Abstract

Recent studies in mechanobiology have revealed the importance of cellular and extracellular mechanical properties in regulating cellular function in normal and disease states. Although it is established that cells should be investigated in a three-dimensional (3-D) environment, most techniques available to study mechanical properties on the microscopic scale are unable to do so. In this study, for the first time, we present volumetric images of cellular and extracellular elasticity in 3-D biomaterials using quantitative micro-elastography (QME). We achieve this by developing a novel strain estimation algorithm based on 3-D linear regression to improve QME system resolution. We show that QME can reveal elevated elasticity surrounding human adipose-derived stem cells (ASCs) embedded in soft hydrogels. We observe, for the first time in 3-D, further elevation of extracellular elasticity around ASCs with overexpressed TAZ; a mechanosensitive transcription factor which regulates cell volume. Our results demonstrate that QME has the potential to study the effects of extracellular mechanical properties on cellular functions in a 3-D micro-environment.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Measurement of dynamic cell-induced 3D displacement fields in vitro for traction force optical coherence microscopy

Jeffrey A. Mulligan, François Bordeleau, Cynthia A. Reinhart-King, and Steven G. Adie
Biomed. Opt. Express 8(2) 1152-1171 (2017)

Finger-mounted quantitative micro-elastography

Rowan W. Sanderson, Andrea Curatolo, Philip Wijesinghe, Lixin Chin, and Brendan F. Kennedy
Biomed. Opt. Express 10(4) 1760-1773 (2019)

Handheld probe for quantitative micro-elastography

Qi Fang, Brooke Krajancich, Lixin Chin, Renate Zilkens, Andrea Curatolo, Luke Frewer, James D. Anstie, Philip Wijesinghe, Colin Hall, Benjamin F. Dessauvagie, Bruce Latham, Christobel M. Saunders, and Brendan F. Kennedy
Biomed. Opt. Express 10(8) 4034-4049 (2019)

References

  • View by:
  • |
  • |
  • |

  1. B. Ladoux and R. M. Mège, “Mechanobiology of collective cell behaviours,” Nat. Rev. Mol. Cell Biol. 18(12), 743–757 (2017).
    [Crossref]
  2. N. Wang, J. D. Tytell, and D. E. Ingber, “Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus,” Nat. Rev. Mol. Cell Biol. 10(1), 75–82 (2009).
    [Crossref]
  3. J. D. Humphrey, E. R. Dufresne, and M. A. Schwartz, “Mechanotransduction and extracellular matrix homeostasis,” Nat. Rev. Mol. Cell Biol. 15(12), 802–812 (2014).
    [Crossref]
  4. D. E. Jaalouk and J. Lammerding, “Mechanotransduction gone awry,” Nat. Rev. Mol. Cell Biol. 10(1), 63–73 (2009).
    [Crossref]
  5. G. Y. H. Lee and C. T. Lim, “Biomechanics approaches to studying human diseases,” Trends Biotechnol. 25(3), 111–118 (2007).
    [Crossref]
  6. E. Moeendarbary and A. R. Harris, “Cell mechanics: principles, practices, and prospects,” Wiley Interdiscip. Rev.: Syst. Biol. Med. 6(5), 371–388 (2014).
    [Crossref]
  7. S. R. Caliari, S. L. Vega, M. Kwon, E. M. Soulas, and J. A. Burdick, “Dimensionality and spreading influence MSC YAP/TAZ signaling in hydrogel environments,” Biomaterials 103, 314–323 (2016).
    [Crossref]
  8. A. Engler, L. Bacakova, C. Newman, A. Hategan, M. Griffin, and D. Discher, “Substrate Compliance versus Ligand Density in Cell on Gel Responses,” Biophys. J. 86(1), 617–628 (2004).
    [Crossref]
  9. Y. Shao, J. Sang, and J. Fu, “On human pluripotent stem cell control: The rise of 3D bioengineering and mechanobiology,” Biomaterials 52, 26–43 (2015).
    [Crossref]
  10. L. Li, J. Eyckmans, and C. S. Chen, “Designer biomaterials for mechanobiology,” Nat. Mater. 16(12), 1164–1168 (2017).
    [Crossref]
  11. J. L. Tan, J. Tien, D. M. Pirone, D. S. Gray, K. Bhadriraju, and C. S. Chen, “Cells Lying on a Bed of Microneedles: An Approach to Isolate Mechanical Force,” Proc. Natl. Acad. Sci. U. S. A. 100(4), 1484–1489 (2003).
    [Crossref]
  12. C. Franck, S. A. Maskarinec, D. A. Tirrell, and G. Ravichandran, “Three-Dimensional Traction Force Microscopy: A New Tool for Quantifying Cell-Matrix Interactions,” PLoS One 6(3), e17833 (2011).
    [Crossref]
  13. W. R. Legant, J. S. Miller, B. L. Blakely, D. M. Cohen, G. M. Genin, and C. S. Chen, “Measurement of mechanical tractions exerted by cells in three-dimensional matrices,” Nat. Methods 7(12), 969–971 (2010).
    [Crossref]
  14. J. A. Mulligan, X. Feng, and S. G. Adie, “Quantitative reconstruction of time-varying 3D cell forces with traction force optical coherence microscopy,” Sci. Rep. 9(1), 4086 (2019).
    [Crossref]
  15. A. B. Mathur, A. M. Collinsworth, W. M. Reichert, W. E. Kraus, and G. A. Truskey, “Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy,” J. Biomech. 34(12), 1545–1553 (2001).
    [Crossref]
  16. F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics 5(6), 318–321 (2011).
    [Crossref]
  17. R. M. Hochmuth, “Micropipette aspiration of living cells,” J. Biomech. 33(1), 15–22 (2000).
    [Crossref]
  18. S. A. Vanapalli, M. H. G. Duits, and F. Mugele, “Microfluidics as a functional tool for cell mechanics,” Biomicrofluidics 3(1), 012006 (2009).
    [Crossref]
  19. G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2008).
    [Crossref]
  20. B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
    [Crossref]
  21. G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
    [Crossref]
  22. P. J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop, C. Paterson, P. Török, and D. R. Overby, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” Nat. Methods 15(8), 561–562 (2018).
    [Crossref]
  23. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19(8), 590–592 (1994).
    [Crossref]
  24. C. E. Leroux, J. Palmier, A. C. Boccara, G. Cappello, and S. Monnier, “Elastography of multicellular aggregates submitted to osmo-mechanical stress,” New J. Phys. 17(7), 073035 (2015).
    [Crossref]
  25. A. Curatolo, M. Villiger, D. Lorenser, P. Wijesinghe, A. Fritz, B. F. Kennedy, and D. D. Sampson, “Ultrahigh-resolution optical coherence elastography,” Opt. Lett. 41(1), 21–24 (2016).
    [Crossref]
  26. K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
    [Crossref]
  27. W. M. Allen, K. M. Kennedy, Q. Fang, L. Chin, A. Curatolo, L. Watts, R. Zilkens, L. Chin, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Wide-field quantitative micro-elastography of human breast tissue,” Biomed. Opt. Express 9(3), 1082–1096 (2018).
    [Crossref]
  28. P. Wijesinghe, N. J. Johansen, A. Curatolo, D. D. Sampson, R. Ganss, and B. F. Kennedy, “Ultrahigh-resolution optical coherence elastography images cellular-scale stiffness of mouse aorta,” Biophys. J. 113(11), 2540–2551 (2017).
    [Crossref]
  29. Q. Fang, A. Curatolo, P. Wijesinghe, Y. L. Yeow, J. Hamzah, P. B. Noble, K. Karnowski, D. D. Sampson, R. Ganss, J. K. Kim, W. M. Lee, and B. F. Kennedy, “Ultrahigh-resolution optical coherence elastography through a micro-endoscope: towards in vivo imaging of cellular-scale mechanics,” Biomed. Opt. Express 8(11), 5127–5138 (2017).
    [Crossref]
  30. M. S. Hepburn, P. Wijesinghe, L. Chin, and B. F. Kennedy, “Analysis of spatial resolution in phase-sensitive compression optical coherence elastography,” Biomed. Opt. Express 10(3), 1496–1513 (2019).
    [Crossref]
  31. N. A. Perez-Gonzalez, N. D. Rochman, K. Yao, J. Tao, M. T. T. Le, S. Flanary, L. Sablich, B. Toler, E. Crentsil, F. Takaesu, B. Lambrus, J. Huang, V. Fu, P. Chengappa, T. M. Jones, A. J. Holland, S. An, D. Wirtz, R. J. Petrie, K. L. Guan, and S. X. Sun, “YAP and TAZ regulate cell volume,” J. Cell Biol. 218(10), 3472–3488 (2019).
    [Crossref]
  32. T. Moroishi, C. G. Hansen, and K. L. Guan, “The emerging roles of YAP and TAZ in cancer,” Nat. Rev. Cancer 15(2), 73–79 (2015).
    [Crossref]
  33. K. Yue, G. Trujillo-de Santiago, M. M. Alvarez, A. Tamayol, N. Annabi, and A. Khademhosseini, “Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels,” Biomaterials 73, 254–271 (2015).
    [Crossref]
  34. Y. S. Choi, L. G. Vincent, A. R. Lee, M. K. Dobke, and A. J. Engler, “Mechanical derivation of functional myotubes from adipose-derived stem cells,” Biomaterials 33(8), 2482–2491 (2012).
    [Crossref]
  35. J. W. Nichol, S. T. Koshy, H. Bae, C. M. Hwang, S. Yamanlar, and A. Khademhosseini, “Cell-laden microengineered gelatin methacrylate hydrogels,” Biomaterials 31(21), 5536–5544 (2010).
    [Crossref]
  36. W. J. Hadden, J. L. Young, A. W. Holle, M. L. McFetridge, D. Y. Kim, P. Wijesinghe, H. Taylor-Weiner, J. H. Wen, A. R. Lee, K. Bieback, B. N. Vo, D. D. Sampson, B. F. Kennedy, J. P. Spatz, A. J. Engler, and Y. S. Choi, “Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels,” Proc. Natl. Acad. Sci. 114(22), 5647–5652 (2017).
    [Crossref]
  37. H. W. Park, Y. C. Kim, B. Yu, T. Moroishi, J. S. Mo, S. W. Plouffe, Z. Meng, K. C. Lin, F. X. Yu, C. M. Alexander, C. Wang, and K. L. Guan, “Alternative Wnt Signaling Activates YAP/TAZ,” Cell 162(4), 780–794 (2015).
    [Crossref]
  38. B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5(7), 2113–2124 (2014).
    [Crossref]
  39. Q. Fang, L. Frewer, P. Wijesinghe, W. M. Allen, L. Chin, J. Hamzah, D. D. Sampson, A. Curatolo, and B. F. Kennedy, “Depth-encoded optical coherence elastography for simultaneous volumetric imaging of two tissue faces,” Opt. Lett. 42(7), 1233–1236 (2017).
    [Crossref]
  40. S. Shin, S. Park, M. Park, E. Jeong, K. Na, H. J. Youn, and J. Hyun, “Cellulose Nanofibers for the Enhancement of Printability of Low Viscosity Gelatin Derivatives,” BioResources 12(2), 2941–2954 (2017).
    [Crossref]
  41. R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006).
    [Crossref]
  42. K. M. Kennedy, S. Es’haghian, L. Chin, R. A. McLaughlin, D. D. Sampson, and B. F. Kennedy, “Optical palpation: optical coherence tomography-based tactile imaging using a compliant sensor,” Opt. Lett. 39(10), 3014–3017 (2014).
    [Crossref]
  43. R. W. Sanderson, A. Curatolo, P. Wijesinghe, L. Chin, and B. F. Kennedy, “Finger-mounted quantitative micro-elastography,” Biomed. Opt. Express 10(4), 1760–1773 (2019).
    [Crossref]
  44. B. F. Kennedy, S. H. Koh, R. A. McLaughlin, K. M. Kennedy, P. R. T. Munro, and D. D. Sampson, “Strain estimation in phase-sensitive optical coherence elastography,” Biomed. Opt. Express 3(8), 1865–1879 (2012).
    [Crossref]
  45. K. V. Larin and D. D. Sampson, “Optical coherence elastography – OCT at work in tissue biomechanics [Invited],” Biomed. Opt. Express 8(2), 1172–1202 (2017).
    [Crossref]
  46. G. Lamouche, B. F. Kennedy, K. M. Kennedy, C. E. Bisaillon, A. Curatolo, G. Campbell, V. Pazos, and D. D. Sampson, “Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography,” Biomed. Opt. Express 3(6), 1381–1398 (2012).
    [Crossref]
  47. L. Chin, A. Curatolo, B. F. Kennedy, B. J. Doyle, P. R. T. Munro, R. A. McLaughlin, and D. D. Sampson, “Analysis of image formation in optical coherence elastography using a multiphysics approach,” Biomed. Opt. Express 5(9), 2913–2930 (2014).
    [Crossref]
  48. W. K. Ong and S. Sugii, “Adipose-derived stem cells: Fatty potentials for therapy,” Int. J. Biochem. Cell Biol. 45(6), 1083–1086 (2013).
    [Crossref]
  49. D. A. Fletcher and R. D. Mullins, “Cell mechanics and the cytoskeleton,” Nature 463(7280), 485–492 (2010).
    [Crossref]
  50. G. Nardone, J. Oliver-De La Cruz, J. Vrbsky, C. Martini, J. Pribyl, P. Skládal, M. Pešl, G. Caluori, S. Pagliari, F. Martino, Z. Maceckova, M. Hajduch, A. Sanz-Garcia, N. M. Pugno, G. B. Stokin, and G. Forte, “YAP regulates cell mechanics by controlling focal adhesion assembly,” Nat. Commun. 8(1), 15321 (2017).
    [Crossref]
  51. S. Dupont, L. Morsut, M. Aragona, E. Enzo, S. Giulitti, M. Cordenonsi, F. Zanconato, J. L. Digabel, M. Forcato, S. Bicciato, N. Elvassore, and S. Piccolo, “Role of YAP/TAZ in mechanotransduction,” Nature 474(7350), 179–183 (2011).
    [Crossref]
  52. X. Shu, L. J. Beckmann, and H. F. Zhang, “Visible-light optical coherence tomography: a review,” J. Biomed. Opt. 22(12), 121707 (2017).
    [Crossref]
  53. U. S. Schwarz and J. R. D. Soiné, “Traction force microscopy on soft elastic substrates: A guide to recent computational advances,” Biochim. Biophys. Acta 1853(11), 3095–3104 (2015).
    [Crossref]
  54. C. Kallepitis, M. S. Bergholt, M. M. Mazo, V. Leonardo, S. C. Skaalure, S. A. Maynard, and M. M. Stevens, “Quantitative volumetric Raman imaging of three dimensional cell cultures,” Nat. Commun. 8(1), 14843 (2017).
    [Crossref]
  55. L. Dong, P. Wijesinghe, J. T. Dantuono, D. D. Sampson, P. R. T. Munro, B. F. Kennedy, and A. A. Oberai, “Quantitative compression optical coherence elastography as an inverse elasticity problem,” IEEE J. Sel. Top. Quantum Electron. 22(3), 277–287 (2016).
    [Crossref]
  56. L. Dong, P. Wijesinghe, D. D. Sampson, B. F. Kennedy, P. R. T. Munro, and A. A. Oberai, “Volumetric quantitative optical coherence elastography with an iterative inversion method,” Biomed. Opt. Express 10(2), 384–398 (2019).
    [Crossref]
  57. L. Dong and A. A. Oberai, “Recovery of cellular traction in three-dimensional nonlinear hyperelastic matrices,” Comput. Methods Appl. Mech. Eng. 314, 296–313 (2017).
    [Crossref]
  58. C. Storm, J. J. Pastore, F. C. MacKintosh, T. C. Lubensky, and P. A. Janmey, “Nonlinear elasticity in biological gels,” Nature 435(7039), 191–194 (2005).
    [Crossref]
  59. A. A. Sovetsky, A. L. Matveyev, L. A. Matveev, D. V. Shabanov, and V. Y. Zaitsev, “Manually-operated compressional optical coherence elastography with effective aperiodic averaging: demonstrations for corneal and cartilaginous tissues,” Laser Phys. Lett. 15(8), 085602 (2018).
    [Crossref]
  60. Y. Qiu, F. R. Zaki, N. Chandra, S. A. Chester, and X. Liu, “Nonlinear characterization of elasticity using quantitative optical coherence elastography,” Biomed. Opt. Express 7(11), 4702–4710 (2016).
    [Crossref]
  61. P. Wijesinghe, R. A. McLaughlin, D. D. Sampson, and B. F. Kennedy, “Parametric imaging of viscoelasticity using optical coherence elastography,” Phys. Med. Biol. 60(6), 2293–2307 (2015).
    [Crossref]
  62. L. G. Major, A. W. Holle, J. L. Young, M. S. Hepburn, K. Jeong, I. L. Chin, R. W. Sanderson, J. H. Jeong, Z. M. Aman, B. F. Kennedy, Y. Hwang, D. W. Han, H. W. Park, K. L. Guan, J. P. Spatz, and Y. S. Choi, “Volume Adaptation Controls Stem Cell Mechanotransduction,” ACS Appl. Mater. Interfaces 11(49), 45520–45530 (2019).
    [Crossref]

2019 (6)

J. A. Mulligan, X. Feng, and S. G. Adie, “Quantitative reconstruction of time-varying 3D cell forces with traction force optical coherence microscopy,” Sci. Rep. 9(1), 4086 (2019).
[Crossref]

M. S. Hepburn, P. Wijesinghe, L. Chin, and B. F. Kennedy, “Analysis of spatial resolution in phase-sensitive compression optical coherence elastography,” Biomed. Opt. Express 10(3), 1496–1513 (2019).
[Crossref]

N. A. Perez-Gonzalez, N. D. Rochman, K. Yao, J. Tao, M. T. T. Le, S. Flanary, L. Sablich, B. Toler, E. Crentsil, F. Takaesu, B. Lambrus, J. Huang, V. Fu, P. Chengappa, T. M. Jones, A. J. Holland, S. An, D. Wirtz, R. J. Petrie, K. L. Guan, and S. X. Sun, “YAP and TAZ regulate cell volume,” J. Cell Biol. 218(10), 3472–3488 (2019).
[Crossref]

R. W. Sanderson, A. Curatolo, P. Wijesinghe, L. Chin, and B. F. Kennedy, “Finger-mounted quantitative micro-elastography,” Biomed. Opt. Express 10(4), 1760–1773 (2019).
[Crossref]

L. Dong, P. Wijesinghe, D. D. Sampson, B. F. Kennedy, P. R. T. Munro, and A. A. Oberai, “Volumetric quantitative optical coherence elastography with an iterative inversion method,” Biomed. Opt. Express 10(2), 384–398 (2019).
[Crossref]

L. G. Major, A. W. Holle, J. L. Young, M. S. Hepburn, K. Jeong, I. L. Chin, R. W. Sanderson, J. H. Jeong, Z. M. Aman, B. F. Kennedy, Y. Hwang, D. W. Han, H. W. Park, K. L. Guan, J. P. Spatz, and Y. S. Choi, “Volume Adaptation Controls Stem Cell Mechanotransduction,” ACS Appl. Mater. Interfaces 11(49), 45520–45530 (2019).
[Crossref]

2018 (3)

A. A. Sovetsky, A. L. Matveyev, L. A. Matveev, D. V. Shabanov, and V. Y. Zaitsev, “Manually-operated compressional optical coherence elastography with effective aperiodic averaging: demonstrations for corneal and cartilaginous tissues,” Laser Phys. Lett. 15(8), 085602 (2018).
[Crossref]

W. M. Allen, K. M. Kennedy, Q. Fang, L. Chin, A. Curatolo, L. Watts, R. Zilkens, L. Chin, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Wide-field quantitative micro-elastography of human breast tissue,” Biomed. Opt. Express 9(3), 1082–1096 (2018).
[Crossref]

P. J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop, C. Paterson, P. Török, and D. R. Overby, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” Nat. Methods 15(8), 561–562 (2018).
[Crossref]

2017 (13)

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
[Crossref]

P. Wijesinghe, N. J. Johansen, A. Curatolo, D. D. Sampson, R. Ganss, and B. F. Kennedy, “Ultrahigh-resolution optical coherence elastography images cellular-scale stiffness of mouse aorta,” Biophys. J. 113(11), 2540–2551 (2017).
[Crossref]

Q. Fang, A. Curatolo, P. Wijesinghe, Y. L. Yeow, J. Hamzah, P. B. Noble, K. Karnowski, D. D. Sampson, R. Ganss, J. K. Kim, W. M. Lee, and B. F. Kennedy, “Ultrahigh-resolution optical coherence elastography through a micro-endoscope: towards in vivo imaging of cellular-scale mechanics,” Biomed. Opt. Express 8(11), 5127–5138 (2017).
[Crossref]

W. J. Hadden, J. L. Young, A. W. Holle, M. L. McFetridge, D. Y. Kim, P. Wijesinghe, H. Taylor-Weiner, J. H. Wen, A. R. Lee, K. Bieback, B. N. Vo, D. D. Sampson, B. F. Kennedy, J. P. Spatz, A. J. Engler, and Y. S. Choi, “Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels,” Proc. Natl. Acad. Sci. 114(22), 5647–5652 (2017).
[Crossref]

L. Li, J. Eyckmans, and C. S. Chen, “Designer biomaterials for mechanobiology,” Nat. Mater. 16(12), 1164–1168 (2017).
[Crossref]

B. Ladoux and R. M. Mège, “Mechanobiology of collective cell behaviours,” Nat. Rev. Mol. Cell Biol. 18(12), 743–757 (2017).
[Crossref]

L. Dong and A. A. Oberai, “Recovery of cellular traction in three-dimensional nonlinear hyperelastic matrices,” Comput. Methods Appl. Mech. Eng. 314, 296–313 (2017).
[Crossref]

K. V. Larin and D. D. Sampson, “Optical coherence elastography – OCT at work in tissue biomechanics [Invited],” Biomed. Opt. Express 8(2), 1172–1202 (2017).
[Crossref]

Q. Fang, L. Frewer, P. Wijesinghe, W. M. Allen, L. Chin, J. Hamzah, D. D. Sampson, A. Curatolo, and B. F. Kennedy, “Depth-encoded optical coherence elastography for simultaneous volumetric imaging of two tissue faces,” Opt. Lett. 42(7), 1233–1236 (2017).
[Crossref]

S. Shin, S. Park, M. Park, E. Jeong, K. Na, H. J. Youn, and J. Hyun, “Cellulose Nanofibers for the Enhancement of Printability of Low Viscosity Gelatin Derivatives,” BioResources 12(2), 2941–2954 (2017).
[Crossref]

G. Nardone, J. Oliver-De La Cruz, J. Vrbsky, C. Martini, J. Pribyl, P. Skládal, M. Pešl, G. Caluori, S. Pagliari, F. Martino, Z. Maceckova, M. Hajduch, A. Sanz-Garcia, N. M. Pugno, G. B. Stokin, and G. Forte, “YAP regulates cell mechanics by controlling focal adhesion assembly,” Nat. Commun. 8(1), 15321 (2017).
[Crossref]

X. Shu, L. J. Beckmann, and H. F. Zhang, “Visible-light optical coherence tomography: a review,” J. Biomed. Opt. 22(12), 121707 (2017).
[Crossref]

C. Kallepitis, M. S. Bergholt, M. M. Mazo, V. Leonardo, S. C. Skaalure, S. A. Maynard, and M. M. Stevens, “Quantitative volumetric Raman imaging of three dimensional cell cultures,” Nat. Commun. 8(1), 14843 (2017).
[Crossref]

2016 (4)

L. Dong, P. Wijesinghe, J. T. Dantuono, D. D. Sampson, P. R. T. Munro, B. F. Kennedy, and A. A. Oberai, “Quantitative compression optical coherence elastography as an inverse elasticity problem,” IEEE J. Sel. Top. Quantum Electron. 22(3), 277–287 (2016).
[Crossref]

Y. Qiu, F. R. Zaki, N. Chandra, S. A. Chester, and X. Liu, “Nonlinear characterization of elasticity using quantitative optical coherence elastography,” Biomed. Opt. Express 7(11), 4702–4710 (2016).
[Crossref]

S. R. Caliari, S. L. Vega, M. Kwon, E. M. Soulas, and J. A. Burdick, “Dimensionality and spreading influence MSC YAP/TAZ signaling in hydrogel environments,” Biomaterials 103, 314–323 (2016).
[Crossref]

A. Curatolo, M. Villiger, D. Lorenser, P. Wijesinghe, A. Fritz, B. F. Kennedy, and D. D. Sampson, “Ultrahigh-resolution optical coherence elastography,” Opt. Lett. 41(1), 21–24 (2016).
[Crossref]

2015 (9)

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref]

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref]

H. W. Park, Y. C. Kim, B. Yu, T. Moroishi, J. S. Mo, S. W. Plouffe, Z. Meng, K. C. Lin, F. X. Yu, C. M. Alexander, C. Wang, and K. L. Guan, “Alternative Wnt Signaling Activates YAP/TAZ,” Cell 162(4), 780–794 (2015).
[Crossref]

T. Moroishi, C. G. Hansen, and K. L. Guan, “The emerging roles of YAP and TAZ in cancer,” Nat. Rev. Cancer 15(2), 73–79 (2015).
[Crossref]

K. Yue, G. Trujillo-de Santiago, M. M. Alvarez, A. Tamayol, N. Annabi, and A. Khademhosseini, “Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels,” Biomaterials 73, 254–271 (2015).
[Crossref]

Y. Shao, J. Sang, and J. Fu, “On human pluripotent stem cell control: The rise of 3D bioengineering and mechanobiology,” Biomaterials 52, 26–43 (2015).
[Crossref]

P. Wijesinghe, R. A. McLaughlin, D. D. Sampson, and B. F. Kennedy, “Parametric imaging of viscoelasticity using optical coherence elastography,” Phys. Med. Biol. 60(6), 2293–2307 (2015).
[Crossref]

U. S. Schwarz and J. R. D. Soiné, “Traction force microscopy on soft elastic substrates: A guide to recent computational advances,” Biochim. Biophys. Acta 1853(11), 3095–3104 (2015).
[Crossref]

C. E. Leroux, J. Palmier, A. C. Boccara, G. Cappello, and S. Monnier, “Elastography of multicellular aggregates submitted to osmo-mechanical stress,” New J. Phys. 17(7), 073035 (2015).
[Crossref]

2014 (5)

2013 (1)

W. K. Ong and S. Sugii, “Adipose-derived stem cells: Fatty potentials for therapy,” Int. J. Biochem. Cell Biol. 45(6), 1083–1086 (2013).
[Crossref]

2012 (3)

2011 (3)

C. Franck, S. A. Maskarinec, D. A. Tirrell, and G. Ravichandran, “Three-Dimensional Traction Force Microscopy: A New Tool for Quantifying Cell-Matrix Interactions,” PLoS One 6(3), e17833 (2011).
[Crossref]

F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics 5(6), 318–321 (2011).
[Crossref]

S. Dupont, L. Morsut, M. Aragona, E. Enzo, S. Giulitti, M. Cordenonsi, F. Zanconato, J. L. Digabel, M. Forcato, S. Bicciato, N. Elvassore, and S. Piccolo, “Role of YAP/TAZ in mechanotransduction,” Nature 474(7350), 179–183 (2011).
[Crossref]

2010 (3)

D. A. Fletcher and R. D. Mullins, “Cell mechanics and the cytoskeleton,” Nature 463(7280), 485–492 (2010).
[Crossref]

W. R. Legant, J. S. Miller, B. L. Blakely, D. M. Cohen, G. M. Genin, and C. S. Chen, “Measurement of mechanical tractions exerted by cells in three-dimensional matrices,” Nat. Methods 7(12), 969–971 (2010).
[Crossref]

J. W. Nichol, S. T. Koshy, H. Bae, C. M. Hwang, S. Yamanlar, and A. Khademhosseini, “Cell-laden microengineered gelatin methacrylate hydrogels,” Biomaterials 31(21), 5536–5544 (2010).
[Crossref]

2009 (3)

S. A. Vanapalli, M. H. G. Duits, and F. Mugele, “Microfluidics as a functional tool for cell mechanics,” Biomicrofluidics 3(1), 012006 (2009).
[Crossref]

D. E. Jaalouk and J. Lammerding, “Mechanotransduction gone awry,” Nat. Rev. Mol. Cell Biol. 10(1), 63–73 (2009).
[Crossref]

N. Wang, J. D. Tytell, and D. E. Ingber, “Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus,” Nat. Rev. Mol. Cell Biol. 10(1), 75–82 (2009).
[Crossref]

2008 (1)

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2008).
[Crossref]

2007 (1)

G. Y. H. Lee and C. T. Lim, “Biomechanics approaches to studying human diseases,” Trends Biotechnol. 25(3), 111–118 (2007).
[Crossref]

2006 (1)

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006).
[Crossref]

2005 (1)

C. Storm, J. J. Pastore, F. C. MacKintosh, T. C. Lubensky, and P. A. Janmey, “Nonlinear elasticity in biological gels,” Nature 435(7039), 191–194 (2005).
[Crossref]

2004 (1)

A. Engler, L. Bacakova, C. Newman, A. Hategan, M. Griffin, and D. Discher, “Substrate Compliance versus Ligand Density in Cell on Gel Responses,” Biophys. J. 86(1), 617–628 (2004).
[Crossref]

2003 (1)

J. L. Tan, J. Tien, D. M. Pirone, D. S. Gray, K. Bhadriraju, and C. S. Chen, “Cells Lying on a Bed of Microneedles: An Approach to Isolate Mechanical Force,” Proc. Natl. Acad. Sci. U. S. A. 100(4), 1484–1489 (2003).
[Crossref]

2001 (1)

A. B. Mathur, A. M. Collinsworth, W. M. Reichert, W. E. Kraus, and G. A. Truskey, “Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy,” J. Biomech. 34(12), 1545–1553 (2001).
[Crossref]

2000 (1)

R. M. Hochmuth, “Micropipette aspiration of living cells,” J. Biomech. 33(1), 15–22 (2000).
[Crossref]

1994 (1)

Adie, S. G.

J. A. Mulligan, X. Feng, and S. G. Adie, “Quantitative reconstruction of time-varying 3D cell forces with traction force optical coherence microscopy,” Sci. Rep. 9(1), 4086 (2019).
[Crossref]

Alexander, C. M.

H. W. Park, Y. C. Kim, B. Yu, T. Moroishi, J. S. Mo, S. W. Plouffe, Z. Meng, K. C. Lin, F. X. Yu, C. M. Alexander, C. Wang, and K. L. Guan, “Alternative Wnt Signaling Activates YAP/TAZ,” Cell 162(4), 780–794 (2015).
[Crossref]

Allen, W. M.

Alvarez, M. M.

K. Yue, G. Trujillo-de Santiago, M. M. Alvarez, A. Tamayol, N. Annabi, and A. Khademhosseini, “Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels,” Biomaterials 73, 254–271 (2015).
[Crossref]

Aman, Z. M.

L. G. Major, A. W. Holle, J. L. Young, M. S. Hepburn, K. Jeong, I. L. Chin, R. W. Sanderson, J. H. Jeong, Z. M. Aman, B. F. Kennedy, Y. Hwang, D. W. Han, H. W. Park, K. L. Guan, J. P. Spatz, and Y. S. Choi, “Volume Adaptation Controls Stem Cell Mechanotransduction,” ACS Appl. Mater. Interfaces 11(49), 45520–45530 (2019).
[Crossref]

An, S.

N. A. Perez-Gonzalez, N. D. Rochman, K. Yao, J. Tao, M. T. T. Le, S. Flanary, L. Sablich, B. Toler, E. Crentsil, F. Takaesu, B. Lambrus, J. Huang, V. Fu, P. Chengappa, T. M. Jones, A. J. Holland, S. An, D. Wirtz, R. J. Petrie, K. L. Guan, and S. X. Sun, “YAP and TAZ regulate cell volume,” J. Cell Biol. 218(10), 3472–3488 (2019).
[Crossref]

Annabi, N.

K. Yue, G. Trujillo-de Santiago, M. M. Alvarez, A. Tamayol, N. Annabi, and A. Khademhosseini, “Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels,” Biomaterials 73, 254–271 (2015).
[Crossref]

Aragona, M.

S. Dupont, L. Morsut, M. Aragona, E. Enzo, S. Giulitti, M. Cordenonsi, F. Zanconato, J. L. Digabel, M. Forcato, S. Bicciato, N. Elvassore, and S. Piccolo, “Role of YAP/TAZ in mechanotransduction,” Nature 474(7350), 179–183 (2011).
[Crossref]

Bacakova, L.

A. Engler, L. Bacakova, C. Newman, A. Hategan, M. Griffin, and D. Discher, “Substrate Compliance versus Ligand Density in Cell on Gel Responses,” Biophys. J. 86(1), 617–628 (2004).
[Crossref]

Bae, H.

J. W. Nichol, S. T. Koshy, H. Bae, C. M. Hwang, S. Yamanlar, and A. Khademhosseini, “Cell-laden microengineered gelatin methacrylate hydrogels,” Biomaterials 31(21), 5536–5544 (2010).
[Crossref]

Beckmann, L. J.

X. Shu, L. J. Beckmann, and H. F. Zhang, “Visible-light optical coherence tomography: a review,” J. Biomed. Opt. 22(12), 121707 (2017).
[Crossref]

Bergholt, M. S.

C. Kallepitis, M. S. Bergholt, M. M. Mazo, V. Leonardo, S. C. Skaalure, S. A. Maynard, and M. M. Stevens, “Quantitative volumetric Raman imaging of three dimensional cell cultures,” Nat. Commun. 8(1), 14843 (2017).
[Crossref]

Bhadriraju, K.

J. L. Tan, J. Tien, D. M. Pirone, D. S. Gray, K. Bhadriraju, and C. S. Chen, “Cells Lying on a Bed of Microneedles: An Approach to Isolate Mechanical Force,” Proc. Natl. Acad. Sci. U. S. A. 100(4), 1484–1489 (2003).
[Crossref]

Bicciato, S.

S. Dupont, L. Morsut, M. Aragona, E. Enzo, S. Giulitti, M. Cordenonsi, F. Zanconato, J. L. Digabel, M. Forcato, S. Bicciato, N. Elvassore, and S. Piccolo, “Role of YAP/TAZ in mechanotransduction,” Nature 474(7350), 179–183 (2011).
[Crossref]

Bieback, K.

W. J. Hadden, J. L. Young, A. W. Holle, M. L. McFetridge, D. Y. Kim, P. Wijesinghe, H. Taylor-Weiner, J. H. Wen, A. R. Lee, K. Bieback, B. N. Vo, D. D. Sampson, B. F. Kennedy, J. P. Spatz, A. J. Engler, and Y. S. Choi, “Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels,” Proc. Natl. Acad. Sci. 114(22), 5647–5652 (2017).
[Crossref]

Bisaillon, C. E.

Blakely, B. L.

W. R. Legant, J. S. Miller, B. L. Blakely, D. M. Cohen, G. M. Genin, and C. S. Chen, “Measurement of mechanical tractions exerted by cells in three-dimensional matrices,” Nat. Methods 7(12), 969–971 (2010).
[Crossref]

Block, S. M.

F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics 5(6), 318–321 (2011).
[Crossref]

Boccara, A. C.

C. E. Leroux, J. Palmier, A. C. Boccara, G. Cappello, and S. Monnier, “Elastography of multicellular aggregates submitted to osmo-mechanical stress,” New J. Phys. 17(7), 073035 (2015).
[Crossref]

Burdick, J. A.

S. R. Caliari, S. L. Vega, M. Kwon, E. M. Soulas, and J. A. Burdick, “Dimensionality and spreading influence MSC YAP/TAZ signaling in hydrogel environments,” Biomaterials 103, 314–323 (2016).
[Crossref]

Caliari, S. R.

S. R. Caliari, S. L. Vega, M. Kwon, E. M. Soulas, and J. A. Burdick, “Dimensionality and spreading influence MSC YAP/TAZ signaling in hydrogel environments,” Biomaterials 103, 314–323 (2016).
[Crossref]

Caluori, G.

G. Nardone, J. Oliver-De La Cruz, J. Vrbsky, C. Martini, J. Pribyl, P. Skládal, M. Pešl, G. Caluori, S. Pagliari, F. Martino, Z. Maceckova, M. Hajduch, A. Sanz-Garcia, N. M. Pugno, G. B. Stokin, and G. Forte, “YAP regulates cell mechanics by controlling focal adhesion assembly,” Nat. Commun. 8(1), 15321 (2017).
[Crossref]

Campbell, G.

Cappello, G.

C. E. Leroux, J. Palmier, A. C. Boccara, G. Cappello, and S. Monnier, “Elastography of multicellular aggregates submitted to osmo-mechanical stress,” New J. Phys. 17(7), 073035 (2015).
[Crossref]

Chandra, N.

Chen, C. S.

L. Li, J. Eyckmans, and C. S. Chen, “Designer biomaterials for mechanobiology,” Nat. Mater. 16(12), 1164–1168 (2017).
[Crossref]

W. R. Legant, J. S. Miller, B. L. Blakely, D. M. Cohen, G. M. Genin, and C. S. Chen, “Measurement of mechanical tractions exerted by cells in three-dimensional matrices,” Nat. Methods 7(12), 969–971 (2010).
[Crossref]

J. L. Tan, J. Tien, D. M. Pirone, D. S. Gray, K. Bhadriraju, and C. S. Chen, “Cells Lying on a Bed of Microneedles: An Approach to Isolate Mechanical Force,” Proc. Natl. Acad. Sci. U. S. A. 100(4), 1484–1489 (2003).
[Crossref]

Chengappa, P.

N. A. Perez-Gonzalez, N. D. Rochman, K. Yao, J. Tao, M. T. T. Le, S. Flanary, L. Sablich, B. Toler, E. Crentsil, F. Takaesu, B. Lambrus, J. Huang, V. Fu, P. Chengappa, T. M. Jones, A. J. Holland, S. An, D. Wirtz, R. J. Petrie, K. L. Guan, and S. X. Sun, “YAP and TAZ regulate cell volume,” J. Cell Biol. 218(10), 3472–3488 (2019).
[Crossref]

Chester, S. A.

Chin, I. L.

L. G. Major, A. W. Holle, J. L. Young, M. S. Hepburn, K. Jeong, I. L. Chin, R. W. Sanderson, J. H. Jeong, Z. M. Aman, B. F. Kennedy, Y. Hwang, D. W. Han, H. W. Park, K. L. Guan, J. P. Spatz, and Y. S. Choi, “Volume Adaptation Controls Stem Cell Mechanotransduction,” ACS Appl. Mater. Interfaces 11(49), 45520–45530 (2019).
[Crossref]

Chin, L.

M. S. Hepburn, P. Wijesinghe, L. Chin, and B. F. Kennedy, “Analysis of spatial resolution in phase-sensitive compression optical coherence elastography,” Biomed. Opt. Express 10(3), 1496–1513 (2019).
[Crossref]

R. W. Sanderson, A. Curatolo, P. Wijesinghe, L. Chin, and B. F. Kennedy, “Finger-mounted quantitative micro-elastography,” Biomed. Opt. Express 10(4), 1760–1773 (2019).
[Crossref]

W. M. Allen, K. M. Kennedy, Q. Fang, L. Chin, A. Curatolo, L. Watts, R. Zilkens, L. Chin, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Wide-field quantitative micro-elastography of human breast tissue,” Biomed. Opt. Express 9(3), 1082–1096 (2018).
[Crossref]

W. M. Allen, K. M. Kennedy, Q. Fang, L. Chin, A. Curatolo, L. Watts, R. Zilkens, L. Chin, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Wide-field quantitative micro-elastography of human breast tissue,” Biomed. Opt. Express 9(3), 1082–1096 (2018).
[Crossref]

Q. Fang, L. Frewer, P. Wijesinghe, W. M. Allen, L. Chin, J. Hamzah, D. D. Sampson, A. Curatolo, and B. F. Kennedy, “Depth-encoded optical coherence elastography for simultaneous volumetric imaging of two tissue faces,” Opt. Lett. 42(7), 1233–1236 (2017).
[Crossref]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref]

K. M. Kennedy, S. Es’haghian, L. Chin, R. A. McLaughlin, D. D. Sampson, and B. F. Kennedy, “Optical palpation: optical coherence tomography-based tactile imaging using a compliant sensor,” Opt. Lett. 39(10), 3014–3017 (2014).
[Crossref]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5(7), 2113–2124 (2014).
[Crossref]

L. Chin, A. Curatolo, B. F. Kennedy, B. J. Doyle, P. R. T. Munro, R. A. McLaughlin, and D. D. Sampson, “Analysis of image formation in optical coherence elastography using a multiphysics approach,” Biomed. Opt. Express 5(9), 2913–2930 (2014).
[Crossref]

Choi, Y. S.

L. G. Major, A. W. Holle, J. L. Young, M. S. Hepburn, K. Jeong, I. L. Chin, R. W. Sanderson, J. H. Jeong, Z. M. Aman, B. F. Kennedy, Y. Hwang, D. W. Han, H. W. Park, K. L. Guan, J. P. Spatz, and Y. S. Choi, “Volume Adaptation Controls Stem Cell Mechanotransduction,” ACS Appl. Mater. Interfaces 11(49), 45520–45530 (2019).
[Crossref]

W. J. Hadden, J. L. Young, A. W. Holle, M. L. McFetridge, D. Y. Kim, P. Wijesinghe, H. Taylor-Weiner, J. H. Wen, A. R. Lee, K. Bieback, B. N. Vo, D. D. Sampson, B. F. Kennedy, J. P. Spatz, A. J. Engler, and Y. S. Choi, “Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels,” Proc. Natl. Acad. Sci. 114(22), 5647–5652 (2017).
[Crossref]

Y. S. Choi, L. G. Vincent, A. R. Lee, M. K. Dobke, and A. J. Engler, “Mechanical derivation of functional myotubes from adipose-derived stem cells,” Biomaterials 33(8), 2482–2491 (2012).
[Crossref]

Cohen, D. M.

W. R. Legant, J. S. Miller, B. L. Blakely, D. M. Cohen, G. M. Genin, and C. S. Chen, “Measurement of mechanical tractions exerted by cells in three-dimensional matrices,” Nat. Methods 7(12), 969–971 (2010).
[Crossref]

Collinsworth, A. M.

A. B. Mathur, A. M. Collinsworth, W. M. Reichert, W. E. Kraus, and G. A. Truskey, “Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy,” J. Biomech. 34(12), 1545–1553 (2001).
[Crossref]

Cordenonsi, M.

S. Dupont, L. Morsut, M. Aragona, E. Enzo, S. Giulitti, M. Cordenonsi, F. Zanconato, J. L. Digabel, M. Forcato, S. Bicciato, N. Elvassore, and S. Piccolo, “Role of YAP/TAZ in mechanotransduction,” Nature 474(7350), 179–183 (2011).
[Crossref]

Crentsil, E.

N. A. Perez-Gonzalez, N. D. Rochman, K. Yao, J. Tao, M. T. T. Le, S. Flanary, L. Sablich, B. Toler, E. Crentsil, F. Takaesu, B. Lambrus, J. Huang, V. Fu, P. Chengappa, T. M. Jones, A. J. Holland, S. An, D. Wirtz, R. J. Petrie, K. L. Guan, and S. X. Sun, “YAP and TAZ regulate cell volume,” J. Cell Biol. 218(10), 3472–3488 (2019).
[Crossref]

Curatolo, A.

R. W. Sanderson, A. Curatolo, P. Wijesinghe, L. Chin, and B. F. Kennedy, “Finger-mounted quantitative micro-elastography,” Biomed. Opt. Express 10(4), 1760–1773 (2019).
[Crossref]

W. M. Allen, K. M. Kennedy, Q. Fang, L. Chin, A. Curatolo, L. Watts, R. Zilkens, L. Chin, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Wide-field quantitative micro-elastography of human breast tissue,” Biomed. Opt. Express 9(3), 1082–1096 (2018).
[Crossref]

Q. Fang, L. Frewer, P. Wijesinghe, W. M. Allen, L. Chin, J. Hamzah, D. D. Sampson, A. Curatolo, and B. F. Kennedy, “Depth-encoded optical coherence elastography for simultaneous volumetric imaging of two tissue faces,” Opt. Lett. 42(7), 1233–1236 (2017).
[Crossref]

Q. Fang, A. Curatolo, P. Wijesinghe, Y. L. Yeow, J. Hamzah, P. B. Noble, K. Karnowski, D. D. Sampson, R. Ganss, J. K. Kim, W. M. Lee, and B. F. Kennedy, “Ultrahigh-resolution optical coherence elastography through a micro-endoscope: towards in vivo imaging of cellular-scale mechanics,” Biomed. Opt. Express 8(11), 5127–5138 (2017).
[Crossref]

P. Wijesinghe, N. J. Johansen, A. Curatolo, D. D. Sampson, R. Ganss, and B. F. Kennedy, “Ultrahigh-resolution optical coherence elastography images cellular-scale stiffness of mouse aorta,” Biophys. J. 113(11), 2540–2551 (2017).
[Crossref]

A. Curatolo, M. Villiger, D. Lorenser, P. Wijesinghe, A. Fritz, B. F. Kennedy, and D. D. Sampson, “Ultrahigh-resolution optical coherence elastography,” Opt. Lett. 41(1), 21–24 (2016).
[Crossref]

L. Chin, A. Curatolo, B. F. Kennedy, B. J. Doyle, P. R. T. Munro, R. A. McLaughlin, and D. D. Sampson, “Analysis of image formation in optical coherence elastography using a multiphysics approach,” Biomed. Opt. Express 5(9), 2913–2930 (2014).
[Crossref]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5(7), 2113–2124 (2014).
[Crossref]

G. Lamouche, B. F. Kennedy, K. M. Kennedy, C. E. Bisaillon, A. Curatolo, G. Campbell, V. Pazos, and D. D. Sampson, “Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography,” Biomed. Opt. Express 3(6), 1381–1398 (2012).
[Crossref]

Dantuono, J. T.

L. Dong, P. Wijesinghe, J. T. Dantuono, D. D. Sampson, P. R. T. Munro, B. F. Kennedy, and A. A. Oberai, “Quantitative compression optical coherence elastography as an inverse elasticity problem,” IEEE J. Sel. Top. Quantum Electron. 22(3), 277–287 (2016).
[Crossref]

Dessauvagie, B. F.

Digabel, J. L.

S. Dupont, L. Morsut, M. Aragona, E. Enzo, S. Giulitti, M. Cordenonsi, F. Zanconato, J. L. Digabel, M. Forcato, S. Bicciato, N. Elvassore, and S. Piccolo, “Role of YAP/TAZ in mechanotransduction,” Nature 474(7350), 179–183 (2011).
[Crossref]

Discher, D.

A. Engler, L. Bacakova, C. Newman, A. Hategan, M. Griffin, and D. Discher, “Substrate Compliance versus Ligand Density in Cell on Gel Responses,” Biophys. J. 86(1), 617–628 (2004).
[Crossref]

Dobke, M. K.

Y. S. Choi, L. G. Vincent, A. R. Lee, M. K. Dobke, and A. J. Engler, “Mechanical derivation of functional myotubes from adipose-derived stem cells,” Biomaterials 33(8), 2482–2491 (2012).
[Crossref]

Dong, L.

L. Dong, P. Wijesinghe, D. D. Sampson, B. F. Kennedy, P. R. T. Munro, and A. A. Oberai, “Volumetric quantitative optical coherence elastography with an iterative inversion method,” Biomed. Opt. Express 10(2), 384–398 (2019).
[Crossref]

L. Dong and A. A. Oberai, “Recovery of cellular traction in three-dimensional nonlinear hyperelastic matrices,” Comput. Methods Appl. Mech. Eng. 314, 296–313 (2017).
[Crossref]

L. Dong, P. Wijesinghe, J. T. Dantuono, D. D. Sampson, P. R. T. Munro, B. F. Kennedy, and A. A. Oberai, “Quantitative compression optical coherence elastography as an inverse elasticity problem,” IEEE J. Sel. Top. Quantum Electron. 22(3), 277–287 (2016).
[Crossref]

Doyle, B. J.

Dufresne, E. R.

J. D. Humphrey, E. R. Dufresne, and M. A. Schwartz, “Mechanotransduction and extracellular matrix homeostasis,” Nat. Rev. Mol. Cell Biol. 15(12), 802–812 (2014).
[Crossref]

Duits, M. H. G.

S. A. Vanapalli, M. H. G. Duits, and F. Mugele, “Microfluidics as a functional tool for cell mechanics,” Biomicrofluidics 3(1), 012006 (2009).
[Crossref]

Dunlop, I. E.

P. J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop, C. Paterson, P. Török, and D. R. Overby, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” Nat. Methods 15(8), 561–562 (2018).
[Crossref]

Dupont, S.

S. Dupont, L. Morsut, M. Aragona, E. Enzo, S. Giulitti, M. Cordenonsi, F. Zanconato, J. L. Digabel, M. Forcato, S. Bicciato, N. Elvassore, and S. Piccolo, “Role of YAP/TAZ in mechanotransduction,” Nature 474(7350), 179–183 (2011).
[Crossref]

Elvassore, N.

S. Dupont, L. Morsut, M. Aragona, E. Enzo, S. Giulitti, M. Cordenonsi, F. Zanconato, J. L. Digabel, M. Forcato, S. Bicciato, N. Elvassore, and S. Piccolo, “Role of YAP/TAZ in mechanotransduction,” Nature 474(7350), 179–183 (2011).
[Crossref]

Engler, A.

A. Engler, L. Bacakova, C. Newman, A. Hategan, M. Griffin, and D. Discher, “Substrate Compliance versus Ligand Density in Cell on Gel Responses,” Biophys. J. 86(1), 617–628 (2004).
[Crossref]

Engler, A. J.

W. J. Hadden, J. L. Young, A. W. Holle, M. L. McFetridge, D. Y. Kim, P. Wijesinghe, H. Taylor-Weiner, J. H. Wen, A. R. Lee, K. Bieback, B. N. Vo, D. D. Sampson, B. F. Kennedy, J. P. Spatz, A. J. Engler, and Y. S. Choi, “Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels,” Proc. Natl. Acad. Sci. 114(22), 5647–5652 (2017).
[Crossref]

Y. S. Choi, L. G. Vincent, A. R. Lee, M. K. Dobke, and A. J. Engler, “Mechanical derivation of functional myotubes from adipose-derived stem cells,” Biomaterials 33(8), 2482–2491 (2012).
[Crossref]

Enzo, E.

S. Dupont, L. Morsut, M. Aragona, E. Enzo, S. Giulitti, M. Cordenonsi, F. Zanconato, J. L. Digabel, M. Forcato, S. Bicciato, N. Elvassore, and S. Piccolo, “Role of YAP/TAZ in mechanotransduction,” Nature 474(7350), 179–183 (2011).
[Crossref]

Es’haghian, S.

Eyckmans, J.

L. Li, J. Eyckmans, and C. S. Chen, “Designer biomaterials for mechanobiology,” Nat. Mater. 16(12), 1164–1168 (2017).
[Crossref]

Fang, Q.

Fazal, F. M.

F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics 5(6), 318–321 (2011).
[Crossref]

Feng, X.

J. A. Mulligan, X. Feng, and S. G. Adie, “Quantitative reconstruction of time-varying 3D cell forces with traction force optical coherence microscopy,” Sci. Rep. 9(1), 4086 (2019).
[Crossref]

Flanary, S.

N. A. Perez-Gonzalez, N. D. Rochman, K. Yao, J. Tao, M. T. T. Le, S. Flanary, L. Sablich, B. Toler, E. Crentsil, F. Takaesu, B. Lambrus, J. Huang, V. Fu, P. Chengappa, T. M. Jones, A. J. Holland, S. An, D. Wirtz, R. J. Petrie, K. L. Guan, and S. X. Sun, “YAP and TAZ regulate cell volume,” J. Cell Biol. 218(10), 3472–3488 (2019).
[Crossref]

Fletcher, D. A.

D. A. Fletcher and R. D. Mullins, “Cell mechanics and the cytoskeleton,” Nature 463(7280), 485–492 (2010).
[Crossref]

Forcato, M.

S. Dupont, L. Morsut, M. Aragona, E. Enzo, S. Giulitti, M. Cordenonsi, F. Zanconato, J. L. Digabel, M. Forcato, S. Bicciato, N. Elvassore, and S. Piccolo, “Role of YAP/TAZ in mechanotransduction,” Nature 474(7350), 179–183 (2011).
[Crossref]

Forte, G.

G. Nardone, J. Oliver-De La Cruz, J. Vrbsky, C. Martini, J. Pribyl, P. Skládal, M. Pešl, G. Caluori, S. Pagliari, F. Martino, Z. Maceckova, M. Hajduch, A. Sanz-Garcia, N. M. Pugno, G. B. Stokin, and G. Forte, “YAP regulates cell mechanics by controlling focal adhesion assembly,” Nat. Commun. 8(1), 15321 (2017).
[Crossref]

Franck, C.

C. Franck, S. A. Maskarinec, D. A. Tirrell, and G. Ravichandran, “Three-Dimensional Traction Force Microscopy: A New Tool for Quantifying Cell-Matrix Interactions,” PLoS One 6(3), e17833 (2011).
[Crossref]

Frewer, L.

Fritz, A.

Fu, J.

Y. Shao, J. Sang, and J. Fu, “On human pluripotent stem cell control: The rise of 3D bioengineering and mechanobiology,” Biomaterials 52, 26–43 (2015).
[Crossref]

Fu, V.

N. A. Perez-Gonzalez, N. D. Rochman, K. Yao, J. Tao, M. T. T. Le, S. Flanary, L. Sablich, B. Toler, E. Crentsil, F. Takaesu, B. Lambrus, J. Huang, V. Fu, P. Chengappa, T. M. Jones, A. J. Holland, S. An, D. Wirtz, R. J. Petrie, K. L. Guan, and S. X. Sun, “YAP and TAZ regulate cell volume,” J. Cell Biol. 218(10), 3472–3488 (2019).
[Crossref]

Fujimoto, J. G.

Ganss, R.

Genin, G. M.

W. R. Legant, J. S. Miller, B. L. Blakely, D. M. Cohen, G. M. Genin, and C. S. Chen, “Measurement of mechanical tractions exerted by cells in three-dimensional matrices,” Nat. Methods 7(12), 969–971 (2010).
[Crossref]

Giulitti, S.

S. Dupont, L. Morsut, M. Aragona, E. Enzo, S. Giulitti, M. Cordenonsi, F. Zanconato, J. L. Digabel, M. Forcato, S. Bicciato, N. Elvassore, and S. Piccolo, “Role of YAP/TAZ in mechanotransduction,” Nature 474(7350), 179–183 (2011).
[Crossref]

Gray, D. S.

J. L. Tan, J. Tien, D. M. Pirone, D. S. Gray, K. Bhadriraju, and C. S. Chen, “Cells Lying on a Bed of Microneedles: An Approach to Isolate Mechanical Force,” Proc. Natl. Acad. Sci. U. S. A. 100(4), 1484–1489 (2003).
[Crossref]

Griffin, M.

A. Engler, L. Bacakova, C. Newman, A. Hategan, M. Griffin, and D. Discher, “Substrate Compliance versus Ligand Density in Cell on Gel Responses,” Biophys. J. 86(1), 617–628 (2004).
[Crossref]

Grodzinsky, A. J.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref]

Guan, K. L.

N. A. Perez-Gonzalez, N. D. Rochman, K. Yao, J. Tao, M. T. T. Le, S. Flanary, L. Sablich, B. Toler, E. Crentsil, F. Takaesu, B. Lambrus, J. Huang, V. Fu, P. Chengappa, T. M. Jones, A. J. Holland, S. An, D. Wirtz, R. J. Petrie, K. L. Guan, and S. X. Sun, “YAP and TAZ regulate cell volume,” J. Cell Biol. 218(10), 3472–3488 (2019).
[Crossref]

L. G. Major, A. W. Holle, J. L. Young, M. S. Hepburn, K. Jeong, I. L. Chin, R. W. Sanderson, J. H. Jeong, Z. M. Aman, B. F. Kennedy, Y. Hwang, D. W. Han, H. W. Park, K. L. Guan, J. P. Spatz, and Y. S. Choi, “Volume Adaptation Controls Stem Cell Mechanotransduction,” ACS Appl. Mater. Interfaces 11(49), 45520–45530 (2019).
[Crossref]

H. W. Park, Y. C. Kim, B. Yu, T. Moroishi, J. S. Mo, S. W. Plouffe, Z. Meng, K. C. Lin, F. X. Yu, C. M. Alexander, C. Wang, and K. L. Guan, “Alternative Wnt Signaling Activates YAP/TAZ,” Cell 162(4), 780–794 (2015).
[Crossref]

T. Moroishi, C. G. Hansen, and K. L. Guan, “The emerging roles of YAP and TAZ in cancer,” Nat. Rev. Cancer 15(2), 73–79 (2015).
[Crossref]

Hadden, W. J.

W. J. Hadden, J. L. Young, A. W. Holle, M. L. McFetridge, D. Y. Kim, P. Wijesinghe, H. Taylor-Weiner, J. H. Wen, A. R. Lee, K. Bieback, B. N. Vo, D. D. Sampson, B. F. Kennedy, J. P. Spatz, A. J. Engler, and Y. S. Choi, “Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels,” Proc. Natl. Acad. Sci. 114(22), 5647–5652 (2017).
[Crossref]

Hajduch, M.

G. Nardone, J. Oliver-De La Cruz, J. Vrbsky, C. Martini, J. Pribyl, P. Skládal, M. Pešl, G. Caluori, S. Pagliari, F. Martino, Z. Maceckova, M. Hajduch, A. Sanz-Garcia, N. M. Pugno, G. B. Stokin, and G. Forte, “YAP regulates cell mechanics by controlling focal adhesion assembly,” Nat. Commun. 8(1), 15321 (2017).
[Crossref]

Hamzah, J.

Han, D. W.

L. G. Major, A. W. Holle, J. L. Young, M. S. Hepburn, K. Jeong, I. L. Chin, R. W. Sanderson, J. H. Jeong, Z. M. Aman, B. F. Kennedy, Y. Hwang, D. W. Han, H. W. Park, K. L. Guan, J. P. Spatz, and Y. S. Choi, “Volume Adaptation Controls Stem Cell Mechanotransduction,” ACS Appl. Mater. Interfaces 11(49), 45520–45530 (2019).
[Crossref]

Hansen, C. G.

T. Moroishi, C. G. Hansen, and K. L. Guan, “The emerging roles of YAP and TAZ in cancer,” Nat. Rev. Cancer 15(2), 73–79 (2015).
[Crossref]

Harris, A. R.

E. Moeendarbary and A. R. Harris, “Cell mechanics: principles, practices, and prospects,” Wiley Interdiscip. Rev.: Syst. Biol. Med. 6(5), 371–388 (2014).
[Crossref]

Hategan, A.

A. Engler, L. Bacakova, C. Newman, A. Hategan, M. Griffin, and D. Discher, “Substrate Compliance versus Ligand Density in Cell on Gel Responses,” Biophys. J. 86(1), 617–628 (2004).
[Crossref]

Hee, M. R.

Hepburn, M. S.

L. G. Major, A. W. Holle, J. L. Young, M. S. Hepburn, K. Jeong, I. L. Chin, R. W. Sanderson, J. H. Jeong, Z. M. Aman, B. F. Kennedy, Y. Hwang, D. W. Han, H. W. Park, K. L. Guan, J. P. Spatz, and Y. S. Choi, “Volume Adaptation Controls Stem Cell Mechanotransduction,” ACS Appl. Mater. Interfaces 11(49), 45520–45530 (2019).
[Crossref]

M. S. Hepburn, P. Wijesinghe, L. Chin, and B. F. Kennedy, “Analysis of spatial resolution in phase-sensitive compression optical coherence elastography,” Biomed. Opt. Express 10(3), 1496–1513 (2019).
[Crossref]

Hochmuth, R. M.

R. M. Hochmuth, “Micropipette aspiration of living cells,” J. Biomech. 33(1), 15–22 (2000).
[Crossref]

Holland, A. J.

N. A. Perez-Gonzalez, N. D. Rochman, K. Yao, J. Tao, M. T. T. Le, S. Flanary, L. Sablich, B. Toler, E. Crentsil, F. Takaesu, B. Lambrus, J. Huang, V. Fu, P. Chengappa, T. M. Jones, A. J. Holland, S. An, D. Wirtz, R. J. Petrie, K. L. Guan, and S. X. Sun, “YAP and TAZ regulate cell volume,” J. Cell Biol. 218(10), 3472–3488 (2019).
[Crossref]

Holle, A. W.

L. G. Major, A. W. Holle, J. L. Young, M. S. Hepburn, K. Jeong, I. L. Chin, R. W. Sanderson, J. H. Jeong, Z. M. Aman, B. F. Kennedy, Y. Hwang, D. W. Han, H. W. Park, K. L. Guan, J. P. Spatz, and Y. S. Choi, “Volume Adaptation Controls Stem Cell Mechanotransduction,” ACS Appl. Mater. Interfaces 11(49), 45520–45530 (2019).
[Crossref]

W. J. Hadden, J. L. Young, A. W. Holle, M. L. McFetridge, D. Y. Kim, P. Wijesinghe, H. Taylor-Weiner, J. H. Wen, A. R. Lee, K. Bieback, B. N. Vo, D. D. Sampson, B. F. Kennedy, J. P. Spatz, A. J. Engler, and Y. S. Choi, “Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels,” Proc. Natl. Acad. Sci. 114(22), 5647–5652 (2017).
[Crossref]

Huang, J.

N. A. Perez-Gonzalez, N. D. Rochman, K. Yao, J. Tao, M. T. T. Le, S. Flanary, L. Sablich, B. Toler, E. Crentsil, F. Takaesu, B. Lambrus, J. Huang, V. Fu, P. Chengappa, T. M. Jones, A. J. Holland, S. An, D. Wirtz, R. J. Petrie, K. L. Guan, and S. X. Sun, “YAP and TAZ regulate cell volume,” J. Cell Biol. 218(10), 3472–3488 (2019).
[Crossref]

Humphrey, J. D.

J. D. Humphrey, E. R. Dufresne, and M. A. Schwartz, “Mechanotransduction and extracellular matrix homeostasis,” Nat. Rev. Mol. Cell Biol. 15(12), 802–812 (2014).
[Crossref]

Hwang, C. M.

J. W. Nichol, S. T. Koshy, H. Bae, C. M. Hwang, S. Yamanlar, and A. Khademhosseini, “Cell-laden microengineered gelatin methacrylate hydrogels,” Biomaterials 31(21), 5536–5544 (2010).
[Crossref]

Hwang, Y.

L. G. Major, A. W. Holle, J. L. Young, M. S. Hepburn, K. Jeong, I. L. Chin, R. W. Sanderson, J. H. Jeong, Z. M. Aman, B. F. Kennedy, Y. Hwang, D. W. Han, H. W. Park, K. L. Guan, J. P. Spatz, and Y. S. Choi, “Volume Adaptation Controls Stem Cell Mechanotransduction,” ACS Appl. Mater. Interfaces 11(49), 45520–45530 (2019).
[Crossref]

Hyun, J.

S. Shin, S. Park, M. Park, E. Jeong, K. Na, H. J. Youn, and J. Hyun, “Cellulose Nanofibers for the Enhancement of Printability of Low Viscosity Gelatin Derivatives,” BioResources 12(2), 2941–2954 (2017).
[Crossref]

Ingber, D. E.

N. Wang, J. D. Tytell, and D. E. Ingber, “Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus,” Nat. Rev. Mol. Cell Biol. 10(1), 75–82 (2009).
[Crossref]

Izatt, J. A.

Jaalouk, D. E.

D. E. Jaalouk and J. Lammerding, “Mechanotransduction gone awry,” Nat. Rev. Mol. Cell Biol. 10(1), 63–73 (2009).
[Crossref]

Janmey, P. A.

C. Storm, J. J. Pastore, F. C. MacKintosh, T. C. Lubensky, and P. A. Janmey, “Nonlinear elasticity in biological gels,” Nature 435(7039), 191–194 (2005).
[Crossref]

Jeong, E.

S. Shin, S. Park, M. Park, E. Jeong, K. Na, H. J. Youn, and J. Hyun, “Cellulose Nanofibers for the Enhancement of Printability of Low Viscosity Gelatin Derivatives,” BioResources 12(2), 2941–2954 (2017).
[Crossref]

Jeong, J. H.

L. G. Major, A. W. Holle, J. L. Young, M. S. Hepburn, K. Jeong, I. L. Chin, R. W. Sanderson, J. H. Jeong, Z. M. Aman, B. F. Kennedy, Y. Hwang, D. W. Han, H. W. Park, K. L. Guan, J. P. Spatz, and Y. S. Choi, “Volume Adaptation Controls Stem Cell Mechanotransduction,” ACS Appl. Mater. Interfaces 11(49), 45520–45530 (2019).
[Crossref]

Jeong, K.

L. G. Major, A. W. Holle, J. L. Young, M. S. Hepburn, K. Jeong, I. L. Chin, R. W. Sanderson, J. H. Jeong, Z. M. Aman, B. F. Kennedy, Y. Hwang, D. W. Han, H. W. Park, K. L. Guan, J. P. Spatz, and Y. S. Choi, “Volume Adaptation Controls Stem Cell Mechanotransduction,” ACS Appl. Mater. Interfaces 11(49), 45520–45530 (2019).
[Crossref]

Johansen, N. J.

P. Wijesinghe, N. J. Johansen, A. Curatolo, D. D. Sampson, R. Ganss, and B. F. Kennedy, “Ultrahigh-resolution optical coherence elastography images cellular-scale stiffness of mouse aorta,” Biophys. J. 113(11), 2540–2551 (2017).
[Crossref]

Jones, T. M.

N. A. Perez-Gonzalez, N. D. Rochman, K. Yao, J. Tao, M. T. T. Le, S. Flanary, L. Sablich, B. Toler, E. Crentsil, F. Takaesu, B. Lambrus, J. Huang, V. Fu, P. Chengappa, T. M. Jones, A. J. Holland, S. An, D. Wirtz, R. J. Petrie, K. L. Guan, and S. X. Sun, “YAP and TAZ regulate cell volume,” J. Cell Biol. 218(10), 3472–3488 (2019).
[Crossref]

Kabakova, I. V.

P. J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop, C. Paterson, P. Török, and D. R. Overby, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” Nat. Methods 15(8), 561–562 (2018).
[Crossref]

Kallepitis, C.

C. Kallepitis, M. S. Bergholt, M. M. Mazo, V. Leonardo, S. C. Skaalure, S. A. Maynard, and M. M. Stevens, “Quantitative volumetric Raman imaging of three dimensional cell cultures,” Nat. Commun. 8(1), 14843 (2017).
[Crossref]

Kamm, R. D.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref]

Karnowski, K.

Kennedy, B. F.

L. Dong, P. Wijesinghe, D. D. Sampson, B. F. Kennedy, P. R. T. Munro, and A. A. Oberai, “Volumetric quantitative optical coherence elastography with an iterative inversion method,” Biomed. Opt. Express 10(2), 384–398 (2019).
[Crossref]

M. S. Hepburn, P. Wijesinghe, L. Chin, and B. F. Kennedy, “Analysis of spatial resolution in phase-sensitive compression optical coherence elastography,” Biomed. Opt. Express 10(3), 1496–1513 (2019).
[Crossref]

R. W. Sanderson, A. Curatolo, P. Wijesinghe, L. Chin, and B. F. Kennedy, “Finger-mounted quantitative micro-elastography,” Biomed. Opt. Express 10(4), 1760–1773 (2019).
[Crossref]

L. G. Major, A. W. Holle, J. L. Young, M. S. Hepburn, K. Jeong, I. L. Chin, R. W. Sanderson, J. H. Jeong, Z. M. Aman, B. F. Kennedy, Y. Hwang, D. W. Han, H. W. Park, K. L. Guan, J. P. Spatz, and Y. S. Choi, “Volume Adaptation Controls Stem Cell Mechanotransduction,” ACS Appl. Mater. Interfaces 11(49), 45520–45530 (2019).
[Crossref]

W. M. Allen, K. M. Kennedy, Q. Fang, L. Chin, A. Curatolo, L. Watts, R. Zilkens, L. Chin, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Wide-field quantitative micro-elastography of human breast tissue,” Biomed. Opt. Express 9(3), 1082–1096 (2018).
[Crossref]

Q. Fang, A. Curatolo, P. Wijesinghe, Y. L. Yeow, J. Hamzah, P. B. Noble, K. Karnowski, D. D. Sampson, R. Ganss, J. K. Kim, W. M. Lee, and B. F. Kennedy, “Ultrahigh-resolution optical coherence elastography through a micro-endoscope: towards in vivo imaging of cellular-scale mechanics,” Biomed. Opt. Express 8(11), 5127–5138 (2017).
[Crossref]

Q. Fang, L. Frewer, P. Wijesinghe, W. M. Allen, L. Chin, J. Hamzah, D. D. Sampson, A. Curatolo, and B. F. Kennedy, “Depth-encoded optical coherence elastography for simultaneous volumetric imaging of two tissue faces,” Opt. Lett. 42(7), 1233–1236 (2017).
[Crossref]

P. Wijesinghe, N. J. Johansen, A. Curatolo, D. D. Sampson, R. Ganss, and B. F. Kennedy, “Ultrahigh-resolution optical coherence elastography images cellular-scale stiffness of mouse aorta,” Biophys. J. 113(11), 2540–2551 (2017).
[Crossref]

W. J. Hadden, J. L. Young, A. W. Holle, M. L. McFetridge, D. Y. Kim, P. Wijesinghe, H. Taylor-Weiner, J. H. Wen, A. R. Lee, K. Bieback, B. N. Vo, D. D. Sampson, B. F. Kennedy, J. P. Spatz, A. J. Engler, and Y. S. Choi, “Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels,” Proc. Natl. Acad. Sci. 114(22), 5647–5652 (2017).
[Crossref]

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
[Crossref]

L. Dong, P. Wijesinghe, J. T. Dantuono, D. D. Sampson, P. R. T. Munro, B. F. Kennedy, and A. A. Oberai, “Quantitative compression optical coherence elastography as an inverse elasticity problem,” IEEE J. Sel. Top. Quantum Electron. 22(3), 277–287 (2016).
[Crossref]

A. Curatolo, M. Villiger, D. Lorenser, P. Wijesinghe, A. Fritz, B. F. Kennedy, and D. D. Sampson, “Ultrahigh-resolution optical coherence elastography,” Opt. Lett. 41(1), 21–24 (2016).
[Crossref]

P. Wijesinghe, R. A. McLaughlin, D. D. Sampson, and B. F. Kennedy, “Parametric imaging of viscoelasticity using optical coherence elastography,” Phys. Med. Biol. 60(6), 2293–2307 (2015).
[Crossref]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref]

K. M. Kennedy, S. Es’haghian, L. Chin, R. A. McLaughlin, D. D. Sampson, and B. F. Kennedy, “Optical palpation: optical coherence tomography-based tactile imaging using a compliant sensor,” Opt. Lett. 39(10), 3014–3017 (2014).
[Crossref]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5(7), 2113–2124 (2014).
[Crossref]

L. Chin, A. Curatolo, B. F. Kennedy, B. J. Doyle, P. R. T. Munro, R. A. McLaughlin, and D. D. Sampson, “Analysis of image formation in optical coherence elastography using a multiphysics approach,” Biomed. Opt. Express 5(9), 2913–2930 (2014).
[Crossref]

B. F. Kennedy, S. H. Koh, R. A. McLaughlin, K. M. Kennedy, P. R. T. Munro, and D. D. Sampson, “Strain estimation in phase-sensitive optical coherence elastography,” Biomed. Opt. Express 3(8), 1865–1879 (2012).
[Crossref]

G. Lamouche, B. F. Kennedy, K. M. Kennedy, C. E. Bisaillon, A. Curatolo, G. Campbell, V. Pazos, and D. D. Sampson, “Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography,” Biomed. Opt. Express 3(6), 1381–1398 (2012).
[Crossref]

Kennedy, K. M.

W. M. Allen, K. M. Kennedy, Q. Fang, L. Chin, A. Curatolo, L. Watts, R. Zilkens, L. Chin, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Wide-field quantitative micro-elastography of human breast tissue,” Biomed. Opt. Express 9(3), 1082–1096 (2018).
[Crossref]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref]

K. M. Kennedy, S. Es’haghian, L. Chin, R. A. McLaughlin, D. D. Sampson, and B. F. Kennedy, “Optical palpation: optical coherence tomography-based tactile imaging using a compliant sensor,” Opt. Lett. 39(10), 3014–3017 (2014).
[Crossref]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5(7), 2113–2124 (2014).
[Crossref]

B. F. Kennedy, S. H. Koh, R. A. McLaughlin, K. M. Kennedy, P. R. T. Munro, and D. D. Sampson, “Strain estimation in phase-sensitive optical coherence elastography,” Biomed. Opt. Express 3(8), 1865–1879 (2012).
[Crossref]

G. Lamouche, B. F. Kennedy, K. M. Kennedy, C. E. Bisaillon, A. Curatolo, G. Campbell, V. Pazos, and D. D. Sampson, “Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography,” Biomed. Opt. Express 3(6), 1381–1398 (2012).
[Crossref]

Khademhosseini, A.

K. Yue, G. Trujillo-de Santiago, M. M. Alvarez, A. Tamayol, N. Annabi, and A. Khademhosseini, “Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels,” Biomaterials 73, 254–271 (2015).
[Crossref]

J. W. Nichol, S. T. Koshy, H. Bae, C. M. Hwang, S. Yamanlar, and A. Khademhosseini, “Cell-laden microengineered gelatin methacrylate hydrogels,” Biomaterials 31(21), 5536–5544 (2010).
[Crossref]

Kim, D. Y.

W. J. Hadden, J. L. Young, A. W. Holle, M. L. McFetridge, D. Y. Kim, P. Wijesinghe, H. Taylor-Weiner, J. H. Wen, A. R. Lee, K. Bieback, B. N. Vo, D. D. Sampson, B. F. Kennedy, J. P. Spatz, A. J. Engler, and Y. S. Choi, “Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels,” Proc. Natl. Acad. Sci. 114(22), 5647–5652 (2017).
[Crossref]

Kim, J. K.

Kim, Y. C.

H. W. Park, Y. C. Kim, B. Yu, T. Moroishi, J. S. Mo, S. W. Plouffe, Z. Meng, K. C. Lin, F. X. Yu, C. M. Alexander, C. Wang, and K. L. Guan, “Alternative Wnt Signaling Activates YAP/TAZ,” Cell 162(4), 780–794 (2015).
[Crossref]

Kirkpatrick, S. J.

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006).
[Crossref]

Koh, S. H.

Koshy, S. T.

J. W. Nichol, S. T. Koshy, H. Bae, C. M. Hwang, S. Yamanlar, and A. Khademhosseini, “Cell-laden microengineered gelatin methacrylate hydrogels,” Biomaterials 31(21), 5536–5544 (2010).
[Crossref]

Kraus, W. E.

A. B. Mathur, A. M. Collinsworth, W. M. Reichert, W. E. Kraus, and G. A. Truskey, “Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy,” J. Biomech. 34(12), 1545–1553 (2001).
[Crossref]

Kwon, M.

S. R. Caliari, S. L. Vega, M. Kwon, E. M. Soulas, and J. A. Burdick, “Dimensionality and spreading influence MSC YAP/TAZ signaling in hydrogel environments,” Biomaterials 103, 314–323 (2016).
[Crossref]

Ladoux, B.

B. Ladoux and R. M. Mège, “Mechanobiology of collective cell behaviours,” Nat. Rev. Mol. Cell Biol. 18(12), 743–757 (2017).
[Crossref]

Lambrus, B.

N. A. Perez-Gonzalez, N. D. Rochman, K. Yao, J. Tao, M. T. T. Le, S. Flanary, L. Sablich, B. Toler, E. Crentsil, F. Takaesu, B. Lambrus, J. Huang, V. Fu, P. Chengappa, T. M. Jones, A. J. Holland, S. An, D. Wirtz, R. J. Petrie, K. L. Guan, and S. X. Sun, “YAP and TAZ regulate cell volume,” J. Cell Biol. 218(10), 3472–3488 (2019).
[Crossref]

Lammerding, J.

D. E. Jaalouk and J. Lammerding, “Mechanotransduction gone awry,” Nat. Rev. Mol. Cell Biol. 10(1), 63–73 (2009).
[Crossref]

Lamouche, G.

Larin, K. V.

Latham, B.

Le, M. T. T.

N. A. Perez-Gonzalez, N. D. Rochman, K. Yao, J. Tao, M. T. T. Le, S. Flanary, L. Sablich, B. Toler, E. Crentsil, F. Takaesu, B. Lambrus, J. Huang, V. Fu, P. Chengappa, T. M. Jones, A. J. Holland, S. An, D. Wirtz, R. J. Petrie, K. L. Guan, and S. X. Sun, “YAP and TAZ regulate cell volume,” J. Cell Biol. 218(10), 3472–3488 (2019).
[Crossref]

Lee, A. R.

W. J. Hadden, J. L. Young, A. W. Holle, M. L. McFetridge, D. Y. Kim, P. Wijesinghe, H. Taylor-Weiner, J. H. Wen, A. R. Lee, K. Bieback, B. N. Vo, D. D. Sampson, B. F. Kennedy, J. P. Spatz, A. J. Engler, and Y. S. Choi, “Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels,” Proc. Natl. Acad. Sci. 114(22), 5647–5652 (2017).
[Crossref]

Y. S. Choi, L. G. Vincent, A. R. Lee, M. K. Dobke, and A. J. Engler, “Mechanical derivation of functional myotubes from adipose-derived stem cells,” Biomaterials 33(8), 2482–2491 (2012).
[Crossref]

Lee, G. Y. H.

G. Y. H. Lee and C. T. Lim, “Biomechanics approaches to studying human diseases,” Trends Biotechnol. 25(3), 111–118 (2007).
[Crossref]

Lee, W. M.

Legant, W. R.

W. R. Legant, J. S. Miller, B. L. Blakely, D. M. Cohen, G. M. Genin, and C. S. Chen, “Measurement of mechanical tractions exerted by cells in three-dimensional matrices,” Nat. Methods 7(12), 969–971 (2010).
[Crossref]

Leonardo, V.

C. Kallepitis, M. S. Bergholt, M. M. Mazo, V. Leonardo, S. C. Skaalure, S. A. Maynard, and M. M. Stevens, “Quantitative volumetric Raman imaging of three dimensional cell cultures,” Nat. Commun. 8(1), 14843 (2017).
[Crossref]

Leroux, C. E.

C. E. Leroux, J. Palmier, A. C. Boccara, G. Cappello, and S. Monnier, “Elastography of multicellular aggregates submitted to osmo-mechanical stress,” New J. Phys. 17(7), 073035 (2015).
[Crossref]

Li, L.

L. Li, J. Eyckmans, and C. S. Chen, “Designer biomaterials for mechanobiology,” Nat. Mater. 16(12), 1164–1168 (2017).
[Crossref]

Lim, C. T.

G. Y. H. Lee and C. T. Lim, “Biomechanics approaches to studying human diseases,” Trends Biotechnol. 25(3), 111–118 (2007).
[Crossref]

Lin, K. C.

H. W. Park, Y. C. Kim, B. Yu, T. Moroishi, J. S. Mo, S. W. Plouffe, Z. Meng, K. C. Lin, F. X. Yu, C. M. Alexander, C. Wang, and K. L. Guan, “Alternative Wnt Signaling Activates YAP/TAZ,” Cell 162(4), 780–794 (2015).
[Crossref]

Liu, X.

Lorenser, D.

Lubensky, T. C.

C. Storm, J. J. Pastore, F. C. MacKintosh, T. C. Lubensky, and P. A. Janmey, “Nonlinear elasticity in biological gels,” Nature 435(7039), 191–194 (2005).
[Crossref]

Ma, Z.

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006).
[Crossref]

Maceckova, Z.

G. Nardone, J. Oliver-De La Cruz, J. Vrbsky, C. Martini, J. Pribyl, P. Skládal, M. Pešl, G. Caluori, S. Pagliari, F. Martino, Z. Maceckova, M. Hajduch, A. Sanz-Garcia, N. M. Pugno, G. B. Stokin, and G. Forte, “YAP regulates cell mechanics by controlling focal adhesion assembly,” Nat. Commun. 8(1), 15321 (2017).
[Crossref]

MacKintosh, F. C.

C. Storm, J. J. Pastore, F. C. MacKintosh, T. C. Lubensky, and P. A. Janmey, “Nonlinear elasticity in biological gels,” Nature 435(7039), 191–194 (2005).
[Crossref]

Major, L. G.

L. G. Major, A. W. Holle, J. L. Young, M. S. Hepburn, K. Jeong, I. L. Chin, R. W. Sanderson, J. H. Jeong, Z. M. Aman, B. F. Kennedy, Y. Hwang, D. W. Han, H. W. Park, K. L. Guan, J. P. Spatz, and Y. S. Choi, “Volume Adaptation Controls Stem Cell Mechanotransduction,” ACS Appl. Mater. Interfaces 11(49), 45520–45530 (2019).
[Crossref]

Martini, C.

G. Nardone, J. Oliver-De La Cruz, J. Vrbsky, C. Martini, J. Pribyl, P. Skládal, M. Pešl, G. Caluori, S. Pagliari, F. Martino, Z. Maceckova, M. Hajduch, A. Sanz-Garcia, N. M. Pugno, G. B. Stokin, and G. Forte, “YAP regulates cell mechanics by controlling focal adhesion assembly,” Nat. Commun. 8(1), 15321 (2017).
[Crossref]

Martino, F.

G. Nardone, J. Oliver-De La Cruz, J. Vrbsky, C. Martini, J. Pribyl, P. Skládal, M. Pešl, G. Caluori, S. Pagliari, F. Martino, Z. Maceckova, M. Hajduch, A. Sanz-Garcia, N. M. Pugno, G. B. Stokin, and G. Forte, “YAP regulates cell mechanics by controlling focal adhesion assembly,” Nat. Commun. 8(1), 15321 (2017).
[Crossref]

Maskarinec, S. A.

C. Franck, S. A. Maskarinec, D. A. Tirrell, and G. Ravichandran, “Three-Dimensional Traction Force Microscopy: A New Tool for Quantifying Cell-Matrix Interactions,” PLoS One 6(3), e17833 (2011).
[Crossref]

Mathur, A. B.

A. B. Mathur, A. M. Collinsworth, W. M. Reichert, W. E. Kraus, and G. A. Truskey, “Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy,” J. Biomech. 34(12), 1545–1553 (2001).
[Crossref]

Matveev, L. A.

A. A. Sovetsky, A. L. Matveyev, L. A. Matveev, D. V. Shabanov, and V. Y. Zaitsev, “Manually-operated compressional optical coherence elastography with effective aperiodic averaging: demonstrations for corneal and cartilaginous tissues,” Laser Phys. Lett. 15(8), 085602 (2018).
[Crossref]

Matveyev, A. L.

A. A. Sovetsky, A. L. Matveyev, L. A. Matveev, D. V. Shabanov, and V. Y. Zaitsev, “Manually-operated compressional optical coherence elastography with effective aperiodic averaging: demonstrations for corneal and cartilaginous tissues,” Laser Phys. Lett. 15(8), 085602 (2018).
[Crossref]

Maynard, S. A.

C. Kallepitis, M. S. Bergholt, M. M. Mazo, V. Leonardo, S. C. Skaalure, S. A. Maynard, and M. M. Stevens, “Quantitative volumetric Raman imaging of three dimensional cell cultures,” Nat. Commun. 8(1), 14843 (2017).
[Crossref]

Mazo, M. M.

C. Kallepitis, M. S. Bergholt, M. M. Mazo, V. Leonardo, S. C. Skaalure, S. A. Maynard, and M. M. Stevens, “Quantitative volumetric Raman imaging of three dimensional cell cultures,” Nat. Commun. 8(1), 14843 (2017).
[Crossref]

McFetridge, M. L.

W. J. Hadden, J. L. Young, A. W. Holle, M. L. McFetridge, D. Y. Kim, P. Wijesinghe, H. Taylor-Weiner, J. H. Wen, A. R. Lee, K. Bieback, B. N. Vo, D. D. Sampson, B. F. Kennedy, J. P. Spatz, A. J. Engler, and Y. S. Choi, “Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels,” Proc. Natl. Acad. Sci. 114(22), 5647–5652 (2017).
[Crossref]

McLaughlin, R. A.

Mège, R. M.

B. Ladoux and R. M. Mège, “Mechanobiology of collective cell behaviours,” Nat. Rev. Mol. Cell Biol. 18(12), 743–757 (2017).
[Crossref]

Meng, Z.

H. W. Park, Y. C. Kim, B. Yu, T. Moroishi, J. S. Mo, S. W. Plouffe, Z. Meng, K. C. Lin, F. X. Yu, C. M. Alexander, C. Wang, and K. L. Guan, “Alternative Wnt Signaling Activates YAP/TAZ,” Cell 162(4), 780–794 (2015).
[Crossref]

Miller, J. S.

W. R. Legant, J. S. Miller, B. L. Blakely, D. M. Cohen, G. M. Genin, and C. S. Chen, “Measurement of mechanical tractions exerted by cells in three-dimensional matrices,” Nat. Methods 7(12), 969–971 (2010).
[Crossref]

Mo, J. S.

H. W. Park, Y. C. Kim, B. Yu, T. Moroishi, J. S. Mo, S. W. Plouffe, Z. Meng, K. C. Lin, F. X. Yu, C. M. Alexander, C. Wang, and K. L. Guan, “Alternative Wnt Signaling Activates YAP/TAZ,” Cell 162(4), 780–794 (2015).
[Crossref]

Moeendarbary, E.

E. Moeendarbary and A. R. Harris, “Cell mechanics: principles, practices, and prospects,” Wiley Interdiscip. Rev.: Syst. Biol. Med. 6(5), 371–388 (2014).
[Crossref]

Monnier, S.

C. E. Leroux, J. Palmier, A. C. Boccara, G. Cappello, and S. Monnier, “Elastography of multicellular aggregates submitted to osmo-mechanical stress,” New J. Phys. 17(7), 073035 (2015).
[Crossref]

Moroishi, T.

H. W. Park, Y. C. Kim, B. Yu, T. Moroishi, J. S. Mo, S. W. Plouffe, Z. Meng, K. C. Lin, F. X. Yu, C. M. Alexander, C. Wang, and K. L. Guan, “Alternative Wnt Signaling Activates YAP/TAZ,” Cell 162(4), 780–794 (2015).
[Crossref]

T. Moroishi, C. G. Hansen, and K. L. Guan, “The emerging roles of YAP and TAZ in cancer,” Nat. Rev. Cancer 15(2), 73–79 (2015).
[Crossref]

Morsut, L.

S. Dupont, L. Morsut, M. Aragona, E. Enzo, S. Giulitti, M. Cordenonsi, F. Zanconato, J. L. Digabel, M. Forcato, S. Bicciato, N. Elvassore, and S. Piccolo, “Role of YAP/TAZ in mechanotransduction,” Nature 474(7350), 179–183 (2011).
[Crossref]

Mugele, F.

S. A. Vanapalli, M. H. G. Duits, and F. Mugele, “Microfluidics as a functional tool for cell mechanics,” Biomicrofluidics 3(1), 012006 (2009).
[Crossref]

Mulligan, J. A.

J. A. Mulligan, X. Feng, and S. G. Adie, “Quantitative reconstruction of time-varying 3D cell forces with traction force optical coherence microscopy,” Sci. Rep. 9(1), 4086 (2019).
[Crossref]

Mullins, R. D.

D. A. Fletcher and R. D. Mullins, “Cell mechanics and the cytoskeleton,” Nature 463(7280), 485–492 (2010).
[Crossref]

Munro, P. R. T.

Na, K.

S. Shin, S. Park, M. Park, E. Jeong, K. Na, H. J. Youn, and J. Hyun, “Cellulose Nanofibers for the Enhancement of Printability of Low Viscosity Gelatin Derivatives,” BioResources 12(2), 2941–2954 (2017).
[Crossref]

Nardone, G.

G. Nardone, J. Oliver-De La Cruz, J. Vrbsky, C. Martini, J. Pribyl, P. Skládal, M. Pešl, G. Caluori, S. Pagliari, F. Martino, Z. Maceckova, M. Hajduch, A. Sanz-Garcia, N. M. Pugno, G. B. Stokin, and G. Forte, “YAP regulates cell mechanics by controlling focal adhesion assembly,” Nat. Commun. 8(1), 15321 (2017).
[Crossref]

Newman, C.

A. Engler, L. Bacakova, C. Newman, A. Hategan, M. Griffin, and D. Discher, “Substrate Compliance versus Ligand Density in Cell on Gel Responses,” Biophys. J. 86(1), 617–628 (2004).
[Crossref]

Nia, H. T.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref]

Nichol, J. W.

J. W. Nichol, S. T. Koshy, H. Bae, C. M. Hwang, S. Yamanlar, and A. Khademhosseini, “Cell-laden microengineered gelatin methacrylate hydrogels,” Biomaterials 31(21), 5536–5544 (2010).
[Crossref]

Noble, P. B.

Oberai, A. A.

L. Dong, P. Wijesinghe, D. D. Sampson, B. F. Kennedy, P. R. T. Munro, and A. A. Oberai, “Volumetric quantitative optical coherence elastography with an iterative inversion method,” Biomed. Opt. Express 10(2), 384–398 (2019).
[Crossref]

L. Dong and A. A. Oberai, “Recovery of cellular traction in three-dimensional nonlinear hyperelastic matrices,” Comput. Methods Appl. Mech. Eng. 314, 296–313 (2017).
[Crossref]

L. Dong, P. Wijesinghe, J. T. Dantuono, D. D. Sampson, P. R. T. Munro, B. F. Kennedy, and A. A. Oberai, “Quantitative compression optical coherence elastography as an inverse elasticity problem,” IEEE J. Sel. Top. Quantum Electron. 22(3), 277–287 (2016).
[Crossref]

Oliver-De La Cruz, J.

G. Nardone, J. Oliver-De La Cruz, J. Vrbsky, C. Martini, J. Pribyl, P. Skládal, M. Pešl, G. Caluori, S. Pagliari, F. Martino, Z. Maceckova, M. Hajduch, A. Sanz-Garcia, N. M. Pugno, G. B. Stokin, and G. Forte, “YAP regulates cell mechanics by controlling focal adhesion assembly,” Nat. Commun. 8(1), 15321 (2017).
[Crossref]

Ong, W. K.

W. K. Ong and S. Sugii, “Adipose-derived stem cells: Fatty potentials for therapy,” Int. J. Biochem. Cell Biol. 45(6), 1083–1086 (2013).
[Crossref]

Overby, D. R.

P. J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop, C. Paterson, P. Török, and D. R. Overby, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” Nat. Methods 15(8), 561–562 (2018).
[Crossref]

Owen, G. M.

Pagliari, S.

G. Nardone, J. Oliver-De La Cruz, J. Vrbsky, C. Martini, J. Pribyl, P. Skládal, M. Pešl, G. Caluori, S. Pagliari, F. Martino, Z. Maceckova, M. Hajduch, A. Sanz-Garcia, N. M. Pugno, G. B. Stokin, and G. Forte, “YAP regulates cell mechanics by controlling focal adhesion assembly,” Nat. Commun. 8(1), 15321 (2017).
[Crossref]

Palmier, J.

C. E. Leroux, J. Palmier, A. C. Boccara, G. Cappello, and S. Monnier, “Elastography of multicellular aggregates submitted to osmo-mechanical stress,” New J. Phys. 17(7), 073035 (2015).
[Crossref]

Park, H. W.

L. G. Major, A. W. Holle, J. L. Young, M. S. Hepburn, K. Jeong, I. L. Chin, R. W. Sanderson, J. H. Jeong, Z. M. Aman, B. F. Kennedy, Y. Hwang, D. W. Han, H. W. Park, K. L. Guan, J. P. Spatz, and Y. S. Choi, “Volume Adaptation Controls Stem Cell Mechanotransduction,” ACS Appl. Mater. Interfaces 11(49), 45520–45530 (2019).
[Crossref]

H. W. Park, Y. C. Kim, B. Yu, T. Moroishi, J. S. Mo, S. W. Plouffe, Z. Meng, K. C. Lin, F. X. Yu, C. M. Alexander, C. Wang, and K. L. Guan, “Alternative Wnt Signaling Activates YAP/TAZ,” Cell 162(4), 780–794 (2015).
[Crossref]

Park, M.

S. Shin, S. Park, M. Park, E. Jeong, K. Na, H. J. Youn, and J. Hyun, “Cellulose Nanofibers for the Enhancement of Printability of Low Viscosity Gelatin Derivatives,” BioResources 12(2), 2941–2954 (2017).
[Crossref]

Park, S.

S. Shin, S. Park, M. Park, E. Jeong, K. Na, H. J. Youn, and J. Hyun, “Cellulose Nanofibers for the Enhancement of Printability of Low Viscosity Gelatin Derivatives,” BioResources 12(2), 2941–2954 (2017).
[Crossref]

Pastore, J. J.

C. Storm, J. J. Pastore, F. C. MacKintosh, T. C. Lubensky, and P. A. Janmey, “Nonlinear elasticity in biological gels,” Nature 435(7039), 191–194 (2005).
[Crossref]

Patel, K.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref]

Paterson, C.

P. J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop, C. Paterson, P. Török, and D. R. Overby, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” Nat. Methods 15(8), 561–562 (2018).
[Crossref]

Pazos, V.

Perez-Gonzalez, N. A.

N. A. Perez-Gonzalez, N. D. Rochman, K. Yao, J. Tao, M. T. T. Le, S. Flanary, L. Sablich, B. Toler, E. Crentsil, F. Takaesu, B. Lambrus, J. Huang, V. Fu, P. Chengappa, T. M. Jones, A. J. Holland, S. An, D. Wirtz, R. J. Petrie, K. L. Guan, and S. X. Sun, “YAP and TAZ regulate cell volume,” J. Cell Biol. 218(10), 3472–3488 (2019).
[Crossref]

Pešl, M.

G. Nardone, J. Oliver-De La Cruz, J. Vrbsky, C. Martini, J. Pribyl, P. Skládal, M. Pešl, G. Caluori, S. Pagliari, F. Martino, Z. Maceckova, M. Hajduch, A. Sanz-Garcia, N. M. Pugno, G. B. Stokin, and G. Forte, “YAP regulates cell mechanics by controlling focal adhesion assembly,” Nat. Commun. 8(1), 15321 (2017).
[Crossref]

Petrie, R. J.

N. A. Perez-Gonzalez, N. D. Rochman, K. Yao, J. Tao, M. T. T. Le, S. Flanary, L. Sablich, B. Toler, E. Crentsil, F. Takaesu, B. Lambrus, J. Huang, V. Fu, P. Chengappa, T. M. Jones, A. J. Holland, S. An, D. Wirtz, R. J. Petrie, K. L. Guan, and S. X. Sun, “YAP and TAZ regulate cell volume,” J. Cell Biol. 218(10), 3472–3488 (2019).
[Crossref]

Piccolo, S.

S. Dupont, L. Morsut, M. Aragona, E. Enzo, S. Giulitti, M. Cordenonsi, F. Zanconato, J. L. Digabel, M. Forcato, S. Bicciato, N. Elvassore, and S. Piccolo, “Role of YAP/TAZ in mechanotransduction,” Nature 474(7350), 179–183 (2011).
[Crossref]

Pirone, D. M.

J. L. Tan, J. Tien, D. M. Pirone, D. S. Gray, K. Bhadriraju, and C. S. Chen, “Cells Lying on a Bed of Microneedles: An Approach to Isolate Mechanical Force,” Proc. Natl. Acad. Sci. U. S. A. 100(4), 1484–1489 (2003).
[Crossref]

Plouffe, S. W.

H. W. Park, Y. C. Kim, B. Yu, T. Moroishi, J. S. Mo, S. W. Plouffe, Z. Meng, K. C. Lin, F. X. Yu, C. M. Alexander, C. Wang, and K. L. Guan, “Alternative Wnt Signaling Activates YAP/TAZ,” Cell 162(4), 780–794 (2015).
[Crossref]

Polacheck, W. J.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref]

Pribyl, J.

G. Nardone, J. Oliver-De La Cruz, J. Vrbsky, C. Martini, J. Pribyl, P. Skládal, M. Pešl, G. Caluori, S. Pagliari, F. Martino, Z. Maceckova, M. Hajduch, A. Sanz-Garcia, N. M. Pugno, G. B. Stokin, and G. Forte, “YAP regulates cell mechanics by controlling focal adhesion assembly,” Nat. Commun. 8(1), 15321 (2017).
[Crossref]

Pugno, N. M.

G. Nardone, J. Oliver-De La Cruz, J. Vrbsky, C. Martini, J. Pribyl, P. Skládal, M. Pešl, G. Caluori, S. Pagliari, F. Martino, Z. Maceckova, M. Hajduch, A. Sanz-Garcia, N. M. Pugno, G. B. Stokin, and G. Forte, “YAP regulates cell mechanics by controlling focal adhesion assembly,” Nat. Commun. 8(1), 15321 (2017).
[Crossref]

Qiu, Y.

Ravichandran, G.

C. Franck, S. A. Maskarinec, D. A. Tirrell, and G. Ravichandran, “Three-Dimensional Traction Force Microscopy: A New Tool for Quantifying Cell-Matrix Interactions,” PLoS One 6(3), e17833 (2011).
[Crossref]

Reichert, W. M.

A. B. Mathur, A. M. Collinsworth, W. M. Reichert, W. E. Kraus, and G. A. Truskey, “Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy,” J. Biomech. 34(12), 1545–1553 (2001).
[Crossref]

Rochman, N. D.

N. A. Perez-Gonzalez, N. D. Rochman, K. Yao, J. Tao, M. T. T. Le, S. Flanary, L. Sablich, B. Toler, E. Crentsil, F. Takaesu, B. Lambrus, J. Huang, V. Fu, P. Chengappa, T. M. Jones, A. J. Holland, S. An, D. Wirtz, R. J. Petrie, K. L. Guan, and S. X. Sun, “YAP and TAZ regulate cell volume,” J. Cell Biol. 218(10), 3472–3488 (2019).
[Crossref]

Ruberti, J. W.

P. J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop, C. Paterson, P. Török, and D. R. Overby, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” Nat. Methods 15(8), 561–562 (2018).
[Crossref]

Sablich, L.

N. A. Perez-Gonzalez, N. D. Rochman, K. Yao, J. Tao, M. T. T. Le, S. Flanary, L. Sablich, B. Toler, E. Crentsil, F. Takaesu, B. Lambrus, J. Huang, V. Fu, P. Chengappa, T. M. Jones, A. J. Holland, S. An, D. Wirtz, R. J. Petrie, K. L. Guan, and S. X. Sun, “YAP and TAZ regulate cell volume,” J. Cell Biol. 218(10), 3472–3488 (2019).
[Crossref]

Sampson, D. D.

L. Dong, P. Wijesinghe, D. D. Sampson, B. F. Kennedy, P. R. T. Munro, and A. A. Oberai, “Volumetric quantitative optical coherence elastography with an iterative inversion method,” Biomed. Opt. Express 10(2), 384–398 (2019).
[Crossref]

Q. Fang, A. Curatolo, P. Wijesinghe, Y. L. Yeow, J. Hamzah, P. B. Noble, K. Karnowski, D. D. Sampson, R. Ganss, J. K. Kim, W. M. Lee, and B. F. Kennedy, “Ultrahigh-resolution optical coherence elastography through a micro-endoscope: towards in vivo imaging of cellular-scale mechanics,” Biomed. Opt. Express 8(11), 5127–5138 (2017).
[Crossref]

K. V. Larin and D. D. Sampson, “Optical coherence elastography – OCT at work in tissue biomechanics [Invited],” Biomed. Opt. Express 8(2), 1172–1202 (2017).
[Crossref]

Q. Fang, L. Frewer, P. Wijesinghe, W. M. Allen, L. Chin, J. Hamzah, D. D. Sampson, A. Curatolo, and B. F. Kennedy, “Depth-encoded optical coherence elastography for simultaneous volumetric imaging of two tissue faces,” Opt. Lett. 42(7), 1233–1236 (2017).
[Crossref]

W. J. Hadden, J. L. Young, A. W. Holle, M. L. McFetridge, D. Y. Kim, P. Wijesinghe, H. Taylor-Weiner, J. H. Wen, A. R. Lee, K. Bieback, B. N. Vo, D. D. Sampson, B. F. Kennedy, J. P. Spatz, A. J. Engler, and Y. S. Choi, “Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels,” Proc. Natl. Acad. Sci. 114(22), 5647–5652 (2017).
[Crossref]

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
[Crossref]

P. Wijesinghe, N. J. Johansen, A. Curatolo, D. D. Sampson, R. Ganss, and B. F. Kennedy, “Ultrahigh-resolution optical coherence elastography images cellular-scale stiffness of mouse aorta,” Biophys. J. 113(11), 2540–2551 (2017).
[Crossref]

L. Dong, P. Wijesinghe, J. T. Dantuono, D. D. Sampson, P. R. T. Munro, B. F. Kennedy, and A. A. Oberai, “Quantitative compression optical coherence elastography as an inverse elasticity problem,” IEEE J. Sel. Top. Quantum Electron. 22(3), 277–287 (2016).
[Crossref]

A. Curatolo, M. Villiger, D. Lorenser, P. Wijesinghe, A. Fritz, B. F. Kennedy, and D. D. Sampson, “Ultrahigh-resolution optical coherence elastography,” Opt. Lett. 41(1), 21–24 (2016).
[Crossref]

P. Wijesinghe, R. A. McLaughlin, D. D. Sampson, and B. F. Kennedy, “Parametric imaging of viscoelasticity using optical coherence elastography,” Phys. Med. Biol. 60(6), 2293–2307 (2015).
[Crossref]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref]

L. Chin, A. Curatolo, B. F. Kennedy, B. J. Doyle, P. R. T. Munro, R. A. McLaughlin, and D. D. Sampson, “Analysis of image formation in optical coherence elastography using a multiphysics approach,” Biomed. Opt. Express 5(9), 2913–2930 (2014).
[Crossref]

K. M. Kennedy, S. Es’haghian, L. Chin, R. A. McLaughlin, D. D. Sampson, and B. F. Kennedy, “Optical palpation: optical coherence tomography-based tactile imaging using a compliant sensor,” Opt. Lett. 39(10), 3014–3017 (2014).
[Crossref]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5(7), 2113–2124 (2014).
[Crossref]

G. Lamouche, B. F. Kennedy, K. M. Kennedy, C. E. Bisaillon, A. Curatolo, G. Campbell, V. Pazos, and D. D. Sampson, “Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography,” Biomed. Opt. Express 3(6), 1381–1398 (2012).
[Crossref]

B. F. Kennedy, S. H. Koh, R. A. McLaughlin, K. M. Kennedy, P. R. T. Munro, and D. D. Sampson, “Strain estimation in phase-sensitive optical coherence elastography,” Biomed. Opt. Express 3(8), 1865–1879 (2012).
[Crossref]

Sanderson, R. W.

L. G. Major, A. W. Holle, J. L. Young, M. S. Hepburn, K. Jeong, I. L. Chin, R. W. Sanderson, J. H. Jeong, Z. M. Aman, B. F. Kennedy, Y. Hwang, D. W. Han, H. W. Park, K. L. Guan, J. P. Spatz, and Y. S. Choi, “Volume Adaptation Controls Stem Cell Mechanotransduction,” ACS Appl. Mater. Interfaces 11(49), 45520–45530 (2019).
[Crossref]

R. W. Sanderson, A. Curatolo, P. Wijesinghe, L. Chin, and B. F. Kennedy, “Finger-mounted quantitative micro-elastography,” Biomed. Opt. Express 10(4), 1760–1773 (2019).
[Crossref]

Sang, J.

Y. Shao, J. Sang, and J. Fu, “On human pluripotent stem cell control: The rise of 3D bioengineering and mechanobiology,” Biomaterials 52, 26–43 (2015).
[Crossref]

Sanz-Garcia, A.

G. Nardone, J. Oliver-De La Cruz, J. Vrbsky, C. Martini, J. Pribyl, P. Skládal, M. Pešl, G. Caluori, S. Pagliari, F. Martino, Z. Maceckova, M. Hajduch, A. Sanz-Garcia, N. M. Pugno, G. B. Stokin, and G. Forte, “YAP regulates cell mechanics by controlling focal adhesion assembly,” Nat. Commun. 8(1), 15321 (2017).
[Crossref]

Saunders, C. M.

Scarcelli, G.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref]

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2008).
[Crossref]

Schwartz, M. A.

J. D. Humphrey, E. R. Dufresne, and M. A. Schwartz, “Mechanotransduction and extracellular matrix homeostasis,” Nat. Rev. Mol. Cell Biol. 15(12), 802–812 (2014).
[Crossref]

Schwarz, U. S.

U. S. Schwarz and J. R. D. Soiné, “Traction force microscopy on soft elastic substrates: A guide to recent computational advances,” Biochim. Biophys. Acta 1853(11), 3095–3104 (2015).
[Crossref]

Shabanov, D. V.

A. A. Sovetsky, A. L. Matveyev, L. A. Matveev, D. V. Shabanov, and V. Y. Zaitsev, “Manually-operated compressional optical coherence elastography with effective aperiodic averaging: demonstrations for corneal and cartilaginous tissues,” Laser Phys. Lett. 15(8), 085602 (2018).
[Crossref]

Shao, Y.

Y. Shao, J. Sang, and J. Fu, “On human pluripotent stem cell control: The rise of 3D bioengineering and mechanobiology,” Biomaterials 52, 26–43 (2015).
[Crossref]

Sherwood, J. M.

P. J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop, C. Paterson, P. Török, and D. R. Overby, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” Nat. Methods 15(8), 561–562 (2018).
[Crossref]

Shin, S.

S. Shin, S. Park, M. Park, E. Jeong, K. Na, H. J. Youn, and J. Hyun, “Cellulose Nanofibers for the Enhancement of Printability of Low Viscosity Gelatin Derivatives,” BioResources 12(2), 2941–2954 (2017).
[Crossref]

Shu, X.

X. Shu, L. J. Beckmann, and H. F. Zhang, “Visible-light optical coherence tomography: a review,” J. Biomed. Opt. 22(12), 121707 (2017).
[Crossref]

Skaalure, S. C.

C. Kallepitis, M. S. Bergholt, M. M. Mazo, V. Leonardo, S. C. Skaalure, S. A. Maynard, and M. M. Stevens, “Quantitative volumetric Raman imaging of three dimensional cell cultures,” Nat. Commun. 8(1), 14843 (2017).
[Crossref]

Skládal, P.

G. Nardone, J. Oliver-De La Cruz, J. Vrbsky, C. Martini, J. Pribyl, P. Skládal, M. Pešl, G. Caluori, S. Pagliari, F. Martino, Z. Maceckova, M. Hajduch, A. Sanz-Garcia, N. M. Pugno, G. B. Stokin, and G. Forte, “YAP regulates cell mechanics by controlling focal adhesion assembly,” Nat. Commun. 8(1), 15321 (2017).
[Crossref]

Soiné, J. R. D.

U. S. Schwarz and J. R. D. Soiné, “Traction force microscopy on soft elastic substrates: A guide to recent computational advances,” Biochim. Biophys. Acta 1853(11), 3095–3104 (2015).
[Crossref]

Soulas, E. M.

S. R. Caliari, S. L. Vega, M. Kwon, E. M. Soulas, and J. A. Burdick, “Dimensionality and spreading influence MSC YAP/TAZ signaling in hydrogel environments,” Biomaterials 103, 314–323 (2016).
[Crossref]

Sovetsky, A. A.

A. A. Sovetsky, A. L. Matveyev, L. A. Matveev, D. V. Shabanov, and V. Y. Zaitsev, “Manually-operated compressional optical coherence elastography with effective aperiodic averaging: demonstrations for corneal and cartilaginous tissues,” Laser Phys. Lett. 15(8), 085602 (2018).
[Crossref]

Spatz, J. P.

L. G. Major, A. W. Holle, J. L. Young, M. S. Hepburn, K. Jeong, I. L. Chin, R. W. Sanderson, J. H. Jeong, Z. M. Aman, B. F. Kennedy, Y. Hwang, D. W. Han, H. W. Park, K. L. Guan, J. P. Spatz, and Y. S. Choi, “Volume Adaptation Controls Stem Cell Mechanotransduction,” ACS Appl. Mater. Interfaces 11(49), 45520–45530 (2019).
[Crossref]

W. J. Hadden, J. L. Young, A. W. Holle, M. L. McFetridge, D. Y. Kim, P. Wijesinghe, H. Taylor-Weiner, J. H. Wen, A. R. Lee, K. Bieback, B. N. Vo, D. D. Sampson, B. F. Kennedy, J. P. Spatz, A. J. Engler, and Y. S. Choi, “Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels,” Proc. Natl. Acad. Sci. 114(22), 5647–5652 (2017).
[Crossref]

Stevens, M. M.

C. Kallepitis, M. S. Bergholt, M. M. Mazo, V. Leonardo, S. C. Skaalure, S. A. Maynard, and M. M. Stevens, “Quantitative volumetric Raman imaging of three dimensional cell cultures,” Nat. Commun. 8(1), 14843 (2017).
[Crossref]

Stokin, G. B.

G. Nardone, J. Oliver-De La Cruz, J. Vrbsky, C. Martini, J. Pribyl, P. Skládal, M. Pešl, G. Caluori, S. Pagliari, F. Martino, Z. Maceckova, M. Hajduch, A. Sanz-Garcia, N. M. Pugno, G. B. Stokin, and G. Forte, “YAP regulates cell mechanics by controlling focal adhesion assembly,” Nat. Commun. 8(1), 15321 (2017).
[Crossref]

Storm, C.

C. Storm, J. J. Pastore, F. C. MacKintosh, T. C. Lubensky, and P. A. Janmey, “Nonlinear elasticity in biological gels,” Nature 435(7039), 191–194 (2005).
[Crossref]

Sugii, S.

W. K. Ong and S. Sugii, “Adipose-derived stem cells: Fatty potentials for therapy,” Int. J. Biochem. Cell Biol. 45(6), 1083–1086 (2013).
[Crossref]

Sun, S. X.

N. A. Perez-Gonzalez, N. D. Rochman, K. Yao, J. Tao, M. T. T. Le, S. Flanary, L. Sablich, B. Toler, E. Crentsil, F. Takaesu, B. Lambrus, J. Huang, V. Fu, P. Chengappa, T. M. Jones, A. J. Holland, S. An, D. Wirtz, R. J. Petrie, K. L. Guan, and S. X. Sun, “YAP and TAZ regulate cell volume,” J. Cell Biol. 218(10), 3472–3488 (2019).
[Crossref]

Swanson, E. A.

Takaesu, F.

N. A. Perez-Gonzalez, N. D. Rochman, K. Yao, J. Tao, M. T. T. Le, S. Flanary, L. Sablich, B. Toler, E. Crentsil, F. Takaesu, B. Lambrus, J. Huang, V. Fu, P. Chengappa, T. M. Jones, A. J. Holland, S. An, D. Wirtz, R. J. Petrie, K. L. Guan, and S. X. Sun, “YAP and TAZ regulate cell volume,” J. Cell Biol. 218(10), 3472–3488 (2019).
[Crossref]

Tamayol, A.

K. Yue, G. Trujillo-de Santiago, M. M. Alvarez, A. Tamayol, N. Annabi, and A. Khademhosseini, “Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels,” Biomaterials 73, 254–271 (2015).
[Crossref]

Tan, J. L.

J. L. Tan, J. Tien, D. M. Pirone, D. S. Gray, K. Bhadriraju, and C. S. Chen, “Cells Lying on a Bed of Microneedles: An Approach to Isolate Mechanical Force,” Proc. Natl. Acad. Sci. U. S. A. 100(4), 1484–1489 (2003).
[Crossref]

Tao, J.

N. A. Perez-Gonzalez, N. D. Rochman, K. Yao, J. Tao, M. T. T. Le, S. Flanary, L. Sablich, B. Toler, E. Crentsil, F. Takaesu, B. Lambrus, J. Huang, V. Fu, P. Chengappa, T. M. Jones, A. J. Holland, S. An, D. Wirtz, R. J. Petrie, K. L. Guan, and S. X. Sun, “YAP and TAZ regulate cell volume,” J. Cell Biol. 218(10), 3472–3488 (2019).
[Crossref]

Taylor-Weiner, H.

W. J. Hadden, J. L. Young, A. W. Holle, M. L. McFetridge, D. Y. Kim, P. Wijesinghe, H. Taylor-Weiner, J. H. Wen, A. R. Lee, K. Bieback, B. N. Vo, D. D. Sampson, B. F. Kennedy, J. P. Spatz, A. J. Engler, and Y. S. Choi, “Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels,” Proc. Natl. Acad. Sci. 114(22), 5647–5652 (2017).
[Crossref]

Tien, A.

Tien, J.

J. L. Tan, J. Tien, D. M. Pirone, D. S. Gray, K. Bhadriraju, and C. S. Chen, “Cells Lying on a Bed of Microneedles: An Approach to Isolate Mechanical Force,” Proc. Natl. Acad. Sci. U. S. A. 100(4), 1484–1489 (2003).
[Crossref]

Tirrell, D. A.

C. Franck, S. A. Maskarinec, D. A. Tirrell, and G. Ravichandran, “Three-Dimensional Traction Force Microscopy: A New Tool for Quantifying Cell-Matrix Interactions,” PLoS One 6(3), e17833 (2011).
[Crossref]

Toler, B.

N. A. Perez-Gonzalez, N. D. Rochman, K. Yao, J. Tao, M. T. T. Le, S. Flanary, L. Sablich, B. Toler, E. Crentsil, F. Takaesu, B. Lambrus, J. Huang, V. Fu, P. Chengappa, T. M. Jones, A. J. Holland, S. An, D. Wirtz, R. J. Petrie, K. L. Guan, and S. X. Sun, “YAP and TAZ regulate cell volume,” J. Cell Biol. 218(10), 3472–3488 (2019).
[Crossref]

Török, P.

P. J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop, C. Paterson, P. Török, and D. R. Overby, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” Nat. Methods 15(8), 561–562 (2018).
[Crossref]

Trujillo-de Santiago, G.

K. Yue, G. Trujillo-de Santiago, M. M. Alvarez, A. Tamayol, N. Annabi, and A. Khademhosseini, “Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels,” Biomaterials 73, 254–271 (2015).
[Crossref]

Truskey, G. A.

A. B. Mathur, A. M. Collinsworth, W. M. Reichert, W. E. Kraus, and G. A. Truskey, “Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy,” J. Biomech. 34(12), 1545–1553 (2001).
[Crossref]

Tytell, J. D.

N. Wang, J. D. Tytell, and D. E. Ingber, “Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus,” Nat. Rev. Mol. Cell Biol. 10(1), 75–82 (2009).
[Crossref]

Vanapalli, S. A.

S. A. Vanapalli, M. H. G. Duits, and F. Mugele, “Microfluidics as a functional tool for cell mechanics,” Biomicrofluidics 3(1), 012006 (2009).
[Crossref]

Vega, S. L.

S. R. Caliari, S. L. Vega, M. Kwon, E. M. Soulas, and J. A. Burdick, “Dimensionality and spreading influence MSC YAP/TAZ signaling in hydrogel environments,” Biomaterials 103, 314–323 (2016).
[Crossref]

Villiger, M.

Vincent, L. G.

Y. S. Choi, L. G. Vincent, A. R. Lee, M. K. Dobke, and A. J. Engler, “Mechanical derivation of functional myotubes from adipose-derived stem cells,” Biomaterials 33(8), 2482–2491 (2012).
[Crossref]

Vo, B. N.

W. J. Hadden, J. L. Young, A. W. Holle, M. L. McFetridge, D. Y. Kim, P. Wijesinghe, H. Taylor-Weiner, J. H. Wen, A. R. Lee, K. Bieback, B. N. Vo, D. D. Sampson, B. F. Kennedy, J. P. Spatz, A. J. Engler, and Y. S. Choi, “Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels,” Proc. Natl. Acad. Sci. 114(22), 5647–5652 (2017).
[Crossref]

Vrbsky, J.

G. Nardone, J. Oliver-De La Cruz, J. Vrbsky, C. Martini, J. Pribyl, P. Skládal, M. Pešl, G. Caluori, S. Pagliari, F. Martino, Z. Maceckova, M. Hajduch, A. Sanz-Garcia, N. M. Pugno, G. B. Stokin, and G. Forte, “YAP regulates cell mechanics by controlling focal adhesion assembly,” Nat. Commun. 8(1), 15321 (2017).
[Crossref]

Wang, C.

H. W. Park, Y. C. Kim, B. Yu, T. Moroishi, J. S. Mo, S. W. Plouffe, Z. Meng, K. C. Lin, F. X. Yu, C. M. Alexander, C. Wang, and K. L. Guan, “Alternative Wnt Signaling Activates YAP/TAZ,” Cell 162(4), 780–794 (2015).
[Crossref]

Wang, N.

N. Wang, J. D. Tytell, and D. E. Ingber, “Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus,” Nat. Rev. Mol. Cell Biol. 10(1), 75–82 (2009).
[Crossref]

Wang, R. K.

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006).
[Crossref]

Watts, L.

Wen, J. H.

W. J. Hadden, J. L. Young, A. W. Holle, M. L. McFetridge, D. Y. Kim, P. Wijesinghe, H. Taylor-Weiner, J. H. Wen, A. R. Lee, K. Bieback, B. N. Vo, D. D. Sampson, B. F. Kennedy, J. P. Spatz, A. J. Engler, and Y. S. Choi, “Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels,” Proc. Natl. Acad. Sci. 114(22), 5647–5652 (2017).
[Crossref]

Wijesinghe, P.

L. Dong, P. Wijesinghe, D. D. Sampson, B. F. Kennedy, P. R. T. Munro, and A. A. Oberai, “Volumetric quantitative optical coherence elastography with an iterative inversion method,” Biomed. Opt. Express 10(2), 384–398 (2019).
[Crossref]

M. S. Hepburn, P. Wijesinghe, L. Chin, and B. F. Kennedy, “Analysis of spatial resolution in phase-sensitive compression optical coherence elastography,” Biomed. Opt. Express 10(3), 1496–1513 (2019).
[Crossref]

R. W. Sanderson, A. Curatolo, P. Wijesinghe, L. Chin, and B. F. Kennedy, “Finger-mounted quantitative micro-elastography,” Biomed. Opt. Express 10(4), 1760–1773 (2019).
[Crossref]

Q. Fang, A. Curatolo, P. Wijesinghe, Y. L. Yeow, J. Hamzah, P. B. Noble, K. Karnowski, D. D. Sampson, R. Ganss, J. K. Kim, W. M. Lee, and B. F. Kennedy, “Ultrahigh-resolution optical coherence elastography through a micro-endoscope: towards in vivo imaging of cellular-scale mechanics,” Biomed. Opt. Express 8(11), 5127–5138 (2017).
[Crossref]

Q. Fang, L. Frewer, P. Wijesinghe, W. M. Allen, L. Chin, J. Hamzah, D. D. Sampson, A. Curatolo, and B. F. Kennedy, “Depth-encoded optical coherence elastography for simultaneous volumetric imaging of two tissue faces,” Opt. Lett. 42(7), 1233–1236 (2017).
[Crossref]

W. J. Hadden, J. L. Young, A. W. Holle, M. L. McFetridge, D. Y. Kim, P. Wijesinghe, H. Taylor-Weiner, J. H. Wen, A. R. Lee, K. Bieback, B. N. Vo, D. D. Sampson, B. F. Kennedy, J. P. Spatz, A. J. Engler, and Y. S. Choi, “Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels,” Proc. Natl. Acad. Sci. 114(22), 5647–5652 (2017).
[Crossref]

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
[Crossref]

P. Wijesinghe, N. J. Johansen, A. Curatolo, D. D. Sampson, R. Ganss, and B. F. Kennedy, “Ultrahigh-resolution optical coherence elastography images cellular-scale stiffness of mouse aorta,” Biophys. J. 113(11), 2540–2551 (2017).
[Crossref]

L. Dong, P. Wijesinghe, J. T. Dantuono, D. D. Sampson, P. R. T. Munro, B. F. Kennedy, and A. A. Oberai, “Quantitative compression optical coherence elastography as an inverse elasticity problem,” IEEE J. Sel. Top. Quantum Electron. 22(3), 277–287 (2016).
[Crossref]

A. Curatolo, M. Villiger, D. Lorenser, P. Wijesinghe, A. Fritz, B. F. Kennedy, and D. D. Sampson, “Ultrahigh-resolution optical coherence elastography,” Opt. Lett. 41(1), 21–24 (2016).
[Crossref]

P. Wijesinghe, R. A. McLaughlin, D. D. Sampson, and B. F. Kennedy, “Parametric imaging of viscoelasticity using optical coherence elastography,” Phys. Med. Biol. 60(6), 2293–2307 (2015).
[Crossref]

Wirtz, D.

N. A. Perez-Gonzalez, N. D. Rochman, K. Yao, J. Tao, M. T. T. Le, S. Flanary, L. Sablich, B. Toler, E. Crentsil, F. Takaesu, B. Lambrus, J. Huang, V. Fu, P. Chengappa, T. M. Jones, A. J. Holland, S. An, D. Wirtz, R. J. Petrie, K. L. Guan, and S. X. Sun, “YAP and TAZ regulate cell volume,” J. Cell Biol. 218(10), 3472–3488 (2019).
[Crossref]

Wu, P. J.

P. J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop, C. Paterson, P. Török, and D. R. Overby, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” Nat. Methods 15(8), 561–562 (2018).
[Crossref]

Yamanlar, S.

J. W. Nichol, S. T. Koshy, H. Bae, C. M. Hwang, S. Yamanlar, and A. Khademhosseini, “Cell-laden microengineered gelatin methacrylate hydrogels,” Biomaterials 31(21), 5536–5544 (2010).
[Crossref]

Yao, K.

N. A. Perez-Gonzalez, N. D. Rochman, K. Yao, J. Tao, M. T. T. Le, S. Flanary, L. Sablich, B. Toler, E. Crentsil, F. Takaesu, B. Lambrus, J. Huang, V. Fu, P. Chengappa, T. M. Jones, A. J. Holland, S. An, D. Wirtz, R. J. Petrie, K. L. Guan, and S. X. Sun, “YAP and TAZ regulate cell volume,” J. Cell Biol. 218(10), 3472–3488 (2019).
[Crossref]

Yeow, Y. L.

Youn, H. J.

S. Shin, S. Park, M. Park, E. Jeong, K. Na, H. J. Youn, and J. Hyun, “Cellulose Nanofibers for the Enhancement of Printability of Low Viscosity Gelatin Derivatives,” BioResources 12(2), 2941–2954 (2017).
[Crossref]

Young, J. L.

L. G. Major, A. W. Holle, J. L. Young, M. S. Hepburn, K. Jeong, I. L. Chin, R. W. Sanderson, J. H. Jeong, Z. M. Aman, B. F. Kennedy, Y. Hwang, D. W. Han, H. W. Park, K. L. Guan, J. P. Spatz, and Y. S. Choi, “Volume Adaptation Controls Stem Cell Mechanotransduction,” ACS Appl. Mater. Interfaces 11(49), 45520–45530 (2019).
[Crossref]

W. J. Hadden, J. L. Young, A. W. Holle, M. L. McFetridge, D. Y. Kim, P. Wijesinghe, H. Taylor-Weiner, J. H. Wen, A. R. Lee, K. Bieback, B. N. Vo, D. D. Sampson, B. F. Kennedy, J. P. Spatz, A. J. Engler, and Y. S. Choi, “Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels,” Proc. Natl. Acad. Sci. 114(22), 5647–5652 (2017).
[Crossref]

Yu, B.

H. W. Park, Y. C. Kim, B. Yu, T. Moroishi, J. S. Mo, S. W. Plouffe, Z. Meng, K. C. Lin, F. X. Yu, C. M. Alexander, C. Wang, and K. L. Guan, “Alternative Wnt Signaling Activates YAP/TAZ,” Cell 162(4), 780–794 (2015).
[Crossref]

Yu, F. X.

H. W. Park, Y. C. Kim, B. Yu, T. Moroishi, J. S. Mo, S. W. Plouffe, Z. Meng, K. C. Lin, F. X. Yu, C. M. Alexander, C. Wang, and K. L. Guan, “Alternative Wnt Signaling Activates YAP/TAZ,” Cell 162(4), 780–794 (2015).
[Crossref]

Yue, K.

K. Yue, G. Trujillo-de Santiago, M. M. Alvarez, A. Tamayol, N. Annabi, and A. Khademhosseini, “Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels,” Biomaterials 73, 254–271 (2015).
[Crossref]

Yun, S. H.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref]

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2008).
[Crossref]

Zaitsev, V. Y.

A. A. Sovetsky, A. L. Matveyev, L. A. Matveev, D. V. Shabanov, and V. Y. Zaitsev, “Manually-operated compressional optical coherence elastography with effective aperiodic averaging: demonstrations for corneal and cartilaginous tissues,” Laser Phys. Lett. 15(8), 085602 (2018).
[Crossref]

Zaki, F. R.

Zanconato, F.

S. Dupont, L. Morsut, M. Aragona, E. Enzo, S. Giulitti, M. Cordenonsi, F. Zanconato, J. L. Digabel, M. Forcato, S. Bicciato, N. Elvassore, and S. Piccolo, “Role of YAP/TAZ in mechanotransduction,” Nature 474(7350), 179–183 (2011).
[Crossref]

Zhang, H. F.

X. Shu, L. J. Beckmann, and H. F. Zhang, “Visible-light optical coherence tomography: a review,” J. Biomed. Opt. 22(12), 121707 (2017).
[Crossref]

Zilkens, R.

ACS Appl. Mater. Interfaces (1)

L. G. Major, A. W. Holle, J. L. Young, M. S. Hepburn, K. Jeong, I. L. Chin, R. W. Sanderson, J. H. Jeong, Z. M. Aman, B. F. Kennedy, Y. Hwang, D. W. Han, H. W. Park, K. L. Guan, J. P. Spatz, and Y. S. Choi, “Volume Adaptation Controls Stem Cell Mechanotransduction,” ACS Appl. Mater. Interfaces 11(49), 45520–45530 (2019).
[Crossref]

Appl. Phys. Lett. (1)

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006).
[Crossref]

Biochim. Biophys. Acta (1)

U. S. Schwarz and J. R. D. Soiné, “Traction force microscopy on soft elastic substrates: A guide to recent computational advances,” Biochim. Biophys. Acta 1853(11), 3095–3104 (2015).
[Crossref]

Biomaterials (5)

S. R. Caliari, S. L. Vega, M. Kwon, E. M. Soulas, and J. A. Burdick, “Dimensionality and spreading influence MSC YAP/TAZ signaling in hydrogel environments,” Biomaterials 103, 314–323 (2016).
[Crossref]

Y. Shao, J. Sang, and J. Fu, “On human pluripotent stem cell control: The rise of 3D bioengineering and mechanobiology,” Biomaterials 52, 26–43 (2015).
[Crossref]

K. Yue, G. Trujillo-de Santiago, M. M. Alvarez, A. Tamayol, N. Annabi, and A. Khademhosseini, “Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels,” Biomaterials 73, 254–271 (2015).
[Crossref]

Y. S. Choi, L. G. Vincent, A. R. Lee, M. K. Dobke, and A. J. Engler, “Mechanical derivation of functional myotubes from adipose-derived stem cells,” Biomaterials 33(8), 2482–2491 (2012).
[Crossref]

J. W. Nichol, S. T. Koshy, H. Bae, C. M. Hwang, S. Yamanlar, and A. Khademhosseini, “Cell-laden microengineered gelatin methacrylate hydrogels,” Biomaterials 31(21), 5536–5544 (2010).
[Crossref]

Biomed. Opt. Express (11)

W. M. Allen, K. M. Kennedy, Q. Fang, L. Chin, A. Curatolo, L. Watts, R. Zilkens, L. Chin, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Wide-field quantitative micro-elastography of human breast tissue,” Biomed. Opt. Express 9(3), 1082–1096 (2018).
[Crossref]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5(7), 2113–2124 (2014).
[Crossref]

Q. Fang, A. Curatolo, P. Wijesinghe, Y. L. Yeow, J. Hamzah, P. B. Noble, K. Karnowski, D. D. Sampson, R. Ganss, J. K. Kim, W. M. Lee, and B. F. Kennedy, “Ultrahigh-resolution optical coherence elastography through a micro-endoscope: towards in vivo imaging of cellular-scale mechanics,” Biomed. Opt. Express 8(11), 5127–5138 (2017).
[Crossref]

M. S. Hepburn, P. Wijesinghe, L. Chin, and B. F. Kennedy, “Analysis of spatial resolution in phase-sensitive compression optical coherence elastography,” Biomed. Opt. Express 10(3), 1496–1513 (2019).
[Crossref]

L. Dong, P. Wijesinghe, D. D. Sampson, B. F. Kennedy, P. R. T. Munro, and A. A. Oberai, “Volumetric quantitative optical coherence elastography with an iterative inversion method,” Biomed. Opt. Express 10(2), 384–398 (2019).
[Crossref]

R. W. Sanderson, A. Curatolo, P. Wijesinghe, L. Chin, and B. F. Kennedy, “Finger-mounted quantitative micro-elastography,” Biomed. Opt. Express 10(4), 1760–1773 (2019).
[Crossref]

B. F. Kennedy, S. H. Koh, R. A. McLaughlin, K. M. Kennedy, P. R. T. Munro, and D. D. Sampson, “Strain estimation in phase-sensitive optical coherence elastography,” Biomed. Opt. Express 3(8), 1865–1879 (2012).
[Crossref]

K. V. Larin and D. D. Sampson, “Optical coherence elastography – OCT at work in tissue biomechanics [Invited],” Biomed. Opt. Express 8(2), 1172–1202 (2017).
[Crossref]

G. Lamouche, B. F. Kennedy, K. M. Kennedy, C. E. Bisaillon, A. Curatolo, G. Campbell, V. Pazos, and D. D. Sampson, “Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography,” Biomed. Opt. Express 3(6), 1381–1398 (2012).
[Crossref]

L. Chin, A. Curatolo, B. F. Kennedy, B. J. Doyle, P. R. T. Munro, R. A. McLaughlin, and D. D. Sampson, “Analysis of image formation in optical coherence elastography using a multiphysics approach,” Biomed. Opt. Express 5(9), 2913–2930 (2014).
[Crossref]

Y. Qiu, F. R. Zaki, N. Chandra, S. A. Chester, and X. Liu, “Nonlinear characterization of elasticity using quantitative optical coherence elastography,” Biomed. Opt. Express 7(11), 4702–4710 (2016).
[Crossref]

Biomicrofluidics (1)

S. A. Vanapalli, M. H. G. Duits, and F. Mugele, “Microfluidics as a functional tool for cell mechanics,” Biomicrofluidics 3(1), 012006 (2009).
[Crossref]

Biophys. J. (2)

A. Engler, L. Bacakova, C. Newman, A. Hategan, M. Griffin, and D. Discher, “Substrate Compliance versus Ligand Density in Cell on Gel Responses,” Biophys. J. 86(1), 617–628 (2004).
[Crossref]

P. Wijesinghe, N. J. Johansen, A. Curatolo, D. D. Sampson, R. Ganss, and B. F. Kennedy, “Ultrahigh-resolution optical coherence elastography images cellular-scale stiffness of mouse aorta,” Biophys. J. 113(11), 2540–2551 (2017).
[Crossref]

BioResources (1)

S. Shin, S. Park, M. Park, E. Jeong, K. Na, H. J. Youn, and J. Hyun, “Cellulose Nanofibers for the Enhancement of Printability of Low Viscosity Gelatin Derivatives,” BioResources 12(2), 2941–2954 (2017).
[Crossref]

Cell (1)

H. W. Park, Y. C. Kim, B. Yu, T. Moroishi, J. S. Mo, S. W. Plouffe, Z. Meng, K. C. Lin, F. X. Yu, C. M. Alexander, C. Wang, and K. L. Guan, “Alternative Wnt Signaling Activates YAP/TAZ,” Cell 162(4), 780–794 (2015).
[Crossref]

Comput. Methods Appl. Mech. Eng. (1)

L. Dong and A. A. Oberai, “Recovery of cellular traction in three-dimensional nonlinear hyperelastic matrices,” Comput. Methods Appl. Mech. Eng. 314, 296–313 (2017).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Dong, P. Wijesinghe, J. T. Dantuono, D. D. Sampson, P. R. T. Munro, B. F. Kennedy, and A. A. Oberai, “Quantitative compression optical coherence elastography as an inverse elasticity problem,” IEEE J. Sel. Top. Quantum Electron. 22(3), 277–287 (2016).
[Crossref]

Int. J. Biochem. Cell Biol. (1)

W. K. Ong and S. Sugii, “Adipose-derived stem cells: Fatty potentials for therapy,” Int. J. Biochem. Cell Biol. 45(6), 1083–1086 (2013).
[Crossref]

J. Biomech. (2)

R. M. Hochmuth, “Micropipette aspiration of living cells,” J. Biomech. 33(1), 15–22 (2000).
[Crossref]

A. B. Mathur, A. M. Collinsworth, W. M. Reichert, W. E. Kraus, and G. A. Truskey, “Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy,” J. Biomech. 34(12), 1545–1553 (2001).
[Crossref]

J. Biomed. Opt. (1)

X. Shu, L. J. Beckmann, and H. F. Zhang, “Visible-light optical coherence tomography: a review,” J. Biomed. Opt. 22(12), 121707 (2017).
[Crossref]

J. Cell Biol. (1)

N. A. Perez-Gonzalez, N. D. Rochman, K. Yao, J. Tao, M. T. T. Le, S. Flanary, L. Sablich, B. Toler, E. Crentsil, F. Takaesu, B. Lambrus, J. Huang, V. Fu, P. Chengappa, T. M. Jones, A. J. Holland, S. An, D. Wirtz, R. J. Petrie, K. L. Guan, and S. X. Sun, “YAP and TAZ regulate cell volume,” J. Cell Biol. 218(10), 3472–3488 (2019).
[Crossref]

Laser Phys. Lett. (1)

A. A. Sovetsky, A. L. Matveyev, L. A. Matveev, D. V. Shabanov, and V. Y. Zaitsev, “Manually-operated compressional optical coherence elastography with effective aperiodic averaging: demonstrations for corneal and cartilaginous tissues,” Laser Phys. Lett. 15(8), 085602 (2018).
[Crossref]

Nat. Commun. (2)

C. Kallepitis, M. S. Bergholt, M. M. Mazo, V. Leonardo, S. C. Skaalure, S. A. Maynard, and M. M. Stevens, “Quantitative volumetric Raman imaging of three dimensional cell cultures,” Nat. Commun. 8(1), 14843 (2017).
[Crossref]

G. Nardone, J. Oliver-De La Cruz, J. Vrbsky, C. Martini, J. Pribyl, P. Skládal, M. Pešl, G. Caluori, S. Pagliari, F. Martino, Z. Maceckova, M. Hajduch, A. Sanz-Garcia, N. M. Pugno, G. B. Stokin, and G. Forte, “YAP regulates cell mechanics by controlling focal adhesion assembly,” Nat. Commun. 8(1), 15321 (2017).
[Crossref]

Nat. Mater. (1)

L. Li, J. Eyckmans, and C. S. Chen, “Designer biomaterials for mechanobiology,” Nat. Mater. 16(12), 1164–1168 (2017).
[Crossref]

Nat. Methods (3)

W. R. Legant, J. S. Miller, B. L. Blakely, D. M. Cohen, G. M. Genin, and C. S. Chen, “Measurement of mechanical tractions exerted by cells in three-dimensional matrices,” Nat. Methods 7(12), 969–971 (2010).
[Crossref]

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref]

P. J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop, C. Paterson, P. Török, and D. R. Overby, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” Nat. Methods 15(8), 561–562 (2018).
[Crossref]

Nat. Photonics (3)

F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics 5(6), 318–321 (2011).
[Crossref]

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2008).
[Crossref]

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
[Crossref]

Nat. Rev. Cancer (1)

T. Moroishi, C. G. Hansen, and K. L. Guan, “The emerging roles of YAP and TAZ in cancer,” Nat. Rev. Cancer 15(2), 73–79 (2015).
[Crossref]

Nat. Rev. Mol. Cell Biol. (4)

B. Ladoux and R. M. Mège, “Mechanobiology of collective cell behaviours,” Nat. Rev. Mol. Cell Biol. 18(12), 743–757 (2017).
[Crossref]

N. Wang, J. D. Tytell, and D. E. Ingber, “Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus,” Nat. Rev. Mol. Cell Biol. 10(1), 75–82 (2009).
[Crossref]

J. D. Humphrey, E. R. Dufresne, and M. A. Schwartz, “Mechanotransduction and extracellular matrix homeostasis,” Nat. Rev. Mol. Cell Biol. 15(12), 802–812 (2014).
[Crossref]

D. E. Jaalouk and J. Lammerding, “Mechanotransduction gone awry,” Nat. Rev. Mol. Cell Biol. 10(1), 63–73 (2009).
[Crossref]

Nature (3)

S. Dupont, L. Morsut, M. Aragona, E. Enzo, S. Giulitti, M. Cordenonsi, F. Zanconato, J. L. Digabel, M. Forcato, S. Bicciato, N. Elvassore, and S. Piccolo, “Role of YAP/TAZ in mechanotransduction,” Nature 474(7350), 179–183 (2011).
[Crossref]

C. Storm, J. J. Pastore, F. C. MacKintosh, T. C. Lubensky, and P. A. Janmey, “Nonlinear elasticity in biological gels,” Nature 435(7039), 191–194 (2005).
[Crossref]

D. A. Fletcher and R. D. Mullins, “Cell mechanics and the cytoskeleton,” Nature 463(7280), 485–492 (2010).
[Crossref]

New J. Phys. (1)

C. E. Leroux, J. Palmier, A. C. Boccara, G. Cappello, and S. Monnier, “Elastography of multicellular aggregates submitted to osmo-mechanical stress,” New J. Phys. 17(7), 073035 (2015).
[Crossref]

Opt. Lett. (4)

Phys. Med. Biol. (1)

P. Wijesinghe, R. A. McLaughlin, D. D. Sampson, and B. F. Kennedy, “Parametric imaging of viscoelasticity using optical coherence elastography,” Phys. Med. Biol. 60(6), 2293–2307 (2015).
[Crossref]

PLoS One (1)

C. Franck, S. A. Maskarinec, D. A. Tirrell, and G. Ravichandran, “Three-Dimensional Traction Force Microscopy: A New Tool for Quantifying Cell-Matrix Interactions,” PLoS One 6(3), e17833 (2011).
[Crossref]

Proc. Natl. Acad. Sci. (1)

W. J. Hadden, J. L. Young, A. W. Holle, M. L. McFetridge, D. Y. Kim, P. Wijesinghe, H. Taylor-Weiner, J. H. Wen, A. R. Lee, K. Bieback, B. N. Vo, D. D. Sampson, B. F. Kennedy, J. P. Spatz, A. J. Engler, and Y. S. Choi, “Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels,” Proc. Natl. Acad. Sci. 114(22), 5647–5652 (2017).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

J. L. Tan, J. Tien, D. M. Pirone, D. S. Gray, K. Bhadriraju, and C. S. Chen, “Cells Lying on a Bed of Microneedles: An Approach to Isolate Mechanical Force,” Proc. Natl. Acad. Sci. U. S. A. 100(4), 1484–1489 (2003).
[Crossref]

Sci. Rep. (2)

J. A. Mulligan, X. Feng, and S. G. Adie, “Quantitative reconstruction of time-varying 3D cell forces with traction force optical coherence microscopy,” Sci. Rep. 9(1), 4086 (2019).
[Crossref]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref]

Trends Biotechnol. (1)

G. Y. H. Lee and C. T. Lim, “Biomechanics approaches to studying human diseases,” Trends Biotechnol. 25(3), 111–118 (2007).
[Crossref]

Wiley Interdiscip. Rev.: Syst. Biol. Med. (1)

E. Moeendarbary and A. R. Harris, “Cell mechanics: principles, practices, and prospects,” Wiley Interdiscip. Rev.: Syst. Biol. Med. 6(5), 371–388 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Encapsulating cells in 3-D GelMA hydrogels. (a) Live cells are transferred into GelMA solution. (b) 130 µL of cell-laden GelMA solution is pipetted into a mold and (c) covered with a glass coverslip. (d) GelMA is polymerized into a solid hydrogel under UV exposure. The hydrogel, containing live cells, is then removed from the mold shown in (e) and (f).
Fig. 2.
Fig. 2. QME experimental setup using a phase-sensitive OCT system and compression loading applied from a ring actuator. SLD: superluminescent diode, DCP: dispersion compensation plate.
Fig. 3.
Fig. 3. OCT, QME and 3-D visualization of an inclusion phantom. (a) OCT and (b) OCT/QME overlay images of the inclusion imaged using common-path. (c) OCT and (d) OCT/QME overlay images of the same inclusion imaged using dual-arm. (e) and (f) are 3-D visualizations of the inclusion acquired using common-path, and dual-arm, respectively. In (e) and (f), the grey feature is the structure of the inclusion from the OCT intensity and the volume with elasticity above 10 kPa is overlaid in green. Scale bars represent 100 µm.
Fig. 4.
Fig. 4. Volumetric images of the elasticity of GelMA, GelMA with ASCs, and GelMA with TAZ activated ASCs, acquired using common-path QME. (a) OCT and (b) OCT/QME overlay images of GelMA. (c) OCT and (d) OCT/QME overlay images of GelMA containing ASCs. (e) OCT and (f) OCT/QME overlay images of GelMA containing ASCs with TAZ activation.
Fig. 5.
Fig. 5. Histograms of the elasticity measured throughout the respective volumes presented in Fig. 4, GelMA (blue), GelMA containing ASCs (green), and GelMA containing ASCs with TAZ activation (red).
Fig. 6.
Fig. 6. Cells measured using confocal microscopy and dual-arm QME. Representative confocal microscopy of GelMA with (a) ASCs and (d) TAZ activated ASCs with cell nuclei shown in blue, and actin filaments in red. (b) OCT and (c) OCT/QME overlay images of ASCs. (e) OCT and (f) OCT/QME overlay images of ASCs with TAZ activation. Cross-sections in the OCT xy and zx planes are represented by orange and purple dashed rectangles, respectively. The arrows indicate example regions where individual cells have elevated elasticity. Scale bars represent 250 µm.
Fig. 7.
Fig. 7. 3-D visualization of cell and extracellular elasticity acquired from dual-arm QME. (a) and (b) are 3-D visualizations of the ASCs indicated by the white and yellow arrows in Fig. 6(c), respectively. (c) 3-D visualization of three TAZ activated ASCs from the region indicated by the blue arrow in Fig. 6(f). Cell structure is acquired from the OCT intensity (grey) and the volume with an elasticity above 5 kPa is overlaid in green.

Tables (1)

Tables Icon

Table 1. Comparison of 1-D and 3-D WLS axial strain estimation techniques.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

u z i = β 0 + β 1 z i + β 2 x i + β 3 y i + e i ,
u ^ z i = β ^ 0 + β ^ 1 z i + β ^ 2 x i + β ^ 3 y i .
e ^ i = u z i u ^ z i = u z i β ^ 0 β ^ 1 z i β ^ 2 x i β ^ 3 y i .
M i n i m i s e R S S = i = 1 N w i e ^ i 2 ,
R S S β ^ j = i = 1 N d ( w i e ^ i 2 ) d e ^ i e ^ i β ^ j = 2 i = 1 N w i e ^ i e ^ i β ^ j , j = 0 , 1 , 2 , 3.
R S S β ^ 0 = i = 1 N w i ( u z i β ^ 0 β ^ 1 z i β ^ 2 x i β ^ 3 y i ) = 0 ,
R S S β ^ 1 = i = 1 N w i z i ( u z i β ^ 0 β ^ 1 z i β ^ 2 x i β ^ 3 y i ) = 0 ,
R S S β ^ 2 = i = 1 N w i x i ( u z i β ^ 0 β ^ 1 z i β ^ 2 x i β ^ 3 y i ) = 0 ,
R S S β ^ 3 = i = 1 N w i y i ( u z i β ^ 0 β ^ 1 z i β ^ 2 x i β ^ 3 y i ) = 0.
β ^ 0 i = 1 N w i + β ^ 1 i = 1 N w i z i + β ^ 2 i = 1 N w i x i + β ^ 3 i = 1 N w i y i = i = 1 N w i u z i ,
β ^ 0 i = 1 N w i z i + β ^ 1 i = 1 N w i z i 2 + β ^ 2 i = 1 N w i z i x i + β ^ 3 i = 1 N w i z i y i = i = 1 N w i z i u z i ,
β ^ 0 i = 1 N w i x i + β ^ 1 i = 1 N w i x i z i + β ^ 2 i = 1 N w i x i 2 + β ^ 3 i = 1 N w i x i y i = i = 1 N w i x i u z i ,
β ^ 0 i = 1 N w i y i + β ^ 1 i = 1 N w i y i z i + β ^ 2 i = 1 N w i y i x i + β ^ 3 i = 1 N w i y i 2 = i = 1 N w i y i u z i .