Abstract

This manuscript reports on a closed-form solution determining the personalized required shape of a new intraocular lens able to remove spherical aberration and coma of a pseudophakic eye. The proposed analytical method, within the framework of the Seidel theory of third-order optical aberrations, considers corneal conicities, fourth-order aspheric surface of the intraocular optics, pupil-shift effect and ocular kappa angle.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Achromatic doublet intraocular lens for full aberration correction

Enrique J. Fernandez and Pablo Artal
Biomed. Opt. Express 8(5) 2396-2404 (2017)

Analytical tools for customized design of monofocal intraocular lenses

Sergio Barbero and Susana Marcos
Opt. Express 15(14) 8576-8591 (2007)

Customized computer models of eyes with intraocular lenses

P. Rosales and S. Marcos
Opt. Express 15(5) 2204-2218 (2007)

References

  • View by:
  • |
  • |
  • |

  1. C. Canovas and P. Artal, “Customized eye models for determining optimized intraocular lenses power,” Biomed. Opt. Express 2(6), 1649–1663 (2011).
    [Crossref]
  2. J. X. Kane, A. Van Heerden, A. Atik, and C. Petsoglou, “Intraocular lens power formula accuracy: comparison of 7 formulas,” J. Cataract Refractive Surg. 42(10), 1490–1500 (2016).
    [Crossref]
  3. S. Barbero, S. Marcos, J. Montejo, and C. Dorronsoro, “Design of isoplanatic aspheric monofocal intraocular lenses,” Opt. Express 19(7), 6215–6230 (2011).
    [Crossref]
  4. G. Smith and C. W. Lu, “The spherical aberration of intra-ocular lenses,” Oph. Phys. Optics 8, 287–294 (1988).
    [Crossref]
  5. C. Chen, “Methods of solving aspheric singlets and cemented doublets with given primary aberrations,” Appl. Opt. 53(29), H202–H212 (2014).
    [Crossref]
  6. D. A. Atchison, “Design of aspheric intraocular lenses,” Oph. Phys. Optics 11, 137–146 (1991).
    [Crossref]
  7. J. T. Holladay, P. A. Piers, G. Koranyi, M. Van der Mooren, and N. E. S. Norrby, “A new intraocular lens design to reduce spherical aberration of a pseudophakic eye,” J. Refract. Surg. 18, 683–691 (2002).
  8. S. Norrby, P. Artal, P. A. Piers, and M. Van der Mooren, “Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations,” US Patent 6,609,793.
  9. M. Gerlach and C. Lesage, “Aspheric intraocular lens and method for designing such IOL” WO Patent 2007/128423.
  10. G. E. Altmann, L. D. Nichamin, S. S. Lane, and J. S. Pepose, “Optical performance of 3 intraocular lens designs in the presence of decentration,” J. Cataract Refractive Surg. 31(3), 574–585 (2005).
    [Crossref]
  11. T. Eppig, K. Scholz, A. Löffler, A. Mesner, and A. Langenbucher, “Effect of decentration and tilt on the image quality of aspheric intraocular lens design in a model eye,” J. Cataract Refractive Surg. 35(6), 1091–1100 (2009).
    [Crossref]
  12. R. Bellucci, S. Morselli, and V. Pucci, “Spherical aberration and coma with aspherical and a spherical intraocular lens in normal age-matched eyes,” J. Cataract Refractive Surg. 33(2), 203–209 (2007).
    [Crossref]
  13. T. D. Sauer, “Tilt and decentration of intraocular lenses – a brief review,” Adv. Ophthalmol. Vis. Syst. 2(4), 115–117 (2015).
    [Crossref]
  14. A. de Castro, P. Rosales, and S. Marcos, “Tilt and decentration of intraocular lenses in vivo Purkinje and Scheimpflug imaging – Validation study,” J. Cataract Refractive Surg. 33(3), 418–429 (2007).
    [Crossref]
  15. J. Tabernero, P. Piers, A. Benito, M. Redondo, and P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Invest. Ophthalmol. Visual Sci. 47(10), 4651–4658 (2006).
    [Crossref]
  16. F. Taketani, E. Yukawa, T. Yoshii, Y. Sugie, and Y. Hara, “Influence of intraocular lens optical design on high-orders aberrations,” J. Cataract Refractive Surg. 31(5), 969–972 (2005).
    [Crossref]
  17. J. Tabernero, P. Piers, and P. Artal, “Intraocular lens to correct corneal coma,” Opt. Lett. 32(4), 406–408 (2007).
    [Crossref]
  18. G. Smith and C. W. Lu, “Peripheral power errors and astigmatism of eyes corrected with intraocular lenses,” Optom. Vis. Sci. 68(1), 12–21 (1991).
    [Crossref]
  19. http://www.zemax.com
  20. S. Marcos, P. Rosales, L. Llorente, S. Barbero, and I. Jiménez-Alfaro, “Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: Evidence of a passive mechanism,” Vision Res. 48(1), 70–79 (2008).
    [Crossref]
  21. S. Barbero and S. Marcos, “Analytical tools for customized design of monofocal intraocular lenses,” Opt. Express 15(14), 8576–8591 (2007).
    [Crossref]
  22. H. L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modelling,” J. Opt. Soc. Am. A 14(8), 1684–1695 (1997).
    [Crossref]
  23. L. N. Hazra and C. A. Delisle, “Primary aberrations of a thin lens with different object and image space media,” J. Opt. Soc. Am. A 15(4), 945–953 (1998).
    [Crossref]
  24. M. Born and E. Wolf, Principle of Optics, 6th ed. Pergamon Press, Oxford, U. K. (1980).
  25. V. Portney, “New bi-sign aspheric IOL and its application,” Optom. Vis. Sci. 89(1), 80–89 (2012).
    [Crossref]
  26. J. A. Retzlaff, D. R. Sanders, and M. C. Kraff, “Development of the SRK/T intraocular lens implant power calculation formula,” J. Cataract Refractive Surg. 16(3), 333–340 (1990).
    [Crossref]
  27. J. T. Holladay, T. C. Prager, T. Y. Chandler, K. H. Musgrove, J. W. Lewis, and R. S. Ruiz, “A three-part system for refining intraocular lens power calculations,” J. Cataract Refractive Surg. 14(1), 17–24 (1988).
    [Crossref]
  28. K. J. Hoffer, “The Hoffer Q formula: a comparison of theoretic and regression formulas,” J. Cataract Refractive Surg. 19(6), 700–712 (1993).
    [Crossref]
  29. T. Olsen, “Prediction of intraocular lens position after cataract extraction,” J. Cataract Refractive Surg. 12(4), 376–379 (1986).
    [Crossref]
  30. T. Olsen, “Prediction of the effective postoperative (intraocular lens) anterior chamber depth,” J. Cataract Refractive Surg. 32(3), 419–424 (2006).
    [Crossref]
  31. S. Norrby, R. Bergman, N. Hirnschall, Y. Nishi, and O. Findl, “Prediction of the true IOL position,” Br. J. Ophthalmol. 101(10), 1440–1446 (2017).
    [Crossref]
  32. S. Norrby, “Standardized methods for assessing the imaging quality of intraocular lenses,” Appl. Opt. 34(31), 7327–7333 (1995).
    [Crossref]
  33. S. Norrby, P. Piers, C. Campbell, and M. Van der Mooren, “Model eyes for evaluation of intraocular lenses,” Appl. Opt. 46(26), 6595–6605 (2007).
    [Crossref]
  34. G. Debellemanière, M. Flores, M. Montard, B. Delbosc, and M. Saleh, “Three-dimensional printing of optical lenses and ophthalmic surgery: challenges and perspectives,” J. Refract. Surg. 32(3), 201–204 (2016).
    [Crossref]
  35. B. Chassagne and L. Canioni, “Microsoft Excel sheet for aberration-correcting IOL design” figshare, https://doi.org/10.6084/m9.figshare.10093412 (2019).

2017 (1)

S. Norrby, R. Bergman, N. Hirnschall, Y. Nishi, and O. Findl, “Prediction of the true IOL position,” Br. J. Ophthalmol. 101(10), 1440–1446 (2017).
[Crossref]

2016 (2)

G. Debellemanière, M. Flores, M. Montard, B. Delbosc, and M. Saleh, “Three-dimensional printing of optical lenses and ophthalmic surgery: challenges and perspectives,” J. Refract. Surg. 32(3), 201–204 (2016).
[Crossref]

J. X. Kane, A. Van Heerden, A. Atik, and C. Petsoglou, “Intraocular lens power formula accuracy: comparison of 7 formulas,” J. Cataract Refractive Surg. 42(10), 1490–1500 (2016).
[Crossref]

2015 (1)

T. D. Sauer, “Tilt and decentration of intraocular lenses – a brief review,” Adv. Ophthalmol. Vis. Syst. 2(4), 115–117 (2015).
[Crossref]

2014 (1)

2012 (1)

V. Portney, “New bi-sign aspheric IOL and its application,” Optom. Vis. Sci. 89(1), 80–89 (2012).
[Crossref]

2011 (2)

2009 (1)

T. Eppig, K. Scholz, A. Löffler, A. Mesner, and A. Langenbucher, “Effect of decentration and tilt on the image quality of aspheric intraocular lens design in a model eye,” J. Cataract Refractive Surg. 35(6), 1091–1100 (2009).
[Crossref]

2008 (1)

S. Marcos, P. Rosales, L. Llorente, S. Barbero, and I. Jiménez-Alfaro, “Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: Evidence of a passive mechanism,” Vision Res. 48(1), 70–79 (2008).
[Crossref]

2007 (5)

S. Barbero and S. Marcos, “Analytical tools for customized design of monofocal intraocular lenses,” Opt. Express 15(14), 8576–8591 (2007).
[Crossref]

J. Tabernero, P. Piers, and P. Artal, “Intraocular lens to correct corneal coma,” Opt. Lett. 32(4), 406–408 (2007).
[Crossref]

A. de Castro, P. Rosales, and S. Marcos, “Tilt and decentration of intraocular lenses in vivo Purkinje and Scheimpflug imaging – Validation study,” J. Cataract Refractive Surg. 33(3), 418–429 (2007).
[Crossref]

R. Bellucci, S. Morselli, and V. Pucci, “Spherical aberration and coma with aspherical and a spherical intraocular lens in normal age-matched eyes,” J. Cataract Refractive Surg. 33(2), 203–209 (2007).
[Crossref]

S. Norrby, P. Piers, C. Campbell, and M. Van der Mooren, “Model eyes for evaluation of intraocular lenses,” Appl. Opt. 46(26), 6595–6605 (2007).
[Crossref]

2006 (2)

T. Olsen, “Prediction of the effective postoperative (intraocular lens) anterior chamber depth,” J. Cataract Refractive Surg. 32(3), 419–424 (2006).
[Crossref]

J. Tabernero, P. Piers, A. Benito, M. Redondo, and P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Invest. Ophthalmol. Visual Sci. 47(10), 4651–4658 (2006).
[Crossref]

2005 (2)

F. Taketani, E. Yukawa, T. Yoshii, Y. Sugie, and Y. Hara, “Influence of intraocular lens optical design on high-orders aberrations,” J. Cataract Refractive Surg. 31(5), 969–972 (2005).
[Crossref]

G. E. Altmann, L. D. Nichamin, S. S. Lane, and J. S. Pepose, “Optical performance of 3 intraocular lens designs in the presence of decentration,” J. Cataract Refractive Surg. 31(3), 574–585 (2005).
[Crossref]

2002 (1)

J. T. Holladay, P. A. Piers, G. Koranyi, M. Van der Mooren, and N. E. S. Norrby, “A new intraocular lens design to reduce spherical aberration of a pseudophakic eye,” J. Refract. Surg. 18, 683–691 (2002).

1998 (1)

1997 (1)

1995 (1)

1993 (1)

K. J. Hoffer, “The Hoffer Q formula: a comparison of theoretic and regression formulas,” J. Cataract Refractive Surg. 19(6), 700–712 (1993).
[Crossref]

1991 (2)

G. Smith and C. W. Lu, “Peripheral power errors and astigmatism of eyes corrected with intraocular lenses,” Optom. Vis. Sci. 68(1), 12–21 (1991).
[Crossref]

D. A. Atchison, “Design of aspheric intraocular lenses,” Oph. Phys. Optics 11, 137–146 (1991).
[Crossref]

1990 (1)

J. A. Retzlaff, D. R. Sanders, and M. C. Kraff, “Development of the SRK/T intraocular lens implant power calculation formula,” J. Cataract Refractive Surg. 16(3), 333–340 (1990).
[Crossref]

1988 (2)

J. T. Holladay, T. C. Prager, T. Y. Chandler, K. H. Musgrove, J. W. Lewis, and R. S. Ruiz, “A three-part system for refining intraocular lens power calculations,” J. Cataract Refractive Surg. 14(1), 17–24 (1988).
[Crossref]

G. Smith and C. W. Lu, “The spherical aberration of intra-ocular lenses,” Oph. Phys. Optics 8, 287–294 (1988).
[Crossref]

1986 (1)

T. Olsen, “Prediction of intraocular lens position after cataract extraction,” J. Cataract Refractive Surg. 12(4), 376–379 (1986).
[Crossref]

Altmann, G. E.

G. E. Altmann, L. D. Nichamin, S. S. Lane, and J. S. Pepose, “Optical performance of 3 intraocular lens designs in the presence of decentration,” J. Cataract Refractive Surg. 31(3), 574–585 (2005).
[Crossref]

Artal, P.

C. Canovas and P. Artal, “Customized eye models for determining optimized intraocular lenses power,” Biomed. Opt. Express 2(6), 1649–1663 (2011).
[Crossref]

J. Tabernero, P. Piers, and P. Artal, “Intraocular lens to correct corneal coma,” Opt. Lett. 32(4), 406–408 (2007).
[Crossref]

J. Tabernero, P. Piers, A. Benito, M. Redondo, and P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Invest. Ophthalmol. Visual Sci. 47(10), 4651–4658 (2006).
[Crossref]

S. Norrby, P. Artal, P. A. Piers, and M. Van der Mooren, “Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations,” US Patent 6,609,793.

Atchison, D. A.

D. A. Atchison, “Design of aspheric intraocular lenses,” Oph. Phys. Optics 11, 137–146 (1991).
[Crossref]

Atik, A.

J. X. Kane, A. Van Heerden, A. Atik, and C. Petsoglou, “Intraocular lens power formula accuracy: comparison of 7 formulas,” J. Cataract Refractive Surg. 42(10), 1490–1500 (2016).
[Crossref]

Barbero, S.

S. Barbero, S. Marcos, J. Montejo, and C. Dorronsoro, “Design of isoplanatic aspheric monofocal intraocular lenses,” Opt. Express 19(7), 6215–6230 (2011).
[Crossref]

S. Marcos, P. Rosales, L. Llorente, S. Barbero, and I. Jiménez-Alfaro, “Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: Evidence of a passive mechanism,” Vision Res. 48(1), 70–79 (2008).
[Crossref]

S. Barbero and S. Marcos, “Analytical tools for customized design of monofocal intraocular lenses,” Opt. Express 15(14), 8576–8591 (2007).
[Crossref]

Bellucci, R.

R. Bellucci, S. Morselli, and V. Pucci, “Spherical aberration and coma with aspherical and a spherical intraocular lens in normal age-matched eyes,” J. Cataract Refractive Surg. 33(2), 203–209 (2007).
[Crossref]

Benito, A.

J. Tabernero, P. Piers, A. Benito, M. Redondo, and P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Invest. Ophthalmol. Visual Sci. 47(10), 4651–4658 (2006).
[Crossref]

Bergman, R.

S. Norrby, R. Bergman, N. Hirnschall, Y. Nishi, and O. Findl, “Prediction of the true IOL position,” Br. J. Ophthalmol. 101(10), 1440–1446 (2017).
[Crossref]

Born, M.

M. Born and E. Wolf, Principle of Optics, 6th ed. Pergamon Press, Oxford, U. K. (1980).

Brennan, N. A.

Campbell, C.

Canioni, L.

B. Chassagne and L. Canioni, “Microsoft Excel sheet for aberration-correcting IOL design” figshare, https://doi.org/10.6084/m9.figshare.10093412 (2019).

Canovas, C.

Chandler, T. Y.

J. T. Holladay, T. C. Prager, T. Y. Chandler, K. H. Musgrove, J. W. Lewis, and R. S. Ruiz, “A three-part system for refining intraocular lens power calculations,” J. Cataract Refractive Surg. 14(1), 17–24 (1988).
[Crossref]

Chassagne, B.

B. Chassagne and L. Canioni, “Microsoft Excel sheet for aberration-correcting IOL design” figshare, https://doi.org/10.6084/m9.figshare.10093412 (2019).

Chen, C.

de Castro, A.

A. de Castro, P. Rosales, and S. Marcos, “Tilt and decentration of intraocular lenses in vivo Purkinje and Scheimpflug imaging – Validation study,” J. Cataract Refractive Surg. 33(3), 418–429 (2007).
[Crossref]

Debellemanière, G.

G. Debellemanière, M. Flores, M. Montard, B. Delbosc, and M. Saleh, “Three-dimensional printing of optical lenses and ophthalmic surgery: challenges and perspectives,” J. Refract. Surg. 32(3), 201–204 (2016).
[Crossref]

Delbosc, B.

G. Debellemanière, M. Flores, M. Montard, B. Delbosc, and M. Saleh, “Three-dimensional printing of optical lenses and ophthalmic surgery: challenges and perspectives,” J. Refract. Surg. 32(3), 201–204 (2016).
[Crossref]

Delisle, C. A.

Dorronsoro, C.

Eppig, T.

T. Eppig, K. Scholz, A. Löffler, A. Mesner, and A. Langenbucher, “Effect of decentration and tilt on the image quality of aspheric intraocular lens design in a model eye,” J. Cataract Refractive Surg. 35(6), 1091–1100 (2009).
[Crossref]

Findl, O.

S. Norrby, R. Bergman, N. Hirnschall, Y. Nishi, and O. Findl, “Prediction of the true IOL position,” Br. J. Ophthalmol. 101(10), 1440–1446 (2017).
[Crossref]

Flores, M.

G. Debellemanière, M. Flores, M. Montard, B. Delbosc, and M. Saleh, “Three-dimensional printing of optical lenses and ophthalmic surgery: challenges and perspectives,” J. Refract. Surg. 32(3), 201–204 (2016).
[Crossref]

Gerlach, M.

M. Gerlach and C. Lesage, “Aspheric intraocular lens and method for designing such IOL” WO Patent 2007/128423.

Hara, Y.

F. Taketani, E. Yukawa, T. Yoshii, Y. Sugie, and Y. Hara, “Influence of intraocular lens optical design on high-orders aberrations,” J. Cataract Refractive Surg. 31(5), 969–972 (2005).
[Crossref]

Hazra, L. N.

Hirnschall, N.

S. Norrby, R. Bergman, N. Hirnschall, Y. Nishi, and O. Findl, “Prediction of the true IOL position,” Br. J. Ophthalmol. 101(10), 1440–1446 (2017).
[Crossref]

Hoffer, K. J.

K. J. Hoffer, “The Hoffer Q formula: a comparison of theoretic and regression formulas,” J. Cataract Refractive Surg. 19(6), 700–712 (1993).
[Crossref]

Holladay, J. T.

J. T. Holladay, P. A. Piers, G. Koranyi, M. Van der Mooren, and N. E. S. Norrby, “A new intraocular lens design to reduce spherical aberration of a pseudophakic eye,” J. Refract. Surg. 18, 683–691 (2002).

J. T. Holladay, T. C. Prager, T. Y. Chandler, K. H. Musgrove, J. W. Lewis, and R. S. Ruiz, “A three-part system for refining intraocular lens power calculations,” J. Cataract Refractive Surg. 14(1), 17–24 (1988).
[Crossref]

Jiménez-Alfaro, I.

S. Marcos, P. Rosales, L. Llorente, S. Barbero, and I. Jiménez-Alfaro, “Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: Evidence of a passive mechanism,” Vision Res. 48(1), 70–79 (2008).
[Crossref]

Kane, J. X.

J. X. Kane, A. Van Heerden, A. Atik, and C. Petsoglou, “Intraocular lens power formula accuracy: comparison of 7 formulas,” J. Cataract Refractive Surg. 42(10), 1490–1500 (2016).
[Crossref]

Koranyi, G.

J. T. Holladay, P. A. Piers, G. Koranyi, M. Van der Mooren, and N. E. S. Norrby, “A new intraocular lens design to reduce spherical aberration of a pseudophakic eye,” J. Refract. Surg. 18, 683–691 (2002).

Kraff, M. C.

J. A. Retzlaff, D. R. Sanders, and M. C. Kraff, “Development of the SRK/T intraocular lens implant power calculation formula,” J. Cataract Refractive Surg. 16(3), 333–340 (1990).
[Crossref]

Lane, S. S.

G. E. Altmann, L. D. Nichamin, S. S. Lane, and J. S. Pepose, “Optical performance of 3 intraocular lens designs in the presence of decentration,” J. Cataract Refractive Surg. 31(3), 574–585 (2005).
[Crossref]

Langenbucher, A.

T. Eppig, K. Scholz, A. Löffler, A. Mesner, and A. Langenbucher, “Effect of decentration and tilt on the image quality of aspheric intraocular lens design in a model eye,” J. Cataract Refractive Surg. 35(6), 1091–1100 (2009).
[Crossref]

Lesage, C.

M. Gerlach and C. Lesage, “Aspheric intraocular lens and method for designing such IOL” WO Patent 2007/128423.

Lewis, J. W.

J. T. Holladay, T. C. Prager, T. Y. Chandler, K. H. Musgrove, J. W. Lewis, and R. S. Ruiz, “A three-part system for refining intraocular lens power calculations,” J. Cataract Refractive Surg. 14(1), 17–24 (1988).
[Crossref]

Liou, H. L.

Llorente, L.

S. Marcos, P. Rosales, L. Llorente, S. Barbero, and I. Jiménez-Alfaro, “Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: Evidence of a passive mechanism,” Vision Res. 48(1), 70–79 (2008).
[Crossref]

Löffler, A.

T. Eppig, K. Scholz, A. Löffler, A. Mesner, and A. Langenbucher, “Effect of decentration and tilt on the image quality of aspheric intraocular lens design in a model eye,” J. Cataract Refractive Surg. 35(6), 1091–1100 (2009).
[Crossref]

Lu, C. W.

G. Smith and C. W. Lu, “Peripheral power errors and astigmatism of eyes corrected with intraocular lenses,” Optom. Vis. Sci. 68(1), 12–21 (1991).
[Crossref]

G. Smith and C. W. Lu, “The spherical aberration of intra-ocular lenses,” Oph. Phys. Optics 8, 287–294 (1988).
[Crossref]

Marcos, S.

S. Barbero, S. Marcos, J. Montejo, and C. Dorronsoro, “Design of isoplanatic aspheric monofocal intraocular lenses,” Opt. Express 19(7), 6215–6230 (2011).
[Crossref]

S. Marcos, P. Rosales, L. Llorente, S. Barbero, and I. Jiménez-Alfaro, “Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: Evidence of a passive mechanism,” Vision Res. 48(1), 70–79 (2008).
[Crossref]

A. de Castro, P. Rosales, and S. Marcos, “Tilt and decentration of intraocular lenses in vivo Purkinje and Scheimpflug imaging – Validation study,” J. Cataract Refractive Surg. 33(3), 418–429 (2007).
[Crossref]

S. Barbero and S. Marcos, “Analytical tools for customized design of monofocal intraocular lenses,” Opt. Express 15(14), 8576–8591 (2007).
[Crossref]

Mesner, A.

T. Eppig, K. Scholz, A. Löffler, A. Mesner, and A. Langenbucher, “Effect of decentration and tilt on the image quality of aspheric intraocular lens design in a model eye,” J. Cataract Refractive Surg. 35(6), 1091–1100 (2009).
[Crossref]

Montard, M.

G. Debellemanière, M. Flores, M. Montard, B. Delbosc, and M. Saleh, “Three-dimensional printing of optical lenses and ophthalmic surgery: challenges and perspectives,” J. Refract. Surg. 32(3), 201–204 (2016).
[Crossref]

Montejo, J.

Morselli, S.

R. Bellucci, S. Morselli, and V. Pucci, “Spherical aberration and coma with aspherical and a spherical intraocular lens in normal age-matched eyes,” J. Cataract Refractive Surg. 33(2), 203–209 (2007).
[Crossref]

Musgrove, K. H.

J. T. Holladay, T. C. Prager, T. Y. Chandler, K. H. Musgrove, J. W. Lewis, and R. S. Ruiz, “A three-part system for refining intraocular lens power calculations,” J. Cataract Refractive Surg. 14(1), 17–24 (1988).
[Crossref]

Nichamin, L. D.

G. E. Altmann, L. D. Nichamin, S. S. Lane, and J. S. Pepose, “Optical performance of 3 intraocular lens designs in the presence of decentration,” J. Cataract Refractive Surg. 31(3), 574–585 (2005).
[Crossref]

Nishi, Y.

S. Norrby, R. Bergman, N. Hirnschall, Y. Nishi, and O. Findl, “Prediction of the true IOL position,” Br. J. Ophthalmol. 101(10), 1440–1446 (2017).
[Crossref]

Norrby, N. E. S.

J. T. Holladay, P. A. Piers, G. Koranyi, M. Van der Mooren, and N. E. S. Norrby, “A new intraocular lens design to reduce spherical aberration of a pseudophakic eye,” J. Refract. Surg. 18, 683–691 (2002).

Norrby, S.

S. Norrby, R. Bergman, N. Hirnschall, Y. Nishi, and O. Findl, “Prediction of the true IOL position,” Br. J. Ophthalmol. 101(10), 1440–1446 (2017).
[Crossref]

S. Norrby, P. Piers, C. Campbell, and M. Van der Mooren, “Model eyes for evaluation of intraocular lenses,” Appl. Opt. 46(26), 6595–6605 (2007).
[Crossref]

S. Norrby, “Standardized methods for assessing the imaging quality of intraocular lenses,” Appl. Opt. 34(31), 7327–7333 (1995).
[Crossref]

S. Norrby, P. Artal, P. A. Piers, and M. Van der Mooren, “Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations,” US Patent 6,609,793.

Olsen, T.

T. Olsen, “Prediction of the effective postoperative (intraocular lens) anterior chamber depth,” J. Cataract Refractive Surg. 32(3), 419–424 (2006).
[Crossref]

T. Olsen, “Prediction of intraocular lens position after cataract extraction,” J. Cataract Refractive Surg. 12(4), 376–379 (1986).
[Crossref]

Pepose, J. S.

G. E. Altmann, L. D. Nichamin, S. S. Lane, and J. S. Pepose, “Optical performance of 3 intraocular lens designs in the presence of decentration,” J. Cataract Refractive Surg. 31(3), 574–585 (2005).
[Crossref]

Petsoglou, C.

J. X. Kane, A. Van Heerden, A. Atik, and C. Petsoglou, “Intraocular lens power formula accuracy: comparison of 7 formulas,” J. Cataract Refractive Surg. 42(10), 1490–1500 (2016).
[Crossref]

Piers, P.

S. Norrby, P. Piers, C. Campbell, and M. Van der Mooren, “Model eyes for evaluation of intraocular lenses,” Appl. Opt. 46(26), 6595–6605 (2007).
[Crossref]

J. Tabernero, P. Piers, and P. Artal, “Intraocular lens to correct corneal coma,” Opt. Lett. 32(4), 406–408 (2007).
[Crossref]

J. Tabernero, P. Piers, A. Benito, M. Redondo, and P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Invest. Ophthalmol. Visual Sci. 47(10), 4651–4658 (2006).
[Crossref]

Piers, P. A.

J. T. Holladay, P. A. Piers, G. Koranyi, M. Van der Mooren, and N. E. S. Norrby, “A new intraocular lens design to reduce spherical aberration of a pseudophakic eye,” J. Refract. Surg. 18, 683–691 (2002).

S. Norrby, P. Artal, P. A. Piers, and M. Van der Mooren, “Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations,” US Patent 6,609,793.

Portney, V.

V. Portney, “New bi-sign aspheric IOL and its application,” Optom. Vis. Sci. 89(1), 80–89 (2012).
[Crossref]

Prager, T. C.

J. T. Holladay, T. C. Prager, T. Y. Chandler, K. H. Musgrove, J. W. Lewis, and R. S. Ruiz, “A three-part system for refining intraocular lens power calculations,” J. Cataract Refractive Surg. 14(1), 17–24 (1988).
[Crossref]

Pucci, V.

R. Bellucci, S. Morselli, and V. Pucci, “Spherical aberration and coma with aspherical and a spherical intraocular lens in normal age-matched eyes,” J. Cataract Refractive Surg. 33(2), 203–209 (2007).
[Crossref]

Redondo, M.

J. Tabernero, P. Piers, A. Benito, M. Redondo, and P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Invest. Ophthalmol. Visual Sci. 47(10), 4651–4658 (2006).
[Crossref]

Retzlaff, J. A.

J. A. Retzlaff, D. R. Sanders, and M. C. Kraff, “Development of the SRK/T intraocular lens implant power calculation formula,” J. Cataract Refractive Surg. 16(3), 333–340 (1990).
[Crossref]

Rosales, P.

S. Marcos, P. Rosales, L. Llorente, S. Barbero, and I. Jiménez-Alfaro, “Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: Evidence of a passive mechanism,” Vision Res. 48(1), 70–79 (2008).
[Crossref]

A. de Castro, P. Rosales, and S. Marcos, “Tilt and decentration of intraocular lenses in vivo Purkinje and Scheimpflug imaging – Validation study,” J. Cataract Refractive Surg. 33(3), 418–429 (2007).
[Crossref]

Ruiz, R. S.

J. T. Holladay, T. C. Prager, T. Y. Chandler, K. H. Musgrove, J. W. Lewis, and R. S. Ruiz, “A three-part system for refining intraocular lens power calculations,” J. Cataract Refractive Surg. 14(1), 17–24 (1988).
[Crossref]

Saleh, M.

G. Debellemanière, M. Flores, M. Montard, B. Delbosc, and M. Saleh, “Three-dimensional printing of optical lenses and ophthalmic surgery: challenges and perspectives,” J. Refract. Surg. 32(3), 201–204 (2016).
[Crossref]

Sanders, D. R.

J. A. Retzlaff, D. R. Sanders, and M. C. Kraff, “Development of the SRK/T intraocular lens implant power calculation formula,” J. Cataract Refractive Surg. 16(3), 333–340 (1990).
[Crossref]

Sauer, T. D.

T. D. Sauer, “Tilt and decentration of intraocular lenses – a brief review,” Adv. Ophthalmol. Vis. Syst. 2(4), 115–117 (2015).
[Crossref]

Scholz, K.

T. Eppig, K. Scholz, A. Löffler, A. Mesner, and A. Langenbucher, “Effect of decentration and tilt on the image quality of aspheric intraocular lens design in a model eye,” J. Cataract Refractive Surg. 35(6), 1091–1100 (2009).
[Crossref]

Smith, G.

G. Smith and C. W. Lu, “Peripheral power errors and astigmatism of eyes corrected with intraocular lenses,” Optom. Vis. Sci. 68(1), 12–21 (1991).
[Crossref]

G. Smith and C. W. Lu, “The spherical aberration of intra-ocular lenses,” Oph. Phys. Optics 8, 287–294 (1988).
[Crossref]

Sugie, Y.

F. Taketani, E. Yukawa, T. Yoshii, Y. Sugie, and Y. Hara, “Influence of intraocular lens optical design on high-orders aberrations,” J. Cataract Refractive Surg. 31(5), 969–972 (2005).
[Crossref]

Tabernero, J.

J. Tabernero, P. Piers, and P. Artal, “Intraocular lens to correct corneal coma,” Opt. Lett. 32(4), 406–408 (2007).
[Crossref]

J. Tabernero, P. Piers, A. Benito, M. Redondo, and P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Invest. Ophthalmol. Visual Sci. 47(10), 4651–4658 (2006).
[Crossref]

Taketani, F.

F. Taketani, E. Yukawa, T. Yoshii, Y. Sugie, and Y. Hara, “Influence of intraocular lens optical design on high-orders aberrations,” J. Cataract Refractive Surg. 31(5), 969–972 (2005).
[Crossref]

Van der Mooren, M.

S. Norrby, P. Piers, C. Campbell, and M. Van der Mooren, “Model eyes for evaluation of intraocular lenses,” Appl. Opt. 46(26), 6595–6605 (2007).
[Crossref]

J. T. Holladay, P. A. Piers, G. Koranyi, M. Van der Mooren, and N. E. S. Norrby, “A new intraocular lens design to reduce spherical aberration of a pseudophakic eye,” J. Refract. Surg. 18, 683–691 (2002).

S. Norrby, P. Artal, P. A. Piers, and M. Van der Mooren, “Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations,” US Patent 6,609,793.

Van Heerden, A.

J. X. Kane, A. Van Heerden, A. Atik, and C. Petsoglou, “Intraocular lens power formula accuracy: comparison of 7 formulas,” J. Cataract Refractive Surg. 42(10), 1490–1500 (2016).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principle of Optics, 6th ed. Pergamon Press, Oxford, U. K. (1980).

Yoshii, T.

F. Taketani, E. Yukawa, T. Yoshii, Y. Sugie, and Y. Hara, “Influence of intraocular lens optical design on high-orders aberrations,” J. Cataract Refractive Surg. 31(5), 969–972 (2005).
[Crossref]

Yukawa, E.

F. Taketani, E. Yukawa, T. Yoshii, Y. Sugie, and Y. Hara, “Influence of intraocular lens optical design on high-orders aberrations,” J. Cataract Refractive Surg. 31(5), 969–972 (2005).
[Crossref]

Adv. Ophthalmol. Vis. Syst. (1)

T. D. Sauer, “Tilt and decentration of intraocular lenses – a brief review,” Adv. Ophthalmol. Vis. Syst. 2(4), 115–117 (2015).
[Crossref]

Appl. Opt. (3)

Biomed. Opt. Express (1)

Br. J. Ophthalmol. (1)

S. Norrby, R. Bergman, N. Hirnschall, Y. Nishi, and O. Findl, “Prediction of the true IOL position,” Br. J. Ophthalmol. 101(10), 1440–1446 (2017).
[Crossref]

Invest. Ophthalmol. Visual Sci. (1)

J. Tabernero, P. Piers, A. Benito, M. Redondo, and P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Invest. Ophthalmol. Visual Sci. 47(10), 4651–4658 (2006).
[Crossref]

J. Cataract Refractive Surg. (11)

F. Taketani, E. Yukawa, T. Yoshii, Y. Sugie, and Y. Hara, “Influence of intraocular lens optical design on high-orders aberrations,” J. Cataract Refractive Surg. 31(5), 969–972 (2005).
[Crossref]

J. X. Kane, A. Van Heerden, A. Atik, and C. Petsoglou, “Intraocular lens power formula accuracy: comparison of 7 formulas,” J. Cataract Refractive Surg. 42(10), 1490–1500 (2016).
[Crossref]

G. E. Altmann, L. D. Nichamin, S. S. Lane, and J. S. Pepose, “Optical performance of 3 intraocular lens designs in the presence of decentration,” J. Cataract Refractive Surg. 31(3), 574–585 (2005).
[Crossref]

T. Eppig, K. Scholz, A. Löffler, A. Mesner, and A. Langenbucher, “Effect of decentration and tilt on the image quality of aspheric intraocular lens design in a model eye,” J. Cataract Refractive Surg. 35(6), 1091–1100 (2009).
[Crossref]

R. Bellucci, S. Morselli, and V. Pucci, “Spherical aberration and coma with aspherical and a spherical intraocular lens in normal age-matched eyes,” J. Cataract Refractive Surg. 33(2), 203–209 (2007).
[Crossref]

A. de Castro, P. Rosales, and S. Marcos, “Tilt and decentration of intraocular lenses in vivo Purkinje and Scheimpflug imaging – Validation study,” J. Cataract Refractive Surg. 33(3), 418–429 (2007).
[Crossref]

J. A. Retzlaff, D. R. Sanders, and M. C. Kraff, “Development of the SRK/T intraocular lens implant power calculation formula,” J. Cataract Refractive Surg. 16(3), 333–340 (1990).
[Crossref]

J. T. Holladay, T. C. Prager, T. Y. Chandler, K. H. Musgrove, J. W. Lewis, and R. S. Ruiz, “A three-part system for refining intraocular lens power calculations,” J. Cataract Refractive Surg. 14(1), 17–24 (1988).
[Crossref]

K. J. Hoffer, “The Hoffer Q formula: a comparison of theoretic and regression formulas,” J. Cataract Refractive Surg. 19(6), 700–712 (1993).
[Crossref]

T. Olsen, “Prediction of intraocular lens position after cataract extraction,” J. Cataract Refractive Surg. 12(4), 376–379 (1986).
[Crossref]

T. Olsen, “Prediction of the effective postoperative (intraocular lens) anterior chamber depth,” J. Cataract Refractive Surg. 32(3), 419–424 (2006).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Refract. Surg. (2)

G. Debellemanière, M. Flores, M. Montard, B. Delbosc, and M. Saleh, “Three-dimensional printing of optical lenses and ophthalmic surgery: challenges and perspectives,” J. Refract. Surg. 32(3), 201–204 (2016).
[Crossref]

J. T. Holladay, P. A. Piers, G. Koranyi, M. Van der Mooren, and N. E. S. Norrby, “A new intraocular lens design to reduce spherical aberration of a pseudophakic eye,” J. Refract. Surg. 18, 683–691 (2002).

Oph. Phys. Optics (2)

G. Smith and C. W. Lu, “The spherical aberration of intra-ocular lenses,” Oph. Phys. Optics 8, 287–294 (1988).
[Crossref]

D. A. Atchison, “Design of aspheric intraocular lenses,” Oph. Phys. Optics 11, 137–146 (1991).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Optom. Vis. Sci. (2)

V. Portney, “New bi-sign aspheric IOL and its application,” Optom. Vis. Sci. 89(1), 80–89 (2012).
[Crossref]

G. Smith and C. W. Lu, “Peripheral power errors and astigmatism of eyes corrected with intraocular lenses,” Optom. Vis. Sci. 68(1), 12–21 (1991).
[Crossref]

Vision Res. (1)

S. Marcos, P. Rosales, L. Llorente, S. Barbero, and I. Jiménez-Alfaro, “Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: Evidence of a passive mechanism,” Vision Res. 48(1), 70–79 (2008).
[Crossref]

Other (5)

M. Born and E. Wolf, Principle of Optics, 6th ed. Pergamon Press, Oxford, U. K. (1980).

http://www.zemax.com

S. Norrby, P. Artal, P. A. Piers, and M. Van der Mooren, “Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations,” US Patent 6,609,793.

M. Gerlach and C. Lesage, “Aspheric intraocular lens and method for designing such IOL” WO Patent 2007/128423.

B. Chassagne and L. Canioni, “Microsoft Excel sheet for aberration-correcting IOL design” figshare, https://doi.org/10.6084/m9.figshare.10093412 (2019).

Supplementary Material (1)

NameDescription
» Code 1       This calculating tool enables the design for a personalized aberration-correcting IOL, as a function of the cornea’s parameters.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic description of a pseudophakic eye (left) and definition of geometrical parameters for the paraxial principal and marginal rays (right).
Fig. 2.
Fig. 2. Pseudophakic eye with the new IOL and calculated for 4.5 mm ocular pupil diameter. (a) Through focus spot diagram on retina for a delta focus of 35 µm. Radius of Airy disk (black) is 2.5 µm and aberrated RMS radius of spot diagram (blue) is 1.7 µm. (b) MTF plots of the pseudophakic eye with the new IOL, Tecnis Z9000 and Assessed AcrySof IQ. The power of these IOLs is 22 D, λ = 555 nm, e2 = 4.1 mm and ocular kappa angle κ1 = 5.5°.
Fig. 3.
Fig. 3. Optimized lenses for LBME cornea: 4th-order aspherization as a function of optimal shape for power ranging from 12 to 20 D (pupil diameter: 4.5 mm). For all those IOLs the pseudophakic eyes are diffraction-limited.
Fig. 4.
Fig. 4. Optimized lenses for LBME cornea: 4th-order aspherization as a function of optimal shape for power ranging from 22 to 30 D (pupil diameter: 4.5 mm). For all those IOLs the pseudophakic eyes are diffraction-limited.
Fig. 5.
Fig. 5. MTF plots of the pseudophakic eye with the new IOL (pupil diameter: 4.5 mm, e2 = 4.1 mm and kappa angle κ1 = 5.5°). (a) PIOL = 12 D and (b) PIOL = 30 D.
Fig. 6.
Fig. 6. Effects of decentration and tilt on the convolution of the eye’s point spread function with the E Snellen letter. For all IOLs: pupil diameter is 4.5 mm and dioptric power is 22 D. See Fig. 1 for axis convention.
Fig. 7.
Fig. 7. Calculated MTF curves of the new IOLs in the ISO Model Eye (Green) and Physiological Model Eye (Red). Solid line: 22 D, dash: 12 D, dots: 30 D. Pupil diameter: 3 mm, λ = 546 nm and κ1 = 0°.
Fig. 8.
Fig. 8. Validity of the calculation of the new IOL for a total correction of coma of the LBME model of cornea, as a function of nIOL and PIOL, for e2 = 2.5 mm (a) to e2 = 5 mm (f). Pupil: 4.5 mm, Kappa angle κ1 = 5.5°.

Tables (8)

Tables Icon

Table 1. LBME model of corneal values and IOL’s parameters used in the simulation

Tables Icon

Table 2. Expression of parameters (see text and Fig. 1 for details)

Tables Icon

Table 3. Numerical evaluation (λ = 555 nm) for LBME model of corneal aberrations as a function of pupil size (h1) and angular field (ocular kappa angle κ1) due to off-axis fovea

Tables Icon

Table 4. Aberrations of the pseudophakic eye with the new IOL of power 22 D

Tables Icon

Table 5. Analytic solution versus Zemax result for the shape factor X

Tables Icon

Table 6. Analytic solution versus Zemax result for the aspherization ɛ4

Tables Icon

Table 7. Model Eye of the ISO standard for evaluation of IOL (from [32])

Tables Icon

Table 8. Physiological Model Eye for evaluation of IOL (from [33])

Equations (35)

Equations on this page are rendered with MathJax. Learn more.

z = c u h 2 1 + 1 ( 1 + Q ) c u 2 h 2 + ε 4 h 4 + ε 6 h 6 +
z = c u h 2 1 + 1 c u 2 h 2 + ε 4 h 4 = c u h 2 1 + 1 ( 1 + Q ) c u 2 h 2
S I C = 1 8 h 1 4 P C 3 [ a 1 C X C 3 + a 2 C Y C 3 + a 3 C X C 2 Y C + a 4 C X C Y C 2 + a 5 C X C 2 + a 6 C Y C 2 + a 7 C X C Y C + a 8 C X C + a 9 C Y C + a 10 C ] + ( n 1 1 ) h 1 4 R 1 3 Q 1 + ( n 2 n 1 ) h 1 4 R 2 3 Q 2
S I I C = 1 4 h 1 2 P C 2 H [ p 1 C X C 2 + p 2 C Y C 2 + p 3 C X C Y C + p 4 C X C + p 5 C Y C + p 6 C ] + ( n 2 n 1 ) ( e 1 κ 1 n 1 ) h 1 3 R 2 3 Q 2
( S I C ) = S I C
( S I I C ) = S I I C + S I C × κ 1 h 1 P C × [ 1 1 1 ( e 2 + e 1 ) P C n 2 ]
R 3 = 2 ( n I O L n 2 ) P I O L ( X I O L + 1 ) and R 4 = 2 ( n I O L n 2 ) P I O L ( X I O L 1 )
Y I O L = 1 + 2 h 1 h 2 P C P I O L
S I I O L ( X I O L , ε 4 ) = a 1 I O L X I O L 2 + a 2 I O L X I O L + a 3 I O L + a 4 I O L ε 4
S I I I O L ( X I O L , ε 4 ) = b 1 I O L X I O L 2 + b 2 I O L X I O L + b 3 I O L + b 4 I O L ε 4
S I T o t = S I C + S I I O L , S I I T o t = ( S I I C ) + S I I I O L .
( S I I T o t b 4 I O L ε 4 ) ( S I I T o t b 4 I O L ε 4 ) X u 2 = 0
S I T o t = 0
X I O L O p t = ( b 2 I O L 2 b 1 I O L u 2 ) + ( b 2 I O L 2 b 1 I O L u 2 ) 2 4 b 1 I O L [ b 3 I O L + ( S I I C ) b 2 I O L u 2 ] 2 b 1 I O L
ε 4 O p t = a 1 I O L ( X I O L O p t ) 2 + a 2 I O L X I O L O p t + a 3 I O L + S I C a 4 I O L
X I O L M i n = b 2 I O L 2 b 1 I O L + u 2 and ( S I I T o t ) M i n = S I I T o t ( X I O L M i n , ε 4 )
a 1 I O L = 1 4 h m e a n 4 P I O L 3 n I O L + 2 n 2 n I O L ( n I O L n 2 ) 2
a 2 I O L = 1 4 h m e a n 4 P I O L 3 4 ( n I O L + n 2 ) n I O L n 2 ( n I O L n 2 ) Y I O L
a 3 I O L = 1 4 h m e a n 4 P I O L 3 [ 3 n I O L + 2 n 2 n I O L n 2 2 Y I O L 2 + n I O L 2 n 2 2 ( n I O L n 2 ) 2 ]
a 4 I O L = 8 ( n I O L n 2 ) h 2 4 8 ( n 2 n I O L ) h 3 4
χ = e I O L κ 1 n I O L h 3
A 1 = 1 2 n 2 h 2 H P I O L 2
A 2 = A 1 h 2 2 n I O L 2 ( n I O L n 2 )
A 3 = A 1 h 1 P C ( n I O L n 2 ) P I O L ( 1 n I O L 2 1 n 2 2 ) + A 2 [ 1 + n I O L n 2 + Y I O L ( 1 n I O L n 2 ) ]
A 4 = A 1 ( n I O L n 2 ( n I O L n 2 ) Y I O L n 2 ) [ h 2 2 n I O L 2 + h 1 P C P I O L ( 1 n I O L 2 1 n 2 2 ) ]
A 5 = 1 2 n 2 h 3 H P I O L
A 6 = n I O L n 2 2 1 n I O L
A 7 = A 5 P I O L ( n I O L n 2 ) [ A 6 h 2 2 n I O L h 3 2 n 2 2 ]
A 8 = h 3 P I O L 2 n 2 2 + A 6 ( h 2 P I O L 2 n I O L + h 1 P C n I O L )
A 9 = A 5 A 8 ( n I O L n 2 ) A 7 ( n I O L n 2 ) n 2 [ Y I O L + n I O L ( n I O L n 2 ) ]
A 10 = A 5 A 8 n 2 [ Y I O L + n I O L ( n I O L n 2 ) ]
b 1 I O L = A 2 + A 7 + χ a 1 I O L
b 2 I O L = A 3 + A 9 + χ a 2 I O L
b 3 I O L = A 4 + A 10 + χ a 3 I O L
b 4 I O L = 8 ( n 2 n I O L ) h 3 4 χ