoacoustic microscopy probe,” Sci. Rep. 7(1), 1–15 (2017).
[Crossref]

Kim, J. Y.

K. Park, J. Y. Kim, C. Lee, S. Jeon, G. Lim, and C. Kim, “Handheld photoacoustic microscopy probe,” Sci. Rep. 7(1), 1–15 (2017).
[Crossref]

Kurcz, C.

E. Zudaire, L. Gambardella, C. Kurcz, and S. Vermeren, “A computational tool for quantitative analysis of vascular networks,” PLoS One 6(11), e27385 (2011).
[Crossref]

Lacot, E.

Lashkari, B.

S. Soo, S. Choi, B. Lashkari, J. J. Weyers, A. Boyes, S. Soo, S. Choi, B. Lashkari, A. Mandelis, J. J. Weyers, A. Boyes, C. Yang, S. F. Foster, N. Alves-kotzev, and B. Courtney, “Photoacoustic radar : theory and cholesterol imaging,” SPIE BIO, 108781087812(2019).

S. Soo, S. Choi, B. Lashkari, J. J. Weyers, A. Boyes, S. Soo, S. Choi, B. Lashkari, A. Mandelis, J. J. Weyers, A. Boyes, C. Yang, S. F. Foster, N. Alves-kotzev, and B. Courtney, “Photoacoustic radar : theory and cholesterol imaging,” SPIE BIO, 108781087812(2019).

Lauriola, L.

P. De Bonis, C. Anile, A. Pompucci, A. Fiorentino, M. Balducci, S. Chiesa, L. Lauriola, G. Maira, and A. Mangiola, “The influence of surgery on recurrence pattern of glioblastoma,” Clin. Neurol. Neurosurg. 115(1), 37–43 (2013).
[Crossref]

Lee, C.

K. Park, J. Y. Kim, C. Lee, S. Jeon, G. Lim, and C. Kim, “Handheld photoacoustic microscopy probe,” Sci. Rep. 7(1), 1–15 (2017).
[Crossref]

Lemaster, J.

A. Hariri, J. Lemaster, J. Wang, A. K. S. Jeevarathinam, D. L. Chao, and J. V. Jokerst, “The characterization of an economic and portable LED-based photoacoustic imaging system to facilitate molecular imaging,” Photoacoustics 9, 10–20 (2018).
[Crossref]

Lim, G.

K. Park, J. Y. Kim, C. Lee, S. Jeon, G. Lim, and C. Kim, “Handheld photoacoustic microscopy probe,” Sci. Rep. 7(1), 1–15 (2017).
[Crossref]

MacGillivray, T. J.

T. J. MacGillivray, E. Trucco, J. R. Cameron, B. Dhillon, J. G. Houston, and E. J. R. Van Beek, “Retinal imaging as a source of biomarkers for diagnosis, characterization and prognosis of chronic illness or long-term conditions,” Br. J. Radiol. 87(1040), 20130832 (2014).
[Crossref]

Maira, G.

P. De Bonis, C. Anile, A. Pompucci, A. Fiorentino, M. Balducci, S. Chiesa, L. Lauriola, G. Maira, and A. Mangiola, “The influence of surgery on recurrence pattern of glioblastoma,” Clin. Neurol. Neurosurg. 115(1), 37–43 (2013).
[Crossref]

Mandelis, A.

S. Soo, S. Choi, B. Lashkari, J. J. Weyers, A. Boyes, S. Soo, S. Choi, B. Lashkari, A. Mandelis, J. J. Weyers, A. Boyes, C. Yang, S. F. Foster, N. Alves-kotzev, and B. Courtney, “Photoacoustic radar : theory and cholesterol imaging,” SPIE BIO, 108781087812(2019).

Mangiola, A.

P. De Bonis, C. Anile, A. Pompucci, A. Fiorentino, M. Balducci, S. Chiesa, L. Lauriola, G. Maira, and A. Mangiola, “The influence of surgery on recurrence pattern of glioblastoma,” Clin. Neurol. Neurosurg. 115(1), 37–43 (2013).
[Crossref]

Maric-Bilkan, C.

C. Maric-Bilkan, “Sex differences in micro- and macro-vascular complications of diabetes mellitus,” Clin. Sci. 131(9), 833–846 (2017).
[Crossref]

Matsumoto, Y.

I. Yamaga, N. Kawaguchi-Sakita, Y. Asao, Y. Matsumoto, A. Yoshikawa, T. Fukui, M. Takada, M. Kataoka, M. Kawashima, E. Fakhrejahani, S. Kanao, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, H. Haga, K. Togashi, T. Shiina, and M. Toi, “Vascular branching point counts using photoacoustic imaging in the superficial layer of the breast: A potential biomarker for breast cancer,” Photoacoustics 11(June), 6–13 (2018).
[Crossref]

Misbah, C.

Nakayama, Y.

I. Yamaga, N. Kawaguchi-Sakita, Y. Asao, Y. Matsumoto, A. Yoshikawa, T. Fukui, M. Takada, M. Kataoka, M. Kawashima, E. Fakhrejahani, S. Kanao, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, H. Haga, K. Togashi, T. Shiina, and M. Toi, “Vascular branching point counts using photoacoustic imaging in the superficial layer of the breast: A potential biomarker for breast cancer,” Photoacoustics 11(June), 6–13 (2018).
[Crossref]

Ntziachristos, V.

V. Ntziachristos and D. Razansky, “Molecular Imaging by Means of Multispectral Optoacoustic Tomography (MSOT),” Chem. Rev. 110(5), 2783–2794 (2010).
[Crossref]

Park, K.

K. Park, J. Y. Kim, C. Lee, S. Jeon, G. Lim, and C. Kim, “Handheld photoacoustic microscopy probe,” Sci. Rep. 7(1), 1–15 (2017).
[Crossref]

Peter, J.

A. L. Bendinger, C. Glowa, J. Peter, and C. P. Karger, “Photoacoustic imaging to assess pixel-based sO2 distributions in experimental prostate tumors,” J. Biomed. Opt. 23(03), 1 (2018).
[Crossref]

Phasukkijwatana, N.

M. Al-Sheikh, N. A. Iafe, N. Phasukkijwatana, S. R. Sadda, and D. Sarraf, “Biomarkers of Neovascular Activity in Age-Related Macular Degeneration Using Optical Coherence Tomography Angiography,” Retina 38(2), 220–230 (2018).
[Crossref]

Pompucci, A.

P. De Bonis, C. Anile, A. Pompucci, A. Fiorentino, M. Balducci, S. Chiesa, L. Lauriola, G. Maira, and A. Mangiola, “The influence of surgery on recurrence pattern of glioblastoma,” Clin. Neurol. Neurosurg. 115(1), 37–43 (2013).
[Crossref]

Rath, A.

M. Voorn, U. Exner, and A. Rath, “Computers & Geosciences Multiscale Hessian fracture fi ltering for the enhancement and segmentation of narrow fractures in 3D image data,” Comput. Geosci. 57, 44–53 (2013).
[Crossref]

Razansky, D.

V. Ntziachristos and D. Razansky, “Molecular Imaging by Means of Multispectral Optoacoustic Tomography (MSOT),” Chem. Rev. 110(5), 2783–2794 (2010).
[Crossref]

Sadda, S. R.

M. Al-Sheikh, N. A. Iafe, N. Phasukkijwatana, S. R. Sadda, and D. Sarraf, “Biomarkers of Neovascular Activity in Age-Related Macular Degeneration Using Optical Coherence Tomography Angiography,” Retina 38(2), 220–230 (2018).
[Crossref]

Sakurai, T.

I. Yamaga, N. Kawaguchi-Sakita, Y. Asao, Y. Matsumoto, A. Yoshikawa, T. Fukui, M. Takada, M. Kataoka, M. Kawashima, E. Fakhrejahani, S. Kanao, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, H. Haga, K. Togashi, T. Shiina, and M. Toi, “Vascular branching point counts using photoacoustic imaging in the superficial layer of the breast: A potential biomarker for breast cancer,” Photoacoustics 11(June), 6–13 (2018).
[Crossref]

Sarraf, D.

M. Al-Sheikh, N. A. Iafe, N. Phasukkijwatana, S. R. Sadda, and D. Sarraf, “Biomarkers of Neovascular Activity in Age-Related Macular Degeneration Using Optical Coherence Tomography Angiography,” Retina 38(2), 220–230 (2018).
[Crossref]

Shiina, T.

I. Yamaga, N. Kawaguchi-Sakita, Y. Asao, Y. Matsumoto, A. Yoshikawa, T. Fukui, M. Takada, M. Kataoka, M. Kawashima, E. Fakhrejahani, S. Kanao, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, H. Haga, K. Togashi, T. Shiina, and M. Toi, “Vascular branching point counts using photoacoustic imaging in the superficial layer of the breast: A potential biomarker for breast cancer,” Photoacoustics 11(June), 6–13 (2018).
[Crossref]

Soo, S.

S. Soo, S. Choi, B. Lashkari, J. J. Weyers, A. Boyes, S. Soo, S. Choi, B. Lashkari, A. Mandelis, J. J. Weyers, A. Boyes, C. Yang, S. F. Foster, N. Alves-kotzev, and B. Courtney, “Photoacoustic radar : theory and cholesterol imaging,” SPIE BIO, 108781087812(2019).

S. Soo, S. Choi, B. Lashkari, J. J. Weyers, A. Boyes, S. Soo, S. Choi, B. Lashkari, A. Mandelis, J. J. Weyers, A. Boyes, C. Yang, S. F. Foster, N. Alves-kotzev, and B. Courtney, “Photoacoustic radar : theory and cholesterol imaging,” SPIE BIO, 108781087812(2019).

Takada, M.

I. Yamaga, N. Kawaguchi-Sakita, Y. Asao, Y. Matsumoto, A. Yoshikawa, T. Fukui, M. Takada, M. Kataoka, M. Kawashima, E. Fakhrejahani, S. Kanao, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, H. Haga, K. Togashi, T. Shiina, and M. Toi, “Vascular branching point counts using photoacoustic imaging in the superficial layer of the breast: A potential biomarker for breast cancer,” Photoacoustics 11(June), 6–13 (2018).
[Crossref]

Togashi, K.

I. Yamaga, N. Kawaguchi-Sakita, Y. Asao, Y. Matsumoto, A. Yoshikawa, T. Fukui, M. Takada, M. Kataoka, M. Kawashima, E. Fakhrejahani, S. Kanao, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, H. Haga, K. Togashi, T. Shiina, and M. Toi, “Vascular branching point counts using photoacoustic imaging in the superficial layer of the breast: A potential biomarker for breast cancer,” Photoacoustics 11(June), 6–13 (2018).
[Crossref]

Toi, M.

I. Yamaga, N. Kawaguchi-Sakita, Y. Asao, Y. Matsumoto, A. Yoshikawa, T. Fukui, M. Takada, M. Kataoka, M. Kawashima, E. Fakhrejahani, S. Kanao, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, H. Haga, K. Togashi, T. Shiina, and M. Toi, “Vascular branching point counts using photoacoustic imaging in the superficial layer of the breast: A potential biomarker for breast cancer,” Photoacoustics 11(June), 6–13 (2018).
[Crossref]

Tokiwa, M.

I. Yamaga, N. Kawaguchi-Sakita, Y. Asao, Y. Matsumoto, A. Yoshikawa, T. Fukui, M. Takada, M. Kataoka, M. Kawashima, E. Fakhrejahani, S. Kanao, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, H. Haga, K. Togashi, T. Shiina, and M. Toi, “Vascular branching point counts using photoacoustic imaging in the superficial layer of the breast: A potential biomarker for breast cancer,” Photoacoustics 11(June), 6–13 (2018).
[Crossref]

Torii, M.

I. Yamaga, N. Kawaguchi-Sakita, Y. Asao, Y. Matsumoto, A. Yoshikawa, T. Fukui, M. Takada, M. Kataoka, M. Kawashima, E. Fakhrejahani, S. Kanao, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, H. Haga, K. Togashi, T. Shiina, and M. Toi, “Vascular branching point counts using photoacoustic imaging in the superficial layer of the breast: A potential biomarker for breast cancer,” Photoacoustics 11(June), 6–13 (2018).
[Crossref]

Trucco, E.

T. J. MacGillivray, E. Trucco, J. R. Cameron, B. Dhillon, J. G. Houston, and E. J. R. Van Beek, “Retinal imaging as a source of biomarkers for diagnosis, characterization and prognosis of chronic illness or long-term conditions,” Br. J. Radiol. 87(1040), 20130832 (2014).
[Crossref]

Van Beek, E. J. R.

T. J. MacGillivray, E. Trucco, J. R. Cameron, B. Dhillon, J. G. Houston, and E. J. R. Van Beek, “Retinal imaging as a source of biomarkers for diagnosis, characterization and prognosis of chronic illness or long-term conditions,” Br. J. Radiol. 87(1040), 20130832 (2014).
[Crossref]

van der Sanden B, B.

Vermeren, S.

E. Zudaire, L. Gambardella, C. Kurcz, and S. Vermeren, “A computational tool for quantitative analysis of vascular networks,” PLoS One 6(11), e27385 (2011).
[Crossref]

Voorn, M.

M. Voorn, U. Exner, and A. Rath, “Computers & Geosciences Multiscale Hessian fracture fi ltering for the enhancement and segmentation of narrow fractures in 3D image data,” Comput. Geosci. 57, 44–53 (2013).
[Crossref]

Wang, J.

A. Hariri, J. Lemaster, J. Wang, A. K. S. Jeevarathinam, D. L. Chao, and J. V. Jokerst, “The characterization of an economic and portable LED-based photoacoustic imaging system to facilitate molecular imaging,” Photoacoustics 9, 10–20 (2018).
[Crossref]

Wang, L. V.

J. Yao and L. V. Wang, “Sensitivity of photoacoustic microscopy,” Photoacoustics 2(2), 87–101 (2014).
[Crossref]

Weyers, J. J.

S. Soo, S. Choi, B. Lashkari, J. J. Weyers, A. Boyes, S. Soo, S. Choi, B. Lashkari, A. Mandelis, J. J. Weyers, A. Boyes, C. Yang, S. F. Foster, N. Alves-kotzev, and B. Courtney, “Photoacoustic radar : theory and cholesterol imaging,” SPIE BIO, 108781087812(2019).

S. Soo, S. Choi, B. Lashkari, J. J. Weyers, A. Boyes, S. Soo, S. Choi, B. Lashkari, A. Mandelis, J. J. Weyers, A. Boyes, C. Yang, S. F. Foster, N. Alves-kotzev, and B. Courtney, “Photoacoustic radar : theory and cholesterol imaging,” SPIE BIO, 108781087812(2019).

Xi, L.

T. Jin, H. Guo, L. Yao, H. Xie, H. Jiang, and L. Xi, “Portable optical-resolution photoacoustic microscopy for volumetric imaging of multiscale organisms,” Journal of Biophotonics (November 1, 2017).

Xie, H.

T. Jin, H. Guo, L. Yao, H. Xie, H. Jiang, and L. Xi, “Portable optical-resolution photoacoustic microscopy for volumetric imaging of multiscale organisms,” Journal of Biophotonics (November 1, 2017).

Yagi, T.

I. Yamaga, N. Kawaguchi-Sakita, Y. Asao, Y. Matsumoto, A. Yoshikawa, T. Fukui, M. Takada, M. Kataoka, M. Kawashima, E. Fakhrejahani, S. Kanao, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, H. Haga, K. Togashi, T. Shiina, and M. Toi, “Vascular branching point counts using photoacoustic imaging in the superficial layer of the breast: A potential biomarker for breast cancer,” Photoacoustics 11(June), 6–13 (2018).
[Crossref]

Yamaga, I.

I. Yamaga, N. Kawaguchi-Sakita, Y. Asao, Y. Matsumoto, A. Yoshikawa, T. Fukui, M. Takada, M. Kataoka, M. Kawashima, E. Fakhrejahani, S. Kanao, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, H. Haga, K. Togashi, T. Shiina, and M. Toi, “Vascular branching point counts using photoacoustic imaging in the superficial layer of the breast: A potential biomarker for breast cancer,” Photoacoustics 11(June), 6–13 (2018).
[Crossref]

Yang, C.

S. Soo, S. Choi, B. Lashkari, J. J. Weyers, A. Boyes, S. Soo, S. Choi, B. Lashkari, A. Mandelis, J. J. Weyers, A. Boyes, C. Yang, S. F. Foster, N. Alves-kotzev, and B. Courtney, “Photoacoustic radar : theory and cholesterol imaging,” SPIE BIO, 108781087812(2019).

Yao, J.

J. Yao and L. V. Wang, “Sensitivity of photoacoustic microscopy,” Photoacoustics 2(2), 87–101 (2014).
[Crossref]

Yao, L.

T. Jin, H. Guo, L. Yao, H. Xie, H. Jiang, and L. Xi, “Portable optical-resolution photoacoustic microscopy for volumetric imaging of multiscale organisms,” Journal of Biophotonics (November 1, 2017).

Yoshikawa, A.

I. Yamaga, N. Kawaguchi-Sakita, Y. Asao, Y. Matsumoto, A. Yoshikawa, T. Fukui, M. Takada, M. Kataoka, M. Kawashima, E. Fakhrejahani, S. Kanao, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, H. Haga, K. Togashi, T. Shiina, and M. Toi, “Vascular branching point counts using photoacoustic imaging in the superficial layer of the breast: A potential biomarker for breast cancer,” Photoacoustics 11(June), 6–13 (2018).
[Crossref]

Zharov, V. P.

E. I. Galanzha and V. P. Zharov, “In vivo photoacoustic and photothermal cytometry for monitoring multiple blood rheology parameters,” Cytometry, Part A 79A(10), 746–757 (2011).
[Crossref]

Zudaire, E.

E. Zudaire, L. Gambardella, C. Kurcz, and S. Vermeren, “A computational tool for quantitative analysis of vascular networks,” PLoS One 6(11), e27385 (2011).
[Crossref]

Biomed. Opt. Express (1)

Br. J. Radiol. (1)

T. J. MacGillivray, E. Trucco, J. R. Cameron, B. Dhillon, J. G. Houston, and E. J. R. Van Beek, “Retinal imaging as a source of biomarkers for diagnosis, characterization and prognosis of chronic illness or long-term conditions,” Br. J. Radiol. 87(1040), 20130832 (2014).
[Crossref]

Chem. Rev. (1)

V. Ntziachristos and D. Razansky, “Molecular Imaging by Means of Multispectral Optoacoustic Tomography (MSOT),” Chem. Rev. 110(5), 2783–2794 (2010).
[Crossref]

Clin. Neurol. Neurosurg. (1)

P. De Bonis, C. Anile, A. Pompucci, A. Fiorentino, M. Balducci, S. Chiesa, L. Lauriola, G. Maira, and A. Mangiola, “The influence of surgery on recurrence pattern of glioblastoma,” Clin. Neurol. Neurosurg. 115(1), 37–43 (2013).
[Crossref]

Clin. Sci. (1)

C. Maric-Bilkan, “Sex differences in micro- and macro-vascular complications of diabetes mellitus,” Clin. Sci. 131(9), 833–846 (2017).
[Crossref]

Comput. Geosci. (1)

M. Voorn, U. Exner, and A. Rath, “Computers & Geosciences Multiscale Hessian fracture fi ltering for the enhancement and segmentation of narrow fractures in 3D image data,” Comput. Geosci. 57, 44–53 (2013).
[Crossref]

Cytometry, Part A (1)

E. I. Galanzha and V. P. Zharov, “In vivo photoacoustic and photothermal cytometry for monitoring multiple blood rheology parameters,” Cytometry, Part A 79A(10), 746–757 (2011).
[Crossref]

J. Biomed. Opt. (1)

A. L. Bendinger, C. Glowa, J. Peter, and C. P. Karger, “Photoacoustic imaging to assess pixel-based sO2 distributions in experimental prostate tumors,” J. Biomed. Opt. 23(03), 1 (2018).
[Crossref]

Photoacoustics (3)

J. Yao and L. V. Wang, “Sensitivity of photoacoustic microscopy,” Photoacoustics 2(2), 87–101 (2014).
[Crossref]

A. Hariri, J. Lemaster, J. Wang, A. K. S. Jeevarathinam, D. L. Chao, and J. V. Jokerst, “The characterization of an economic and portable LED-based photoacoustic imaging system to facilitate molecular imaging,” Photoacoustics 9, 10–20 (2018).
[Crossref]

I. Yamaga, N. Kawaguchi-Sakita, Y. Asao, Y. Matsumoto, A. Yoshikawa, T. Fukui, M. Takada, M. Kataoka, M. Kawashima, E. Fakhrejahani, S. Kanao, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, H. Haga, K. Togashi, T. Shiina, and M. Toi, “Vascular branching point counts using photoacoustic imaging in the superficial layer of the breast: A potential biomarker for breast cancer,” Photoacoustics 11(June), 6–13 (2018).
[Crossref]

PLoS One (1)

E. Zudaire, L. Gambardella, C. Kurcz, and S. Vermeren, “A computational tool for quantitative analysis of vascular networks,” PLoS One 6(11), e27385 (2011).
[Crossref]

Retina (1)

M. Al-Sheikh, N. A. Iafe, N. Phasukkijwatana, S. R. Sadda, and D. Sarraf, “Biomarkers of Neovascular Activity in Age-Related Macular Degeneration Using Optical Coherence Tomography Angiography,” Retina 38(2), 220–230 (2018).
[Crossref]

Sci. Rep. (1)

K. Park, J. Y. Kim, C. Lee, S. Jeon, G. Lim, and C. Kim, “Handheld photoacoustic microscopy probe,” Sci. Rep. 7(1), 1–15 (2017).
[Crossref]

Other (2)

S. Soo, S. Choi, B. Lashkari, J. J. Weyers, A. Boyes, S. Soo, S. Choi, B. Lashkari, A. Mandelis, J. J. Weyers, A. Boyes, C. Yang, S. F. Foster, N. Alves-kotzev, and B. Courtney, “Photoacoustic radar : theory and cholesterol imaging,” SPIE BIO, 108781087812(2019).

T. Jin, H. Guo, L. Yao, H. Xie, H. Jiang, and L. Xi, “Portable optical-resolution photoacoustic microscopy for volumetric imaging of multiscale organisms,” Journal of Biophotonics (November 1, 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Steps of the ViTuBi analysis. Virtual tubeness analysis of bifurcations in a vascular network. A) A representative Hb PA image (128 × 128 pixels, 2.46 s per image) in the time series. The scale bar = 50 µm. B) The sum of 250 Hb PA images in time. C) The bifurcation map is generated after applying a tubeness filter with sigma = 2 pixels on the stack of 8 copies of A). Bifurcations become tubes in the virtual 3rd dimension, which is accentuated by the filter that simultaneously exclude the vessel segments between the bifurcations. D) is a composite image of B (green) and C (orange), which highlights the bifurcations in a vascular network (orange dots) without complex imaging processing.
Fig. 2.
Fig. 2. Comparison of ViTuBi with classical analysis. Proof of principle that fast ViTuBi analysis of the RBC density (hematocrit) by OR-PAM can select bifurcations (orange dots) for different vascular networks (green) in the mouse ear with simple imaging processing in A), C), E) and G). For comparison, the number of bifurcations was classically analyzed using “Angiotool” in B), D), F) and H). I) The number of bifurcations (black squares) in 128 × 128 pixels images found with Angiotool (y-axis) was compared to the results of virtual tubeness analysis (x-axis) for 6 different mice (only 4 vascular networks are shown in A) - G)). The linear regression line (dotted black line, slope = 0.76 and r2=0.78) of the results (black squares) was forced to go through zero and the dashed red lines indicate the hypothetical regression line if the number of bifurcations would have been equal for both methods. Linear regression analyses were generated by GraphPad PRISM version 3.02, 2000 (Graphpad Software, Inc).
Fig. 3.
Fig. 3. Minor disadvantages of ViTuBi analysis with a tubeness filter. 3A) Detail of Fig. 2(E) showing curvatures in the white dashed rectangular ROIs that are selected by the tubeness filter (σ = 2 pixels) in the ViTuBi analysis. 3B) These curvatures: C1–C3 have comparable intensities as the bifurcations: B1-B3 after filtering and therefore, they cannot be separated be simply intensity thresholding, see 3C. However, they can be distinguished by their elongated shape. 3C) In the surface plot of 3B) e.g., the intensities of C1 and B1-B3 are comparable.