Abstract

Single molecule localization microscopy (SMLM) is one of the key techniques that break the classical resolution limit in optical imaging. It is based on taking multiple recordings of a sample, each showing only a sparse arrangement of spatially well separated fluorescent molecules which can be localized at nanometer precision. While localizing along the lateral directions is usually straightforward, estimating axial positions at a comparable precision is known to be much harder, which is due to the relatively large depth of focus provided by the microscope optics. Whenever a molecule is sufficiently close to the coverslip, it becomes feasible to draw additional information from near field coupling effects: super-critical angle fluorescence (SAF) appears and can be exploited to boost the axial localization precision. Here we propose defocused imaging as a SMLM strategy that is capable of leveraging the information contained in SAF. We show that, regarding axial localization precision, our approach is superior to established SAF-based approaches. At the same time it is simple and can be conducted on any research-grade microscope where controlled defocusing on the order of a few hundred nanometers is possible.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Comparing strategies for deep astigmatism-based single-molecule localization microscopy

Marijn Siemons, Bas M. C. Cloin, Desiree M. Salas, Wilco Nijenhuis, Eugene A. Katrukha, and Lukas C. Kapitein
Biomed. Opt. Express 11(2) 735-751 (2020)

3D superresolution microscopy by supercritical angle detection

Joran Deschamps, Markus Mund, and Jonas Ries
Opt. Express 22(23) 29081-29091 (2014)

Measuring membrane association and protein diffusion within membranes with supercritical angle fluorescence microscopy

Yuanqing Ma, Aleš Benda, Philip R. Nicovich, and Katharina Gaus
Biomed. Opt. Express 7(4) 1561-1576 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm),” Nat. Methods 3(10), 793–796 (2006).
    [Crossref]
  2. S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
    [Crossref]
  3. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
    [Crossref]
  4. G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3d cellular ultrastructure,” Proc. Natl. Acad. Sci. 106(9), 3125–3130 (2009).
    [Crossref]
  5. P. Prabhat, S. Ram, E. S. Ward, and R. J. Ober, “Simultaneous imaging of different focal planes in fluorescence microscopy for the study of cellular dynamics in three dimensions,” IEEE Trans.on Nanobioscience 3(4), 237–242 (2004).
    [Crossref]
  6. M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub–100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5(6), 527–529 (2008).
    [Crossref]
  7. P. Bon, J. Linares-Loyez, M. Feyeux, K. Alessandri, B. Lounis, P. Nassoy, and L. Cognet, “Self-interference 3d super-resolution microscopy for deep tissue investigations,” Nat. Methods 15(6), 449–454 (2018).
    [Crossref]
  8. C. Franke, M. Sauer, and S. van de Linde, “Photometry unlocks 3d information from 2d localization microscopy data,” Nat. Methods 14(1), 41–44 (2017).
    [Crossref]
  9. B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
    [Crossref]
  10. S. R. P. Pavani and R. Piestun, “Three dimensional tracking of fluorescent microparticles using a photon-limited double-helix response system,” Opt. Express 16(26), 22048–22057 (2008).
    [Crossref]
  11. H. Deschout, F. C. Zanacchi, M. Mlodzianoski, A. Diaspro, J. Bewersdorf, S. T. Hess, and K. Braeckmans, “Precisely and accurately localizing single emitters in fluorescence microscopy,” Nat. Methods 11(3), 253–266 (2014).
    [Crossref]
  12. W. Liu, K. C. Toussaint Jr, C. Okoro, D. Zhu, Y. Chen, C. Kuang, and X. Liu, “Breaking the axial diffraction limit: A guide to axial super-resolution fluorescence microscopy,” Laser Photonics Rev. 12(8), 1700333 (2018).
    [Crossref]
  13. J. Enderlein and M. Böhmer, “Influence of interface–dipole interactions on the efficiency of fluorescence light collection near surfaces,” Opt. Lett. 28(11), 941–943 (2003).
    [Crossref]
  14. A. M. Chizhik, D. Ruhlandt, J. Pfaff, N. Karedla, A. I. Chizhik, I. Gregor, R. H. Kehlenbach, and J. Enderlein, “Three-dimensional reconstruction of nuclear envelope architecture using dual-color metal-induced energy transfer imaging,” ACS Nano 11(12), 11839–11846 (2017).
    [Crossref]
  15. H. S. Heil, B. Schreiber, R. Götz, M. Emmerling, M.-C. Dabauvalle, G. Krohne, S. Höfling, M. Kamp, M. Sauer, and K. G. Heinze, “Sharpening emitter localization in front of a tuned mirror,” Light: Sci. Appl. 7(1), 99 (2018).
    [Crossref]
  16. L. Novotny, “Allowed and forbidden light in near-field optics. i. a single dipolar light source,” J. Opt. Soc. Am. A 14(1), 91–104 (1997).
    [Crossref]
  17. T. Ruckstuhl, J. Enderlein, S. Jung, and S. Seeger, “Forbidden light detection from single molecules,” Anal. Chem. 72(9), 2117–2123 (2000).
    [Crossref]
  18. T. Ruckstuhl and D. Verdes, “Supercritical angle fluorescence (SAF) microscopy,” Opt. Express 12(18), 4246–4254 (2004).
    [Crossref]
  19. S. Sivankutty, T. Barroca, C. Mayet, G. Dupuis, E. Fort, and S. Lévêque-Fort, “Confocal supercritical angle microscopy for cell membrane imaging,” Opt. Lett. 39(3), 555–558 (2014).
    [Crossref]
  20. D. Axelrod, “Selective imaging of surface fluorescence with very high aperture microscope objectives,” J. Biomed. Opt. 6(1), 6–14 (2001).
    [Crossref]
  21. T. Barroca, K. Balaa, J. Delahaye, S. Lévêque-Fort, and E. Fort, “Full-field supercritical angle fluorescence microscopy for live cell imaging,” Opt. Lett. 36(16), 3051–3053 (2011).
    [Crossref]
  22. T. Barroca, K. Balaa, S. Lévêque-Fort, and E. Fort, “Full-field near-field optical microscope for cell imaging,” Phys. Rev. Lett. 108(21), 218101 (2012).
    [Crossref]
  23. S. Sivankutty, I. C. Hernández, N. Bourg, G. Dupuis, and S. Lévêque-Fort, “Supercritical angle fluorescence for enhanced axial sectioning in sted microscopy,” Methods (2019).
  24. J. Deschamps, M. Mund, and J. Ries, “3d superresolution microscopy by supercritical angle detection,” Opt. Express 22(23), 29081–29091 (2014).
    [Crossref]
  25. N. Bourg, C. Mayet, G. Dupuis, T. Barroca, P. Bon, S. Lécart, E. Fort, and S. Lévêque-Fort, “Direct optical nanoscopy with axially localized detection,” Nat. Photonics 9(9), 587–593 (2015).
    [Crossref]
  26. M. Böhmer and J. Enderlein, “Orientation imaging of single molecules by wide-field epifluorescence microscopy,” J. Opt. Soc. Am. B 20(3), 554–559 (2003).
    [Crossref]
  27. M. Speidel, A. Jonáš, and E.-L. Florin, “Three-dimensional tracking of fluorescent nanoparticles with subnanometer precision by use of off-focus imaging,” Opt. Lett. 28(2), 69–71 (2003).
    [Crossref]
  28. F. Aguet, S. Geissbühler, I. Märki, T. Lasser, and M. Unser, “Super-resolution orientation estimation and localization of fluorescent dipoles using 3-d steerable filters,” Opt. Express 17(8), 6829–6848 (2009).
    [Crossref]
  29. R. J. Ober, S. Ram, and E. S. Ward, “Localization accuracy in single-molecule microscopy,” Biophys. J. 86(2), 1185–1200 (2004).
    [Crossref]
  30. K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Methods 7(5), 377–381 (2010).
    [Crossref]
  31. P. Zelger, K. Kaser, B. Rossboth, L. Velas, G. J. Schütz, and A. Jesacher, “Three-dimensional localization microscopy using deep learning,” Opt. Express 26(25), 33166–33179 (2018).
    [Crossref]
  32. C. Cabriel, N. Bourg, P. Jouchet, G. Dupuis, C. Leterrier, A. Baron, M.-A. Badet-Denisot, B. Vauzeilles, E. Fort, and S. Leveque-Fort, “Combining 3d single molecule localization strategies for reproducible bioimaging,” Nat. Commun. 10(1), 1980 (2019).
    [Crossref]
  33. M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. Moerner, “Simultaneous, accurate measurement of the 3d position and orientation of single molecules,” Proc. Natl. Acad. Sci. 109(47), 19087–19092 (2012).
    [Crossref]
  34. M. Heilemann, S. Van De Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, and M. Sauer, “Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes,” Angew. Chem., Int. Ed. 47(33), 6172–6176 (2008).
    [Crossref]
  35. M. Ovesnỳ, P. Křížek, J. Borkovec, Z. Švindrych, and G. M. Hagen, “Thunderstorm: a comprehensive imagej plug-in for palm and storm data analysis and super-resolution imaging,” Bioinformatics 30(16), 2389–2390 (2014).
    [Crossref]
  36. D. Axelrod, “Fluorescence excitation and imaging of single molecules near dielectric-coated and bare surfaces: a theoretical study,” J. Microsc. 247(2), 147–160 (2012).
    [Crossref]
  37. T. Pengo, N. Olivier, and S. Manley, “Away from resolution, assessing the information content of super-resolution images,” arXiv preprint arXiv:1501.05807 (2015).
  38. J. Chao, E. S. Ward, and R. J. Ober, “Fisher information theory for parameter estimation in single molecule microscopy: tutorial,” J. Opt. Soc. Am. A 33(7), B36–B57 (2016).
    [Crossref]
  39. E. Fort and S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D: Appl. Phys. 41(1), 013001 (2008).
    [Crossref]

2019 (1)

C. Cabriel, N. Bourg, P. Jouchet, G. Dupuis, C. Leterrier, A. Baron, M.-A. Badet-Denisot, B. Vauzeilles, E. Fort, and S. Leveque-Fort, “Combining 3d single molecule localization strategies for reproducible bioimaging,” Nat. Commun. 10(1), 1980 (2019).
[Crossref]

2018 (4)

P. Bon, J. Linares-Loyez, M. Feyeux, K. Alessandri, B. Lounis, P. Nassoy, and L. Cognet, “Self-interference 3d super-resolution microscopy for deep tissue investigations,” Nat. Methods 15(6), 449–454 (2018).
[Crossref]

W. Liu, K. C. Toussaint Jr, C. Okoro, D. Zhu, Y. Chen, C. Kuang, and X. Liu, “Breaking the axial diffraction limit: A guide to axial super-resolution fluorescence microscopy,” Laser Photonics Rev. 12(8), 1700333 (2018).
[Crossref]

H. S. Heil, B. Schreiber, R. Götz, M. Emmerling, M.-C. Dabauvalle, G. Krohne, S. Höfling, M. Kamp, M. Sauer, and K. G. Heinze, “Sharpening emitter localization in front of a tuned mirror,” Light: Sci. Appl. 7(1), 99 (2018).
[Crossref]

P. Zelger, K. Kaser, B. Rossboth, L. Velas, G. J. Schütz, and A. Jesacher, “Three-dimensional localization microscopy using deep learning,” Opt. Express 26(25), 33166–33179 (2018).
[Crossref]

2017 (2)

A. M. Chizhik, D. Ruhlandt, J. Pfaff, N. Karedla, A. I. Chizhik, I. Gregor, R. H. Kehlenbach, and J. Enderlein, “Three-dimensional reconstruction of nuclear envelope architecture using dual-color metal-induced energy transfer imaging,” ACS Nano 11(12), 11839–11846 (2017).
[Crossref]

C. Franke, M. Sauer, and S. van de Linde, “Photometry unlocks 3d information from 2d localization microscopy data,” Nat. Methods 14(1), 41–44 (2017).
[Crossref]

2016 (1)

2015 (1)

N. Bourg, C. Mayet, G. Dupuis, T. Barroca, P. Bon, S. Lécart, E. Fort, and S. Lévêque-Fort, “Direct optical nanoscopy with axially localized detection,” Nat. Photonics 9(9), 587–593 (2015).
[Crossref]

2014 (4)

H. Deschout, F. C. Zanacchi, M. Mlodzianoski, A. Diaspro, J. Bewersdorf, S. T. Hess, and K. Braeckmans, “Precisely and accurately localizing single emitters in fluorescence microscopy,” Nat. Methods 11(3), 253–266 (2014).
[Crossref]

S. Sivankutty, T. Barroca, C. Mayet, G. Dupuis, E. Fort, and S. Lévêque-Fort, “Confocal supercritical angle microscopy for cell membrane imaging,” Opt. Lett. 39(3), 555–558 (2014).
[Crossref]

J. Deschamps, M. Mund, and J. Ries, “3d superresolution microscopy by supercritical angle detection,” Opt. Express 22(23), 29081–29091 (2014).
[Crossref]

M. Ovesnỳ, P. Křížek, J. Borkovec, Z. Švindrych, and G. M. Hagen, “Thunderstorm: a comprehensive imagej plug-in for palm and storm data analysis and super-resolution imaging,” Bioinformatics 30(16), 2389–2390 (2014).
[Crossref]

2012 (3)

D. Axelrod, “Fluorescence excitation and imaging of single molecules near dielectric-coated and bare surfaces: a theoretical study,” J. Microsc. 247(2), 147–160 (2012).
[Crossref]

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. Moerner, “Simultaneous, accurate measurement of the 3d position and orientation of single molecules,” Proc. Natl. Acad. Sci. 109(47), 19087–19092 (2012).
[Crossref]

T. Barroca, K. Balaa, S. Lévêque-Fort, and E. Fort, “Full-field near-field optical microscope for cell imaging,” Phys. Rev. Lett. 108(21), 218101 (2012).
[Crossref]

2011 (1)

2010 (1)

K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Methods 7(5), 377–381 (2010).
[Crossref]

2009 (2)

F. Aguet, S. Geissbühler, I. Märki, T. Lasser, and M. Unser, “Super-resolution orientation estimation and localization of fluorescent dipoles using 3-d steerable filters,” Opt. Express 17(8), 6829–6848 (2009).
[Crossref]

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3d cellular ultrastructure,” Proc. Natl. Acad. Sci. 106(9), 3125–3130 (2009).
[Crossref]

2008 (5)

M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub–100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5(6), 527–529 (2008).
[Crossref]

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
[Crossref]

S. R. P. Pavani and R. Piestun, “Three dimensional tracking of fluorescent microparticles using a photon-limited double-helix response system,” Opt. Express 16(26), 22048–22057 (2008).
[Crossref]

M. Heilemann, S. Van De Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, and M. Sauer, “Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes,” Angew. Chem., Int. Ed. 47(33), 6172–6176 (2008).
[Crossref]

E. Fort and S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D: Appl. Phys. 41(1), 013001 (2008).
[Crossref]

2006 (3)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm),” Nat. Methods 3(10), 793–796 (2006).
[Crossref]

S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

2004 (3)

P. Prabhat, S. Ram, E. S. Ward, and R. J. Ober, “Simultaneous imaging of different focal planes in fluorescence microscopy for the study of cellular dynamics in three dimensions,” IEEE Trans.on Nanobioscience 3(4), 237–242 (2004).
[Crossref]

R. J. Ober, S. Ram, and E. S. Ward, “Localization accuracy in single-molecule microscopy,” Biophys. J. 86(2), 1185–1200 (2004).
[Crossref]

T. Ruckstuhl and D. Verdes, “Supercritical angle fluorescence (SAF) microscopy,” Opt. Express 12(18), 4246–4254 (2004).
[Crossref]

2003 (3)

2001 (1)

D. Axelrod, “Selective imaging of surface fluorescence with very high aperture microscope objectives,” J. Biomed. Opt. 6(1), 6–14 (2001).
[Crossref]

2000 (1)

T. Ruckstuhl, J. Enderlein, S. Jung, and S. Seeger, “Forbidden light detection from single molecules,” Anal. Chem. 72(9), 2117–2123 (2000).
[Crossref]

1997 (1)

Agrawal, A.

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. Moerner, “Simultaneous, accurate measurement of the 3d position and orientation of single molecules,” Proc. Natl. Acad. Sci. 109(47), 19087–19092 (2012).
[Crossref]

Aguet, F.

Alessandri, K.

P. Bon, J. Linares-Loyez, M. Feyeux, K. Alessandri, B. Lounis, P. Nassoy, and L. Cognet, “Self-interference 3d super-resolution microscopy for deep tissue investigations,” Nat. Methods 15(6), 449–454 (2018).
[Crossref]

Axelrod, D.

D. Axelrod, “Fluorescence excitation and imaging of single molecules near dielectric-coated and bare surfaces: a theoretical study,” J. Microsc. 247(2), 147–160 (2012).
[Crossref]

D. Axelrod, “Selective imaging of surface fluorescence with very high aperture microscope objectives,” J. Biomed. Opt. 6(1), 6–14 (2001).
[Crossref]

Backer, A. S.

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. Moerner, “Simultaneous, accurate measurement of the 3d position and orientation of single molecules,” Proc. Natl. Acad. Sci. 109(47), 19087–19092 (2012).
[Crossref]

Backlund, M. P.

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. Moerner, “Simultaneous, accurate measurement of the 3d position and orientation of single molecules,” Proc. Natl. Acad. Sci. 109(47), 19087–19092 (2012).
[Crossref]

Badet-Denisot, M.-A.

C. Cabriel, N. Bourg, P. Jouchet, G. Dupuis, C. Leterrier, A. Baron, M.-A. Badet-Denisot, B. Vauzeilles, E. Fort, and S. Leveque-Fort, “Combining 3d single molecule localization strategies for reproducible bioimaging,” Nat. Commun. 10(1), 1980 (2019).
[Crossref]

Balaa, K.

T. Barroca, K. Balaa, S. Lévêque-Fort, and E. Fort, “Full-field near-field optical microscope for cell imaging,” Phys. Rev. Lett. 108(21), 218101 (2012).
[Crossref]

T. Barroca, K. Balaa, J. Delahaye, S. Lévêque-Fort, and E. Fort, “Full-field supercritical angle fluorescence microscopy for live cell imaging,” Opt. Lett. 36(16), 3051–3053 (2011).
[Crossref]

Baron, A.

C. Cabriel, N. Bourg, P. Jouchet, G. Dupuis, C. Leterrier, A. Baron, M.-A. Badet-Denisot, B. Vauzeilles, E. Fort, and S. Leveque-Fort, “Combining 3d single molecule localization strategies for reproducible bioimaging,” Nat. Commun. 10(1), 1980 (2019).
[Crossref]

Barroca, T.

N. Bourg, C. Mayet, G. Dupuis, T. Barroca, P. Bon, S. Lécart, E. Fort, and S. Lévêque-Fort, “Direct optical nanoscopy with axially localized detection,” Nat. Photonics 9(9), 587–593 (2015).
[Crossref]

S. Sivankutty, T. Barroca, C. Mayet, G. Dupuis, E. Fort, and S. Lévêque-Fort, “Confocal supercritical angle microscopy for cell membrane imaging,” Opt. Lett. 39(3), 555–558 (2014).
[Crossref]

T. Barroca, K. Balaa, S. Lévêque-Fort, and E. Fort, “Full-field near-field optical microscope for cell imaging,” Phys. Rev. Lett. 108(21), 218101 (2012).
[Crossref]

T. Barroca, K. Balaa, J. Delahaye, S. Lévêque-Fort, and E. Fort, “Full-field supercritical angle fluorescence microscopy for live cell imaging,” Opt. Lett. 36(16), 3051–3053 (2011).
[Crossref]

Bates, M.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
[Crossref]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm),” Nat. Methods 3(10), 793–796 (2006).
[Crossref]

Bennett, B. T.

M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub–100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5(6), 527–529 (2008).
[Crossref]

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Bewersdorf, J.

H. Deschout, F. C. Zanacchi, M. Mlodzianoski, A. Diaspro, J. Bewersdorf, S. T. Hess, and K. Braeckmans, “Precisely and accurately localizing single emitters in fluorescence microscopy,” Nat. Methods 11(3), 253–266 (2014).
[Crossref]

M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub–100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5(6), 527–529 (2008).
[Crossref]

Böhmer, M.

Bon, P.

P. Bon, J. Linares-Loyez, M. Feyeux, K. Alessandri, B. Lounis, P. Nassoy, and L. Cognet, “Self-interference 3d super-resolution microscopy for deep tissue investigations,” Nat. Methods 15(6), 449–454 (2018).
[Crossref]

N. Bourg, C. Mayet, G. Dupuis, T. Barroca, P. Bon, S. Lécart, E. Fort, and S. Lévêque-Fort, “Direct optical nanoscopy with axially localized detection,” Nat. Photonics 9(9), 587–593 (2015).
[Crossref]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Borkovec, J.

M. Ovesnỳ, P. Křížek, J. Borkovec, Z. Švindrych, and G. M. Hagen, “Thunderstorm: a comprehensive imagej plug-in for palm and storm data analysis and super-resolution imaging,” Bioinformatics 30(16), 2389–2390 (2014).
[Crossref]

Bourg, N.

C. Cabriel, N. Bourg, P. Jouchet, G. Dupuis, C. Leterrier, A. Baron, M.-A. Badet-Denisot, B. Vauzeilles, E. Fort, and S. Leveque-Fort, “Combining 3d single molecule localization strategies for reproducible bioimaging,” Nat. Commun. 10(1), 1980 (2019).
[Crossref]

N. Bourg, C. Mayet, G. Dupuis, T. Barroca, P. Bon, S. Lécart, E. Fort, and S. Lévêque-Fort, “Direct optical nanoscopy with axially localized detection,” Nat. Photonics 9(9), 587–593 (2015).
[Crossref]

S. Sivankutty, I. C. Hernández, N. Bourg, G. Dupuis, and S. Lévêque-Fort, “Supercritical angle fluorescence for enhanced axial sectioning in sted microscopy,” Methods (2019).

Braeckmans, K.

H. Deschout, F. C. Zanacchi, M. Mlodzianoski, A. Diaspro, J. Bewersdorf, S. T. Hess, and K. Braeckmans, “Precisely and accurately localizing single emitters in fluorescence microscopy,” Nat. Methods 11(3), 253–266 (2014).
[Crossref]

Cabriel, C.

C. Cabriel, N. Bourg, P. Jouchet, G. Dupuis, C. Leterrier, A. Baron, M.-A. Badet-Denisot, B. Vauzeilles, E. Fort, and S. Leveque-Fort, “Combining 3d single molecule localization strategies for reproducible bioimaging,” Nat. Commun. 10(1), 1980 (2019).
[Crossref]

Chao, J.

Chen, Y.

W. Liu, K. C. Toussaint Jr, C. Okoro, D. Zhu, Y. Chen, C. Kuang, and X. Liu, “Breaking the axial diffraction limit: A guide to axial super-resolution fluorescence microscopy,” Laser Photonics Rev. 12(8), 1700333 (2018).
[Crossref]

Chizhik, A. I.

A. M. Chizhik, D. Ruhlandt, J. Pfaff, N. Karedla, A. I. Chizhik, I. Gregor, R. H. Kehlenbach, and J. Enderlein, “Three-dimensional reconstruction of nuclear envelope architecture using dual-color metal-induced energy transfer imaging,” ACS Nano 11(12), 11839–11846 (2017).
[Crossref]

Chizhik, A. M.

A. M. Chizhik, D. Ruhlandt, J. Pfaff, N. Karedla, A. I. Chizhik, I. Gregor, R. H. Kehlenbach, and J. Enderlein, “Three-dimensional reconstruction of nuclear envelope architecture using dual-color metal-induced energy transfer imaging,” ACS Nano 11(12), 11839–11846 (2017).
[Crossref]

Churchman, L. S.

K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Methods 7(5), 377–381 (2010).
[Crossref]

Cognet, L.

P. Bon, J. Linares-Loyez, M. Feyeux, K. Alessandri, B. Lounis, P. Nassoy, and L. Cognet, “Self-interference 3d super-resolution microscopy for deep tissue investigations,” Nat. Methods 15(6), 449–454 (2018).
[Crossref]

Dabauvalle, M.-C.

H. S. Heil, B. Schreiber, R. Götz, M. Emmerling, M.-C. Dabauvalle, G. Krohne, S. Höfling, M. Kamp, M. Sauer, and K. G. Heinze, “Sharpening emitter localization in front of a tuned mirror,” Light: Sci. Appl. 7(1), 99 (2018).
[Crossref]

Davidson, M. W.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3d cellular ultrastructure,” Proc. Natl. Acad. Sci. 106(9), 3125–3130 (2009).
[Crossref]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Delahaye, J.

Deschamps, J.

Deschout, H.

H. Deschout, F. C. Zanacchi, M. Mlodzianoski, A. Diaspro, J. Bewersdorf, S. T. Hess, and K. Braeckmans, “Precisely and accurately localizing single emitters in fluorescence microscopy,” Nat. Methods 11(3), 253–266 (2014).
[Crossref]

Diaspro, A.

H. Deschout, F. C. Zanacchi, M. Mlodzianoski, A. Diaspro, J. Bewersdorf, S. T. Hess, and K. Braeckmans, “Precisely and accurately localizing single emitters in fluorescence microscopy,” Nat. Methods 11(3), 253–266 (2014).
[Crossref]

Dupuis, G.

C. Cabriel, N. Bourg, P. Jouchet, G. Dupuis, C. Leterrier, A. Baron, M.-A. Badet-Denisot, B. Vauzeilles, E. Fort, and S. Leveque-Fort, “Combining 3d single molecule localization strategies for reproducible bioimaging,” Nat. Commun. 10(1), 1980 (2019).
[Crossref]

N. Bourg, C. Mayet, G. Dupuis, T. Barroca, P. Bon, S. Lécart, E. Fort, and S. Lévêque-Fort, “Direct optical nanoscopy with axially localized detection,” Nat. Photonics 9(9), 587–593 (2015).
[Crossref]

S. Sivankutty, T. Barroca, C. Mayet, G. Dupuis, E. Fort, and S. Lévêque-Fort, “Confocal supercritical angle microscopy for cell membrane imaging,” Opt. Lett. 39(3), 555–558 (2014).
[Crossref]

S. Sivankutty, I. C. Hernández, N. Bourg, G. Dupuis, and S. Lévêque-Fort, “Supercritical angle fluorescence for enhanced axial sectioning in sted microscopy,” Methods (2019).

Emmerling, M.

H. S. Heil, B. Schreiber, R. Götz, M. Emmerling, M.-C. Dabauvalle, G. Krohne, S. Höfling, M. Kamp, M. Sauer, and K. G. Heinze, “Sharpening emitter localization in front of a tuned mirror,” Light: Sci. Appl. 7(1), 99 (2018).
[Crossref]

Enderlein, J.

A. M. Chizhik, D. Ruhlandt, J. Pfaff, N. Karedla, A. I. Chizhik, I. Gregor, R. H. Kehlenbach, and J. Enderlein, “Three-dimensional reconstruction of nuclear envelope architecture using dual-color metal-induced energy transfer imaging,” ACS Nano 11(12), 11839–11846 (2017).
[Crossref]

M. Böhmer and J. Enderlein, “Orientation imaging of single molecules by wide-field epifluorescence microscopy,” J. Opt. Soc. Am. B 20(3), 554–559 (2003).
[Crossref]

J. Enderlein and M. Böhmer, “Influence of interface–dipole interactions on the efficiency of fluorescence light collection near surfaces,” Opt. Lett. 28(11), 941–943 (2003).
[Crossref]

T. Ruckstuhl, J. Enderlein, S. Jung, and S. Seeger, “Forbidden light detection from single molecules,” Anal. Chem. 72(9), 2117–2123 (2000).
[Crossref]

Fetter, R. D.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3d cellular ultrastructure,” Proc. Natl. Acad. Sci. 106(9), 3125–3130 (2009).
[Crossref]

Feyeux, M.

P. Bon, J. Linares-Loyez, M. Feyeux, K. Alessandri, B. Lounis, P. Nassoy, and L. Cognet, “Self-interference 3d super-resolution microscopy for deep tissue investigations,” Nat. Methods 15(6), 449–454 (2018).
[Crossref]

Florin, E.-L.

Flyvbjerg, H.

K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Methods 7(5), 377–381 (2010).
[Crossref]

Fort, E.

C. Cabriel, N. Bourg, P. Jouchet, G. Dupuis, C. Leterrier, A. Baron, M.-A. Badet-Denisot, B. Vauzeilles, E. Fort, and S. Leveque-Fort, “Combining 3d single molecule localization strategies for reproducible bioimaging,” Nat. Commun. 10(1), 1980 (2019).
[Crossref]

N. Bourg, C. Mayet, G. Dupuis, T. Barroca, P. Bon, S. Lécart, E. Fort, and S. Lévêque-Fort, “Direct optical nanoscopy with axially localized detection,” Nat. Photonics 9(9), 587–593 (2015).
[Crossref]

S. Sivankutty, T. Barroca, C. Mayet, G. Dupuis, E. Fort, and S. Lévêque-Fort, “Confocal supercritical angle microscopy for cell membrane imaging,” Opt. Lett. 39(3), 555–558 (2014).
[Crossref]

T. Barroca, K. Balaa, S. Lévêque-Fort, and E. Fort, “Full-field near-field optical microscope for cell imaging,” Phys. Rev. Lett. 108(21), 218101 (2012).
[Crossref]

T. Barroca, K. Balaa, J. Delahaye, S. Lévêque-Fort, and E. Fort, “Full-field supercritical angle fluorescence microscopy for live cell imaging,” Opt. Lett. 36(16), 3051–3053 (2011).
[Crossref]

E. Fort and S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D: Appl. Phys. 41(1), 013001 (2008).
[Crossref]

Franke, C.

C. Franke, M. Sauer, and S. van de Linde, “Photometry unlocks 3d information from 2d localization microscopy data,” Nat. Methods 14(1), 41–44 (2017).
[Crossref]

Galbraith, C. G.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3d cellular ultrastructure,” Proc. Natl. Acad. Sci. 106(9), 3125–3130 (2009).
[Crossref]

Galbraith, J. A.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3d cellular ultrastructure,” Proc. Natl. Acad. Sci. 106(9), 3125–3130 (2009).
[Crossref]

Geissbühler, S.

Gillette, J. M.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3d cellular ultrastructure,” Proc. Natl. Acad. Sci. 106(9), 3125–3130 (2009).
[Crossref]

Girirajan, T. P.

S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref]

Götz, R.

H. S. Heil, B. Schreiber, R. Götz, M. Emmerling, M.-C. Dabauvalle, G. Krohne, S. Höfling, M. Kamp, M. Sauer, and K. G. Heinze, “Sharpening emitter localization in front of a tuned mirror,” Light: Sci. Appl. 7(1), 99 (2018).
[Crossref]

Gould, T. J.

M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub–100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5(6), 527–529 (2008).
[Crossref]

Gregor, I.

A. M. Chizhik, D. Ruhlandt, J. Pfaff, N. Karedla, A. I. Chizhik, I. Gregor, R. H. Kehlenbach, and J. Enderlein, “Three-dimensional reconstruction of nuclear envelope architecture using dual-color metal-induced energy transfer imaging,” ACS Nano 11(12), 11839–11846 (2017).
[Crossref]

Grésillon, S.

E. Fort and S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D: Appl. Phys. 41(1), 013001 (2008).
[Crossref]

Grover, G.

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. Moerner, “Simultaneous, accurate measurement of the 3d position and orientation of single molecules,” Proc. Natl. Acad. Sci. 109(47), 19087–19092 (2012).
[Crossref]

Hagen, G. M.

M. Ovesnỳ, P. Křížek, J. Borkovec, Z. Švindrych, and G. M. Hagen, “Thunderstorm: a comprehensive imagej plug-in for palm and storm data analysis and super-resolution imaging,” Bioinformatics 30(16), 2389–2390 (2014).
[Crossref]

Heil, H. S.

H. S. Heil, B. Schreiber, R. Götz, M. Emmerling, M.-C. Dabauvalle, G. Krohne, S. Höfling, M. Kamp, M. Sauer, and K. G. Heinze, “Sharpening emitter localization in front of a tuned mirror,” Light: Sci. Appl. 7(1), 99 (2018).
[Crossref]

Heilemann, M.

M. Heilemann, S. Van De Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, and M. Sauer, “Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes,” Angew. Chem., Int. Ed. 47(33), 6172–6176 (2008).
[Crossref]

Heinze, K. G.

H. S. Heil, B. Schreiber, R. Götz, M. Emmerling, M.-C. Dabauvalle, G. Krohne, S. Höfling, M. Kamp, M. Sauer, and K. G. Heinze, “Sharpening emitter localization in front of a tuned mirror,” Light: Sci. Appl. 7(1), 99 (2018).
[Crossref]

Hernández, I. C.

S. Sivankutty, I. C. Hernández, N. Bourg, G. Dupuis, and S. Lévêque-Fort, “Supercritical angle fluorescence for enhanced axial sectioning in sted microscopy,” Methods (2019).

Hess, H. F.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3d cellular ultrastructure,” Proc. Natl. Acad. Sci. 106(9), 3125–3130 (2009).
[Crossref]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Hess, S. T.

H. Deschout, F. C. Zanacchi, M. Mlodzianoski, A. Diaspro, J. Bewersdorf, S. T. Hess, and K. Braeckmans, “Precisely and accurately localizing single emitters in fluorescence microscopy,” Nat. Methods 11(3), 253–266 (2014).
[Crossref]

M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub–100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5(6), 527–529 (2008).
[Crossref]

S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref]

Höfling, S.

H. S. Heil, B. Schreiber, R. Götz, M. Emmerling, M.-C. Dabauvalle, G. Krohne, S. Höfling, M. Kamp, M. Sauer, and K. G. Heinze, “Sharpening emitter localization in front of a tuned mirror,” Light: Sci. Appl. 7(1), 99 (2018).
[Crossref]

Huang, B.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
[Crossref]

Jesacher, A.

Jonáš, A.

Jouchet, P.

C. Cabriel, N. Bourg, P. Jouchet, G. Dupuis, C. Leterrier, A. Baron, M.-A. Badet-Denisot, B. Vauzeilles, E. Fort, and S. Leveque-Fort, “Combining 3d single molecule localization strategies for reproducible bioimaging,” Nat. Commun. 10(1), 1980 (2019).
[Crossref]

Juette, M. F.

M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub–100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5(6), 527–529 (2008).
[Crossref]

Jung, S.

T. Ruckstuhl, J. Enderlein, S. Jung, and S. Seeger, “Forbidden light detection from single molecules,” Anal. Chem. 72(9), 2117–2123 (2000).
[Crossref]

Kamp, M.

H. S. Heil, B. Schreiber, R. Götz, M. Emmerling, M.-C. Dabauvalle, G. Krohne, S. Höfling, M. Kamp, M. Sauer, and K. G. Heinze, “Sharpening emitter localization in front of a tuned mirror,” Light: Sci. Appl. 7(1), 99 (2018).
[Crossref]

Kanchanawong, P.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3d cellular ultrastructure,” Proc. Natl. Acad. Sci. 106(9), 3125–3130 (2009).
[Crossref]

Karedla, N.

A. M. Chizhik, D. Ruhlandt, J. Pfaff, N. Karedla, A. I. Chizhik, I. Gregor, R. H. Kehlenbach, and J. Enderlein, “Three-dimensional reconstruction of nuclear envelope architecture using dual-color metal-induced energy transfer imaging,” ACS Nano 11(12), 11839–11846 (2017).
[Crossref]

Kaser, K.

Kasper, R.

M. Heilemann, S. Van De Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, and M. Sauer, “Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes,” Angew. Chem., Int. Ed. 47(33), 6172–6176 (2008).
[Crossref]

Kehlenbach, R. H.

A. M. Chizhik, D. Ruhlandt, J. Pfaff, N. Karedla, A. I. Chizhik, I. Gregor, R. H. Kehlenbach, and J. Enderlein, “Three-dimensional reconstruction of nuclear envelope architecture using dual-color metal-induced energy transfer imaging,” ACS Nano 11(12), 11839–11846 (2017).
[Crossref]

Krížek, P.

M. Ovesnỳ, P. Křížek, J. Borkovec, Z. Švindrych, and G. M. Hagen, “Thunderstorm: a comprehensive imagej plug-in for palm and storm data analysis and super-resolution imaging,” Bioinformatics 30(16), 2389–2390 (2014).
[Crossref]

Krohne, G.

H. S. Heil, B. Schreiber, R. Götz, M. Emmerling, M.-C. Dabauvalle, G. Krohne, S. Höfling, M. Kamp, M. Sauer, and K. G. Heinze, “Sharpening emitter localization in front of a tuned mirror,” Light: Sci. Appl. 7(1), 99 (2018).
[Crossref]

Kuang, C.

W. Liu, K. C. Toussaint Jr, C. Okoro, D. Zhu, Y. Chen, C. Kuang, and X. Liu, “Breaking the axial diffraction limit: A guide to axial super-resolution fluorescence microscopy,” Laser Photonics Rev. 12(8), 1700333 (2018).
[Crossref]

Lasser, T.

Lécart, S.

N. Bourg, C. Mayet, G. Dupuis, T. Barroca, P. Bon, S. Lécart, E. Fort, and S. Lévêque-Fort, “Direct optical nanoscopy with axially localized detection,” Nat. Photonics 9(9), 587–593 (2015).
[Crossref]

Lessard, M. D.

M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub–100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5(6), 527–529 (2008).
[Crossref]

Leterrier, C.

C. Cabriel, N. Bourg, P. Jouchet, G. Dupuis, C. Leterrier, A. Baron, M.-A. Badet-Denisot, B. Vauzeilles, E. Fort, and S. Leveque-Fort, “Combining 3d single molecule localization strategies for reproducible bioimaging,” Nat. Commun. 10(1), 1980 (2019).
[Crossref]

Leveque-Fort, S.

C. Cabriel, N. Bourg, P. Jouchet, G. Dupuis, C. Leterrier, A. Baron, M.-A. Badet-Denisot, B. Vauzeilles, E. Fort, and S. Leveque-Fort, “Combining 3d single molecule localization strategies for reproducible bioimaging,” Nat. Commun. 10(1), 1980 (2019).
[Crossref]

Lévêque-Fort, S.

N. Bourg, C. Mayet, G. Dupuis, T. Barroca, P. Bon, S. Lécart, E. Fort, and S. Lévêque-Fort, “Direct optical nanoscopy with axially localized detection,” Nat. Photonics 9(9), 587–593 (2015).
[Crossref]

S. Sivankutty, T. Barroca, C. Mayet, G. Dupuis, E. Fort, and S. Lévêque-Fort, “Confocal supercritical angle microscopy for cell membrane imaging,” Opt. Lett. 39(3), 555–558 (2014).
[Crossref]

T. Barroca, K. Balaa, S. Lévêque-Fort, and E. Fort, “Full-field near-field optical microscope for cell imaging,” Phys. Rev. Lett. 108(21), 218101 (2012).
[Crossref]

T. Barroca, K. Balaa, J. Delahaye, S. Lévêque-Fort, and E. Fort, “Full-field supercritical angle fluorescence microscopy for live cell imaging,” Opt. Lett. 36(16), 3051–3053 (2011).
[Crossref]

S. Sivankutty, I. C. Hernández, N. Bourg, G. Dupuis, and S. Lévêque-Fort, “Supercritical angle fluorescence for enhanced axial sectioning in sted microscopy,” Methods (2019).

Lew, M. D.

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. Moerner, “Simultaneous, accurate measurement of the 3d position and orientation of single molecules,” Proc. Natl. Acad. Sci. 109(47), 19087–19092 (2012).
[Crossref]

Linares-Loyez, J.

P. Bon, J. Linares-Loyez, M. Feyeux, K. Alessandri, B. Lounis, P. Nassoy, and L. Cognet, “Self-interference 3d super-resolution microscopy for deep tissue investigations,” Nat. Methods 15(6), 449–454 (2018).
[Crossref]

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Lippincott-Schwartz, J.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3d cellular ultrastructure,” Proc. Natl. Acad. Sci. 106(9), 3125–3130 (2009).
[Crossref]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Liu, W.

W. Liu, K. C. Toussaint Jr, C. Okoro, D. Zhu, Y. Chen, C. Kuang, and X. Liu, “Breaking the axial diffraction limit: A guide to axial super-resolution fluorescence microscopy,” Laser Photonics Rev. 12(8), 1700333 (2018).
[Crossref]

Liu, X.

W. Liu, K. C. Toussaint Jr, C. Okoro, D. Zhu, Y. Chen, C. Kuang, and X. Liu, “Breaking the axial diffraction limit: A guide to axial super-resolution fluorescence microscopy,” Laser Photonics Rev. 12(8), 1700333 (2018).
[Crossref]

Lounis, B.

P. Bon, J. Linares-Loyez, M. Feyeux, K. Alessandri, B. Lounis, P. Nassoy, and L. Cognet, “Self-interference 3d super-resolution microscopy for deep tissue investigations,” Nat. Methods 15(6), 449–454 (2018).
[Crossref]

Manley, S.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3d cellular ultrastructure,” Proc. Natl. Acad. Sci. 106(9), 3125–3130 (2009).
[Crossref]

T. Pengo, N. Olivier, and S. Manley, “Away from resolution, assessing the information content of super-resolution images,” arXiv preprint arXiv:1501.05807 (2015).

Märki, I.

Mason, M. D.

S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref]

Mayet, C.

N. Bourg, C. Mayet, G. Dupuis, T. Barroca, P. Bon, S. Lécart, E. Fort, and S. Lévêque-Fort, “Direct optical nanoscopy with axially localized detection,” Nat. Photonics 9(9), 587–593 (2015).
[Crossref]

S. Sivankutty, T. Barroca, C. Mayet, G. Dupuis, E. Fort, and S. Lévêque-Fort, “Confocal supercritical angle microscopy for cell membrane imaging,” Opt. Lett. 39(3), 555–558 (2014).
[Crossref]

Mlodzianoski, M.

H. Deschout, F. C. Zanacchi, M. Mlodzianoski, A. Diaspro, J. Bewersdorf, S. T. Hess, and K. Braeckmans, “Precisely and accurately localizing single emitters in fluorescence microscopy,” Nat. Methods 11(3), 253–266 (2014).
[Crossref]

Mlodzianoski, M. J.

M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub–100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5(6), 527–529 (2008).
[Crossref]

Moerner, W.

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. Moerner, “Simultaneous, accurate measurement of the 3d position and orientation of single molecules,” Proc. Natl. Acad. Sci. 109(47), 19087–19092 (2012).
[Crossref]

Mortensen, K. I.

K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Methods 7(5), 377–381 (2010).
[Crossref]

Mukherjee, A.

M. Heilemann, S. Van De Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, and M. Sauer, “Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes,” Angew. Chem., Int. Ed. 47(33), 6172–6176 (2008).
[Crossref]

Mund, M.

Nagpure, B. S.

M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub–100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5(6), 527–529 (2008).
[Crossref]

Nassoy, P.

P. Bon, J. Linares-Loyez, M. Feyeux, K. Alessandri, B. Lounis, P. Nassoy, and L. Cognet, “Self-interference 3d super-resolution microscopy for deep tissue investigations,” Nat. Methods 15(6), 449–454 (2018).
[Crossref]

Novotny, L.

Ober, R. J.

J. Chao, E. S. Ward, and R. J. Ober, “Fisher information theory for parameter estimation in single molecule microscopy: tutorial,” J. Opt. Soc. Am. A 33(7), B36–B57 (2016).
[Crossref]

P. Prabhat, S. Ram, E. S. Ward, and R. J. Ober, “Simultaneous imaging of different focal planes in fluorescence microscopy for the study of cellular dynamics in three dimensions,” IEEE Trans.on Nanobioscience 3(4), 237–242 (2004).
[Crossref]

R. J. Ober, S. Ram, and E. S. Ward, “Localization accuracy in single-molecule microscopy,” Biophys. J. 86(2), 1185–1200 (2004).
[Crossref]

Okoro, C.

W. Liu, K. C. Toussaint Jr, C. Okoro, D. Zhu, Y. Chen, C. Kuang, and X. Liu, “Breaking the axial diffraction limit: A guide to axial super-resolution fluorescence microscopy,” Laser Photonics Rev. 12(8), 1700333 (2018).
[Crossref]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Olivier, N.

T. Pengo, N. Olivier, and S. Manley, “Away from resolution, assessing the information content of super-resolution images,” arXiv preprint arXiv:1501.05807 (2015).

Ovesn?, M.

M. Ovesnỳ, P. Křížek, J. Borkovec, Z. Švindrych, and G. M. Hagen, “Thunderstorm: a comprehensive imagej plug-in for palm and storm data analysis and super-resolution imaging,” Bioinformatics 30(16), 2389–2390 (2014).
[Crossref]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Pavani, S. R. P.

Pengo, T.

T. Pengo, N. Olivier, and S. Manley, “Away from resolution, assessing the information content of super-resolution images,” arXiv preprint arXiv:1501.05807 (2015).

Pfaff, J.

A. M. Chizhik, D. Ruhlandt, J. Pfaff, N. Karedla, A. I. Chizhik, I. Gregor, R. H. Kehlenbach, and J. Enderlein, “Three-dimensional reconstruction of nuclear envelope architecture using dual-color metal-induced energy transfer imaging,” ACS Nano 11(12), 11839–11846 (2017).
[Crossref]

Piestun, R.

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. Moerner, “Simultaneous, accurate measurement of the 3d position and orientation of single molecules,” Proc. Natl. Acad. Sci. 109(47), 19087–19092 (2012).
[Crossref]

S. R. P. Pavani and R. Piestun, “Three dimensional tracking of fluorescent microparticles using a photon-limited double-helix response system,” Opt. Express 16(26), 22048–22057 (2008).
[Crossref]

Prabhat, P.

P. Prabhat, S. Ram, E. S. Ward, and R. J. Ober, “Simultaneous imaging of different focal planes in fluorescence microscopy for the study of cellular dynamics in three dimensions,” IEEE Trans.on Nanobioscience 3(4), 237–242 (2004).
[Crossref]

Ram, S.

P. Prabhat, S. Ram, E. S. Ward, and R. J. Ober, “Simultaneous imaging of different focal planes in fluorescence microscopy for the study of cellular dynamics in three dimensions,” IEEE Trans.on Nanobioscience 3(4), 237–242 (2004).
[Crossref]

R. J. Ober, S. Ram, and E. S. Ward, “Localization accuracy in single-molecule microscopy,” Biophys. J. 86(2), 1185–1200 (2004).
[Crossref]

Ries, J.

Rossboth, B.

Ruckstuhl, T.

T. Ruckstuhl and D. Verdes, “Supercritical angle fluorescence (SAF) microscopy,” Opt. Express 12(18), 4246–4254 (2004).
[Crossref]

T. Ruckstuhl, J. Enderlein, S. Jung, and S. Seeger, “Forbidden light detection from single molecules,” Anal. Chem. 72(9), 2117–2123 (2000).
[Crossref]

Ruhlandt, D.

A. M. Chizhik, D. Ruhlandt, J. Pfaff, N. Karedla, A. I. Chizhik, I. Gregor, R. H. Kehlenbach, and J. Enderlein, “Three-dimensional reconstruction of nuclear envelope architecture using dual-color metal-induced energy transfer imaging,” ACS Nano 11(12), 11839–11846 (2017).
[Crossref]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm),” Nat. Methods 3(10), 793–796 (2006).
[Crossref]

Sahl, S. J.

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. Moerner, “Simultaneous, accurate measurement of the 3d position and orientation of single molecules,” Proc. Natl. Acad. Sci. 109(47), 19087–19092 (2012).
[Crossref]

Sauer, M.

H. S. Heil, B. Schreiber, R. Götz, M. Emmerling, M.-C. Dabauvalle, G. Krohne, S. Höfling, M. Kamp, M. Sauer, and K. G. Heinze, “Sharpening emitter localization in front of a tuned mirror,” Light: Sci. Appl. 7(1), 99 (2018).
[Crossref]

C. Franke, M. Sauer, and S. van de Linde, “Photometry unlocks 3d information from 2d localization microscopy data,” Nat. Methods 14(1), 41–44 (2017).
[Crossref]

M. Heilemann, S. Van De Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, and M. Sauer, “Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes,” Angew. Chem., Int. Ed. 47(33), 6172–6176 (2008).
[Crossref]

Schreiber, B.

H. S. Heil, B. Schreiber, R. Götz, M. Emmerling, M.-C. Dabauvalle, G. Krohne, S. Höfling, M. Kamp, M. Sauer, and K. G. Heinze, “Sharpening emitter localization in front of a tuned mirror,” Light: Sci. Appl. 7(1), 99 (2018).
[Crossref]

Schüttpelz, M.

M. Heilemann, S. Van De Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, and M. Sauer, “Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes,” Angew. Chem., Int. Ed. 47(33), 6172–6176 (2008).
[Crossref]

Schütz, G. J.

Seefeldt, B.

M. Heilemann, S. Van De Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, and M. Sauer, “Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes,” Angew. Chem., Int. Ed. 47(33), 6172–6176 (2008).
[Crossref]

Seeger, S.

T. Ruckstuhl, J. Enderlein, S. Jung, and S. Seeger, “Forbidden light detection from single molecules,” Anal. Chem. 72(9), 2117–2123 (2000).
[Crossref]

Shtengel, G.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3d cellular ultrastructure,” Proc. Natl. Acad. Sci. 106(9), 3125–3130 (2009).
[Crossref]

Sivankutty, S.

S. Sivankutty, T. Barroca, C. Mayet, G. Dupuis, E. Fort, and S. Lévêque-Fort, “Confocal supercritical angle microscopy for cell membrane imaging,” Opt. Lett. 39(3), 555–558 (2014).
[Crossref]

S. Sivankutty, I. C. Hernández, N. Bourg, G. Dupuis, and S. Lévêque-Fort, “Supercritical angle fluorescence for enhanced axial sectioning in sted microscopy,” Methods (2019).

Sougrat, R.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3d cellular ultrastructure,” Proc. Natl. Acad. Sci. 106(9), 3125–3130 (2009).
[Crossref]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Speidel, M.

Spudich, J. A.

K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Methods 7(5), 377–381 (2010).
[Crossref]

Švindrych, Z.

M. Ovesnỳ, P. Křížek, J. Borkovec, Z. Švindrych, and G. M. Hagen, “Thunderstorm: a comprehensive imagej plug-in for palm and storm data analysis and super-resolution imaging,” Bioinformatics 30(16), 2389–2390 (2014).
[Crossref]

Tinnefeld, P.

M. Heilemann, S. Van De Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, and M. Sauer, “Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes,” Angew. Chem., Int. Ed. 47(33), 6172–6176 (2008).
[Crossref]

Toussaint Jr, K. C.

W. Liu, K. C. Toussaint Jr, C. Okoro, D. Zhu, Y. Chen, C. Kuang, and X. Liu, “Breaking the axial diffraction limit: A guide to axial super-resolution fluorescence microscopy,” Laser Photonics Rev. 12(8), 1700333 (2018).
[Crossref]

Unser, M.

van de Linde, S.

C. Franke, M. Sauer, and S. van de Linde, “Photometry unlocks 3d information from 2d localization microscopy data,” Nat. Methods 14(1), 41–44 (2017).
[Crossref]

M. Heilemann, S. Van De Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, and M. Sauer, “Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes,” Angew. Chem., Int. Ed. 47(33), 6172–6176 (2008).
[Crossref]

Vauzeilles, B.

C. Cabriel, N. Bourg, P. Jouchet, G. Dupuis, C. Leterrier, A. Baron, M.-A. Badet-Denisot, B. Vauzeilles, E. Fort, and S. Leveque-Fort, “Combining 3d single molecule localization strategies for reproducible bioimaging,” Nat. Commun. 10(1), 1980 (2019).
[Crossref]

Velas, L.

Verdes, D.

Wang, W.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
[Crossref]

Ward, E. S.

J. Chao, E. S. Ward, and R. J. Ober, “Fisher information theory for parameter estimation in single molecule microscopy: tutorial,” J. Opt. Soc. Am. A 33(7), B36–B57 (2016).
[Crossref]

P. Prabhat, S. Ram, E. S. Ward, and R. J. Ober, “Simultaneous imaging of different focal planes in fluorescence microscopy for the study of cellular dynamics in three dimensions,” IEEE Trans.on Nanobioscience 3(4), 237–242 (2004).
[Crossref]

R. J. Ober, S. Ram, and E. S. Ward, “Localization accuracy in single-molecule microscopy,” Biophys. J. 86(2), 1185–1200 (2004).
[Crossref]

Waterman, C. M.

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3d cellular ultrastructure,” Proc. Natl. Acad. Sci. 106(9), 3125–3130 (2009).
[Crossref]

Zanacchi, F. C.

H. Deschout, F. C. Zanacchi, M. Mlodzianoski, A. Diaspro, J. Bewersdorf, S. T. Hess, and K. Braeckmans, “Precisely and accurately localizing single emitters in fluorescence microscopy,” Nat. Methods 11(3), 253–266 (2014).
[Crossref]

Zelger, P.

Zhu, D.

W. Liu, K. C. Toussaint Jr, C. Okoro, D. Zhu, Y. Chen, C. Kuang, and X. Liu, “Breaking the axial diffraction limit: A guide to axial super-resolution fluorescence microscopy,” Laser Photonics Rev. 12(8), 1700333 (2018).
[Crossref]

Zhuang, X.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
[Crossref]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm),” Nat. Methods 3(10), 793–796 (2006).
[Crossref]

ACS Nano (1)

A. M. Chizhik, D. Ruhlandt, J. Pfaff, N. Karedla, A. I. Chizhik, I. Gregor, R. H. Kehlenbach, and J. Enderlein, “Three-dimensional reconstruction of nuclear envelope architecture using dual-color metal-induced energy transfer imaging,” ACS Nano 11(12), 11839–11846 (2017).
[Crossref]

Anal. Chem. (1)

T. Ruckstuhl, J. Enderlein, S. Jung, and S. Seeger, “Forbidden light detection from single molecules,” Anal. Chem. 72(9), 2117–2123 (2000).
[Crossref]

Angew. Chem., Int. Ed. (1)

M. Heilemann, S. Van De Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, and M. Sauer, “Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes,” Angew. Chem., Int. Ed. 47(33), 6172–6176 (2008).
[Crossref]

Bioinformatics (1)

M. Ovesnỳ, P. Křížek, J. Borkovec, Z. Švindrych, and G. M. Hagen, “Thunderstorm: a comprehensive imagej plug-in for palm and storm data analysis and super-resolution imaging,” Bioinformatics 30(16), 2389–2390 (2014).
[Crossref]

Biophys. J. (2)

R. J. Ober, S. Ram, and E. S. Ward, “Localization accuracy in single-molecule microscopy,” Biophys. J. 86(2), 1185–1200 (2004).
[Crossref]

S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref]

IEEE Trans.on Nanobioscience (1)

P. Prabhat, S. Ram, E. S. Ward, and R. J. Ober, “Simultaneous imaging of different focal planes in fluorescence microscopy for the study of cellular dynamics in three dimensions,” IEEE Trans.on Nanobioscience 3(4), 237–242 (2004).
[Crossref]

J. Biomed. Opt. (1)

D. Axelrod, “Selective imaging of surface fluorescence with very high aperture microscope objectives,” J. Biomed. Opt. 6(1), 6–14 (2001).
[Crossref]

J. Microsc. (1)

D. Axelrod, “Fluorescence excitation and imaging of single molecules near dielectric-coated and bare surfaces: a theoretical study,” J. Microsc. 247(2), 147–160 (2012).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

J. Phys. D: Appl. Phys. (1)

E. Fort and S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D: Appl. Phys. 41(1), 013001 (2008).
[Crossref]

Laser Photonics Rev. (1)

W. Liu, K. C. Toussaint Jr, C. Okoro, D. Zhu, Y. Chen, C. Kuang, and X. Liu, “Breaking the axial diffraction limit: A guide to axial super-resolution fluorescence microscopy,” Laser Photonics Rev. 12(8), 1700333 (2018).
[Crossref]

Light: Sci. Appl. (1)

H. S. Heil, B. Schreiber, R. Götz, M. Emmerling, M.-C. Dabauvalle, G. Krohne, S. Höfling, M. Kamp, M. Sauer, and K. G. Heinze, “Sharpening emitter localization in front of a tuned mirror,” Light: Sci. Appl. 7(1), 99 (2018).
[Crossref]

Nat. Commun. (1)

C. Cabriel, N. Bourg, P. Jouchet, G. Dupuis, C. Leterrier, A. Baron, M.-A. Badet-Denisot, B. Vauzeilles, E. Fort, and S. Leveque-Fort, “Combining 3d single molecule localization strategies for reproducible bioimaging,” Nat. Commun. 10(1), 1980 (2019).
[Crossref]

Nat. Methods (6)

H. Deschout, F. C. Zanacchi, M. Mlodzianoski, A. Diaspro, J. Bewersdorf, S. T. Hess, and K. Braeckmans, “Precisely and accurately localizing single emitters in fluorescence microscopy,” Nat. Methods 11(3), 253–266 (2014).
[Crossref]

M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub–100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5(6), 527–529 (2008).
[Crossref]

P. Bon, J. Linares-Loyez, M. Feyeux, K. Alessandri, B. Lounis, P. Nassoy, and L. Cognet, “Self-interference 3d super-resolution microscopy for deep tissue investigations,” Nat. Methods 15(6), 449–454 (2018).
[Crossref]

C. Franke, M. Sauer, and S. van de Linde, “Photometry unlocks 3d information from 2d localization microscopy data,” Nat. Methods 14(1), 41–44 (2017).
[Crossref]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm),” Nat. Methods 3(10), 793–796 (2006).
[Crossref]

K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Methods 7(5), 377–381 (2010).
[Crossref]

Nat. Photonics (1)

N. Bourg, C. Mayet, G. Dupuis, T. Barroca, P. Bon, S. Lécart, E. Fort, and S. Lévêque-Fort, “Direct optical nanoscopy with axially localized detection,” Nat. Photonics 9(9), 587–593 (2015).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

T. Barroca, K. Balaa, S. Lévêque-Fort, and E. Fort, “Full-field near-field optical microscope for cell imaging,” Phys. Rev. Lett. 108(21), 218101 (2012).
[Crossref]

Proc. Natl. Acad. Sci. (2)

G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3d cellular ultrastructure,” Proc. Natl. Acad. Sci. 106(9), 3125–3130 (2009).
[Crossref]

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. Moerner, “Simultaneous, accurate measurement of the 3d position and orientation of single molecules,” Proc. Natl. Acad. Sci. 109(47), 19087–19092 (2012).
[Crossref]

Science (2)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
[Crossref]

Other (2)

S. Sivankutty, I. C. Hernández, N. Bourg, G. Dupuis, and S. Lévêque-Fort, “Supercritical angle fluorescence for enhanced axial sectioning in sted microscopy,” Methods (2019).

T. Pengo, N. Olivier, and S. Manley, “Away from resolution, assessing the information content of super-resolution images,” arXiv preprint arXiv:1501.05807 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. Ways of exploiting SAF for localization microscopy. (a) SALM/DONALD uses beam splitting and a SAF stop in one of the two channels; the signal ratio of the two molecule images contains information about the z-position. (b) Off-focus imaging; Moving the objective towards the sample by a few hundred nanometers makes SAF light causing a significant PSF shape change whenever it appears. The z-position of each molecule can be determined by comparing its image with a theoretical model.
Fig. 2.
Fig. 2. Calculated localization precisions for SALM/DONALD, SALM/DONALD+ and off-focus imaging. (signal=2000 photons, background level=100 photons per pixel, wavelength=670 nm, pixel size=115 nm, image size=15$\times$15 pixel, NA=1.7).
Fig. 3.
Fig. 3. Dependency of localization precisions on z-position and defocus setting $\Gamma$, for NAs of 1.7 (a) and 1.49 (b), respectively. The precisions are stated in decadic log-scale. PSF images for 15 different $\Gamma$/z combinations are shown on the right.
Fig. 4.
Fig. 4. Localization precisions for x- and z-dipole emitters for a defocus setting of $\Gamma$=500 nm. The inset images in (b) show the respective dipole images for different distances to the coverslip. (signal=2000 photons, background level=100 photons per pixel, wavelength=670 nm, pixel size=115 nm, image size=15$\times$15 pixel, NA=1.7)
Fig. 5.
Fig. 5. Comparing off-focus imaging at a water/glass interface and in the water volume, for equal detected signal and background levels. (a) Graphical explanation of the compared measurement conditions. Imaging in the volume means that the coverslip is sufficiently far away from the emitter to prevent any near-field coupling effects. (b) Theoretically obtainable z-precisions for various distances of the emitter to the nominal focus point ($\delta$). A good off-focus range for volume imaging regarding z-localization is in between about $\delta$=150 and 400 nm. For surface-near imaging, an off-focus distance of $\Gamma$=600 nm is a good choice for axial localizations. There, the interface boosts the z-precision by almost up to a factor of 2. The images on the right show simulated molecule images for different values of $\delta$. The presence of the water/glass interface leads to clearly visible shape-changes of the PSF (signal=2000 photons, background level=100 photons per pixel, wavelength=670 nm, pixel size=115 nm, image size=15$\times$15 pixel, NA=1.49).
Fig. 6.
Fig. 6. Comparison of PSF model with averaged molecule images from the COS7 data of Fig. 7. The comparison is carried out separately for eight different z-intervals. The interval ranges are stated above the images. 1st row: PSF model used in the MLE algorithm. 2nd row: Averaged images of molecules contained in the respective z-bins. The error values at the bottom are defined as RMS differences between normalized model PSFs and normalized average molecule images.
Fig. 7.
Fig. 7. Experimental results from dSTORM measurements on stained microtubules (Alexa 647) in COS7 cells. (a) 3D localization map; z-positions are color-coded. (b) Detailed 3D views of the region marked with the white box. Every localization is represented by a 3D Gaussian blob whose widths correspond to the respective CRLB precision values. (c) Evaluation of localization precisions for molecules which repeatedly appear in successive camera frames. The dashed lines mark the CRLB-based theoretical precisions. (d) The projection of localizations along several short microtubule sections reveals their hollow core. Two white circles bound the region of expected fluorophore positions. (e) Histograms of x-, z- and radial coordinates of the molecule positions shown in (d). The x- and z- histograms show a weak minimum in the center. The radial histogram clearly reveals a depletion of localization events near the core. All numbers in the figure are in nm if not stated otherwise.
Fig. 8.
Fig. 8. Calibration measurement on a dye-coated ball lens. (a) Graphical explanation of the sample geometry and widefield and confocal fluorescence images of the sphere. (b) Results from an off-focus dSTORM measurement. The ground truth is marked by the solid black line. The dashed lines mark the standard deviation calculated from the CRLB.
Fig. 9.
Fig. 9. Field aberrations of the NA1.7 objective lens. The figures show magnitudes of first order astigmatism and coma. The graphs have been largely interpolated from measurements conducted at the points marked with blue circles.
Fig. 10.
Fig. 10. Energy ratios of SAF to UAF transmitted through the objective lens (Olympus APON60XOTIRF, NA 1.49), assuming an ideal, top-hat shaped coherent transfer function (CTF) and a measured one (wavelength=670 nm).
Fig. 11.
Fig. 11. Localization precisions for constant signal (2000 photons), but different background levels: 0, 100 and 200 photons per pixel (NA1.7, wavelength=670 nm, eff. pixel size=115 nm, image size=15$\times$15 pixels).
Fig. 12.
Fig. 12. BFP images of the NA1.7 objective lens when small fluorescent beads are dried onto a coverslip and immersed in air (left) and dSTORM buffer (right). The SAF/UAF transition zones are clearly visible. The bright spot is a reflection of the excitation laser, which focuses in the BFP.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

μ k , l ( θ ) = b + s h k , l ( x 0 , y 0 , z 0 ) .
F I u , v = k = 1 K l = 1 L 1 μ k , l μ k , l θ u μ k , l θ v ,
C R L B u = F I u , u 1 .
μ k , l ( b , s , z 0 ) = b + s h k , l ( z 0 ) .
Δ μ k , l Δ b = 1 ,   Δ μ k , l Δ s = h k , l .
μ x 0 Δ μ Δ k ^ ,   μ y 0 Δ μ Δ l ^ ,   μ z 0 Δ μ Δ z 0 .
F I u , v ( z 0 ) = k , l 1 μ ( 1 h Δ μ Δ k ^ Δ μ Δ l ^ Δ μ Δ z 0 h h 2 h Δ μ Δ k ^ h Δ μ Δ l ^ h Δ μ Δ z 0 Δ μ Δ k ^ h Δ μ Δ k ^ ( Δ μ Δ k ^ ) 2 Δ μ Δ k ^ Δ μ Δ l ^ Δ μ Δ k ^ Δ μ Δ z 0 Δ μ Δ l ^ h Δ μ Δ l ^ Δ μ Δ l ^ Δ μ Δ k ^ ( Δ μ Δ l ^ ) 2 Δ μ Δ l ^ Δ μ Δ z 0 Δ μ Δ z 0 h Δ μ Δ z 0 Δ μ Δ z 0 Δ μ Δ k ^ Δ μ Δ z 0 Δ μ Δ l ^ ( Δ μ Δ z 0 ) 2 ) .
σ s 1 ( z 0 ) = F I 1 2 , 2 1 ( z 0 ) . ;     σ s 2 ( z 0 ) = F I 2 2 , 2 1 ( z 0 ) . ,
σ z 0 ( z 0 ) = ( d R ( z 0 ) d z 0 ) 1 σ R ( z 0 )