Abstract

Tumor-free surgical margins are critical in breast-conserving surgery. In up to 38% of the cases, however, patients undergo a second surgery since malignant cells are found at the margins of the excised resection specimen. Thus, advanced imaging tools are needed to ensure clear margins at the time of surgery. The objective of this study was to evaluate a random forest classifier that makes use of parameters derived from point-scanning label-free fluorescence lifetime imaging (FLIm) measurements of breast specimens as a means to diagnose tumor at the resection margins and to enable an intuitive visualization of a probabilistic classifier on tissue specimen. FLIm data from fresh lumpectomy and mastectomy specimens from 18 patients were used in this study. The supervised training was based on a previously developed registration technique between autofluorescence imaging data and cross-sectional histology slides. A pathologist’s histology annotations provide the ground truth to distinguish between adipose, fibrous, and tumor tissue. Current results demonstrate the ability of this approach to classify the tumor with 89% sensitivity and 93% specificity and to rapidly (∼ 20 frames per second) overlay the probabilistic classifier overlaid on excised breast specimens using an intuitive color scheme. Furthermore, we show an iterative imaging refinement that allows surgeons to switch between rapid scans with a customized, low spatial resolution to quickly cover the specimen and slower scans with enhanced resolution (400 μm per point measurement) in suspicious regions where more details are required. In summary, this technique provides high diagnostic prediction accuracy, rapid acquisition, adaptive resolution, nondestructive probing, and facile interpretation of images, thus holding potential for clinical breast imaging based on label-free FLIm.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Volumetric analysis of breast cancer tissues using machine learning and swept-source optical coherence tomography

Ankit Butola, Azeem Ahmad, Vishesh Dubey, Vishal Srivastava, Darakhshan Qaiser, Anurag Srivastava, Paramsivam Senthilkumaran, and Dalip Singh Mehta
Appl. Opt. 58(5) A135-A141 (2019)

Rapid imaging of surgical breast excisions using direct temporal sampling two photon fluorescent lifetime imaging

Michael G. Giacomelli, Yuri Sheikine, Hilde Vardeh, James L. Connolly, and James G. Fujimoto
Biomed. Opt. Express 6(11) 4317-4325 (2015)

Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins

Wes M. Allen, Lixin Chin, Philip Wijesinghe, Rodney W. Kirk, Bruce Latham, David D. Sampson, Christobel M. Saunders, and Brendan F. Kennedy
Biomed. Opt. Express 7(10) 4139-4153 (2016)

References

  • View by:
  • |
  • |
  • |

  1. L. A. Torre, F. Bray, R. L. Siegel, J. Ferlay, J. Lortet-Tieulent, and A. Jemal, “Global cancer statistics, 2012,” Ca-Cancer J. Clin. 65(2), 87–108 (2015).
    [Crossref]
  2. A. H. Mandpe, A. Mikulec, R. K. Jackler, L. H. Pitts, and C. D. Yingling, “Comparison of response amplitude versus stimulation threshold in predicting early postoperative facial nerve function after acoustic neuroma resection,” Am. J. Otol. 19(1), 112–117 (1998).
  3. I. Gage, S. J. Schnitt, A. J. Nixon, B. Silver, A. Recht, S. L. Troyan, T. Eberlein, S. M. Love, R. Gelman, J. R. Harris, and J. L. Connolly, “Pathologic margin involvement and the risk of recurrence in patients treated with breast-conserving therapy,” Cancer 78(9), 1921–1928 (1996).
  4. M. D. Keller, E. Vargis, A. Mahadevan-Jansen, N. de Matos Granja, R. H. Wilson, M. Mycek, and M. C. Kelley, “Development of a spatially offset raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16(7), 077006 (2011).
    [Crossref]
  5. G. Thomas, T.-Q. Nguyen, I. J. Pence, B. Caldwell, M. E. O’Connor, J. Giltnane, M. E. Sanders, A. Grau, I. Meszoely, M. Hooks, M. C. Kelley, and A. Mahadevan-Jansen, “Evaluating feasibility of an automated 3-dimensional scanner using raman spectroscopy for intraoperative breast margin assessment,” Sci. Rep. 7(1), 13548 (2017).
    [Crossref]
  6. S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
    [Crossref]
  7. F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
    [Crossref]
  8. D. Piras, W. Xia, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quantum Electron. 16(4), 730–739 (2010).
    [Crossref]
  9. R. Li, P. Wang, L. Lan, F. P. Lloyd, C. J. Goergen, S. Chen, and J. Cheng, “Assessing breast tumor margin by multispectral photoacoustic tomography,” Biomed. Opt. Express 6(4), 1273–1281 (2015).
    [Crossref]
  10. J. E. Phipps, D. Gorpas, J. Unger, M. Darrow, R. J. Bold, and L. Marcu, “Automated detection of breast cancer in resected specimens with fluorescence lifetime,” Phys. Med. Biol. 63(1), 015003 (2017).
    [Crossref]
  11. V. Sharma, S. Shivalingaiah, Y. Peng, D. Euhus, Z. Gryczynski, and H. Liu, “Auto-fluorescence lifetime and light reflectance spectroscopy for breast cancer diagnosis: potential tools for intraoperative margin detection,” Biomed. Opt. Express 3(8), 1825–1840 (2012).
    [Crossref]
  12. M. D. Keller, S. K. Majumder, M. C. Kelley, I. M. Meszoely, F. I. Boulos, G. M. Olivares, and A. Mahadevan-Jansen, “Autofluorescence and diffuse reflectance spectroscopy and spectral imaging for breast surgical margin analysis,” Lasers Surg. Med. 42(1), 15–23 (2010).
    [Crossref]
  13. B. S. Nichols, C. E. Schindler, J. Q. Brown, L. G. Wilke, C. S. Mulvey, M. S. Krieger, J. Gallagher, J. Geradts, R. A. Greenup, J. A. Von Windheim, and N. Ramanujam, “A quantitative diffuse reflectance imaging (qdri) system for comprehensive surveillance of the morphological landscape in breast tumor margins,” PLoS One 10(6), e0127525–25 (2015).
    [Crossref]
  14. K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
    [Crossref]
  15. B. Maloney, D. McClatchy, B. Pogue, K. Paulsen, W. Wells, and R. Barth, “Review of methods for intraoperative margin detection for breast conserving surgery,” J. Biomed. Opt. 23(10), 1–19 (2018).
    [Crossref]
  16. B. Mondal, S. Gao, N. Zhu, G. Sudlow, K. Liang, A. Som, W. Akers, R. Fields, J. Margenthaler, R. Liang, V. Gruev, and S. Achilefu, “Binocular goggle augmented imaging and navigation system provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping,” Sci. Rep. 5(1), 12117 (2015).
    [Crossref]
  17. D. Gorpas, J. Phipps, J. Bec, D. Ma, S. Dochow, D. Yankelevich, J. Sorger, J. Popp, A. Bewley, R. Gandour-Edwards, L. Marcu, and D. G. Farwell, “Autofluorescence lifetime augmented reality as a means for real-time robotic surgery guidance in human patients,” Sci. Rep. 9(1), 1187 (2019).
    [Crossref]
  18. J. Bec, J. E. Phipps, D. Gorpas, D. Ma, H. Fatakdawala, K. B. Margulies, J. A. Southard, and L. Marcu, “In vivo label-free structural and biochemical imaging of coronary arteries using an integrated ultrasound and multispectral fluorescence lifetime catheter system,” Sci. Rep. 7(1), 8960 (2017).
    [Crossref]
  19. P. V. Butte, A. N. Mamelak, M. Nuno, S. I. Bannykh, K. L. Black, and L. Marcu, “Fluorescence lifetime spectroscopy for guided therapy of brain tumors,” NeuroImage 54, S125–S135 (2011).
    [Crossref]
  20. D. Gorpas, D. Ma, J. Bec, D. R. Yankelevich, and L. Marcu, “Real-time visualization of tissue surface biochemical features derived from fluorescence lifetime measurements,” IEEE Trans. Med. Imag. 35(8), 1802–1811 (2016).
    [Crossref]
  21. A. Alfonso-Garcia, J. Bec, S. Sridharan Weaver, B. Hartl, J. Unger, M. Bobinski, M. Lechpammer, F. Girgis, J. Boggan, and L. Marcu, “Real-time augmented reality for delineation of surgical margins during neurosurgery using autofluorescence lifetime contrast,” J. Biophotonics 13(1), e201900108 (2020).
    [Crossref]
  22. B. W. Weyers, M. Marsden, T. Sun, J. Bec, A. F. Bewley, R. F. Gandour-Edwards, M. G. Moore, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging for intraoperative cancer delineation in transoral robotic surgery,” Trans. Biophotonics 1(1-2), e201900017 (2019).
    [Crossref]
  23. J. Unger, T. Sun, Y. Chen, J. E. Phipps, R. J. Bold, M. A. Darrow, K. Ma, and L. Marcu, “Method for accurate registration of tissue autofluorescence imaging data with corresponding histology: a means for enhanced tumor margin assessment,” J. Biomed. Opt. 23(1), 1–11 (2018).
    [Crossref]
  24. D. R. Yankelevich, D. Ma, J. Liu, Y. Sun, Y. Sun, J. Bec, D. S. Elson, and L. Marcu, “Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging,” Rev. Sci. Instrum. 85(3), 034303 (2014).
    [Crossref]
  25. J. Liu, Y. Sun, J. Qi, and L. Marcu, “A novel method for fast and robust estimation of fluorescence decay dynamics using constrained least-squares deconvolution with laguerre expansion,” Phys. Med. Biol. 57(4), 843–865 (2012).
    [Crossref]
  26. L. Breiman, “Random forests,” Mach. Learn. 45(1), 5–32 (2001).
    [Crossref]
  27. B. W. Matthews, “Comparison of the predicted and observed secondary structure of t4 phage lysozyme,” Biochim. Biophys. Acta 405(2), 442–451 (1975).
    [Crossref]
  28. H. Boström, “Calibrating random forests,” in 2008 Seventh International Conference on Machine Learning and Applications, (2008), pp. 121–126.
  29. J. C. Platt, “Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods,” in Advances in large margin classifiers, (MIT Press, 1999), pp. 61–74.
  30. D. Ma, J. Bec, D. Gorpas, D. R. Yankelevich, and L. Marcu, “Technique for real-time tissue characterization based on scanning multispectral fluorescence lifetime spectroscopy (ms-trfs),” Biomed. Opt. Express 6(3), 987–1002 (2015).
    [Crossref]
  31. J. L. Lagarto, J. E. Phipps, L. Faller, D. Ma, J. Unger, J. Bec, S. Griffey, J. Sorger, D. G. Farwell, and L. Marcu, “Electrocautery effects on fluorescence lifetime measurements: An in vivo study in the oral cavity,” J. Photochem. Photobiol., B 185, 90–99 (2018).
    [Crossref]
  32. M.-G. Lin, T.-L. Yang, C.-T. Chiang, H.-C. Kao, J.-N. Lee, W. Lo, S.-H. Jee, Y.-F. Chen, C.-Y. Dong, and S.-J. Lin, “Evaluation of dermal thermal damage by multiphoton autofluorescence and second-harmonic-generation microscopy,” J. Biomed. Opt. 11(6), 064006 (2006).
    [Crossref]
  33. M. Kaiser, A. Yafi, M. Cinat, B. Choi, and A. Durkin, “Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities,” Burns 37(3), 377–386 (2011).
    [Crossref]
  34. A. R. Triki, M. B. Blaschko, Y. M. Jung, S. Song, H. J. Han, S. I. Kim, and C. Joo, “Intraoperative margin assessment of human breast tissue in optical coherence tomography images using deep neural networks,” Comput. Med. Imag. Grap. 69, 21–32 (2018).
    [Crossref]
  35. E. Kho, B. Dashtbozorg, L. L. de Boer, K. K. V. de Vijver, H. J. C. M. Sterenborg, and T. J. M. Ruers, “Broadband hyperspectral imaging for breast tumor detection using spectral and spatial information,” Biomed. Opt. Express 10(9), 4496–4515 (2019).
    [Crossref]
  36. J. Shan, S. K. Alam, B. Garra, Y. Zhang, and T. Ahmed, “Computer-aided diagnosis for breast ultrasound using computerized bi-rads features and machine learning methods,” Ultrasound Med. Biol. 42(4), 980–988 (2016).
    [Crossref]
  37. S. A. Boppart, J. Q. Brown, C. S. Farah, E. Kho, L. Marcu, C. M. Saunders, and H. J. C. M. Sterenborg, “Label-free optical imaging technologies for rapid translation and use during intraoperative surgical and tumor margin assessment,” J. Biomed. Opt. 23(2), 1–10 (2017).
    [Crossref]
  38. G. Lu, D. Wang, X. Qin, L. Halig, S. Muller, H. Zhang, A. Chen, B. W. Pogue, Z. G. Chen, and B. Fei, “Framework for hyperspectral image processing and quantification for cancer detection during animal tumor surgery,” J. Biomed. Opt. 20(12), 126012 (2015).
    [Crossref]
  39. L. L. de Boer, B. G. Molenkamp, T. M. Bydlon, B. H. W. Hendriks, J. Wesseling, H. J. C. M. Sterenborg, and T. J. M. Ruers, “Fat/water ratios measured with diffuse reflectance spectroscopy to detect breast tumor boundaries,” Breast Cancer Res. Treat. 152(3), 509–518 (2015).
    [Crossref]
  40. L. de Boer, T. Bydlon, F. van Duijnhoven, M.-J. T. F. D. Vranken-Peeters, C. E. Loo, G. A. O. Winter-Warnars, J. Sanders, H. J. C. M. Sterenborg, B. H. W. Hendriks, and T. J. M. Ruers, “Towards the use of diffuse reflectance spectroscopy for real-time in vivo detection of breast cancer during surgery,” J. Transl. Med. 16(1), 367 (2018).
    [Crossref]
  41. J. E. Phipps, J. Unger, R. Gandour-Edwards, M. G. Moore, A. Beweley, G. Farwell, and L. Marcu, “Head and neck cancer evaluation via transoral robotic surgery with augmented fluorescence lifetime imaging,” in Biophotonics Congress: Biomedical Optics Congress 2018, (Optical Society of America, 2018), p. CTu2B.3.
  42. J. Unger, J. Lagarto, J. Phipps, D. Ma, J. Bec, J. Sorger, G. Farwell, R. Bold, and L. Marcu, “Three-dimensional online surface reconstruction of augmented fluorescence lifetime maps using photometric stereo,” in Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XV, vol. 10054 International Society for Optics and Photonics (SPIE, 2017), p. 65.
  43. A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb, “Learning from simulated and unsupervised images through adversarial training,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2017).
  44. S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan, “A theory of learning from different domains,” Mach. Learn. 79(1-2), 151–175 (2010).
    [Crossref]

2020 (1)

A. Alfonso-Garcia, J. Bec, S. Sridharan Weaver, B. Hartl, J. Unger, M. Bobinski, M. Lechpammer, F. Girgis, J. Boggan, and L. Marcu, “Real-time augmented reality for delineation of surgical margins during neurosurgery using autofluorescence lifetime contrast,” J. Biophotonics 13(1), e201900108 (2020).
[Crossref]

2019 (3)

B. W. Weyers, M. Marsden, T. Sun, J. Bec, A. F. Bewley, R. F. Gandour-Edwards, M. G. Moore, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging for intraoperative cancer delineation in transoral robotic surgery,” Trans. Biophotonics 1(1-2), e201900017 (2019).
[Crossref]

E. Kho, B. Dashtbozorg, L. L. de Boer, K. K. V. de Vijver, H. J. C. M. Sterenborg, and T. J. M. Ruers, “Broadband hyperspectral imaging for breast tumor detection using spectral and spatial information,” Biomed. Opt. Express 10(9), 4496–4515 (2019).
[Crossref]

D. Gorpas, J. Phipps, J. Bec, D. Ma, S. Dochow, D. Yankelevich, J. Sorger, J. Popp, A. Bewley, R. Gandour-Edwards, L. Marcu, and D. G. Farwell, “Autofluorescence lifetime augmented reality as a means for real-time robotic surgery guidance in human patients,” Sci. Rep. 9(1), 1187 (2019).
[Crossref]

2018 (5)

B. Maloney, D. McClatchy, B. Pogue, K. Paulsen, W. Wells, and R. Barth, “Review of methods for intraoperative margin detection for breast conserving surgery,” J. Biomed. Opt. 23(10), 1–19 (2018).
[Crossref]

L. de Boer, T. Bydlon, F. van Duijnhoven, M.-J. T. F. D. Vranken-Peeters, C. E. Loo, G. A. O. Winter-Warnars, J. Sanders, H. J. C. M. Sterenborg, B. H. W. Hendriks, and T. J. M. Ruers, “Towards the use of diffuse reflectance spectroscopy for real-time in vivo detection of breast cancer during surgery,” J. Transl. Med. 16(1), 367 (2018).
[Crossref]

A. R. Triki, M. B. Blaschko, Y. M. Jung, S. Song, H. J. Han, S. I. Kim, and C. Joo, “Intraoperative margin assessment of human breast tissue in optical coherence tomography images using deep neural networks,” Comput. Med. Imag. Grap. 69, 21–32 (2018).
[Crossref]

J. Unger, T. Sun, Y. Chen, J. E. Phipps, R. J. Bold, M. A. Darrow, K. Ma, and L. Marcu, “Method for accurate registration of tissue autofluorescence imaging data with corresponding histology: a means for enhanced tumor margin assessment,” J. Biomed. Opt. 23(1), 1–11 (2018).
[Crossref]

J. L. Lagarto, J. E. Phipps, L. Faller, D. Ma, J. Unger, J. Bec, S. Griffey, J. Sorger, D. G. Farwell, and L. Marcu, “Electrocautery effects on fluorescence lifetime measurements: An in vivo study in the oral cavity,” J. Photochem. Photobiol., B 185, 90–99 (2018).
[Crossref]

2017 (4)

S. A. Boppart, J. Q. Brown, C. S. Farah, E. Kho, L. Marcu, C. M. Saunders, and H. J. C. M. Sterenborg, “Label-free optical imaging technologies for rapid translation and use during intraoperative surgical and tumor margin assessment,” J. Biomed. Opt. 23(2), 1–10 (2017).
[Crossref]

J. Bec, J. E. Phipps, D. Gorpas, D. Ma, H. Fatakdawala, K. B. Margulies, J. A. Southard, and L. Marcu, “In vivo label-free structural and biochemical imaging of coronary arteries using an integrated ultrasound and multispectral fluorescence lifetime catheter system,” Sci. Rep. 7(1), 8960 (2017).
[Crossref]

G. Thomas, T.-Q. Nguyen, I. J. Pence, B. Caldwell, M. E. O’Connor, J. Giltnane, M. E. Sanders, A. Grau, I. Meszoely, M. Hooks, M. C. Kelley, and A. Mahadevan-Jansen, “Evaluating feasibility of an automated 3-dimensional scanner using raman spectroscopy for intraoperative breast margin assessment,” Sci. Rep. 7(1), 13548 (2017).
[Crossref]

J. E. Phipps, D. Gorpas, J. Unger, M. Darrow, R. J. Bold, and L. Marcu, “Automated detection of breast cancer in resected specimens with fluorescence lifetime,” Phys. Med. Biol. 63(1), 015003 (2017).
[Crossref]

2016 (2)

D. Gorpas, D. Ma, J. Bec, D. R. Yankelevich, and L. Marcu, “Real-time visualization of tissue surface biochemical features derived from fluorescence lifetime measurements,” IEEE Trans. Med. Imag. 35(8), 1802–1811 (2016).
[Crossref]

J. Shan, S. K. Alam, B. Garra, Y. Zhang, and T. Ahmed, “Computer-aided diagnosis for breast ultrasound using computerized bi-rads features and machine learning methods,” Ultrasound Med. Biol. 42(4), 980–988 (2016).
[Crossref]

2015 (9)

G. Lu, D. Wang, X. Qin, L. Halig, S. Muller, H. Zhang, A. Chen, B. W. Pogue, Z. G. Chen, and B. Fei, “Framework for hyperspectral image processing and quantification for cancer detection during animal tumor surgery,” J. Biomed. Opt. 20(12), 126012 (2015).
[Crossref]

L. L. de Boer, B. G. Molenkamp, T. M. Bydlon, B. H. W. Hendriks, J. Wesseling, H. J. C. M. Sterenborg, and T. J. M. Ruers, “Fat/water ratios measured with diffuse reflectance spectroscopy to detect breast tumor boundaries,” Breast Cancer Res. Treat. 152(3), 509–518 (2015).
[Crossref]

D. Ma, J. Bec, D. Gorpas, D. R. Yankelevich, and L. Marcu, “Technique for real-time tissue characterization based on scanning multispectral fluorescence lifetime spectroscopy (ms-trfs),” Biomed. Opt. Express 6(3), 987–1002 (2015).
[Crossref]

R. Li, P. Wang, L. Lan, F. P. Lloyd, C. J. Goergen, S. Chen, and J. Cheng, “Assessing breast tumor margin by multispectral photoacoustic tomography,” Biomed. Opt. Express 6(4), 1273–1281 (2015).
[Crossref]

B. Mondal, S. Gao, N. Zhu, G. Sudlow, K. Liang, A. Som, W. Akers, R. Fields, J. Margenthaler, R. Liang, V. Gruev, and S. Achilefu, “Binocular goggle augmented imaging and navigation system provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping,” Sci. Rep. 5(1), 12117 (2015).
[Crossref]

B. S. Nichols, C. E. Schindler, J. Q. Brown, L. G. Wilke, C. S. Mulvey, M. S. Krieger, J. Gallagher, J. Geradts, R. A. Greenup, J. A. Von Windheim, and N. Ramanujam, “A quantitative diffuse reflectance imaging (qdri) system for comprehensive surveillance of the morphological landscape in breast tumor margins,” PLoS One 10(6), e0127525–25 (2015).
[Crossref]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref]

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref]

L. A. Torre, F. Bray, R. L. Siegel, J. Ferlay, J. Lortet-Tieulent, and A. Jemal, “Global cancer statistics, 2012,” Ca-Cancer J. Clin. 65(2), 87–108 (2015).
[Crossref]

2014 (1)

D. R. Yankelevich, D. Ma, J. Liu, Y. Sun, Y. Sun, J. Bec, D. S. Elson, and L. Marcu, “Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging,” Rev. Sci. Instrum. 85(3), 034303 (2014).
[Crossref]

2012 (2)

J. Liu, Y. Sun, J. Qi, and L. Marcu, “A novel method for fast and robust estimation of fluorescence decay dynamics using constrained least-squares deconvolution with laguerre expansion,” Phys. Med. Biol. 57(4), 843–865 (2012).
[Crossref]

V. Sharma, S. Shivalingaiah, Y. Peng, D. Euhus, Z. Gryczynski, and H. Liu, “Auto-fluorescence lifetime and light reflectance spectroscopy for breast cancer diagnosis: potential tools for intraoperative margin detection,” Biomed. Opt. Express 3(8), 1825–1840 (2012).
[Crossref]

2011 (3)

M. D. Keller, E. Vargis, A. Mahadevan-Jansen, N. de Matos Granja, R. H. Wilson, M. Mycek, and M. C. Kelley, “Development of a spatially offset raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16(7), 077006 (2011).
[Crossref]

P. V. Butte, A. N. Mamelak, M. Nuno, S. I. Bannykh, K. L. Black, and L. Marcu, “Fluorescence lifetime spectroscopy for guided therapy of brain tumors,” NeuroImage 54, S125–S135 (2011).
[Crossref]

M. Kaiser, A. Yafi, M. Cinat, B. Choi, and A. Durkin, “Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities,” Burns 37(3), 377–386 (2011).
[Crossref]

2010 (3)

S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan, “A theory of learning from different domains,” Mach. Learn. 79(1-2), 151–175 (2010).
[Crossref]

D. Piras, W. Xia, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quantum Electron. 16(4), 730–739 (2010).
[Crossref]

M. D. Keller, S. K. Majumder, M. C. Kelley, I. M. Meszoely, F. I. Boulos, G. M. Olivares, and A. Mahadevan-Jansen, “Autofluorescence and diffuse reflectance spectroscopy and spectral imaging for breast surgical margin analysis,” Lasers Surg. Med. 42(1), 15–23 (2010).
[Crossref]

2009 (1)

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[Crossref]

2006 (1)

M.-G. Lin, T.-L. Yang, C.-T. Chiang, H.-C. Kao, J.-N. Lee, W. Lo, S.-H. Jee, Y.-F. Chen, C.-Y. Dong, and S.-J. Lin, “Evaluation of dermal thermal damage by multiphoton autofluorescence and second-harmonic-generation microscopy,” J. Biomed. Opt. 11(6), 064006 (2006).
[Crossref]

2001 (1)

L. Breiman, “Random forests,” Mach. Learn. 45(1), 5–32 (2001).
[Crossref]

1998 (1)

A. H. Mandpe, A. Mikulec, R. K. Jackler, L. H. Pitts, and C. D. Yingling, “Comparison of response amplitude versus stimulation threshold in predicting early postoperative facial nerve function after acoustic neuroma resection,” Am. J. Otol. 19(1), 112–117 (1998).

1996 (1)

I. Gage, S. J. Schnitt, A. J. Nixon, B. Silver, A. Recht, S. L. Troyan, T. Eberlein, S. M. Love, R. Gelman, J. R. Harris, and J. L. Connolly, “Pathologic margin involvement and the risk of recurrence in patients treated with breast-conserving therapy,” Cancer 78(9), 1921–1928 (1996).

1975 (1)

B. W. Matthews, “Comparison of the predicted and observed secondary structure of t4 phage lysozyme,” Biochim. Biophys. Acta 405(2), 442–451 (1975).
[Crossref]

Achilefu, S.

B. Mondal, S. Gao, N. Zhu, G. Sudlow, K. Liang, A. Som, W. Akers, R. Fields, J. Margenthaler, R. Liang, V. Gruev, and S. Achilefu, “Binocular goggle augmented imaging and navigation system provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping,” Sci. Rep. 5(1), 12117 (2015).
[Crossref]

Adie, S. G.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref]

Ahmed, T.

J. Shan, S. K. Alam, B. Garra, Y. Zhang, and T. Ahmed, “Computer-aided diagnosis for breast ultrasound using computerized bi-rads features and machine learning methods,” Ultrasound Med. Biol. 42(4), 980–988 (2016).
[Crossref]

Akers, W.

B. Mondal, S. Gao, N. Zhu, G. Sudlow, K. Liang, A. Som, W. Akers, R. Fields, J. Margenthaler, R. Liang, V. Gruev, and S. Achilefu, “Binocular goggle augmented imaging and navigation system provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping,” Sci. Rep. 5(1), 12117 (2015).
[Crossref]

Alam, S. K.

J. Shan, S. K. Alam, B. Garra, Y. Zhang, and T. Ahmed, “Computer-aided diagnosis for breast ultrasound using computerized bi-rads features and machine learning methods,” Ultrasound Med. Biol. 42(4), 980–988 (2016).
[Crossref]

Alfonso-Garcia, A.

A. Alfonso-Garcia, J. Bec, S. Sridharan Weaver, B. Hartl, J. Unger, M. Bobinski, M. Lechpammer, F. Girgis, J. Boggan, and L. Marcu, “Real-time augmented reality for delineation of surgical margins during neurosurgery using autofluorescence lifetime contrast,” J. Biophotonics 13(1), e201900108 (2020).
[Crossref]

Bannykh, S. I.

P. V. Butte, A. N. Mamelak, M. Nuno, S. I. Bannykh, K. L. Black, and L. Marcu, “Fluorescence lifetime spectroscopy for guided therapy of brain tumors,” NeuroImage 54, S125–S135 (2011).
[Crossref]

Barth, R.

B. Maloney, D. McClatchy, B. Pogue, K. Paulsen, W. Wells, and R. Barth, “Review of methods for intraoperative margin detection for breast conserving surgery,” J. Biomed. Opt. 23(10), 1–19 (2018).
[Crossref]

Bec, J.

A. Alfonso-Garcia, J. Bec, S. Sridharan Weaver, B. Hartl, J. Unger, M. Bobinski, M. Lechpammer, F. Girgis, J. Boggan, and L. Marcu, “Real-time augmented reality for delineation of surgical margins during neurosurgery using autofluorescence lifetime contrast,” J. Biophotonics 13(1), e201900108 (2020).
[Crossref]

B. W. Weyers, M. Marsden, T. Sun, J. Bec, A. F. Bewley, R. F. Gandour-Edwards, M. G. Moore, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging for intraoperative cancer delineation in transoral robotic surgery,” Trans. Biophotonics 1(1-2), e201900017 (2019).
[Crossref]

D. Gorpas, J. Phipps, J. Bec, D. Ma, S. Dochow, D. Yankelevich, J. Sorger, J. Popp, A. Bewley, R. Gandour-Edwards, L. Marcu, and D. G. Farwell, “Autofluorescence lifetime augmented reality as a means for real-time robotic surgery guidance in human patients,” Sci. Rep. 9(1), 1187 (2019).
[Crossref]

J. L. Lagarto, J. E. Phipps, L. Faller, D. Ma, J. Unger, J. Bec, S. Griffey, J. Sorger, D. G. Farwell, and L. Marcu, “Electrocautery effects on fluorescence lifetime measurements: An in vivo study in the oral cavity,” J. Photochem. Photobiol., B 185, 90–99 (2018).
[Crossref]

J. Bec, J. E. Phipps, D. Gorpas, D. Ma, H. Fatakdawala, K. B. Margulies, J. A. Southard, and L. Marcu, “In vivo label-free structural and biochemical imaging of coronary arteries using an integrated ultrasound and multispectral fluorescence lifetime catheter system,” Sci. Rep. 7(1), 8960 (2017).
[Crossref]

D. Gorpas, D. Ma, J. Bec, D. R. Yankelevich, and L. Marcu, “Real-time visualization of tissue surface biochemical features derived from fluorescence lifetime measurements,” IEEE Trans. Med. Imag. 35(8), 1802–1811 (2016).
[Crossref]

D. Ma, J. Bec, D. Gorpas, D. R. Yankelevich, and L. Marcu, “Technique for real-time tissue characterization based on scanning multispectral fluorescence lifetime spectroscopy (ms-trfs),” Biomed. Opt. Express 6(3), 987–1002 (2015).
[Crossref]

D. R. Yankelevich, D. Ma, J. Liu, Y. Sun, Y. Sun, J. Bec, D. S. Elson, and L. Marcu, “Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging,” Rev. Sci. Instrum. 85(3), 034303 (2014).
[Crossref]

J. Unger, J. Lagarto, J. Phipps, D. Ma, J. Bec, J. Sorger, G. Farwell, R. Bold, and L. Marcu, “Three-dimensional online surface reconstruction of augmented fluorescence lifetime maps using photometric stereo,” in Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XV, vol. 10054 International Society for Optics and Photonics (SPIE, 2017), p. 65.

Bellafiore, F. J.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[Crossref]

Ben-David, S.

S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan, “A theory of learning from different domains,” Mach. Learn. 79(1-2), 151–175 (2010).
[Crossref]

Beweley, A.

J. E. Phipps, J. Unger, R. Gandour-Edwards, M. G. Moore, A. Beweley, G. Farwell, and L. Marcu, “Head and neck cancer evaluation via transoral robotic surgery with augmented fluorescence lifetime imaging,” in Biophotonics Congress: Biomedical Optics Congress 2018, (Optical Society of America, 2018), p. CTu2B.3.

Bewley, A.

D. Gorpas, J. Phipps, J. Bec, D. Ma, S. Dochow, D. Yankelevich, J. Sorger, J. Popp, A. Bewley, R. Gandour-Edwards, L. Marcu, and D. G. Farwell, “Autofluorescence lifetime augmented reality as a means for real-time robotic surgery guidance in human patients,” Sci. Rep. 9(1), 1187 (2019).
[Crossref]

Bewley, A. F.

B. W. Weyers, M. Marsden, T. Sun, J. Bec, A. F. Bewley, R. F. Gandour-Edwards, M. G. Moore, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging for intraoperative cancer delineation in transoral robotic surgery,” Trans. Biophotonics 1(1-2), e201900017 (2019).
[Crossref]

Black, K. L.

P. V. Butte, A. N. Mamelak, M. Nuno, S. I. Bannykh, K. L. Black, and L. Marcu, “Fluorescence lifetime spectroscopy for guided therapy of brain tumors,” NeuroImage 54, S125–S135 (2011).
[Crossref]

Blaschko, M. B.

A. R. Triki, M. B. Blaschko, Y. M. Jung, S. Song, H. J. Han, S. I. Kim, and C. Joo, “Intraoperative margin assessment of human breast tissue in optical coherence tomography images using deep neural networks,” Comput. Med. Imag. Grap. 69, 21–32 (2018).
[Crossref]

Blitzer, J.

S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan, “A theory of learning from different domains,” Mach. Learn. 79(1-2), 151–175 (2010).
[Crossref]

Bobinski, M.

A. Alfonso-Garcia, J. Bec, S. Sridharan Weaver, B. Hartl, J. Unger, M. Bobinski, M. Lechpammer, F. Girgis, J. Boggan, and L. Marcu, “Real-time augmented reality for delineation of surgical margins during neurosurgery using autofluorescence lifetime contrast,” J. Biophotonics 13(1), e201900108 (2020).
[Crossref]

Boggan, J.

A. Alfonso-Garcia, J. Bec, S. Sridharan Weaver, B. Hartl, J. Unger, M. Bobinski, M. Lechpammer, F. Girgis, J. Boggan, and L. Marcu, “Real-time augmented reality for delineation of surgical margins during neurosurgery using autofluorescence lifetime contrast,” J. Biophotonics 13(1), e201900108 (2020).
[Crossref]

Bold, R.

J. Unger, J. Lagarto, J. Phipps, D. Ma, J. Bec, J. Sorger, G. Farwell, R. Bold, and L. Marcu, “Three-dimensional online surface reconstruction of augmented fluorescence lifetime maps using photometric stereo,” in Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XV, vol. 10054 International Society for Optics and Photonics (SPIE, 2017), p. 65.

Bold, R. J.

J. Unger, T. Sun, Y. Chen, J. E. Phipps, R. J. Bold, M. A. Darrow, K. Ma, and L. Marcu, “Method for accurate registration of tissue autofluorescence imaging data with corresponding histology: a means for enhanced tumor margin assessment,” J. Biomed. Opt. 23(1), 1–11 (2018).
[Crossref]

J. E. Phipps, D. Gorpas, J. Unger, M. Darrow, R. J. Bold, and L. Marcu, “Automated detection of breast cancer in resected specimens with fluorescence lifetime,” Phys. Med. Biol. 63(1), 015003 (2017).
[Crossref]

Boppart, S.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref]

Boppart, S. A.

S. A. Boppart, J. Q. Brown, C. S. Farah, E. Kho, L. Marcu, C. M. Saunders, and H. J. C. M. Sterenborg, “Label-free optical imaging technologies for rapid translation and use during intraoperative surgical and tumor margin assessment,” J. Biomed. Opt. 23(2), 1–10 (2017).
[Crossref]

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[Crossref]

Boström, H.

H. Boström, “Calibrating random forests,” in 2008 Seventh International Conference on Machine Learning and Applications, (2008), pp. 121–126.

Boulos, F. I.

M. D. Keller, S. K. Majumder, M. C. Kelley, I. M. Meszoely, F. I. Boulos, G. M. Olivares, and A. Mahadevan-Jansen, “Autofluorescence and diffuse reflectance spectroscopy and spectral imaging for breast surgical margin analysis,” Lasers Surg. Med. 42(1), 15–23 (2010).
[Crossref]

Bray, F.

L. A. Torre, F. Bray, R. L. Siegel, J. Ferlay, J. Lortet-Tieulent, and A. Jemal, “Global cancer statistics, 2012,” Ca-Cancer J. Clin. 65(2), 87–108 (2015).
[Crossref]

Breiman, L.

L. Breiman, “Random forests,” Mach. Learn. 45(1), 5–32 (2001).
[Crossref]

Brown, J. Q.

S. A. Boppart, J. Q. Brown, C. S. Farah, E. Kho, L. Marcu, C. M. Saunders, and H. J. C. M. Sterenborg, “Label-free optical imaging technologies for rapid translation and use during intraoperative surgical and tumor margin assessment,” J. Biomed. Opt. 23(2), 1–10 (2017).
[Crossref]

B. S. Nichols, C. E. Schindler, J. Q. Brown, L. G. Wilke, C. S. Mulvey, M. S. Krieger, J. Gallagher, J. Geradts, R. A. Greenup, J. A. Von Windheim, and N. Ramanujam, “A quantitative diffuse reflectance imaging (qdri) system for comprehensive surveillance of the morphological landscape in breast tumor margins,” PLoS One 10(6), e0127525–25 (2015).
[Crossref]

Butte, P. V.

P. V. Butte, A. N. Mamelak, M. Nuno, S. I. Bannykh, K. L. Black, and L. Marcu, “Fluorescence lifetime spectroscopy for guided therapy of brain tumors,” NeuroImage 54, S125–S135 (2011).
[Crossref]

Bydlon, T.

L. de Boer, T. Bydlon, F. van Duijnhoven, M.-J. T. F. D. Vranken-Peeters, C. E. Loo, G. A. O. Winter-Warnars, J. Sanders, H. J. C. M. Sterenborg, B. H. W. Hendriks, and T. J. M. Ruers, “Towards the use of diffuse reflectance spectroscopy for real-time in vivo detection of breast cancer during surgery,” J. Transl. Med. 16(1), 367 (2018).
[Crossref]

Bydlon, T. M.

L. L. de Boer, B. G. Molenkamp, T. M. Bydlon, B. H. W. Hendriks, J. Wesseling, H. J. C. M. Sterenborg, and T. J. M. Ruers, “Fat/water ratios measured with diffuse reflectance spectroscopy to detect breast tumor boundaries,” Breast Cancer Res. Treat. 152(3), 509–518 (2015).
[Crossref]

Caldwell, B.

G. Thomas, T.-Q. Nguyen, I. J. Pence, B. Caldwell, M. E. O’Connor, J. Giltnane, M. E. Sanders, A. Grau, I. Meszoely, M. Hooks, M. C. Kelley, and A. Mahadevan-Jansen, “Evaluating feasibility of an automated 3-dimensional scanner using raman spectroscopy for intraoperative breast margin assessment,” Sci. Rep. 7(1), 13548 (2017).
[Crossref]

Chaney, E. J.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref]

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[Crossref]

Chen, A.

G. Lu, D. Wang, X. Qin, L. Halig, S. Muller, H. Zhang, A. Chen, B. W. Pogue, Z. G. Chen, and B. Fei, “Framework for hyperspectral image processing and quantification for cancer detection during animal tumor surgery,” J. Biomed. Opt. 20(12), 126012 (2015).
[Crossref]

Chen, S.

Chen, Y.

J. Unger, T. Sun, Y. Chen, J. E. Phipps, R. J. Bold, M. A. Darrow, K. Ma, and L. Marcu, “Method for accurate registration of tissue autofluorescence imaging data with corresponding histology: a means for enhanced tumor margin assessment,” J. Biomed. Opt. 23(1), 1–11 (2018).
[Crossref]

Chen, Y.-F.

M.-G. Lin, T.-L. Yang, C.-T. Chiang, H.-C. Kao, J.-N. Lee, W. Lo, S.-H. Jee, Y.-F. Chen, C.-Y. Dong, and S.-J. Lin, “Evaluation of dermal thermal damage by multiphoton autofluorescence and second-harmonic-generation microscopy,” J. Biomed. Opt. 11(6), 064006 (2006).
[Crossref]

Chen, Z. G.

G. Lu, D. Wang, X. Qin, L. Halig, S. Muller, H. Zhang, A. Chen, B. W. Pogue, Z. G. Chen, and B. Fei, “Framework for hyperspectral image processing and quantification for cancer detection during animal tumor surgery,” J. Biomed. Opt. 20(12), 126012 (2015).
[Crossref]

Cheng, J.

Chiang, C.-T.

M.-G. Lin, T.-L. Yang, C.-T. Chiang, H.-C. Kao, J.-N. Lee, W. Lo, S.-H. Jee, Y.-F. Chen, C.-Y. Dong, and S.-J. Lin, “Evaluation of dermal thermal damage by multiphoton autofluorescence and second-harmonic-generation microscopy,” J. Biomed. Opt. 11(6), 064006 (2006).
[Crossref]

Chin, L.

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref]

Choi, B.

M. Kaiser, A. Yafi, M. Cinat, B. Choi, and A. Durkin, “Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities,” Burns 37(3), 377–386 (2011).
[Crossref]

Cinat, M.

M. Kaiser, A. Yafi, M. Cinat, B. Choi, and A. Durkin, “Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities,” Burns 37(3), 377–386 (2011).
[Crossref]

Cittadine, A. J.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref]

Connolly, J. L.

I. Gage, S. J. Schnitt, A. J. Nixon, B. Silver, A. Recht, S. L. Troyan, T. Eberlein, S. M. Love, R. Gelman, J. R. Harris, and J. L. Connolly, “Pathologic margin involvement and the risk of recurrence in patients treated with breast-conserving therapy,” Cancer 78(9), 1921–1928 (1996).

Cradock, K.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref]

Crammer, K.

S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan, “A theory of learning from different domains,” Mach. Learn. 79(1-2), 151–175 (2010).
[Crossref]

Darga, D.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref]

Darrow, M.

J. E. Phipps, D. Gorpas, J. Unger, M. Darrow, R. J. Bold, and L. Marcu, “Automated detection of breast cancer in resected specimens with fluorescence lifetime,” Phys. Med. Biol. 63(1), 015003 (2017).
[Crossref]

Darrow, M. A.

J. Unger, T. Sun, Y. Chen, J. E. Phipps, R. J. Bold, M. A. Darrow, K. Ma, and L. Marcu, “Method for accurate registration of tissue autofluorescence imaging data with corresponding histology: a means for enhanced tumor margin assessment,” J. Biomed. Opt. 23(1), 1–11 (2018).
[Crossref]

Dashtbozorg, B.

de Boer, L.

L. de Boer, T. Bydlon, F. van Duijnhoven, M.-J. T. F. D. Vranken-Peeters, C. E. Loo, G. A. O. Winter-Warnars, J. Sanders, H. J. C. M. Sterenborg, B. H. W. Hendriks, and T. J. M. Ruers, “Towards the use of diffuse reflectance spectroscopy for real-time in vivo detection of breast cancer during surgery,” J. Transl. Med. 16(1), 367 (2018).
[Crossref]

de Boer, L. L.

E. Kho, B. Dashtbozorg, L. L. de Boer, K. K. V. de Vijver, H. J. C. M. Sterenborg, and T. J. M. Ruers, “Broadband hyperspectral imaging for breast tumor detection using spectral and spatial information,” Biomed. Opt. Express 10(9), 4496–4515 (2019).
[Crossref]

L. L. de Boer, B. G. Molenkamp, T. M. Bydlon, B. H. W. Hendriks, J. Wesseling, H. J. C. M. Sterenborg, and T. J. M. Ruers, “Fat/water ratios measured with diffuse reflectance spectroscopy to detect breast tumor boundaries,” Breast Cancer Res. Treat. 152(3), 509–518 (2015).
[Crossref]

de Matos Granja, N.

M. D. Keller, E. Vargis, A. Mahadevan-Jansen, N. de Matos Granja, R. H. Wilson, M. Mycek, and M. C. Kelley, “Development of a spatially offset raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16(7), 077006 (2011).
[Crossref]

de Vijver, K. K. V.

Dochow, S.

D. Gorpas, J. Phipps, J. Bec, D. Ma, S. Dochow, D. Yankelevich, J. Sorger, J. Popp, A. Bewley, R. Gandour-Edwards, L. Marcu, and D. G. Farwell, “Autofluorescence lifetime augmented reality as a means for real-time robotic surgery guidance in human patients,” Sci. Rep. 9(1), 1187 (2019).
[Crossref]

Dong, C.-Y.

M.-G. Lin, T.-L. Yang, C.-T. Chiang, H.-C. Kao, J.-N. Lee, W. Lo, S.-H. Jee, Y.-F. Chen, C.-Y. Dong, and S.-J. Lin, “Evaluation of dermal thermal damage by multiphoton autofluorescence and second-harmonic-generation microscopy,” J. Biomed. Opt. 11(6), 064006 (2006).
[Crossref]

Durkin, A.

M. Kaiser, A. Yafi, M. Cinat, B. Choi, and A. Durkin, “Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities,” Burns 37(3), 377–386 (2011).
[Crossref]

Eberlein, T.

I. Gage, S. J. Schnitt, A. J. Nixon, B. Silver, A. Recht, S. L. Troyan, T. Eberlein, S. M. Love, R. Gelman, J. R. Harris, and J. L. Connolly, “Pathologic margin involvement and the risk of recurrence in patients treated with breast-conserving therapy,” Cancer 78(9), 1921–1928 (1996).

Elson, D. S.

D. R. Yankelevich, D. Ma, J. Liu, Y. Sun, Y. Sun, J. Bec, D. S. Elson, and L. Marcu, “Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging,” Rev. Sci. Instrum. 85(3), 034303 (2014).
[Crossref]

Erickson-Bhatt, S. J.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref]

Euhus, D.

F. D. Vranken-Peeters, M.-J. T.

L. de Boer, T. Bydlon, F. van Duijnhoven, M.-J. T. F. D. Vranken-Peeters, C. E. Loo, G. A. O. Winter-Warnars, J. Sanders, H. J. C. M. Sterenborg, B. H. W. Hendriks, and T. J. M. Ruers, “Towards the use of diffuse reflectance spectroscopy for real-time in vivo detection of breast cancer during surgery,” J. Transl. Med. 16(1), 367 (2018).
[Crossref]

Faller, L.

J. L. Lagarto, J. E. Phipps, L. Faller, D. Ma, J. Unger, J. Bec, S. Griffey, J. Sorger, D. G. Farwell, and L. Marcu, “Electrocautery effects on fluorescence lifetime measurements: An in vivo study in the oral cavity,” J. Photochem. Photobiol., B 185, 90–99 (2018).
[Crossref]

Farah, C. S.

S. A. Boppart, J. Q. Brown, C. S. Farah, E. Kho, L. Marcu, C. M. Saunders, and H. J. C. M. Sterenborg, “Label-free optical imaging technologies for rapid translation and use during intraoperative surgical and tumor margin assessment,” J. Biomed. Opt. 23(2), 1–10 (2017).
[Crossref]

Farwell, D. G.

B. W. Weyers, M. Marsden, T. Sun, J. Bec, A. F. Bewley, R. F. Gandour-Edwards, M. G. Moore, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging for intraoperative cancer delineation in transoral robotic surgery,” Trans. Biophotonics 1(1-2), e201900017 (2019).
[Crossref]

D. Gorpas, J. Phipps, J. Bec, D. Ma, S. Dochow, D. Yankelevich, J. Sorger, J. Popp, A. Bewley, R. Gandour-Edwards, L. Marcu, and D. G. Farwell, “Autofluorescence lifetime augmented reality as a means for real-time robotic surgery guidance in human patients,” Sci. Rep. 9(1), 1187 (2019).
[Crossref]

J. L. Lagarto, J. E. Phipps, L. Faller, D. Ma, J. Unger, J. Bec, S. Griffey, J. Sorger, D. G. Farwell, and L. Marcu, “Electrocautery effects on fluorescence lifetime measurements: An in vivo study in the oral cavity,” J. Photochem. Photobiol., B 185, 90–99 (2018).
[Crossref]

Farwell, G.

J. E. Phipps, J. Unger, R. Gandour-Edwards, M. G. Moore, A. Beweley, G. Farwell, and L. Marcu, “Head and neck cancer evaluation via transoral robotic surgery with augmented fluorescence lifetime imaging,” in Biophotonics Congress: Biomedical Optics Congress 2018, (Optical Society of America, 2018), p. CTu2B.3.

J. Unger, J. Lagarto, J. Phipps, D. Ma, J. Bec, J. Sorger, G. Farwell, R. Bold, and L. Marcu, “Three-dimensional online surface reconstruction of augmented fluorescence lifetime maps using photometric stereo,” in Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XV, vol. 10054 International Society for Optics and Photonics (SPIE, 2017), p. 65.

Fatakdawala, H.

J. Bec, J. E. Phipps, D. Gorpas, D. Ma, H. Fatakdawala, K. B. Margulies, J. A. Southard, and L. Marcu, “In vivo label-free structural and biochemical imaging of coronary arteries using an integrated ultrasound and multispectral fluorescence lifetime catheter system,” Sci. Rep. 7(1), 8960 (2017).
[Crossref]

Fei, B.

G. Lu, D. Wang, X. Qin, L. Halig, S. Muller, H. Zhang, A. Chen, B. W. Pogue, Z. G. Chen, and B. Fei, “Framework for hyperspectral image processing and quantification for cancer detection during animal tumor surgery,” J. Biomed. Opt. 20(12), 126012 (2015).
[Crossref]

Ferlay, J.

L. A. Torre, F. Bray, R. L. Siegel, J. Ferlay, J. Lortet-Tieulent, and A. Jemal, “Global cancer statistics, 2012,” Ca-Cancer J. Clin. 65(2), 87–108 (2015).
[Crossref]

Fields, R.

B. Mondal, S. Gao, N. Zhu, G. Sudlow, K. Liang, A. Som, W. Akers, R. Fields, J. Margenthaler, R. Liang, V. Gruev, and S. Achilefu, “Binocular goggle augmented imaging and navigation system provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping,” Sci. Rep. 5(1), 12117 (2015).
[Crossref]

Gage, I.

I. Gage, S. J. Schnitt, A. J. Nixon, B. Silver, A. Recht, S. L. Troyan, T. Eberlein, S. M. Love, R. Gelman, J. R. Harris, and J. L. Connolly, “Pathologic margin involvement and the risk of recurrence in patients treated with breast-conserving therapy,” Cancer 78(9), 1921–1928 (1996).

Gallagher, J.

B. S. Nichols, C. E. Schindler, J. Q. Brown, L. G. Wilke, C. S. Mulvey, M. S. Krieger, J. Gallagher, J. Geradts, R. A. Greenup, J. A. Von Windheim, and N. Ramanujam, “A quantitative diffuse reflectance imaging (qdri) system for comprehensive surveillance of the morphological landscape in breast tumor margins,” PLoS One 10(6), e0127525–25 (2015).
[Crossref]

Gandour-Edwards, R.

D. Gorpas, J. Phipps, J. Bec, D. Ma, S. Dochow, D. Yankelevich, J. Sorger, J. Popp, A. Bewley, R. Gandour-Edwards, L. Marcu, and D. G. Farwell, “Autofluorescence lifetime augmented reality as a means for real-time robotic surgery guidance in human patients,” Sci. Rep. 9(1), 1187 (2019).
[Crossref]

J. E. Phipps, J. Unger, R. Gandour-Edwards, M. G. Moore, A. Beweley, G. Farwell, and L. Marcu, “Head and neck cancer evaluation via transoral robotic surgery with augmented fluorescence lifetime imaging,” in Biophotonics Congress: Biomedical Optics Congress 2018, (Optical Society of America, 2018), p. CTu2B.3.

Gandour-Edwards, R. F.

B. W. Weyers, M. Marsden, T. Sun, J. Bec, A. F. Bewley, R. F. Gandour-Edwards, M. G. Moore, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging for intraoperative cancer delineation in transoral robotic surgery,” Trans. Biophotonics 1(1-2), e201900017 (2019).
[Crossref]

Gao, S.

B. Mondal, S. Gao, N. Zhu, G. Sudlow, K. Liang, A. Som, W. Akers, R. Fields, J. Margenthaler, R. Liang, V. Gruev, and S. Achilefu, “Binocular goggle augmented imaging and navigation system provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping,” Sci. Rep. 5(1), 12117 (2015).
[Crossref]

Garra, B.

J. Shan, S. K. Alam, B. Garra, Y. Zhang, and T. Ahmed, “Computer-aided diagnosis for breast ultrasound using computerized bi-rads features and machine learning methods,” Ultrasound Med. Biol. 42(4), 980–988 (2016).
[Crossref]

Gelman, R.

I. Gage, S. J. Schnitt, A. J. Nixon, B. Silver, A. Recht, S. L. Troyan, T. Eberlein, S. M. Love, R. Gelman, J. R. Harris, and J. L. Connolly, “Pathologic margin involvement and the risk of recurrence in patients treated with breast-conserving therapy,” Cancer 78(9), 1921–1928 (1996).

Geradts, J.

B. S. Nichols, C. E. Schindler, J. Q. Brown, L. G. Wilke, C. S. Mulvey, M. S. Krieger, J. Gallagher, J. Geradts, R. A. Greenup, J. A. Von Windheim, and N. Ramanujam, “A quantitative diffuse reflectance imaging (qdri) system for comprehensive surveillance of the morphological landscape in breast tumor margins,” PLoS One 10(6), e0127525–25 (2015).
[Crossref]

Giltnane, J.

G. Thomas, T.-Q. Nguyen, I. J. Pence, B. Caldwell, M. E. O’Connor, J. Giltnane, M. E. Sanders, A. Grau, I. Meszoely, M. Hooks, M. C. Kelley, and A. Mahadevan-Jansen, “Evaluating feasibility of an automated 3-dimensional scanner using raman spectroscopy for intraoperative breast margin assessment,” Sci. Rep. 7(1), 13548 (2017).
[Crossref]

Girgis, F.

A. Alfonso-Garcia, J. Bec, S. Sridharan Weaver, B. Hartl, J. Unger, M. Bobinski, M. Lechpammer, F. Girgis, J. Boggan, and L. Marcu, “Real-time augmented reality for delineation of surgical margins during neurosurgery using autofluorescence lifetime contrast,” J. Biophotonics 13(1), e201900108 (2020).
[Crossref]

Goergen, C. J.

Gorpas, D.

D. Gorpas, J. Phipps, J. Bec, D. Ma, S. Dochow, D. Yankelevich, J. Sorger, J. Popp, A. Bewley, R. Gandour-Edwards, L. Marcu, and D. G. Farwell, “Autofluorescence lifetime augmented reality as a means for real-time robotic surgery guidance in human patients,” Sci. Rep. 9(1), 1187 (2019).
[Crossref]

J. E. Phipps, D. Gorpas, J. Unger, M. Darrow, R. J. Bold, and L. Marcu, “Automated detection of breast cancer in resected specimens with fluorescence lifetime,” Phys. Med. Biol. 63(1), 015003 (2017).
[Crossref]

J. Bec, J. E. Phipps, D. Gorpas, D. Ma, H. Fatakdawala, K. B. Margulies, J. A. Southard, and L. Marcu, “In vivo label-free structural and biochemical imaging of coronary arteries using an integrated ultrasound and multispectral fluorescence lifetime catheter system,” Sci. Rep. 7(1), 8960 (2017).
[Crossref]

D. Gorpas, D. Ma, J. Bec, D. R. Yankelevich, and L. Marcu, “Real-time visualization of tissue surface biochemical features derived from fluorescence lifetime measurements,” IEEE Trans. Med. Imag. 35(8), 1802–1811 (2016).
[Crossref]

D. Ma, J. Bec, D. Gorpas, D. R. Yankelevich, and L. Marcu, “Technique for real-time tissue characterization based on scanning multispectral fluorescence lifetime spectroscopy (ms-trfs),” Biomed. Opt. Express 6(3), 987–1002 (2015).
[Crossref]

Grau, A.

G. Thomas, T.-Q. Nguyen, I. J. Pence, B. Caldwell, M. E. O’Connor, J. Giltnane, M. E. Sanders, A. Grau, I. Meszoely, M. Hooks, M. C. Kelley, and A. Mahadevan-Jansen, “Evaluating feasibility of an automated 3-dimensional scanner using raman spectroscopy for intraoperative breast margin assessment,” Sci. Rep. 7(1), 13548 (2017).
[Crossref]

Greenup, R. A.

B. S. Nichols, C. E. Schindler, J. Q. Brown, L. G. Wilke, C. S. Mulvey, M. S. Krieger, J. Gallagher, J. Geradts, R. A. Greenup, J. A. Von Windheim, and N. Ramanujam, “A quantitative diffuse reflectance imaging (qdri) system for comprehensive surveillance of the morphological landscape in breast tumor margins,” PLoS One 10(6), e0127525–25 (2015).
[Crossref]

Griffey, S.

J. L. Lagarto, J. E. Phipps, L. Faller, D. Ma, J. Unger, J. Bec, S. Griffey, J. Sorger, D. G. Farwell, and L. Marcu, “Electrocautery effects on fluorescence lifetime measurements: An in vivo study in the oral cavity,” J. Photochem. Photobiol., B 185, 90–99 (2018).
[Crossref]

Gruev, V.

B. Mondal, S. Gao, N. Zhu, G. Sudlow, K. Liang, A. Som, W. Akers, R. Fields, J. Margenthaler, R. Liang, V. Gruev, and S. Achilefu, “Binocular goggle augmented imaging and navigation system provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping,” Sci. Rep. 5(1), 12117 (2015).
[Crossref]

Gryczynski, Z.

Halig, L.

G. Lu, D. Wang, X. Qin, L. Halig, S. Muller, H. Zhang, A. Chen, B. W. Pogue, Z. G. Chen, and B. Fei, “Framework for hyperspectral image processing and quantification for cancer detection during animal tumor surgery,” J. Biomed. Opt. 20(12), 126012 (2015).
[Crossref]

Han, H. J.

A. R. Triki, M. B. Blaschko, Y. M. Jung, S. Song, H. J. Han, S. I. Kim, and C. Joo, “Intraoperative margin assessment of human breast tissue in optical coherence tomography images using deep neural networks,” Comput. Med. Imag. Grap. 69, 21–32 (2018).
[Crossref]

Harris, J. R.

I. Gage, S. J. Schnitt, A. J. Nixon, B. Silver, A. Recht, S. L. Troyan, T. Eberlein, S. M. Love, R. Gelman, J. R. Harris, and J. L. Connolly, “Pathologic margin involvement and the risk of recurrence in patients treated with breast-conserving therapy,” Cancer 78(9), 1921–1928 (1996).

Hartl, B.

A. Alfonso-Garcia, J. Bec, S. Sridharan Weaver, B. Hartl, J. Unger, M. Bobinski, M. Lechpammer, F. Girgis, J. Boggan, and L. Marcu, “Real-time augmented reality for delineation of surgical margins during neurosurgery using autofluorescence lifetime contrast,” J. Biophotonics 13(1), e201900108 (2020).
[Crossref]

Hendriks, B. H. W.

L. de Boer, T. Bydlon, F. van Duijnhoven, M.-J. T. F. D. Vranken-Peeters, C. E. Loo, G. A. O. Winter-Warnars, J. Sanders, H. J. C. M. Sterenborg, B. H. W. Hendriks, and T. J. M. Ruers, “Towards the use of diffuse reflectance spectroscopy for real-time in vivo detection of breast cancer during surgery,” J. Transl. Med. 16(1), 367 (2018).
[Crossref]

L. L. de Boer, B. G. Molenkamp, T. M. Bydlon, B. H. W. Hendriks, J. Wesseling, H. J. C. M. Sterenborg, and T. J. M. Ruers, “Fat/water ratios measured with diffuse reflectance spectroscopy to detect breast tumor boundaries,” Breast Cancer Res. Treat. 152(3), 509–518 (2015).
[Crossref]

Hooks, M.

G. Thomas, T.-Q. Nguyen, I. J. Pence, B. Caldwell, M. E. O’Connor, J. Giltnane, M. E. Sanders, A. Grau, I. Meszoely, M. Hooks, M. C. Kelley, and A. Mahadevan-Jansen, “Evaluating feasibility of an automated 3-dimensional scanner using raman spectroscopy for intraoperative breast margin assessment,” Sci. Rep. 7(1), 13548 (2017).
[Crossref]

Jackler, R. K.

A. H. Mandpe, A. Mikulec, R. K. Jackler, L. H. Pitts, and C. D. Yingling, “Comparison of response amplitude versus stimulation threshold in predicting early postoperative facial nerve function after acoustic neuroma resection,” Am. J. Otol. 19(1), 112–117 (1998).

Jee, S.-H.

M.-G. Lin, T.-L. Yang, C.-T. Chiang, H.-C. Kao, J.-N. Lee, W. Lo, S.-H. Jee, Y.-F. Chen, C.-Y. Dong, and S.-J. Lin, “Evaluation of dermal thermal damage by multiphoton autofluorescence and second-harmonic-generation microscopy,” J. Biomed. Opt. 11(6), 064006 (2006).
[Crossref]

Jemal, A.

L. A. Torre, F. Bray, R. L. Siegel, J. Ferlay, J. Lortet-Tieulent, and A. Jemal, “Global cancer statistics, 2012,” Ca-Cancer J. Clin. 65(2), 87–108 (2015).
[Crossref]

Johnson, P. A.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[Crossref]

Joo, C.

A. R. Triki, M. B. Blaschko, Y. M. Jung, S. Song, H. J. Han, S. I. Kim, and C. Joo, “Intraoperative margin assessment of human breast tissue in optical coherence tomography images using deep neural networks,” Comput. Med. Imag. Grap. 69, 21–32 (2018).
[Crossref]

Jung, Y. M.

A. R. Triki, M. B. Blaschko, Y. M. Jung, S. Song, H. J. Han, S. I. Kim, and C. Joo, “Intraoperative margin assessment of human breast tissue in optical coherence tomography images using deep neural networks,” Comput. Med. Imag. Grap. 69, 21–32 (2018).
[Crossref]

Kaiser, M.

M. Kaiser, A. Yafi, M. Cinat, B. Choi, and A. Durkin, “Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities,” Burns 37(3), 377–386 (2011).
[Crossref]

Kao, H.-C.

M.-G. Lin, T.-L. Yang, C.-T. Chiang, H.-C. Kao, J.-N. Lee, W. Lo, S.-H. Jee, Y.-F. Chen, C.-Y. Dong, and S.-J. Lin, “Evaluation of dermal thermal damage by multiphoton autofluorescence and second-harmonic-generation microscopy,” J. Biomed. Opt. 11(6), 064006 (2006).
[Crossref]

Keller, M. D.

M. D. Keller, E. Vargis, A. Mahadevan-Jansen, N. de Matos Granja, R. H. Wilson, M. Mycek, and M. C. Kelley, “Development of a spatially offset raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16(7), 077006 (2011).
[Crossref]

M. D. Keller, S. K. Majumder, M. C. Kelley, I. M. Meszoely, F. I. Boulos, G. M. Olivares, and A. Mahadevan-Jansen, “Autofluorescence and diffuse reflectance spectroscopy and spectral imaging for breast surgical margin analysis,” Lasers Surg. Med. 42(1), 15–23 (2010).
[Crossref]

Kelley, M. C.

G. Thomas, T.-Q. Nguyen, I. J. Pence, B. Caldwell, M. E. O’Connor, J. Giltnane, M. E. Sanders, A. Grau, I. Meszoely, M. Hooks, M. C. Kelley, and A. Mahadevan-Jansen, “Evaluating feasibility of an automated 3-dimensional scanner using raman spectroscopy for intraoperative breast margin assessment,” Sci. Rep. 7(1), 13548 (2017).
[Crossref]

M. D. Keller, E. Vargis, A. Mahadevan-Jansen, N. de Matos Granja, R. H. Wilson, M. Mycek, and M. C. Kelley, “Development of a spatially offset raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16(7), 077006 (2011).
[Crossref]

M. D. Keller, S. K. Majumder, M. C. Kelley, I. M. Meszoely, F. I. Boulos, G. M. Olivares, and A. Mahadevan-Jansen, “Autofluorescence and diffuse reflectance spectroscopy and spectral imaging for breast surgical margin analysis,” Lasers Surg. Med. 42(1), 15–23 (2010).
[Crossref]

Kennedy, B. F.

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref]

Kennedy, K. M.

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref]

Kho, E.

E. Kho, B. Dashtbozorg, L. L. de Boer, K. K. V. de Vijver, H. J. C. M. Sterenborg, and T. J. M. Ruers, “Broadband hyperspectral imaging for breast tumor detection using spectral and spatial information,” Biomed. Opt. Express 10(9), 4496–4515 (2019).
[Crossref]

S. A. Boppart, J. Q. Brown, C. S. Farah, E. Kho, L. Marcu, C. M. Saunders, and H. J. C. M. Sterenborg, “Label-free optical imaging technologies for rapid translation and use during intraoperative surgical and tumor margin assessment,” J. Biomed. Opt. 23(2), 1–10 (2017).
[Crossref]

Kim, S. I.

A. R. Triki, M. B. Blaschko, Y. M. Jung, S. Song, H. J. Han, S. I. Kim, and C. Joo, “Intraoperative margin assessment of human breast tissue in optical coherence tomography images using deep neural networks,” Comput. Med. Imag. Grap. 69, 21–32 (2018).
[Crossref]

Kotynek, J. G.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[Crossref]

Krieger, M. S.

B. S. Nichols, C. E. Schindler, J. Q. Brown, L. G. Wilke, C. S. Mulvey, M. S. Krieger, J. Gallagher, J. Geradts, R. A. Greenup, J. A. Von Windheim, and N. Ramanujam, “A quantitative diffuse reflectance imaging (qdri) system for comprehensive surveillance of the morphological landscape in breast tumor margins,” PLoS One 10(6), e0127525–25 (2015).
[Crossref]

Kulesza, A.

S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan, “A theory of learning from different domains,” Mach. Learn. 79(1-2), 151–175 (2010).
[Crossref]

Lagarto, J.

J. Unger, J. Lagarto, J. Phipps, D. Ma, J. Bec, J. Sorger, G. Farwell, R. Bold, and L. Marcu, “Three-dimensional online surface reconstruction of augmented fluorescence lifetime maps using photometric stereo,” in Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XV, vol. 10054 International Society for Optics and Photonics (SPIE, 2017), p. 65.

Lagarto, J. L.

J. L. Lagarto, J. E. Phipps, L. Faller, D. Ma, J. Unger, J. Bec, S. Griffey, J. Sorger, D. G. Farwell, and L. Marcu, “Electrocautery effects on fluorescence lifetime measurements: An in vivo study in the oral cavity,” J. Photochem. Photobiol., B 185, 90–99 (2018).
[Crossref]

Lan, L.

Latham, B.

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref]

Lechpammer, M.

A. Alfonso-Garcia, J. Bec, S. Sridharan Weaver, B. Hartl, J. Unger, M. Bobinski, M. Lechpammer, F. Girgis, J. Boggan, and L. Marcu, “Real-time augmented reality for delineation of surgical margins during neurosurgery using autofluorescence lifetime contrast,” J. Biophotonics 13(1), e201900108 (2020).
[Crossref]

Lee, J.-N.

M.-G. Lin, T.-L. Yang, C.-T. Chiang, H.-C. Kao, J.-N. Lee, W. Lo, S.-H. Jee, Y.-F. Chen, C.-Y. Dong, and S.-J. Lin, “Evaluation of dermal thermal damage by multiphoton autofluorescence and second-harmonic-generation microscopy,” J. Biomed. Opt. 11(6), 064006 (2006).
[Crossref]

Li, R.

Liang, K.

B. Mondal, S. Gao, N. Zhu, G. Sudlow, K. Liang, A. Som, W. Akers, R. Fields, J. Margenthaler, R. Liang, V. Gruev, and S. Achilefu, “Binocular goggle augmented imaging and navigation system provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping,” Sci. Rep. 5(1), 12117 (2015).
[Crossref]

Liang, R.

B. Mondal, S. Gao, N. Zhu, G. Sudlow, K. Liang, A. Som, W. Akers, R. Fields, J. Margenthaler, R. Liang, V. Gruev, and S. Achilefu, “Binocular goggle augmented imaging and navigation system provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping,” Sci. Rep. 5(1), 12117 (2015).
[Crossref]

Lin, M.-G.

M.-G. Lin, T.-L. Yang, C.-T. Chiang, H.-C. Kao, J.-N. Lee, W. Lo, S.-H. Jee, Y.-F. Chen, C.-Y. Dong, and S.-J. Lin, “Evaluation of dermal thermal damage by multiphoton autofluorescence and second-harmonic-generation microscopy,” J. Biomed. Opt. 11(6), 064006 (2006).
[Crossref]

Lin, S.-J.

M.-G. Lin, T.-L. Yang, C.-T. Chiang, H.-C. Kao, J.-N. Lee, W. Lo, S.-H. Jee, Y.-F. Chen, C.-Y. Dong, and S.-J. Lin, “Evaluation of dermal thermal damage by multiphoton autofluorescence and second-harmonic-generation microscopy,” J. Biomed. Opt. 11(6), 064006 (2006).
[Crossref]

Liu, H.

Liu, J.

D. R. Yankelevich, D. Ma, J. Liu, Y. Sun, Y. Sun, J. Bec, D. S. Elson, and L. Marcu, “Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging,” Rev. Sci. Instrum. 85(3), 034303 (2014).
[Crossref]

J. Liu, Y. Sun, J. Qi, and L. Marcu, “A novel method for fast and robust estimation of fluorescence decay dynamics using constrained least-squares deconvolution with laguerre expansion,” Phys. Med. Biol. 57(4), 843–865 (2012).
[Crossref]

Liu, Z. G.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref]

Lloyd, F. P.

Lo, W.

M.-G. Lin, T.-L. Yang, C.-T. Chiang, H.-C. Kao, J.-N. Lee, W. Lo, S.-H. Jee, Y.-F. Chen, C.-Y. Dong, and S.-J. Lin, “Evaluation of dermal thermal damage by multiphoton autofluorescence and second-harmonic-generation microscopy,” J. Biomed. Opt. 11(6), 064006 (2006).
[Crossref]

Loo, C. E.

L. de Boer, T. Bydlon, F. van Duijnhoven, M.-J. T. F. D. Vranken-Peeters, C. E. Loo, G. A. O. Winter-Warnars, J. Sanders, H. J. C. M. Sterenborg, B. H. W. Hendriks, and T. J. M. Ruers, “Towards the use of diffuse reflectance spectroscopy for real-time in vivo detection of breast cancer during surgery,” J. Transl. Med. 16(1), 367 (2018).
[Crossref]

Lortet-Tieulent, J.

L. A. Torre, F. Bray, R. L. Siegel, J. Ferlay, J. Lortet-Tieulent, and A. Jemal, “Global cancer statistics, 2012,” Ca-Cancer J. Clin. 65(2), 87–108 (2015).
[Crossref]

Love, S. M.

I. Gage, S. J. Schnitt, A. J. Nixon, B. Silver, A. Recht, S. L. Troyan, T. Eberlein, S. M. Love, R. Gelman, J. R. Harris, and J. L. Connolly, “Pathologic margin involvement and the risk of recurrence in patients treated with breast-conserving therapy,” Cancer 78(9), 1921–1928 (1996).

Lu, G.

G. Lu, D. Wang, X. Qin, L. Halig, S. Muller, H. Zhang, A. Chen, B. W. Pogue, Z. G. Chen, and B. Fei, “Framework for hyperspectral image processing and quantification for cancer detection during animal tumor surgery,” J. Biomed. Opt. 20(12), 126012 (2015).
[Crossref]

M. Sterenborg, H. J. C.

E. Kho, B. Dashtbozorg, L. L. de Boer, K. K. V. de Vijver, H. J. C. M. Sterenborg, and T. J. M. Ruers, “Broadband hyperspectral imaging for breast tumor detection using spectral and spatial information,” Biomed. Opt. Express 10(9), 4496–4515 (2019).
[Crossref]

L. de Boer, T. Bydlon, F. van Duijnhoven, M.-J. T. F. D. Vranken-Peeters, C. E. Loo, G. A. O. Winter-Warnars, J. Sanders, H. J. C. M. Sterenborg, B. H. W. Hendriks, and T. J. M. Ruers, “Towards the use of diffuse reflectance spectroscopy for real-time in vivo detection of breast cancer during surgery,” J. Transl. Med. 16(1), 367 (2018).
[Crossref]

S. A. Boppart, J. Q. Brown, C. S. Farah, E. Kho, L. Marcu, C. M. Saunders, and H. J. C. M. Sterenborg, “Label-free optical imaging technologies for rapid translation and use during intraoperative surgical and tumor margin assessment,” J. Biomed. Opt. 23(2), 1–10 (2017).
[Crossref]

L. L. de Boer, B. G. Molenkamp, T. M. Bydlon, B. H. W. Hendriks, J. Wesseling, H. J. C. M. Sterenborg, and T. J. M. Ruers, “Fat/water ratios measured with diffuse reflectance spectroscopy to detect breast tumor boundaries,” Breast Cancer Res. Treat. 152(3), 509–518 (2015).
[Crossref]

Ma, D.

D. Gorpas, J. Phipps, J. Bec, D. Ma, S. Dochow, D. Yankelevich, J. Sorger, J. Popp, A. Bewley, R. Gandour-Edwards, L. Marcu, and D. G. Farwell, “Autofluorescence lifetime augmented reality as a means for real-time robotic surgery guidance in human patients,” Sci. Rep. 9(1), 1187 (2019).
[Crossref]

J. L. Lagarto, J. E. Phipps, L. Faller, D. Ma, J. Unger, J. Bec, S. Griffey, J. Sorger, D. G. Farwell, and L. Marcu, “Electrocautery effects on fluorescence lifetime measurements: An in vivo study in the oral cavity,” J. Photochem. Photobiol., B 185, 90–99 (2018).
[Crossref]

J. Bec, J. E. Phipps, D. Gorpas, D. Ma, H. Fatakdawala, K. B. Margulies, J. A. Southard, and L. Marcu, “In vivo label-free structural and biochemical imaging of coronary arteries using an integrated ultrasound and multispectral fluorescence lifetime catheter system,” Sci. Rep. 7(1), 8960 (2017).
[Crossref]

D. Gorpas, D. Ma, J. Bec, D. R. Yankelevich, and L. Marcu, “Real-time visualization of tissue surface biochemical features derived from fluorescence lifetime measurements,” IEEE Trans. Med. Imag. 35(8), 1802–1811 (2016).
[Crossref]

D. Ma, J. Bec, D. Gorpas, D. R. Yankelevich, and L. Marcu, “Technique for real-time tissue characterization based on scanning multispectral fluorescence lifetime spectroscopy (ms-trfs),” Biomed. Opt. Express 6(3), 987–1002 (2015).
[Crossref]

D. R. Yankelevich, D. Ma, J. Liu, Y. Sun, Y. Sun, J. Bec, D. S. Elson, and L. Marcu, “Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging,” Rev. Sci. Instrum. 85(3), 034303 (2014).
[Crossref]

J. Unger, J. Lagarto, J. Phipps, D. Ma, J. Bec, J. Sorger, G. Farwell, R. Bold, and L. Marcu, “Three-dimensional online surface reconstruction of augmented fluorescence lifetime maps using photometric stereo,” in Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XV, vol. 10054 International Society for Optics and Photonics (SPIE, 2017), p. 65.

Ma, K.

J. Unger, T. Sun, Y. Chen, J. E. Phipps, R. J. Bold, M. A. Darrow, K. Ma, and L. Marcu, “Method for accurate registration of tissue autofluorescence imaging data with corresponding histology: a means for enhanced tumor margin assessment,” J. Biomed. Opt. 23(1), 1–11 (2018).
[Crossref]

Mahadevan-Jansen, A.

G. Thomas, T.-Q. Nguyen, I. J. Pence, B. Caldwell, M. E. O’Connor, J. Giltnane, M. E. Sanders, A. Grau, I. Meszoely, M. Hooks, M. C. Kelley, and A. Mahadevan-Jansen, “Evaluating feasibility of an automated 3-dimensional scanner using raman spectroscopy for intraoperative breast margin assessment,” Sci. Rep. 7(1), 13548 (2017).
[Crossref]

M. D. Keller, E. Vargis, A. Mahadevan-Jansen, N. de Matos Granja, R. H. Wilson, M. Mycek, and M. C. Kelley, “Development of a spatially offset raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16(7), 077006 (2011).
[Crossref]

M. D. Keller, S. K. Majumder, M. C. Kelley, I. M. Meszoely, F. I. Boulos, G. M. Olivares, and A. Mahadevan-Jansen, “Autofluorescence and diffuse reflectance spectroscopy and spectral imaging for breast surgical margin analysis,” Lasers Surg. Med. 42(1), 15–23 (2010).
[Crossref]

Majumder, S. K.

M. D. Keller, S. K. Majumder, M. C. Kelley, I. M. Meszoely, F. I. Boulos, G. M. Olivares, and A. Mahadevan-Jansen, “Autofluorescence and diffuse reflectance spectroscopy and spectral imaging for breast surgical margin analysis,” Lasers Surg. Med. 42(1), 15–23 (2010).
[Crossref]

Maloney, B.

B. Maloney, D. McClatchy, B. Pogue, K. Paulsen, W. Wells, and R. Barth, “Review of methods for intraoperative margin detection for breast conserving surgery,” J. Biomed. Opt. 23(10), 1–19 (2018).
[Crossref]

Mamelak, A. N.

P. V. Butte, A. N. Mamelak, M. Nuno, S. I. Bannykh, K. L. Black, and L. Marcu, “Fluorescence lifetime spectroscopy for guided therapy of brain tumors,” NeuroImage 54, S125–S135 (2011).
[Crossref]

Mandpe, A. H.

A. H. Mandpe, A. Mikulec, R. K. Jackler, L. H. Pitts, and C. D. Yingling, “Comparison of response amplitude versus stimulation threshold in predicting early postoperative facial nerve function after acoustic neuroma resection,” Am. J. Otol. 19(1), 112–117 (1998).

Manohar, S.

D. Piras, W. Xia, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quantum Electron. 16(4), 730–739 (2010).
[Crossref]

Marcu, L.

A. Alfonso-Garcia, J. Bec, S. Sridharan Weaver, B. Hartl, J. Unger, M. Bobinski, M. Lechpammer, F. Girgis, J. Boggan, and L. Marcu, “Real-time augmented reality for delineation of surgical margins during neurosurgery using autofluorescence lifetime contrast,” J. Biophotonics 13(1), e201900108 (2020).
[Crossref]

D. Gorpas, J. Phipps, J. Bec, D. Ma, S. Dochow, D. Yankelevich, J. Sorger, J. Popp, A. Bewley, R. Gandour-Edwards, L. Marcu, and D. G. Farwell, “Autofluorescence lifetime augmented reality as a means for real-time robotic surgery guidance in human patients,” Sci. Rep. 9(1), 1187 (2019).
[Crossref]

B. W. Weyers, M. Marsden, T. Sun, J. Bec, A. F. Bewley, R. F. Gandour-Edwards, M. G. Moore, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging for intraoperative cancer delineation in transoral robotic surgery,” Trans. Biophotonics 1(1-2), e201900017 (2019).
[Crossref]

J. Unger, T. Sun, Y. Chen, J. E. Phipps, R. J. Bold, M. A. Darrow, K. Ma, and L. Marcu, “Method for accurate registration of tissue autofluorescence imaging data with corresponding histology: a means for enhanced tumor margin assessment,” J. Biomed. Opt. 23(1), 1–11 (2018).
[Crossref]

J. L. Lagarto, J. E. Phipps, L. Faller, D. Ma, J. Unger, J. Bec, S. Griffey, J. Sorger, D. G. Farwell, and L. Marcu, “Electrocautery effects on fluorescence lifetime measurements: An in vivo study in the oral cavity,” J. Photochem. Photobiol., B 185, 90–99 (2018).
[Crossref]

S. A. Boppart, J. Q. Brown, C. S. Farah, E. Kho, L. Marcu, C. M. Saunders, and H. J. C. M. Sterenborg, “Label-free optical imaging technologies for rapid translation and use during intraoperative surgical and tumor margin assessment,” J. Biomed. Opt. 23(2), 1–10 (2017).
[Crossref]

J. Bec, J. E. Phipps, D. Gorpas, D. Ma, H. Fatakdawala, K. B. Margulies, J. A. Southard, and L. Marcu, “In vivo label-free structural and biochemical imaging of coronary arteries using an integrated ultrasound and multispectral fluorescence lifetime catheter system,” Sci. Rep. 7(1), 8960 (2017).
[Crossref]

J. E. Phipps, D. Gorpas, J. Unger, M. Darrow, R. J. Bold, and L. Marcu, “Automated detection of breast cancer in resected specimens with fluorescence lifetime,” Phys. Med. Biol. 63(1), 015003 (2017).
[Crossref]

D. Gorpas, D. Ma, J. Bec, D. R. Yankelevich, and L. Marcu, “Real-time visualization of tissue surface biochemical features derived from fluorescence lifetime measurements,” IEEE Trans. Med. Imag. 35(8), 1802–1811 (2016).
[Crossref]

D. Ma, J. Bec, D. Gorpas, D. R. Yankelevich, and L. Marcu, “Technique for real-time tissue characterization based on scanning multispectral fluorescence lifetime spectroscopy (ms-trfs),” Biomed. Opt. Express 6(3), 987–1002 (2015).
[Crossref]

D. R. Yankelevich, D. Ma, J. Liu, Y. Sun, Y. Sun, J. Bec, D. S. Elson, and L. Marcu, “Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging,” Rev. Sci. Instrum. 85(3), 034303 (2014).
[Crossref]

J. Liu, Y. Sun, J. Qi, and L. Marcu, “A novel method for fast and robust estimation of fluorescence decay dynamics using constrained least-squares deconvolution with laguerre expansion,” Phys. Med. Biol. 57(4), 843–865 (2012).
[Crossref]

P. V. Butte, A. N. Mamelak, M. Nuno, S. I. Bannykh, K. L. Black, and L. Marcu, “Fluorescence lifetime spectroscopy for guided therapy of brain tumors,” NeuroImage 54, S125–S135 (2011).
[Crossref]

J. E. Phipps, J. Unger, R. Gandour-Edwards, M. G. Moore, A. Beweley, G. Farwell, and L. Marcu, “Head and neck cancer evaluation via transoral robotic surgery with augmented fluorescence lifetime imaging,” in Biophotonics Congress: Biomedical Optics Congress 2018, (Optical Society of America, 2018), p. CTu2B.3.

J. Unger, J. Lagarto, J. Phipps, D. Ma, J. Bec, J. Sorger, G. Farwell, R. Bold, and L. Marcu, “Three-dimensional online surface reconstruction of augmented fluorescence lifetime maps using photometric stereo,” in Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XV, vol. 10054 International Society for Optics and Photonics (SPIE, 2017), p. 65.

Margenthaler, J.

B. Mondal, S. Gao, N. Zhu, G. Sudlow, K. Liang, A. Som, W. Akers, R. Fields, J. Margenthaler, R. Liang, V. Gruev, and S. Achilefu, “Binocular goggle augmented imaging and navigation system provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping,” Sci. Rep. 5(1), 12117 (2015).
[Crossref]

Margulies, K. B.

J. Bec, J. E. Phipps, D. Gorpas, D. Ma, H. Fatakdawala, K. B. Margulies, J. A. Southard, and L. Marcu, “In vivo label-free structural and biochemical imaging of coronary arteries using an integrated ultrasound and multispectral fluorescence lifetime catheter system,” Sci. Rep. 7(1), 8960 (2017).
[Crossref]

Marjanovic, M.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref]

Marsden, M.

B. W. Weyers, M. Marsden, T. Sun, J. Bec, A. F. Bewley, R. F. Gandour-Edwards, M. G. Moore, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging for intraoperative cancer delineation in transoral robotic surgery,” Trans. Biophotonics 1(1-2), e201900017 (2019).
[Crossref]

Matthews, B. W.

B. W. Matthews, “Comparison of the predicted and observed secondary structure of t4 phage lysozyme,” Biochim. Biophys. Acta 405(2), 442–451 (1975).
[Crossref]

McClatchy, D.

B. Maloney, D. McClatchy, B. Pogue, K. Paulsen, W. Wells, and R. Barth, “Review of methods for intraoperative margin detection for breast conserving surgery,” J. Biomed. Opt. 23(10), 1–19 (2018).
[Crossref]

McCormick, D. T.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref]

McLaughlin, R. A.

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref]

Meszoely, I.

G. Thomas, T.-Q. Nguyen, I. J. Pence, B. Caldwell, M. E. O’Connor, J. Giltnane, M. E. Sanders, A. Grau, I. Meszoely, M. Hooks, M. C. Kelley, and A. Mahadevan-Jansen, “Evaluating feasibility of an automated 3-dimensional scanner using raman spectroscopy for intraoperative breast margin assessment,” Sci. Rep. 7(1), 13548 (2017).
[Crossref]

Meszoely, I. M.

M. D. Keller, S. K. Majumder, M. C. Kelley, I. M. Meszoely, F. I. Boulos, G. M. Olivares, and A. Mahadevan-Jansen, “Autofluorescence and diffuse reflectance spectroscopy and spectral imaging for breast surgical margin analysis,” Lasers Surg. Med. 42(1), 15–23 (2010).
[Crossref]

Mikulec, A.

A. H. Mandpe, A. Mikulec, R. K. Jackler, L. H. Pitts, and C. D. Yingling, “Comparison of response amplitude versus stimulation threshold in predicting early postoperative facial nerve function after acoustic neuroma resection,” Am. J. Otol. 19(1), 112–117 (1998).

Molenkamp, B. G.

L. L. de Boer, B. G. Molenkamp, T. M. Bydlon, B. H. W. Hendriks, J. Wesseling, H. J. C. M. Sterenborg, and T. J. M. Ruers, “Fat/water ratios measured with diffuse reflectance spectroscopy to detect breast tumor boundaries,” Breast Cancer Res. Treat. 152(3), 509–518 (2015).
[Crossref]

Mondal, B.

B. Mondal, S. Gao, N. Zhu, G. Sudlow, K. Liang, A. Som, W. Akers, R. Fields, J. Margenthaler, R. Liang, V. Gruev, and S. Achilefu, “Binocular goggle augmented imaging and navigation system provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping,” Sci. Rep. 5(1), 12117 (2015).
[Crossref]

Monroy, G. L.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref]

Moore, M. G.

B. W. Weyers, M. Marsden, T. Sun, J. Bec, A. F. Bewley, R. F. Gandour-Edwards, M. G. Moore, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging for intraoperative cancer delineation in transoral robotic surgery,” Trans. Biophotonics 1(1-2), e201900017 (2019).
[Crossref]

J. E. Phipps, J. Unger, R. Gandour-Edwards, M. G. Moore, A. Beweley, G. Farwell, and L. Marcu, “Head and neck cancer evaluation via transoral robotic surgery with augmented fluorescence lifetime imaging,” in Biophotonics Congress: Biomedical Optics Congress 2018, (Optical Society of America, 2018), p. CTu2B.3.

Muller, S.

G. Lu, D. Wang, X. Qin, L. Halig, S. Muller, H. Zhang, A. Chen, B. W. Pogue, Z. G. Chen, and B. Fei, “Framework for hyperspectral image processing and quantification for cancer detection during animal tumor surgery,” J. Biomed. Opt. 20(12), 126012 (2015).
[Crossref]

Mulvey, C. S.

B. S. Nichols, C. E. Schindler, J. Q. Brown, L. G. Wilke, C. S. Mulvey, M. S. Krieger, J. Gallagher, J. Geradts, R. A. Greenup, J. A. Von Windheim, and N. Ramanujam, “A quantitative diffuse reflectance imaging (qdri) system for comprehensive surveillance of the morphological landscape in breast tumor margins,” PLoS One 10(6), e0127525–25 (2015).
[Crossref]

Mycek, M.

M. D. Keller, E. Vargis, A. Mahadevan-Jansen, N. de Matos Granja, R. H. Wilson, M. Mycek, and M. C. Kelley, “Development of a spatially offset raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16(7), 077006 (2011).
[Crossref]

Nguyen, F. T.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[Crossref]

Nguyen, T.-Q.

G. Thomas, T.-Q. Nguyen, I. J. Pence, B. Caldwell, M. E. O’Connor, J. Giltnane, M. E. Sanders, A. Grau, I. Meszoely, M. Hooks, M. C. Kelley, and A. Mahadevan-Jansen, “Evaluating feasibility of an automated 3-dimensional scanner using raman spectroscopy for intraoperative breast margin assessment,” Sci. Rep. 7(1), 13548 (2017).
[Crossref]

Nichols, B. S.

B. S. Nichols, C. E. Schindler, J. Q. Brown, L. G. Wilke, C. S. Mulvey, M. S. Krieger, J. Gallagher, J. Geradts, R. A. Greenup, J. A. Von Windheim, and N. Ramanujam, “A quantitative diffuse reflectance imaging (qdri) system for comprehensive surveillance of the morphological landscape in breast tumor margins,” PLoS One 10(6), e0127525–25 (2015).
[Crossref]

Nixon, A. J.

I. Gage, S. J. Schnitt, A. J. Nixon, B. Silver, A. Recht, S. L. Troyan, T. Eberlein, S. M. Love, R. Gelman, J. R. Harris, and J. L. Connolly, “Pathologic margin involvement and the risk of recurrence in patients treated with breast-conserving therapy,” Cancer 78(9), 1921–1928 (1996).

Nolan, R. M.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref]

Nuno, M.

P. V. Butte, A. N. Mamelak, M. Nuno, S. I. Bannykh, K. L. Black, and L. Marcu, “Fluorescence lifetime spectroscopy for guided therapy of brain tumors,” NeuroImage 54, S125–S135 (2011).
[Crossref]

O’Connor, M. E.

G. Thomas, T.-Q. Nguyen, I. J. Pence, B. Caldwell, M. E. O’Connor, J. Giltnane, M. E. Sanders, A. Grau, I. Meszoely, M. Hooks, M. C. Kelley, and A. Mahadevan-Jansen, “Evaluating feasibility of an automated 3-dimensional scanner using raman spectroscopy for intraoperative breast margin assessment,” Sci. Rep. 7(1), 13548 (2017).
[Crossref]

Oliphant, U. J.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[Crossref]

Olivares, G. M.

M. D. Keller, S. K. Majumder, M. C. Kelley, I. M. Meszoely, F. I. Boulos, G. M. Olivares, and A. Mahadevan-Jansen, “Autofluorescence and diffuse reflectance spectroscopy and spectral imaging for breast surgical margin analysis,” Lasers Surg. Med. 42(1), 15–23 (2010).
[Crossref]

Paulsen, K.

B. Maloney, D. McClatchy, B. Pogue, K. Paulsen, W. Wells, and R. Barth, “Review of methods for intraoperative margin detection for breast conserving surgery,” J. Biomed. Opt. 23(10), 1–19 (2018).
[Crossref]

Pence, I. J.

G. Thomas, T.-Q. Nguyen, I. J. Pence, B. Caldwell, M. E. O’Connor, J. Giltnane, M. E. Sanders, A. Grau, I. Meszoely, M. Hooks, M. C. Kelley, and A. Mahadevan-Jansen, “Evaluating feasibility of an automated 3-dimensional scanner using raman spectroscopy for intraoperative breast margin assessment,” Sci. Rep. 7(1), 13548 (2017).
[Crossref]

Peng, Y.

Pereira, F.

S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan, “A theory of learning from different domains,” Mach. Learn. 79(1-2), 151–175 (2010).
[Crossref]

Pfister, T.

A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb, “Learning from simulated and unsupervised images through adversarial training,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2017).

Phipps, J.

D. Gorpas, J. Phipps, J. Bec, D. Ma, S. Dochow, D. Yankelevich, J. Sorger, J. Popp, A. Bewley, R. Gandour-Edwards, L. Marcu, and D. G. Farwell, “Autofluorescence lifetime augmented reality as a means for real-time robotic surgery guidance in human patients,” Sci. Rep. 9(1), 1187 (2019).
[Crossref]

J. Unger, J. Lagarto, J. Phipps, D. Ma, J. Bec, J. Sorger, G. Farwell, R. Bold, and L. Marcu, “Three-dimensional online surface reconstruction of augmented fluorescence lifetime maps using photometric stereo,” in Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XV, vol. 10054 International Society for Optics and Photonics (SPIE, 2017), p. 65.

Phipps, J. E.

J. L. Lagarto, J. E. Phipps, L. Faller, D. Ma, J. Unger, J. Bec, S. Griffey, J. Sorger, D. G. Farwell, and L. Marcu, “Electrocautery effects on fluorescence lifetime measurements: An in vivo study in the oral cavity,” J. Photochem. Photobiol., B 185, 90–99 (2018).
[Crossref]

J. Unger, T. Sun, Y. Chen, J. E. Phipps, R. J. Bold, M. A. Darrow, K. Ma, and L. Marcu, “Method for accurate registration of tissue autofluorescence imaging data with corresponding histology: a means for enhanced tumor margin assessment,” J. Biomed. Opt. 23(1), 1–11 (2018).
[Crossref]

J. Bec, J. E. Phipps, D. Gorpas, D. Ma, H. Fatakdawala, K. B. Margulies, J. A. Southard, and L. Marcu, “In vivo label-free structural and biochemical imaging of coronary arteries using an integrated ultrasound and multispectral fluorescence lifetime catheter system,” Sci. Rep. 7(1), 8960 (2017).
[Crossref]

J. E. Phipps, D. Gorpas, J. Unger, M. Darrow, R. J. Bold, and L. Marcu, “Automated detection of breast cancer in resected specimens with fluorescence lifetime,” Phys. Med. Biol. 63(1), 015003 (2017).
[Crossref]

J. E. Phipps, J. Unger, R. Gandour-Edwards, M. G. Moore, A. Beweley, G. Farwell, and L. Marcu, “Head and neck cancer evaluation via transoral robotic surgery with augmented fluorescence lifetime imaging,” in Biophotonics Congress: Biomedical Optics Congress 2018, (Optical Society of America, 2018), p. CTu2B.3.

Piras, D.

D. Piras, W. Xia, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quantum Electron. 16(4), 730–739 (2010).
[Crossref]

Pitts, L. H.

A. H. Mandpe, A. Mikulec, R. K. Jackler, L. H. Pitts, and C. D. Yingling, “Comparison of response amplitude versus stimulation threshold in predicting early postoperative facial nerve function after acoustic neuroma resection,” Am. J. Otol. 19(1), 112–117 (1998).

Platt, J. C.

J. C. Platt, “Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods,” in Advances in large margin classifiers, (MIT Press, 1999), pp. 61–74.

Pogue, B.

B. Maloney, D. McClatchy, B. Pogue, K. Paulsen, W. Wells, and R. Barth, “Review of methods for intraoperative margin detection for breast conserving surgery,” J. Biomed. Opt. 23(10), 1–19 (2018).
[Crossref]

Pogue, B. W.

G. Lu, D. Wang, X. Qin, L. Halig, S. Muller, H. Zhang, A. Chen, B. W. Pogue, Z. G. Chen, and B. Fei, “Framework for hyperspectral image processing and quantification for cancer detection during animal tumor surgery,” J. Biomed. Opt. 20(12), 126012 (2015).
[Crossref]

Popp, J.

D. Gorpas, J. Phipps, J. Bec, D. Ma, S. Dochow, D. Yankelevich, J. Sorger, J. Popp, A. Bewley, R. Gandour-Edwards, L. Marcu, and D. G. Farwell, “Autofluorescence lifetime augmented reality as a means for real-time robotic surgery guidance in human patients,” Sci. Rep. 9(1), 1187 (2019).
[Crossref]

Putney, J.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref]

Qi, J.

J. Liu, Y. Sun, J. Qi, and L. Marcu, “A novel method for fast and robust estimation of fluorescence decay dynamics using constrained least-squares deconvolution with laguerre expansion,” Phys. Med. Biol. 57(4), 843–865 (2012).
[Crossref]

Qin, X.

G. Lu, D. Wang, X. Qin, L. Halig, S. Muller, H. Zhang, A. Chen, B. W. Pogue, Z. G. Chen, and B. Fei, “Framework for hyperspectral image processing and quantification for cancer detection during animal tumor surgery,” J. Biomed. Opt. 20(12), 126012 (2015).
[Crossref]

Ramanujam, N.

B. S. Nichols, C. E. Schindler, J. Q. Brown, L. G. Wilke, C. S. Mulvey, M. S. Krieger, J. Gallagher, J. Geradts, R. A. Greenup, J. A. Von Windheim, and N. Ramanujam, “A quantitative diffuse reflectance imaging (qdri) system for comprehensive surveillance of the morphological landscape in breast tumor margins,” PLoS One 10(6), e0127525–25 (2015).
[Crossref]

Ray, P. S.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref]

Recht, A.

I. Gage, S. J. Schnitt, A. J. Nixon, B. Silver, A. Recht, S. L. Troyan, T. Eberlein, S. M. Love, R. Gelman, J. R. Harris, and J. L. Connolly, “Pathologic margin involvement and the risk of recurrence in patients treated with breast-conserving therapy,” Cancer 78(9), 1921–1928 (1996).

Rowland, K. M.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[Crossref]

Ruers, T. J. M.

E. Kho, B. Dashtbozorg, L. L. de Boer, K. K. V. de Vijver, H. J. C. M. Sterenborg, and T. J. M. Ruers, “Broadband hyperspectral imaging for breast tumor detection using spectral and spatial information,” Biomed. Opt. Express 10(9), 4496–4515 (2019).
[Crossref]

L. de Boer, T. Bydlon, F. van Duijnhoven, M.-J. T. F. D. Vranken-Peeters, C. E. Loo, G. A. O. Winter-Warnars, J. Sanders, H. J. C. M. Sterenborg, B. H. W. Hendriks, and T. J. M. Ruers, “Towards the use of diffuse reflectance spectroscopy for real-time in vivo detection of breast cancer during surgery,” J. Transl. Med. 16(1), 367 (2018).
[Crossref]

L. L. de Boer, B. G. Molenkamp, T. M. Bydlon, B. H. W. Hendriks, J. Wesseling, H. J. C. M. Sterenborg, and T. J. M. Ruers, “Fat/water ratios measured with diffuse reflectance spectroscopy to detect breast tumor boundaries,” Breast Cancer Res. Treat. 152(3), 509–518 (2015).
[Crossref]

Sampson, D. D.

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref]

Sanders, J.

L. de Boer, T. Bydlon, F. van Duijnhoven, M.-J. T. F. D. Vranken-Peeters, C. E. Loo, G. A. O. Winter-Warnars, J. Sanders, H. J. C. M. Sterenborg, B. H. W. Hendriks, and T. J. M. Ruers, “Towards the use of diffuse reflectance spectroscopy for real-time in vivo detection of breast cancer during surgery,” J. Transl. Med. 16(1), 367 (2018).
[Crossref]

Sanders, M. E.

G. Thomas, T.-Q. Nguyen, I. J. Pence, B. Caldwell, M. E. O’Connor, J. Giltnane, M. E. Sanders, A. Grau, I. Meszoely, M. Hooks, M. C. Kelley, and A. Mahadevan-Jansen, “Evaluating feasibility of an automated 3-dimensional scanner using raman spectroscopy for intraoperative breast margin assessment,” Sci. Rep. 7(1), 13548 (2017).
[Crossref]

Saunders, C. M.

S. A. Boppart, J. Q. Brown, C. S. Farah, E. Kho, L. Marcu, C. M. Saunders, and H. J. C. M. Sterenborg, “Label-free optical imaging technologies for rapid translation and use during intraoperative surgical and tumor margin assessment,” J. Biomed. Opt. 23(2), 1–10 (2017).
[Crossref]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref]

Schindler, C. E.

B. S. Nichols, C. E. Schindler, J. Q. Brown, L. G. Wilke, C. S. Mulvey, M. S. Krieger, J. Gallagher, J. Geradts, R. A. Greenup, J. A. Von Windheim, and N. Ramanujam, “A quantitative diffuse reflectance imaging (qdri) system for comprehensive surveillance of the morphological landscape in breast tumor margins,” PLoS One 10(6), e0127525–25 (2015).
[Crossref]

Schnitt, S. J.

I. Gage, S. J. Schnitt, A. J. Nixon, B. Silver, A. Recht, S. L. Troyan, T. Eberlein, S. M. Love, R. Gelman, J. R. Harris, and J. L. Connolly, “Pathologic margin involvement and the risk of recurrence in patients treated with breast-conserving therapy,” Cancer 78(9), 1921–1928 (1996).

Shan, J.

J. Shan, S. K. Alam, B. Garra, Y. Zhang, and T. Ahmed, “Computer-aided diagnosis for breast ultrasound using computerized bi-rads features and machine learning methods,” Ultrasound Med. Biol. 42(4), 980–988 (2016).
[Crossref]

Sharma, V.

Shemonski, N. D.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref]

Shivalingaiah, S.

Shrivastava, A.

A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb, “Learning from simulated and unsupervised images through adversarial training,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2017).

Siegel, R. L.

L. A. Torre, F. Bray, R. L. Siegel, J. Ferlay, J. Lortet-Tieulent, and A. Jemal, “Global cancer statistics, 2012,” Ca-Cancer J. Clin. 65(2), 87–108 (2015).
[Crossref]

Silver, B.

I. Gage, S. J. Schnitt, A. J. Nixon, B. Silver, A. Recht, S. L. Troyan, T. Eberlein, S. M. Love, R. Gelman, J. R. Harris, and J. L. Connolly, “Pathologic margin involvement and the risk of recurrence in patients treated with breast-conserving therapy,” Cancer 78(9), 1921–1928 (1996).

Som, A.

B. Mondal, S. Gao, N. Zhu, G. Sudlow, K. Liang, A. Som, W. Akers, R. Fields, J. Margenthaler, R. Liang, V. Gruev, and S. Achilefu, “Binocular goggle augmented imaging and navigation system provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping,” Sci. Rep. 5(1), 12117 (2015).
[Crossref]

Song, S.

A. R. Triki, M. B. Blaschko, Y. M. Jung, S. Song, H. J. Han, S. I. Kim, and C. Joo, “Intraoperative margin assessment of human breast tissue in optical coherence tomography images using deep neural networks,” Comput. Med. Imag. Grap. 69, 21–32 (2018).
[Crossref]

Sorger, J.

D. Gorpas, J. Phipps, J. Bec, D. Ma, S. Dochow, D. Yankelevich, J. Sorger, J. Popp, A. Bewley, R. Gandour-Edwards, L. Marcu, and D. G. Farwell, “Autofluorescence lifetime augmented reality as a means for real-time robotic surgery guidance in human patients,” Sci. Rep. 9(1), 1187 (2019).
[Crossref]

J. L. Lagarto, J. E. Phipps, L. Faller, D. Ma, J. Unger, J. Bec, S. Griffey, J. Sorger, D. G. Farwell, and L. Marcu, “Electrocautery effects on fluorescence lifetime measurements: An in vivo study in the oral cavity,” J. Photochem. Photobiol., B 185, 90–99 (2018).
[Crossref]

J. Unger, J. Lagarto, J. Phipps, D. Ma, J. Bec, J. Sorger, G. Farwell, R. Bold, and L. Marcu, “Three-dimensional online surface reconstruction of augmented fluorescence lifetime maps using photometric stereo,” in Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XV, vol. 10054 International Society for Optics and Photonics (SPIE, 2017), p. 65.

South, F. A.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref]

Southard, J. A.

J. Bec, J. E. Phipps, D. Gorpas, D. Ma, H. Fatakdawala, K. B. Margulies, J. A. Southard, and L. Marcu, “In vivo label-free structural and biochemical imaging of coronary arteries using an integrated ultrasound and multispectral fluorescence lifetime catheter system,” Sci. Rep. 7(1), 8960 (2017).
[Crossref]

Sridharan Weaver, S.

A. Alfonso-Garcia, J. Bec, S. Sridharan Weaver, B. Hartl, J. Unger, M. Bobinski, M. Lechpammer, F. Girgis, J. Boggan, and L. Marcu, “Real-time augmented reality for delineation of surgical margins during neurosurgery using autofluorescence lifetime contrast,” J. Biophotonics 13(1), e201900108 (2020).
[Crossref]

Steenbergen, W.

D. Piras, W. Xia, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quantum Electron. 16(4), 730–739 (2010).
[Crossref]

Sudlow, G.

B. Mondal, S. Gao, N. Zhu, G. Sudlow, K. Liang, A. Som, W. Akers, R. Fields, J. Margenthaler, R. Liang, V. Gruev, and S. Achilefu, “Binocular goggle augmented imaging and navigation system provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping,” Sci. Rep. 5(1), 12117 (2015).
[Crossref]

Sun, T.

B. W. Weyers, M. Marsden, T. Sun, J. Bec, A. F. Bewley, R. F. Gandour-Edwards, M. G. Moore, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging for intraoperative cancer delineation in transoral robotic surgery,” Trans. Biophotonics 1(1-2), e201900017 (2019).
[Crossref]

J. Unger, T. Sun, Y. Chen, J. E. Phipps, R. J. Bold, M. A. Darrow, K. Ma, and L. Marcu, “Method for accurate registration of tissue autofluorescence imaging data with corresponding histology: a means for enhanced tumor margin assessment,” J. Biomed. Opt. 23(1), 1–11 (2018).
[Crossref]

Sun, Y.

D. R. Yankelevich, D. Ma, J. Liu, Y. Sun, Y. Sun, J. Bec, D. S. Elson, and L. Marcu, “Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging,” Rev. Sci. Instrum. 85(3), 034303 (2014).
[Crossref]

D. R. Yankelevich, D. Ma, J. Liu, Y. Sun, Y. Sun, J. Bec, D. S. Elson, and L. Marcu, “Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging,” Rev. Sci. Instrum. 85(3), 034303 (2014).
[Crossref]

J. Liu, Y. Sun, J. Qi, and L. Marcu, “A novel method for fast and robust estimation of fluorescence decay dynamics using constrained least-squares deconvolution with laguerre expansion,” Phys. Med. Biol. 57(4), 843–865 (2012).
[Crossref]

Sundaram, M.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref]

Susskind, J.

A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb, “Learning from simulated and unsupervised images through adversarial training,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2017).

Thomas, G.

G. Thomas, T.-Q. Nguyen, I. J. Pence, B. Caldwell, M. E. O’Connor, J. Giltnane, M. E. Sanders, A. Grau, I. Meszoely, M. Hooks, M. C. Kelley, and A. Mahadevan-Jansen, “Evaluating feasibility of an automated 3-dimensional scanner using raman spectroscopy for intraoperative breast margin assessment,” Sci. Rep. 7(1), 13548 (2017).
[Crossref]

Torre, L. A.

L. A. Torre, F. Bray, R. L. Siegel, J. Ferlay, J. Lortet-Tieulent, and A. Jemal, “Global cancer statistics, 2012,” Ca-Cancer J. Clin. 65(2), 87–108 (2015).
[Crossref]

Triki, A. R.

A. R. Triki, M. B. Blaschko, Y. M. Jung, S. Song, H. J. Han, S. I. Kim, and C. Joo, “Intraoperative margin assessment of human breast tissue in optical coherence tomography images using deep neural networks,” Comput. Med. Imag. Grap. 69, 21–32 (2018).
[Crossref]

Troyan, S. L.

I. Gage, S. J. Schnitt, A. J. Nixon, B. Silver, A. Recht, S. L. Troyan, T. Eberlein, S. M. Love, R. Gelman, J. R. Harris, and J. L. Connolly, “Pathologic margin involvement and the risk of recurrence in patients treated with breast-conserving therapy,” Cancer 78(9), 1921–1928 (1996).

Tuzel, O.

A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb, “Learning from simulated and unsupervised images through adversarial training,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2017).

Unger, J.

A. Alfonso-Garcia, J. Bec, S. Sridharan Weaver, B. Hartl, J. Unger, M. Bobinski, M. Lechpammer, F. Girgis, J. Boggan, and L. Marcu, “Real-time augmented reality for delineation of surgical margins during neurosurgery using autofluorescence lifetime contrast,” J. Biophotonics 13(1), e201900108 (2020).
[Crossref]

J. L. Lagarto, J. E. Phipps, L. Faller, D. Ma, J. Unger, J. Bec, S. Griffey, J. Sorger, D. G. Farwell, and L. Marcu, “Electrocautery effects on fluorescence lifetime measurements: An in vivo study in the oral cavity,” J. Photochem. Photobiol., B 185, 90–99 (2018).
[Crossref]

J. Unger, T. Sun, Y. Chen, J. E. Phipps, R. J. Bold, M. A. Darrow, K. Ma, and L. Marcu, “Method for accurate registration of tissue autofluorescence imaging data with corresponding histology: a means for enhanced tumor margin assessment,” J. Biomed. Opt. 23(1), 1–11 (2018).
[Crossref]

J. E. Phipps, D. Gorpas, J. Unger, M. Darrow, R. J. Bold, and L. Marcu, “Automated detection of breast cancer in resected specimens with fluorescence lifetime,” Phys. Med. Biol. 63(1), 015003 (2017).
[Crossref]

J. E. Phipps, J. Unger, R. Gandour-Edwards, M. G. Moore, A. Beweley, G. Farwell, and L. Marcu, “Head and neck cancer evaluation via transoral robotic surgery with augmented fluorescence lifetime imaging,” in Biophotonics Congress: Biomedical Optics Congress 2018, (Optical Society of America, 2018), p. CTu2B.3.

J. Unger, J. Lagarto, J. Phipps, D. Ma, J. Bec, J. Sorger, G. Farwell, R. Bold, and L. Marcu, “Three-dimensional online surface reconstruction of augmented fluorescence lifetime maps using photometric stereo,” in Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XV, vol. 10054 International Society for Optics and Photonics (SPIE, 2017), p. 65.

van Duijnhoven, F.

L. de Boer, T. Bydlon, F. van Duijnhoven, M.-J. T. F. D. Vranken-Peeters, C. E. Loo, G. A. O. Winter-Warnars, J. Sanders, H. J. C. M. Sterenborg, B. H. W. Hendriks, and T. J. M. Ruers, “Towards the use of diffuse reflectance spectroscopy for real-time in vivo detection of breast cancer during surgery,” J. Transl. Med. 16(1), 367 (2018).
[Crossref]

van Leeuwen, T. G.

D. Piras, W. Xia, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quantum Electron. 16(4), 730–739 (2010).
[Crossref]

Vargis, E.

M. D. Keller, E. Vargis, A. Mahadevan-Jansen, N. de Matos Granja, R. H. Wilson, M. Mycek, and M. C. Kelley, “Development of a spatially offset raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16(7), 077006 (2011).
[Crossref]

Vaughan, J. W.

S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan, “A theory of learning from different domains,” Mach. Learn. 79(1-2), 151–175 (2010).
[Crossref]

Von Windheim, J. A.

B. S. Nichols, C. E. Schindler, J. Q. Brown, L. G. Wilke, C. S. Mulvey, M. S. Krieger, J. Gallagher, J. Geradts, R. A. Greenup, J. A. Von Windheim, and N. Ramanujam, “A quantitative diffuse reflectance imaging (qdri) system for comprehensive surveillance of the morphological landscape in breast tumor margins,” PLoS One 10(6), e0127525–25 (2015).
[Crossref]

Wang, D.

G. Lu, D. Wang, X. Qin, L. Halig, S. Muller, H. Zhang, A. Chen, B. W. Pogue, Z. G. Chen, and B. Fei, “Framework for hyperspectral image processing and quantification for cancer detection during animal tumor surgery,” J. Biomed. Opt. 20(12), 126012 (2015).
[Crossref]

Wang, P.

Wang, W.

A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb, “Learning from simulated and unsupervised images through adversarial training,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2017).

Webb, R.

A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb, “Learning from simulated and unsupervised images through adversarial training,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2017).

Wells, W.

B. Maloney, D. McClatchy, B. Pogue, K. Paulsen, W. Wells, and R. Barth, “Review of methods for intraoperative margin detection for breast conserving surgery,” J. Biomed. Opt. 23(10), 1–19 (2018).
[Crossref]

Wesseling, J.

L. L. de Boer, B. G. Molenkamp, T. M. Bydlon, B. H. W. Hendriks, J. Wesseling, H. J. C. M. Sterenborg, and T. J. M. Ruers, “Fat/water ratios measured with diffuse reflectance spectroscopy to detect breast tumor boundaries,” Breast Cancer Res. Treat. 152(3), 509–518 (2015).
[Crossref]

Weyers, B. W.

B. W. Weyers, M. Marsden, T. Sun, J. Bec, A. F. Bewley, R. F. Gandour-Edwards, M. G. Moore, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging for intraoperative cancer delineation in transoral robotic surgery,” Trans. Biophotonics 1(1-2), e201900017 (2019).
[Crossref]

Wilke, L. G.

B. S. Nichols, C. E. Schindler, J. Q. Brown, L. G. Wilke, C. S. Mulvey, M. S. Krieger, J. Gallagher, J. Geradts, R. A. Greenup, J. A. Von Windheim, and N. Ramanujam, “A quantitative diffuse reflectance imaging (qdri) system for comprehensive surveillance of the morphological landscape in breast tumor margins,” PLoS One 10(6), e0127525–25 (2015).
[Crossref]

Wilson, R. H.

M. D. Keller, E. Vargis, A. Mahadevan-Jansen, N. de Matos Granja, R. H. Wilson, M. Mycek, and M. C. Kelley, “Development of a spatially offset raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16(7), 077006 (2011).
[Crossref]

Winter-Warnars, G. A. O.

L. de Boer, T. Bydlon, F. van Duijnhoven, M.-J. T. F. D. Vranken-Peeters, C. E. Loo, G. A. O. Winter-Warnars, J. Sanders, H. J. C. M. Sterenborg, B. H. W. Hendriks, and T. J. M. Ruers, “Towards the use of diffuse reflectance spectroscopy for real-time in vivo detection of breast cancer during surgery,” J. Transl. Med. 16(1), 367 (2018).
[Crossref]

Xia, W.

D. Piras, W. Xia, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quantum Electron. 16(4), 730–739 (2010).
[Crossref]

Yafi, A.

M. Kaiser, A. Yafi, M. Cinat, B. Choi, and A. Durkin, “Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities,” Burns 37(3), 377–386 (2011).
[Crossref]

Yang, T.-L.

M.-G. Lin, T.-L. Yang, C.-T. Chiang, H.-C. Kao, J.-N. Lee, W. Lo, S.-H. Jee, Y.-F. Chen, C.-Y. Dong, and S.-J. Lin, “Evaluation of dermal thermal damage by multiphoton autofluorescence and second-harmonic-generation microscopy,” J. Biomed. Opt. 11(6), 064006 (2006).
[Crossref]

Yankelevich, D.

D. Gorpas, J. Phipps, J. Bec, D. Ma, S. Dochow, D. Yankelevich, J. Sorger, J. Popp, A. Bewley, R. Gandour-Edwards, L. Marcu, and D. G. Farwell, “Autofluorescence lifetime augmented reality as a means for real-time robotic surgery guidance in human patients,” Sci. Rep. 9(1), 1187 (2019).
[Crossref]

Yankelevich, D. R.

D. Gorpas, D. Ma, J. Bec, D. R. Yankelevich, and L. Marcu, “Real-time visualization of tissue surface biochemical features derived from fluorescence lifetime measurements,” IEEE Trans. Med. Imag. 35(8), 1802–1811 (2016).
[Crossref]

D. Ma, J. Bec, D. Gorpas, D. R. Yankelevich, and L. Marcu, “Technique for real-time tissue characterization based on scanning multispectral fluorescence lifetime spectroscopy (ms-trfs),” Biomed. Opt. Express 6(3), 987–1002 (2015).
[Crossref]

D. R. Yankelevich, D. Ma, J. Liu, Y. Sun, Y. Sun, J. Bec, D. S. Elson, and L. Marcu, “Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging,” Rev. Sci. Instrum. 85(3), 034303 (2014).
[Crossref]

Yingling, C. D.

A. H. Mandpe, A. Mikulec, R. K. Jackler, L. H. Pitts, and C. D. Yingling, “Comparison of response amplitude versus stimulation threshold in predicting early postoperative facial nerve function after acoustic neuroma resection,” Am. J. Otol. 19(1), 112–117 (1998).

Zhang, H.

G. Lu, D. Wang, X. Qin, L. Halig, S. Muller, H. Zhang, A. Chen, B. W. Pogue, Z. G. Chen, and B. Fei, “Framework for hyperspectral image processing and quantification for cancer detection during animal tumor surgery,” J. Biomed. Opt. 20(12), 126012 (2015).
[Crossref]

Zhang, Y.

J. Shan, S. K. Alam, B. Garra, Y. Zhang, and T. Ahmed, “Computer-aided diagnosis for breast ultrasound using computerized bi-rads features and machine learning methods,” Ultrasound Med. Biol. 42(4), 980–988 (2016).
[Crossref]

Zhu, N.

B. Mondal, S. Gao, N. Zhu, G. Sudlow, K. Liang, A. Som, W. Akers, R. Fields, J. Margenthaler, R. Liang, V. Gruev, and S. Achilefu, “Binocular goggle augmented imaging and navigation system provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping,” Sci. Rep. 5(1), 12117 (2015).
[Crossref]

Zysk, A. M.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref]

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[Crossref]

Am. J. Otol. (1)

A. H. Mandpe, A. Mikulec, R. K. Jackler, L. H. Pitts, and C. D. Yingling, “Comparison of response amplitude versus stimulation threshold in predicting early postoperative facial nerve function after acoustic neuroma resection,” Am. J. Otol. 19(1), 112–117 (1998).

Biochim. Biophys. Acta (1)

B. W. Matthews, “Comparison of the predicted and observed secondary structure of t4 phage lysozyme,” Biochim. Biophys. Acta 405(2), 442–451 (1975).
[Crossref]

Biomed. Opt. Express (4)

Breast Cancer Res. Treat. (1)

L. L. de Boer, B. G. Molenkamp, T. M. Bydlon, B. H. W. Hendriks, J. Wesseling, H. J. C. M. Sterenborg, and T. J. M. Ruers, “Fat/water ratios measured with diffuse reflectance spectroscopy to detect breast tumor boundaries,” Breast Cancer Res. Treat. 152(3), 509–518 (2015).
[Crossref]

Burns (1)

M. Kaiser, A. Yafi, M. Cinat, B. Choi, and A. Durkin, “Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities,” Burns 37(3), 377–386 (2011).
[Crossref]

Ca-Cancer J. Clin. (1)

L. A. Torre, F. Bray, R. L. Siegel, J. Ferlay, J. Lortet-Tieulent, and A. Jemal, “Global cancer statistics, 2012,” Ca-Cancer J. Clin. 65(2), 87–108 (2015).
[Crossref]

Cancer (1)

I. Gage, S. J. Schnitt, A. J. Nixon, B. Silver, A. Recht, S. L. Troyan, T. Eberlein, S. M. Love, R. Gelman, J. R. Harris, and J. L. Connolly, “Pathologic margin involvement and the risk of recurrence in patients treated with breast-conserving therapy,” Cancer 78(9), 1921–1928 (1996).

Cancer Res. (2)

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref]

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[Crossref]

Comput. Med. Imag. Grap. (1)

A. R. Triki, M. B. Blaschko, Y. M. Jung, S. Song, H. J. Han, S. I. Kim, and C. Joo, “Intraoperative margin assessment of human breast tissue in optical coherence tomography images using deep neural networks,” Comput. Med. Imag. Grap. 69, 21–32 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

D. Piras, W. Xia, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quantum Electron. 16(4), 730–739 (2010).
[Crossref]

IEEE Trans. Med. Imag. (1)

D. Gorpas, D. Ma, J. Bec, D. R. Yankelevich, and L. Marcu, “Real-time visualization of tissue surface biochemical features derived from fluorescence lifetime measurements,” IEEE Trans. Med. Imag. 35(8), 1802–1811 (2016).
[Crossref]

J. Biomed. Opt. (6)

J. Unger, T. Sun, Y. Chen, J. E. Phipps, R. J. Bold, M. A. Darrow, K. Ma, and L. Marcu, “Method for accurate registration of tissue autofluorescence imaging data with corresponding histology: a means for enhanced tumor margin assessment,” J. Biomed. Opt. 23(1), 1–11 (2018).
[Crossref]

M.-G. Lin, T.-L. Yang, C.-T. Chiang, H.-C. Kao, J.-N. Lee, W. Lo, S.-H. Jee, Y.-F. Chen, C.-Y. Dong, and S.-J. Lin, “Evaluation of dermal thermal damage by multiphoton autofluorescence and second-harmonic-generation microscopy,” J. Biomed. Opt. 11(6), 064006 (2006).
[Crossref]

M. D. Keller, E. Vargis, A. Mahadevan-Jansen, N. de Matos Granja, R. H. Wilson, M. Mycek, and M. C. Kelley, “Development of a spatially offset raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16(7), 077006 (2011).
[Crossref]

B. Maloney, D. McClatchy, B. Pogue, K. Paulsen, W. Wells, and R. Barth, “Review of methods for intraoperative margin detection for breast conserving surgery,” J. Biomed. Opt. 23(10), 1–19 (2018).
[Crossref]

S. A. Boppart, J. Q. Brown, C. S. Farah, E. Kho, L. Marcu, C. M. Saunders, and H. J. C. M. Sterenborg, “Label-free optical imaging technologies for rapid translation and use during intraoperative surgical and tumor margin assessment,” J. Biomed. Opt. 23(2), 1–10 (2017).
[Crossref]

G. Lu, D. Wang, X. Qin, L. Halig, S. Muller, H. Zhang, A. Chen, B. W. Pogue, Z. G. Chen, and B. Fei, “Framework for hyperspectral image processing and quantification for cancer detection during animal tumor surgery,” J. Biomed. Opt. 20(12), 126012 (2015).
[Crossref]

J. Biophotonics (1)

A. Alfonso-Garcia, J. Bec, S. Sridharan Weaver, B. Hartl, J. Unger, M. Bobinski, M. Lechpammer, F. Girgis, J. Boggan, and L. Marcu, “Real-time augmented reality for delineation of surgical margins during neurosurgery using autofluorescence lifetime contrast,” J. Biophotonics 13(1), e201900108 (2020).
[Crossref]

J. Photochem. Photobiol., B (1)

J. L. Lagarto, J. E. Phipps, L. Faller, D. Ma, J. Unger, J. Bec, S. Griffey, J. Sorger, D. G. Farwell, and L. Marcu, “Electrocautery effects on fluorescence lifetime measurements: An in vivo study in the oral cavity,” J. Photochem. Photobiol., B 185, 90–99 (2018).
[Crossref]

J. Transl. Med. (1)

L. de Boer, T. Bydlon, F. van Duijnhoven, M.-J. T. F. D. Vranken-Peeters, C. E. Loo, G. A. O. Winter-Warnars, J. Sanders, H. J. C. M. Sterenborg, B. H. W. Hendriks, and T. J. M. Ruers, “Towards the use of diffuse reflectance spectroscopy for real-time in vivo detection of breast cancer during surgery,” J. Transl. Med. 16(1), 367 (2018).
[Crossref]

Lasers Surg. Med. (1)

M. D. Keller, S. K. Majumder, M. C. Kelley, I. M. Meszoely, F. I. Boulos, G. M. Olivares, and A. Mahadevan-Jansen, “Autofluorescence and diffuse reflectance spectroscopy and spectral imaging for breast surgical margin analysis,” Lasers Surg. Med. 42(1), 15–23 (2010).
[Crossref]

Mach. Learn. (2)

L. Breiman, “Random forests,” Mach. Learn. 45(1), 5–32 (2001).
[Crossref]

S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan, “A theory of learning from different domains,” Mach. Learn. 79(1-2), 151–175 (2010).
[Crossref]

NeuroImage (1)

P. V. Butte, A. N. Mamelak, M. Nuno, S. I. Bannykh, K. L. Black, and L. Marcu, “Fluorescence lifetime spectroscopy for guided therapy of brain tumors,” NeuroImage 54, S125–S135 (2011).
[Crossref]

Phys. Med. Biol. (2)

J. E. Phipps, D. Gorpas, J. Unger, M. Darrow, R. J. Bold, and L. Marcu, “Automated detection of breast cancer in resected specimens with fluorescence lifetime,” Phys. Med. Biol. 63(1), 015003 (2017).
[Crossref]

J. Liu, Y. Sun, J. Qi, and L. Marcu, “A novel method for fast and robust estimation of fluorescence decay dynamics using constrained least-squares deconvolution with laguerre expansion,” Phys. Med. Biol. 57(4), 843–865 (2012).
[Crossref]

PLoS One (1)

B. S. Nichols, C. E. Schindler, J. Q. Brown, L. G. Wilke, C. S. Mulvey, M. S. Krieger, J. Gallagher, J. Geradts, R. A. Greenup, J. A. Von Windheim, and N. Ramanujam, “A quantitative diffuse reflectance imaging (qdri) system for comprehensive surveillance of the morphological landscape in breast tumor margins,” PLoS One 10(6), e0127525–25 (2015).
[Crossref]

Rev. Sci. Instrum. (1)

D. R. Yankelevich, D. Ma, J. Liu, Y. Sun, Y. Sun, J. Bec, D. S. Elson, and L. Marcu, “Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging,” Rev. Sci. Instrum. 85(3), 034303 (2014).
[Crossref]

Sci. Rep. (5)

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref]

B. Mondal, S. Gao, N. Zhu, G. Sudlow, K. Liang, A. Som, W. Akers, R. Fields, J. Margenthaler, R. Liang, V. Gruev, and S. Achilefu, “Binocular goggle augmented imaging and navigation system provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping,” Sci. Rep. 5(1), 12117 (2015).
[Crossref]

D. Gorpas, J. Phipps, J. Bec, D. Ma, S. Dochow, D. Yankelevich, J. Sorger, J. Popp, A. Bewley, R. Gandour-Edwards, L. Marcu, and D. G. Farwell, “Autofluorescence lifetime augmented reality as a means for real-time robotic surgery guidance in human patients,” Sci. Rep. 9(1), 1187 (2019).
[Crossref]

J. Bec, J. E. Phipps, D. Gorpas, D. Ma, H. Fatakdawala, K. B. Margulies, J. A. Southard, and L. Marcu, “In vivo label-free structural and biochemical imaging of coronary arteries using an integrated ultrasound and multispectral fluorescence lifetime catheter system,” Sci. Rep. 7(1), 8960 (2017).
[Crossref]

G. Thomas, T.-Q. Nguyen, I. J. Pence, B. Caldwell, M. E. O’Connor, J. Giltnane, M. E. Sanders, A. Grau, I. Meszoely, M. Hooks, M. C. Kelley, and A. Mahadevan-Jansen, “Evaluating feasibility of an automated 3-dimensional scanner using raman spectroscopy for intraoperative breast margin assessment,” Sci. Rep. 7(1), 13548 (2017).
[Crossref]

Trans. Biophotonics (1)

B. W. Weyers, M. Marsden, T. Sun, J. Bec, A. F. Bewley, R. F. Gandour-Edwards, M. G. Moore, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging for intraoperative cancer delineation in transoral robotic surgery,” Trans. Biophotonics 1(1-2), e201900017 (2019).
[Crossref]

Ultrasound Med. Biol. (1)

J. Shan, S. K. Alam, B. Garra, Y. Zhang, and T. Ahmed, “Computer-aided diagnosis for breast ultrasound using computerized bi-rads features and machine learning methods,” Ultrasound Med. Biol. 42(4), 980–988 (2016).
[Crossref]

Other (5)

J. E. Phipps, J. Unger, R. Gandour-Edwards, M. G. Moore, A. Beweley, G. Farwell, and L. Marcu, “Head and neck cancer evaluation via transoral robotic surgery with augmented fluorescence lifetime imaging,” in Biophotonics Congress: Biomedical Optics Congress 2018, (Optical Society of America, 2018), p. CTu2B.3.

J. Unger, J. Lagarto, J. Phipps, D. Ma, J. Bec, J. Sorger, G. Farwell, R. Bold, and L. Marcu, “Three-dimensional online surface reconstruction of augmented fluorescence lifetime maps using photometric stereo,” in Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XV, vol. 10054 International Society for Optics and Photonics (SPIE, 2017), p. 65.

A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb, “Learning from simulated and unsupervised images through adversarial training,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2017).

H. Boström, “Calibrating random forests,” in 2008 Seventh International Conference on Machine Learning and Applications, (2008), pp. 121–126.

J. C. Platt, “Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods,” in Advances in large margin classifiers, (MIT Press, 1999), pp. 61–74.

Supplementary Material (2)

NameDescription
» Visualization 1       Augmented real-time overlay of excised breast specimen "sample A"
» Visualization 2       Augmented real-time overlay of excised breast specimen "sample B"

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Schematic of the ms-TRFS instrumentation used for imaging purposes. A single fiber is used for excitation and autofluorescence collection. PL: Pulsed Laser, DAQ: Data Acquisition, PMT: Photomultiplier. (b) Imaging setup. A hand-guided scan was performed for each specimen. An aiming beam is integrated into the optical path and serves as a marker to overlay fluorescence data on the video where the measurement was taken. (c) FLIm system and computers assembled on a cart equipped with two screens that was used to image the breast specimens.
Fig. 2.
Fig. 2. The supervised training pipeline involves registration of cross-sectional histology with the video image using a hybrid registration method [23]. Pathologist tracings from the histology are mapped to the video domain. In order to account for possible registration errors, regions are narrowed by 0.5 mm. Fluorescence parameters from the resulting regions are fed into a random forest classifier.
Fig. 3.
Fig. 3. Augmented classification overlay with fixed element size $l_0=6$ (a) and $l_0=1$ (b). If the $d_p$ is too large, the overlay gets blurred and imprecise. Contrarily, a small diameter $d_p$ will lead to poor coverage of the sample. The adaptive refinement (d) is based on the sample accumulation $f_h$ (Eq. (7)) quantifying the local sampling density shown in (c). It acquires a high level of detail for densely sampled regions (such as area A) and maintain a good coverage in sparsely sampled regions (such as area B).
Fig. 4.
Fig. 4. Two examples (invasive carcinoma) of the augmented real-time overlay for different scanning times (sample A: a1-a4 and sample B: b1-b4, see supplemental videos Visualization 1 and Visualization 2), corresponding H&E histology slides with the pathologist’s annotations (sample A: e and sample B: f) and the corresponding registered annotations, mapped to the video domain (sample A: c and sample B: d) and providing the ground truth obtained from histology overlaid onto the video image.
Fig. 5.
Fig. 5. ROC curve for the two class problem tumor vs. no tumor for all specimens.
Fig. 6.
Fig. 6. ROC curves for each individual case. Three cases where histology revealed tumor /no tumor only were excluded from the analysis.
Fig. 7.
Fig. 7. Augmented overlay and histologic ground truth of case 7 (invasive carcinoma) showing a considerable deterioration of prediction accuracy in Fig. 6. The overlay exhibits an erroneous classification of tumor

Tables (1)

Tables Icon

Table 1. Number of pixels of tissue types obtained from registered histology in video domain

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

y ( k ) = i = 0 k I ( k i ) ) h ( i ) + ϵ k ,
h ( k ) = i = 0 L 1 c l b l ( k ; α ) ,
τ a v g = Δ t k = 0 N 1 k h ( k ) k = 0 N 1 h ( k ) ,
I a v g = k = 0 N 1 h ( k ) .
I r a t i o c h = I a v g c h k = 1 4 I a v g k
C o u t p u t = 255 { p t u m o r δ t u m o r , p f i b r o u s δ f i b r o u s , p a d i p o s e δ a d i p o s e } ,
f h ( x ) = i = 0 N K ( x x i )
K = rect ( x h 0 ) .
d p ( x ) = ( l m a x l 0 ) d f
l 0 = min { f h ( x ) Δ 0 , l m a x + 1 }