Abstract

X-ray acoustic imaging is a hybrid biomedical imaging technique that can acoustically monitor X-ray absorption distribution in biological tissues through the X-ray induced acoustic effect. In this study, we developed a 3D volumetric X-ray-induced acoustic computed tomography (XACT) system with a portable pulsed X-ray source and an arc-shaped ultrasound array transducer. 3D volumetric XACT images are reconstructed via the back-projection algorithm, accelerated by a custom-developed graphics processing unit (GPU) software. Compared with a CPU-based software, the GPU software reconstructs an image over 40 times faster. We have successfully acquired 3D volumetric XACT images of various lead targets, and this work shows that the 3D volumetric XACT system can monitor a high-resolution X-ray dose distribution and image X-ray absorbing structures inside biological tissues.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Real-time GPU-accelerated processing and volumetric display for wide-field laser-scanning optical-resolution photoacoustic microscopy

Heesung Kang, Sang-Won Lee, Eun-Soo Lee, Se-Hwa Kim, and Tae Geol Lee
Biomed. Opt. Express 6(12) 4650-4660 (2015)

Sensitivity study of x-ray luminescence computed tomography

Michael C. Lun, Wei Zhang, and Changqing Li
Appl. Opt. 56(11) 3010-3019 (2017)

Soft tissue 3D imaging in the lab through optimised propagation-based phase contrast computed tomography

Berit Zeller-Plumhoff, Joshua L. Mead, Deck Tan, Tiina Roose, Geraldine F. Clough, Richard P. Boardman, and Philipp Schneider
Opt. Express 25(26) 33451-33468 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. Hickling, P. Léger, and I. El Naqa, “On the detectability of acoustic waves induced following irradiation by a radiotherapy linear accelerator,” IEEE Trans. Sonics Ultrason. 63(5), 683–690 (2016).
    [Crossref]
  2. S. Mascarenhas, H. Vargas, and C. Cesar, “A photoacoustical radiation dosimeter,” Med. Phys. 11(1), 73–74 (1984).
    [Crossref]
  3. S. Tang, K. Yang, Y. Chen, and L. Xiang, “X-ray-induced acoustic computed tomography for 3D breast imaging: A simulation study,” Med. Phys. 45, 1662–1672 (2018).
    [Crossref]
  4. L. Xiang, S. Tang, M. Ahmad, and L. Xing, “High resolution X-ray-induced acoustic tomography,” Sci. Rep. 6(1), 26118 (2016).
    [Crossref]
  5. W. Choi, E.-Y. Park, S. Jeon, and C. Kim, “Clinical photoacoustic imaging platforms,” Biomed. Eng. Lett. 8(2), 139–155 (2018).
    [Crossref]
  6. C. Lee, J. Kim, Y. Zhang, M. Jeon, C. Liu, L. Song, J. F. Lovell, and C. Kim, “Dual-color photoacoustic lymph node imaging using nanoformulated naphthalocyanines,” Biomaterials 73, 142–148 (2015).
    [Crossref]
  7. P. K. Upputuri and M. Pramanik, “Fast photoacoustic imaging systems using pulsed laser diodes: a review,” Biomed. Eng. Lett. 8(2), 167–181 (2018).
    [Crossref]
  8. D. Lee, S. Beack, J. Yoo, S. K. Kim, C. Lee, W. Kwon, S. K. Hahn, and C. Kim, “In Vivo Photoacoustic Imaging of Livers Using Biodegradable Hyaluronic Acid-Conjugated Silica Nanoparticles,” Adv. Funct. Mater. 28, 1800941 (2018).
    [Crossref]
  9. C. Kim and Z. Chen, Multimodal Photoacoustic Imaging: Systems, Applications, and Agents (Springer, 2018).
  10. J. Xia, C. Kim, and J. F. Lovell, “Opportunities for photoacoustic-guided drug delivery,” Curr. Drug Targets 16(6), 571–581 (2015).
    [Crossref]
  11. S. Kellnberger, D. Soliman, G. J. Tserevelakis, M. Seeger, H. Yang, A. Karlas, L. Prade, M. Omar, and V. Ntziachristos, “Optoacoustic microscopy at multiple discrete frequencies,” Light: Sci. Appl. 7(1), 109 (2018).
    [Crossref]
  12. I. Steinberg, D. M. Huland, O. Vermesh, H. E. Frostig, W. S. Tummers, and S. S. Gambhir, “Photoacoustic clinical imaging,” Photoacoustics 14, 77–98 (2019).
    [Crossref]
  13. W. Liu and J. Yao, “Photoacoustic microscopy: principles and biomedical applications,” Biomed. Eng. Lett. 8(2), 203–213 (2018).
    [Crossref]
  14. W. Liu, D. M. Shcherbakova, N. Kurupassery, Y. Li, Q. Zhou, V. V. Verkhusha, and J. Yao, “Quad-mode functional and molecular photoacoustic microscopy,” Sci. Rep. 8(1), 11123 (2018).
    [Crossref]
  15. S. Jeon, E.-Y. Park, W. Choi, R. Managuli, K. jong Lee, and C. Kim, “Real-time delay-multiply-and-sum beamforming with coherence factor for in vivo clinical photoacoustic imaging of humans,” Photoacoustics 15, 100136 (2019).
    [Crossref]
  16. B. Park, H. Lee, S. Jeon, J. Ahn, H. H. Kim, and C. Kim, “Reflection-mode switchable subwavelength Bessel-beam and Gaussian-beam photoacoustic microscopy in vivo,” J. Biophotonics 12, e201800215 (2019).
    [Crossref]
  17. S. Jeon, J. Kim, D. Lee, B. J. Woo, and C. Kim, “Review on practical photoacoustic microscopy,” Photoacoustics 15, 100141 (2019).
    [Crossref]
  18. M. Chen, H. J. Knox, Y. Tang, W. Liu, L. Nie, J. Chan, and J. Yao, “Simultaneous photoacoustic imaging of intravascular and tissue oxygenation,” Opt. Lett. 44(15), 3773–3776 (2019).
    [Crossref]
  19. J. Kim, J. Y. Kim, S. Jeon, J. W. Baik, S. H. Cho, and C. Kim, “Super-resolution localization photoacoustic microscopy using intrinsic red blood cells as contrast absorbers,” Light: Sci. Appl. 8(1), 103 (2019).
    [Crossref]
  20. F. Moradi, M. U. Khandaker, T. Alrefae, H. Ramazanian, and D. Bradley, “Monte Carlo simulations and analysis of transmitted gamma ray spectra through various tissue phantoms,” Appl. Radiat. Isot. 146, 120–126 (2019).
    [Crossref]
  21. H. Lei, W. Zhang, I. Oraiqat, Z. Liu, J. Ni, X. Wang, and I. El Naqa, “Toward in vivo dosimetry in external beam radiotherapy using x-ray acoustic computed tomography: A soft-tissue phantom study validation,” Med. Phys. 45, 4191–4200 (2018).
    [Crossref]
  22. S. Tang, C. Ramseyer, P. Samant, and L. Xiang, “X-ray-induced acoustic computed tomography of concrete infrastructure,” Appl. Phys. Lett. 112(6), 063504 (2018).
    [Crossref]
  23. R. A. Kruger, P. Liu, Y. R. Fang, and C. R. Appledorn, “Photoacoustic ultrasound (PAUS)—reconstruction tomography,” Med. Phys. 22(10), 1605–1609 (1995).
    [Crossref]
  24. K. P. Köstli, M. Frenz, H. P. Weber, G. Paltauf, and H. Schmidt-Kloiber, “Optoacoustic tomography: time-gated measurement of pressure distributions and image reconstruction,” Appl. Opt. 40(22), 3800–3809 (2001).
    [Crossref]
  25. S. Hickling, M. Hobson, and I. El Naqa, “Feasibility of x-ray acoustic computed tomography as a tool for noninvasive volumetric in vivo dosimetry,” Int. J. Radiat. Oncol., Biol., Phys. 90, S843 (2014).
    [Crossref]
  26. J. Kim, E.-Y. Park, Y. Jung, B. C. Kim, J. H. Kim, C.-Y. Yi, I. J. Kim, and C. Kim, “X-ray acoustic-based dosimetry using a focused ultrasound transducer and a medical linear accelerator,” IEEE Trans. Radiat. Plasma Med. Sci. 1(6), 534–540 (2017).
    [Crossref]
  27. L. Xiang, B. Han, C. Carpenter, G. Pratx, Y. Kuang, and L. Xing, “X-ray acoustic computed tomography with pulsed x-ray beam from a medical linear accelerator,” Med. Phys. 40(1), 010701 (2012).
    [Crossref]
  28. S. Tang, D. Nguyen, A. Zarafshani, C. Ramseyer, B. Zheng, H. Liu, and L. Xiang, “X-ray-induced acoustic computed tomography with an ultrasound transducer ring-array,” Appl. Phys. Lett. 110(10), 103504 (2017).
    [Crossref]
  29. M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E 71(1), 016706 (2005).
    [Crossref]
  30. J. Yao, H. Ke, S. Tai, Y. Zhou, and L. V. Wang, “Absolute photoacoustic thermometry in deep tissue,” Opt. Lett. 38(24), 5228–5231 (2013).
    [Crossref]
  31. R. Joshi, N. Bhatt, B. Thakore, P. Vyas, and A. Jani, “Grüneisen parameter and equations of states for cospper–High pressure study,” Computational Condensed Matter 15, 79–84 (2018).
    [Crossref]
  32. D. Huang, X. Liu, L. Su, C. Shao, R. Jia, and S. Hong, “Measuring Grüneisen parameter of iron and copper by an improved high pressure-jump method,” J. Phys. D: Appl. Phys. 40(17), 5327–5330 (2007).
    [Crossref]
  33. E. Petrova, S. Ermilov, R. Su, V. Nadvoretskiy, A. Conjusteau, and A. Oraevsky, “Using optoacoustic imaging for measuring the temperature dependence of Grüneisen parameter in optically absorbing solutions,” Opt. Express 21(21), 25077–25090 (2013).
    [Crossref]
  34. H.-P. F. Brecht, R. Su, M. P. Fronheiser, S. A. Ermilov, A. Conjusteau, and A. A. Oraevsky, “Whole-body three-dimensional optoacoustic tomography system for small animals,” J. Biomed. Opt. 14(6), 064007 (2009).
    [Crossref]
  35. S. M. Schoustra, D. Piras, R. Huijink, T. J. Op’t Root, L. Alink, W. M. Kobold, W. Steenbergen, and S. Manohar, “Twente Photoacoustic Mammoscope 2: system overview and three-dimensional vascular network images in healthy breasts,” J. Biomed. Opt. 24(12), 1 (2019).
    [Crossref]
  36. S. Hickling, H. Lei, M. Hobson, P. Léger, X. Wang, and I. El Naqa, “Experimental evaluation of x-ray acoustic computed tomography for radiotherapy dosimetry applications,” Med. Phys. 44(2), 608–617 (2017).
    [Crossref]

2019 (8)

S. Jeon, E.-Y. Park, W. Choi, R. Managuli, K. jong Lee, and C. Kim, “Real-time delay-multiply-and-sum beamforming with coherence factor for in vivo clinical photoacoustic imaging of humans,” Photoacoustics 15, 100136 (2019).
[Crossref]

B. Park, H. Lee, S. Jeon, J. Ahn, H. H. Kim, and C. Kim, “Reflection-mode switchable subwavelength Bessel-beam and Gaussian-beam photoacoustic microscopy in vivo,” J. Biophotonics 12, e201800215 (2019).
[Crossref]

S. Jeon, J. Kim, D. Lee, B. J. Woo, and C. Kim, “Review on practical photoacoustic microscopy,” Photoacoustics 15, 100141 (2019).
[Crossref]

M. Chen, H. J. Knox, Y. Tang, W. Liu, L. Nie, J. Chan, and J. Yao, “Simultaneous photoacoustic imaging of intravascular and tissue oxygenation,” Opt. Lett. 44(15), 3773–3776 (2019).
[Crossref]

J. Kim, J. Y. Kim, S. Jeon, J. W. Baik, S. H. Cho, and C. Kim, “Super-resolution localization photoacoustic microscopy using intrinsic red blood cells as contrast absorbers,” Light: Sci. Appl. 8(1), 103 (2019).
[Crossref]

F. Moradi, M. U. Khandaker, T. Alrefae, H. Ramazanian, and D. Bradley, “Monte Carlo simulations and analysis of transmitted gamma ray spectra through various tissue phantoms,” Appl. Radiat. Isot. 146, 120–126 (2019).
[Crossref]

I. Steinberg, D. M. Huland, O. Vermesh, H. E. Frostig, W. S. Tummers, and S. S. Gambhir, “Photoacoustic clinical imaging,” Photoacoustics 14, 77–98 (2019).
[Crossref]

S. M. Schoustra, D. Piras, R. Huijink, T. J. Op’t Root, L. Alink, W. M. Kobold, W. Steenbergen, and S. Manohar, “Twente Photoacoustic Mammoscope 2: system overview and three-dimensional vascular network images in healthy breasts,” J. Biomed. Opt. 24(12), 1 (2019).
[Crossref]

2018 (10)

R. Joshi, N. Bhatt, B. Thakore, P. Vyas, and A. Jani, “Grüneisen parameter and equations of states for cospper–High pressure study,” Computational Condensed Matter 15, 79–84 (2018).
[Crossref]

W. Liu and J. Yao, “Photoacoustic microscopy: principles and biomedical applications,” Biomed. Eng. Lett. 8(2), 203–213 (2018).
[Crossref]

W. Liu, D. M. Shcherbakova, N. Kurupassery, Y. Li, Q. Zhou, V. V. Verkhusha, and J. Yao, “Quad-mode functional and molecular photoacoustic microscopy,” Sci. Rep. 8(1), 11123 (2018).
[Crossref]

S. Kellnberger, D. Soliman, G. J. Tserevelakis, M. Seeger, H. Yang, A. Karlas, L. Prade, M. Omar, and V. Ntziachristos, “Optoacoustic microscopy at multiple discrete frequencies,” Light: Sci. Appl. 7(1), 109 (2018).
[Crossref]

H. Lei, W. Zhang, I. Oraiqat, Z. Liu, J. Ni, X. Wang, and I. El Naqa, “Toward in vivo dosimetry in external beam radiotherapy using x-ray acoustic computed tomography: A soft-tissue phantom study validation,” Med. Phys. 45, 4191–4200 (2018).
[Crossref]

S. Tang, C. Ramseyer, P. Samant, and L. Xiang, “X-ray-induced acoustic computed tomography of concrete infrastructure,” Appl. Phys. Lett. 112(6), 063504 (2018).
[Crossref]

S. Tang, K. Yang, Y. Chen, and L. Xiang, “X-ray-induced acoustic computed tomography for 3D breast imaging: A simulation study,” Med. Phys. 45, 1662–1672 (2018).
[Crossref]

W. Choi, E.-Y. Park, S. Jeon, and C. Kim, “Clinical photoacoustic imaging platforms,” Biomed. Eng. Lett. 8(2), 139–155 (2018).
[Crossref]

P. K. Upputuri and M. Pramanik, “Fast photoacoustic imaging systems using pulsed laser diodes: a review,” Biomed. Eng. Lett. 8(2), 167–181 (2018).
[Crossref]

D. Lee, S. Beack, J. Yoo, S. K. Kim, C. Lee, W. Kwon, S. K. Hahn, and C. Kim, “In Vivo Photoacoustic Imaging of Livers Using Biodegradable Hyaluronic Acid-Conjugated Silica Nanoparticles,” Adv. Funct. Mater. 28, 1800941 (2018).
[Crossref]

2017 (3)

J. Kim, E.-Y. Park, Y. Jung, B. C. Kim, J. H. Kim, C.-Y. Yi, I. J. Kim, and C. Kim, “X-ray acoustic-based dosimetry using a focused ultrasound transducer and a medical linear accelerator,” IEEE Trans. Radiat. Plasma Med. Sci. 1(6), 534–540 (2017).
[Crossref]

S. Tang, D. Nguyen, A. Zarafshani, C. Ramseyer, B. Zheng, H. Liu, and L. Xiang, “X-ray-induced acoustic computed tomography with an ultrasound transducer ring-array,” Appl. Phys. Lett. 110(10), 103504 (2017).
[Crossref]

S. Hickling, H. Lei, M. Hobson, P. Léger, X. Wang, and I. El Naqa, “Experimental evaluation of x-ray acoustic computed tomography for radiotherapy dosimetry applications,” Med. Phys. 44(2), 608–617 (2017).
[Crossref]

2016 (2)

L. Xiang, S. Tang, M. Ahmad, and L. Xing, “High resolution X-ray-induced acoustic tomography,” Sci. Rep. 6(1), 26118 (2016).
[Crossref]

S. Hickling, P. Léger, and I. El Naqa, “On the detectability of acoustic waves induced following irradiation by a radiotherapy linear accelerator,” IEEE Trans. Sonics Ultrason. 63(5), 683–690 (2016).
[Crossref]

2015 (2)

J. Xia, C. Kim, and J. F. Lovell, “Opportunities for photoacoustic-guided drug delivery,” Curr. Drug Targets 16(6), 571–581 (2015).
[Crossref]

C. Lee, J. Kim, Y. Zhang, M. Jeon, C. Liu, L. Song, J. F. Lovell, and C. Kim, “Dual-color photoacoustic lymph node imaging using nanoformulated naphthalocyanines,” Biomaterials 73, 142–148 (2015).
[Crossref]

2014 (1)

S. Hickling, M. Hobson, and I. El Naqa, “Feasibility of x-ray acoustic computed tomography as a tool for noninvasive volumetric in vivo dosimetry,” Int. J. Radiat. Oncol., Biol., Phys. 90, S843 (2014).
[Crossref]

2013 (2)

2012 (1)

L. Xiang, B. Han, C. Carpenter, G. Pratx, Y. Kuang, and L. Xing, “X-ray acoustic computed tomography with pulsed x-ray beam from a medical linear accelerator,” Med. Phys. 40(1), 010701 (2012).
[Crossref]

2009 (1)

H.-P. F. Brecht, R. Su, M. P. Fronheiser, S. A. Ermilov, A. Conjusteau, and A. A. Oraevsky, “Whole-body three-dimensional optoacoustic tomography system for small animals,” J. Biomed. Opt. 14(6), 064007 (2009).
[Crossref]

2007 (1)

D. Huang, X. Liu, L. Su, C. Shao, R. Jia, and S. Hong, “Measuring Grüneisen parameter of iron and copper by an improved high pressure-jump method,” J. Phys. D: Appl. Phys. 40(17), 5327–5330 (2007).
[Crossref]

2005 (1)

M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E 71(1), 016706 (2005).
[Crossref]

2001 (1)

1995 (1)

R. A. Kruger, P. Liu, Y. R. Fang, and C. R. Appledorn, “Photoacoustic ultrasound (PAUS)—reconstruction tomography,” Med. Phys. 22(10), 1605–1609 (1995).
[Crossref]

1984 (1)

S. Mascarenhas, H. Vargas, and C. Cesar, “A photoacoustical radiation dosimeter,” Med. Phys. 11(1), 73–74 (1984).
[Crossref]

Ahmad, M.

L. Xiang, S. Tang, M. Ahmad, and L. Xing, “High resolution X-ray-induced acoustic tomography,” Sci. Rep. 6(1), 26118 (2016).
[Crossref]

Ahn, J.

B. Park, H. Lee, S. Jeon, J. Ahn, H. H. Kim, and C. Kim, “Reflection-mode switchable subwavelength Bessel-beam and Gaussian-beam photoacoustic microscopy in vivo,” J. Biophotonics 12, e201800215 (2019).
[Crossref]

Alink, L.

S. M. Schoustra, D. Piras, R. Huijink, T. J. Op’t Root, L. Alink, W. M. Kobold, W. Steenbergen, and S. Manohar, “Twente Photoacoustic Mammoscope 2: system overview and three-dimensional vascular network images in healthy breasts,” J. Biomed. Opt. 24(12), 1 (2019).
[Crossref]

Alrefae, T.

F. Moradi, M. U. Khandaker, T. Alrefae, H. Ramazanian, and D. Bradley, “Monte Carlo simulations and analysis of transmitted gamma ray spectra through various tissue phantoms,” Appl. Radiat. Isot. 146, 120–126 (2019).
[Crossref]

Appledorn, C. R.

R. A. Kruger, P. Liu, Y. R. Fang, and C. R. Appledorn, “Photoacoustic ultrasound (PAUS)—reconstruction tomography,” Med. Phys. 22(10), 1605–1609 (1995).
[Crossref]

Baik, J. W.

J. Kim, J. Y. Kim, S. Jeon, J. W. Baik, S. H. Cho, and C. Kim, “Super-resolution localization photoacoustic microscopy using intrinsic red blood cells as contrast absorbers,” Light: Sci. Appl. 8(1), 103 (2019).
[Crossref]

Beack, S.

D. Lee, S. Beack, J. Yoo, S. K. Kim, C. Lee, W. Kwon, S. K. Hahn, and C. Kim, “In Vivo Photoacoustic Imaging of Livers Using Biodegradable Hyaluronic Acid-Conjugated Silica Nanoparticles,” Adv. Funct. Mater. 28, 1800941 (2018).
[Crossref]

Bhatt, N.

R. Joshi, N. Bhatt, B. Thakore, P. Vyas, and A. Jani, “Grüneisen parameter and equations of states for cospper–High pressure study,” Computational Condensed Matter 15, 79–84 (2018).
[Crossref]

Bradley, D.

F. Moradi, M. U. Khandaker, T. Alrefae, H. Ramazanian, and D. Bradley, “Monte Carlo simulations and analysis of transmitted gamma ray spectra through various tissue phantoms,” Appl. Radiat. Isot. 146, 120–126 (2019).
[Crossref]

Brecht, H.-P. F.

H.-P. F. Brecht, R. Su, M. P. Fronheiser, S. A. Ermilov, A. Conjusteau, and A. A. Oraevsky, “Whole-body three-dimensional optoacoustic tomography system for small animals,” J. Biomed. Opt. 14(6), 064007 (2009).
[Crossref]

Carpenter, C.

L. Xiang, B. Han, C. Carpenter, G. Pratx, Y. Kuang, and L. Xing, “X-ray acoustic computed tomography with pulsed x-ray beam from a medical linear accelerator,” Med. Phys. 40(1), 010701 (2012).
[Crossref]

Cesar, C.

S. Mascarenhas, H. Vargas, and C. Cesar, “A photoacoustical radiation dosimeter,” Med. Phys. 11(1), 73–74 (1984).
[Crossref]

Chan, J.

Chen, M.

Chen, Y.

S. Tang, K. Yang, Y. Chen, and L. Xiang, “X-ray-induced acoustic computed tomography for 3D breast imaging: A simulation study,” Med. Phys. 45, 1662–1672 (2018).
[Crossref]

Chen, Z.

C. Kim and Z. Chen, Multimodal Photoacoustic Imaging: Systems, Applications, and Agents (Springer, 2018).

Cho, S. H.

J. Kim, J. Y. Kim, S. Jeon, J. W. Baik, S. H. Cho, and C. Kim, “Super-resolution localization photoacoustic microscopy using intrinsic red blood cells as contrast absorbers,” Light: Sci. Appl. 8(1), 103 (2019).
[Crossref]

Choi, W.

S. Jeon, E.-Y. Park, W. Choi, R. Managuli, K. jong Lee, and C. Kim, “Real-time delay-multiply-and-sum beamforming with coherence factor for in vivo clinical photoacoustic imaging of humans,” Photoacoustics 15, 100136 (2019).
[Crossref]

W. Choi, E.-Y. Park, S. Jeon, and C. Kim, “Clinical photoacoustic imaging platforms,” Biomed. Eng. Lett. 8(2), 139–155 (2018).
[Crossref]

Conjusteau, A.

E. Petrova, S. Ermilov, R. Su, V. Nadvoretskiy, A. Conjusteau, and A. Oraevsky, “Using optoacoustic imaging for measuring the temperature dependence of Grüneisen parameter in optically absorbing solutions,” Opt. Express 21(21), 25077–25090 (2013).
[Crossref]

H.-P. F. Brecht, R. Su, M. P. Fronheiser, S. A. Ermilov, A. Conjusteau, and A. A. Oraevsky, “Whole-body three-dimensional optoacoustic tomography system for small animals,” J. Biomed. Opt. 14(6), 064007 (2009).
[Crossref]

El Naqa, I.

H. Lei, W. Zhang, I. Oraiqat, Z. Liu, J. Ni, X. Wang, and I. El Naqa, “Toward in vivo dosimetry in external beam radiotherapy using x-ray acoustic computed tomography: A soft-tissue phantom study validation,” Med. Phys. 45, 4191–4200 (2018).
[Crossref]

S. Hickling, H. Lei, M. Hobson, P. Léger, X. Wang, and I. El Naqa, “Experimental evaluation of x-ray acoustic computed tomography for radiotherapy dosimetry applications,” Med. Phys. 44(2), 608–617 (2017).
[Crossref]

S. Hickling, P. Léger, and I. El Naqa, “On the detectability of acoustic waves induced following irradiation by a radiotherapy linear accelerator,” IEEE Trans. Sonics Ultrason. 63(5), 683–690 (2016).
[Crossref]

S. Hickling, M. Hobson, and I. El Naqa, “Feasibility of x-ray acoustic computed tomography as a tool for noninvasive volumetric in vivo dosimetry,” Int. J. Radiat. Oncol., Biol., Phys. 90, S843 (2014).
[Crossref]

Ermilov, S.

Ermilov, S. A.

H.-P. F. Brecht, R. Su, M. P. Fronheiser, S. A. Ermilov, A. Conjusteau, and A. A. Oraevsky, “Whole-body three-dimensional optoacoustic tomography system for small animals,” J. Biomed. Opt. 14(6), 064007 (2009).
[Crossref]

Fang, Y. R.

R. A. Kruger, P. Liu, Y. R. Fang, and C. R. Appledorn, “Photoacoustic ultrasound (PAUS)—reconstruction tomography,” Med. Phys. 22(10), 1605–1609 (1995).
[Crossref]

Frenz, M.

Fronheiser, M. P.

H.-P. F. Brecht, R. Su, M. P. Fronheiser, S. A. Ermilov, A. Conjusteau, and A. A. Oraevsky, “Whole-body three-dimensional optoacoustic tomography system for small animals,” J. Biomed. Opt. 14(6), 064007 (2009).
[Crossref]

Frostig, H. E.

I. Steinberg, D. M. Huland, O. Vermesh, H. E. Frostig, W. S. Tummers, and S. S. Gambhir, “Photoacoustic clinical imaging,” Photoacoustics 14, 77–98 (2019).
[Crossref]

Gambhir, S. S.

I. Steinberg, D. M. Huland, O. Vermesh, H. E. Frostig, W. S. Tummers, and S. S. Gambhir, “Photoacoustic clinical imaging,” Photoacoustics 14, 77–98 (2019).
[Crossref]

Hahn, S. K.

D. Lee, S. Beack, J. Yoo, S. K. Kim, C. Lee, W. Kwon, S. K. Hahn, and C. Kim, “In Vivo Photoacoustic Imaging of Livers Using Biodegradable Hyaluronic Acid-Conjugated Silica Nanoparticles,” Adv. Funct. Mater. 28, 1800941 (2018).
[Crossref]

Han, B.

L. Xiang, B. Han, C. Carpenter, G. Pratx, Y. Kuang, and L. Xing, “X-ray acoustic computed tomography with pulsed x-ray beam from a medical linear accelerator,” Med. Phys. 40(1), 010701 (2012).
[Crossref]

Hickling, S.

S. Hickling, H. Lei, M. Hobson, P. Léger, X. Wang, and I. El Naqa, “Experimental evaluation of x-ray acoustic computed tomography for radiotherapy dosimetry applications,” Med. Phys. 44(2), 608–617 (2017).
[Crossref]

S. Hickling, P. Léger, and I. El Naqa, “On the detectability of acoustic waves induced following irradiation by a radiotherapy linear accelerator,” IEEE Trans. Sonics Ultrason. 63(5), 683–690 (2016).
[Crossref]

S. Hickling, M. Hobson, and I. El Naqa, “Feasibility of x-ray acoustic computed tomography as a tool for noninvasive volumetric in vivo dosimetry,” Int. J. Radiat. Oncol., Biol., Phys. 90, S843 (2014).
[Crossref]

Hobson, M.

S. Hickling, H. Lei, M. Hobson, P. Léger, X. Wang, and I. El Naqa, “Experimental evaluation of x-ray acoustic computed tomography for radiotherapy dosimetry applications,” Med. Phys. 44(2), 608–617 (2017).
[Crossref]

S. Hickling, M. Hobson, and I. El Naqa, “Feasibility of x-ray acoustic computed tomography as a tool for noninvasive volumetric in vivo dosimetry,” Int. J. Radiat. Oncol., Biol., Phys. 90, S843 (2014).
[Crossref]

Hong, S.

D. Huang, X. Liu, L. Su, C. Shao, R. Jia, and S. Hong, “Measuring Grüneisen parameter of iron and copper by an improved high pressure-jump method,” J. Phys. D: Appl. Phys. 40(17), 5327–5330 (2007).
[Crossref]

Huang, D.

D. Huang, X. Liu, L. Su, C. Shao, R. Jia, and S. Hong, “Measuring Grüneisen parameter of iron and copper by an improved high pressure-jump method,” J. Phys. D: Appl. Phys. 40(17), 5327–5330 (2007).
[Crossref]

Huijink, R.

S. M. Schoustra, D. Piras, R. Huijink, T. J. Op’t Root, L. Alink, W. M. Kobold, W. Steenbergen, and S. Manohar, “Twente Photoacoustic Mammoscope 2: system overview and three-dimensional vascular network images in healthy breasts,” J. Biomed. Opt. 24(12), 1 (2019).
[Crossref]

Huland, D. M.

I. Steinberg, D. M. Huland, O. Vermesh, H. E. Frostig, W. S. Tummers, and S. S. Gambhir, “Photoacoustic clinical imaging,” Photoacoustics 14, 77–98 (2019).
[Crossref]

Jani, A.

R. Joshi, N. Bhatt, B. Thakore, P. Vyas, and A. Jani, “Grüneisen parameter and equations of states for cospper–High pressure study,” Computational Condensed Matter 15, 79–84 (2018).
[Crossref]

Jeon, M.

C. Lee, J. Kim, Y. Zhang, M. Jeon, C. Liu, L. Song, J. F. Lovell, and C. Kim, “Dual-color photoacoustic lymph node imaging using nanoformulated naphthalocyanines,” Biomaterials 73, 142–148 (2015).
[Crossref]

Jeon, S.

S. Jeon, E.-Y. Park, W. Choi, R. Managuli, K. jong Lee, and C. Kim, “Real-time delay-multiply-and-sum beamforming with coherence factor for in vivo clinical photoacoustic imaging of humans,” Photoacoustics 15, 100136 (2019).
[Crossref]

B. Park, H. Lee, S. Jeon, J. Ahn, H. H. Kim, and C. Kim, “Reflection-mode switchable subwavelength Bessel-beam and Gaussian-beam photoacoustic microscopy in vivo,” J. Biophotonics 12, e201800215 (2019).
[Crossref]

J. Kim, J. Y. Kim, S. Jeon, J. W. Baik, S. H. Cho, and C. Kim, “Super-resolution localization photoacoustic microscopy using intrinsic red blood cells as contrast absorbers,” Light: Sci. Appl. 8(1), 103 (2019).
[Crossref]

S. Jeon, J. Kim, D. Lee, B. J. Woo, and C. Kim, “Review on practical photoacoustic microscopy,” Photoacoustics 15, 100141 (2019).
[Crossref]

W. Choi, E.-Y. Park, S. Jeon, and C. Kim, “Clinical photoacoustic imaging platforms,” Biomed. Eng. Lett. 8(2), 139–155 (2018).
[Crossref]

Jia, R.

D. Huang, X. Liu, L. Su, C. Shao, R. Jia, and S. Hong, “Measuring Grüneisen parameter of iron and copper by an improved high pressure-jump method,” J. Phys. D: Appl. Phys. 40(17), 5327–5330 (2007).
[Crossref]

jong Lee, K.

S. Jeon, E.-Y. Park, W. Choi, R. Managuli, K. jong Lee, and C. Kim, “Real-time delay-multiply-and-sum beamforming with coherence factor for in vivo clinical photoacoustic imaging of humans,” Photoacoustics 15, 100136 (2019).
[Crossref]

Joshi, R.

R. Joshi, N. Bhatt, B. Thakore, P. Vyas, and A. Jani, “Grüneisen parameter and equations of states for cospper–High pressure study,” Computational Condensed Matter 15, 79–84 (2018).
[Crossref]

Jung, Y.

J. Kim, E.-Y. Park, Y. Jung, B. C. Kim, J. H. Kim, C.-Y. Yi, I. J. Kim, and C. Kim, “X-ray acoustic-based dosimetry using a focused ultrasound transducer and a medical linear accelerator,” IEEE Trans. Radiat. Plasma Med. Sci. 1(6), 534–540 (2017).
[Crossref]

Karlas, A.

S. Kellnberger, D. Soliman, G. J. Tserevelakis, M. Seeger, H. Yang, A. Karlas, L. Prade, M. Omar, and V. Ntziachristos, “Optoacoustic microscopy at multiple discrete frequencies,” Light: Sci. Appl. 7(1), 109 (2018).
[Crossref]

Ke, H.

Kellnberger, S.

S. Kellnberger, D. Soliman, G. J. Tserevelakis, M. Seeger, H. Yang, A. Karlas, L. Prade, M. Omar, and V. Ntziachristos, “Optoacoustic microscopy at multiple discrete frequencies,” Light: Sci. Appl. 7(1), 109 (2018).
[Crossref]

Khandaker, M. U.

F. Moradi, M. U. Khandaker, T. Alrefae, H. Ramazanian, and D. Bradley, “Monte Carlo simulations and analysis of transmitted gamma ray spectra through various tissue phantoms,” Appl. Radiat. Isot. 146, 120–126 (2019).
[Crossref]

Kim, B. C.

J. Kim, E.-Y. Park, Y. Jung, B. C. Kim, J. H. Kim, C.-Y. Yi, I. J. Kim, and C. Kim, “X-ray acoustic-based dosimetry using a focused ultrasound transducer and a medical linear accelerator,” IEEE Trans. Radiat. Plasma Med. Sci. 1(6), 534–540 (2017).
[Crossref]

Kim, C.

S. Jeon, J. Kim, D. Lee, B. J. Woo, and C. Kim, “Review on practical photoacoustic microscopy,” Photoacoustics 15, 100141 (2019).
[Crossref]

B. Park, H. Lee, S. Jeon, J. Ahn, H. H. Kim, and C. Kim, “Reflection-mode switchable subwavelength Bessel-beam and Gaussian-beam photoacoustic microscopy in vivo,” J. Biophotonics 12, e201800215 (2019).
[Crossref]

J. Kim, J. Y. Kim, S. Jeon, J. W. Baik, S. H. Cho, and C. Kim, “Super-resolution localization photoacoustic microscopy using intrinsic red blood cells as contrast absorbers,” Light: Sci. Appl. 8(1), 103 (2019).
[Crossref]

S. Jeon, E.-Y. Park, W. Choi, R. Managuli, K. jong Lee, and C. Kim, “Real-time delay-multiply-and-sum beamforming with coherence factor for in vivo clinical photoacoustic imaging of humans,” Photoacoustics 15, 100136 (2019).
[Crossref]

W. Choi, E.-Y. Park, S. Jeon, and C. Kim, “Clinical photoacoustic imaging platforms,” Biomed. Eng. Lett. 8(2), 139–155 (2018).
[Crossref]

D. Lee, S. Beack, J. Yoo, S. K. Kim, C. Lee, W. Kwon, S. K. Hahn, and C. Kim, “In Vivo Photoacoustic Imaging of Livers Using Biodegradable Hyaluronic Acid-Conjugated Silica Nanoparticles,” Adv. Funct. Mater. 28, 1800941 (2018).
[Crossref]

J. Kim, E.-Y. Park, Y. Jung, B. C. Kim, J. H. Kim, C.-Y. Yi, I. J. Kim, and C. Kim, “X-ray acoustic-based dosimetry using a focused ultrasound transducer and a medical linear accelerator,” IEEE Trans. Radiat. Plasma Med. Sci. 1(6), 534–540 (2017).
[Crossref]

C. Lee, J. Kim, Y. Zhang, M. Jeon, C. Liu, L. Song, J. F. Lovell, and C. Kim, “Dual-color photoacoustic lymph node imaging using nanoformulated naphthalocyanines,” Biomaterials 73, 142–148 (2015).
[Crossref]

J. Xia, C. Kim, and J. F. Lovell, “Opportunities for photoacoustic-guided drug delivery,” Curr. Drug Targets 16(6), 571–581 (2015).
[Crossref]

C. Kim and Z. Chen, Multimodal Photoacoustic Imaging: Systems, Applications, and Agents (Springer, 2018).

Kim, H. H.

B. Park, H. Lee, S. Jeon, J. Ahn, H. H. Kim, and C. Kim, “Reflection-mode switchable subwavelength Bessel-beam and Gaussian-beam photoacoustic microscopy in vivo,” J. Biophotonics 12, e201800215 (2019).
[Crossref]

Kim, I. J.

J. Kim, E.-Y. Park, Y. Jung, B. C. Kim, J. H. Kim, C.-Y. Yi, I. J. Kim, and C. Kim, “X-ray acoustic-based dosimetry using a focused ultrasound transducer and a medical linear accelerator,” IEEE Trans. Radiat. Plasma Med. Sci. 1(6), 534–540 (2017).
[Crossref]

Kim, J.

J. Kim, J. Y. Kim, S. Jeon, J. W. Baik, S. H. Cho, and C. Kim, “Super-resolution localization photoacoustic microscopy using intrinsic red blood cells as contrast absorbers,” Light: Sci. Appl. 8(1), 103 (2019).
[Crossref]

S. Jeon, J. Kim, D. Lee, B. J. Woo, and C. Kim, “Review on practical photoacoustic microscopy,” Photoacoustics 15, 100141 (2019).
[Crossref]

J. Kim, E.-Y. Park, Y. Jung, B. C. Kim, J. H. Kim, C.-Y. Yi, I. J. Kim, and C. Kim, “X-ray acoustic-based dosimetry using a focused ultrasound transducer and a medical linear accelerator,” IEEE Trans. Radiat. Plasma Med. Sci. 1(6), 534–540 (2017).
[Crossref]

C. Lee, J. Kim, Y. Zhang, M. Jeon, C. Liu, L. Song, J. F. Lovell, and C. Kim, “Dual-color photoacoustic lymph node imaging using nanoformulated naphthalocyanines,” Biomaterials 73, 142–148 (2015).
[Crossref]

Kim, J. H.

J. Kim, E.-Y. Park, Y. Jung, B. C. Kim, J. H. Kim, C.-Y. Yi, I. J. Kim, and C. Kim, “X-ray acoustic-based dosimetry using a focused ultrasound transducer and a medical linear accelerator,” IEEE Trans. Radiat. Plasma Med. Sci. 1(6), 534–540 (2017).
[Crossref]

Kim, J. Y.

J. Kim, J. Y. Kim, S. Jeon, J. W. Baik, S. H. Cho, and C. Kim, “Super-resolution localization photoacoustic microscopy using intrinsic red blood cells as contrast absorbers,” Light: Sci. Appl. 8(1), 103 (2019).
[Crossref]

Kim, S. K.

D. Lee, S. Beack, J. Yoo, S. K. Kim, C. Lee, W. Kwon, S. K. Hahn, and C. Kim, “In Vivo Photoacoustic Imaging of Livers Using Biodegradable Hyaluronic Acid-Conjugated Silica Nanoparticles,” Adv. Funct. Mater. 28, 1800941 (2018).
[Crossref]

Knox, H. J.

Kobold, W. M.

S. M. Schoustra, D. Piras, R. Huijink, T. J. Op’t Root, L. Alink, W. M. Kobold, W. Steenbergen, and S. Manohar, “Twente Photoacoustic Mammoscope 2: system overview and three-dimensional vascular network images in healthy breasts,” J. Biomed. Opt. 24(12), 1 (2019).
[Crossref]

Köstli, K. P.

Kruger, R. A.

R. A. Kruger, P. Liu, Y. R. Fang, and C. R. Appledorn, “Photoacoustic ultrasound (PAUS)—reconstruction tomography,” Med. Phys. 22(10), 1605–1609 (1995).
[Crossref]

Kuang, Y.

L. Xiang, B. Han, C. Carpenter, G. Pratx, Y. Kuang, and L. Xing, “X-ray acoustic computed tomography with pulsed x-ray beam from a medical linear accelerator,” Med. Phys. 40(1), 010701 (2012).
[Crossref]

Kurupassery, N.

W. Liu, D. M. Shcherbakova, N. Kurupassery, Y. Li, Q. Zhou, V. V. Verkhusha, and J. Yao, “Quad-mode functional and molecular photoacoustic microscopy,” Sci. Rep. 8(1), 11123 (2018).
[Crossref]

Kwon, W.

D. Lee, S. Beack, J. Yoo, S. K. Kim, C. Lee, W. Kwon, S. K. Hahn, and C. Kim, “In Vivo Photoacoustic Imaging of Livers Using Biodegradable Hyaluronic Acid-Conjugated Silica Nanoparticles,” Adv. Funct. Mater. 28, 1800941 (2018).
[Crossref]

Lee, C.

D. Lee, S. Beack, J. Yoo, S. K. Kim, C. Lee, W. Kwon, S. K. Hahn, and C. Kim, “In Vivo Photoacoustic Imaging of Livers Using Biodegradable Hyaluronic Acid-Conjugated Silica Nanoparticles,” Adv. Funct. Mater. 28, 1800941 (2018).
[Crossref]

C. Lee, J. Kim, Y. Zhang, M. Jeon, C. Liu, L. Song, J. F. Lovell, and C. Kim, “Dual-color photoacoustic lymph node imaging using nanoformulated naphthalocyanines,” Biomaterials 73, 142–148 (2015).
[Crossref]

Lee, D.

S. Jeon, J. Kim, D. Lee, B. J. Woo, and C. Kim, “Review on practical photoacoustic microscopy,” Photoacoustics 15, 100141 (2019).
[Crossref]

D. Lee, S. Beack, J. Yoo, S. K. Kim, C. Lee, W. Kwon, S. K. Hahn, and C. Kim, “In Vivo Photoacoustic Imaging of Livers Using Biodegradable Hyaluronic Acid-Conjugated Silica Nanoparticles,” Adv. Funct. Mater. 28, 1800941 (2018).
[Crossref]

Lee, H.

B. Park, H. Lee, S. Jeon, J. Ahn, H. H. Kim, and C. Kim, “Reflection-mode switchable subwavelength Bessel-beam and Gaussian-beam photoacoustic microscopy in vivo,” J. Biophotonics 12, e201800215 (2019).
[Crossref]

Léger, P.

S. Hickling, H. Lei, M. Hobson, P. Léger, X. Wang, and I. El Naqa, “Experimental evaluation of x-ray acoustic computed tomography for radiotherapy dosimetry applications,” Med. Phys. 44(2), 608–617 (2017).
[Crossref]

S. Hickling, P. Léger, and I. El Naqa, “On the detectability of acoustic waves induced following irradiation by a radiotherapy linear accelerator,” IEEE Trans. Sonics Ultrason. 63(5), 683–690 (2016).
[Crossref]

Lei, H.

H. Lei, W. Zhang, I. Oraiqat, Z. Liu, J. Ni, X. Wang, and I. El Naqa, “Toward in vivo dosimetry in external beam radiotherapy using x-ray acoustic computed tomography: A soft-tissue phantom study validation,” Med. Phys. 45, 4191–4200 (2018).
[Crossref]

S. Hickling, H. Lei, M. Hobson, P. Léger, X. Wang, and I. El Naqa, “Experimental evaluation of x-ray acoustic computed tomography for radiotherapy dosimetry applications,” Med. Phys. 44(2), 608–617 (2017).
[Crossref]

Li, Y.

W. Liu, D. M. Shcherbakova, N. Kurupassery, Y. Li, Q. Zhou, V. V. Verkhusha, and J. Yao, “Quad-mode functional and molecular photoacoustic microscopy,” Sci. Rep. 8(1), 11123 (2018).
[Crossref]

Liu, C.

C. Lee, J. Kim, Y. Zhang, M. Jeon, C. Liu, L. Song, J. F. Lovell, and C. Kim, “Dual-color photoacoustic lymph node imaging using nanoformulated naphthalocyanines,” Biomaterials 73, 142–148 (2015).
[Crossref]

Liu, H.

S. Tang, D. Nguyen, A. Zarafshani, C. Ramseyer, B. Zheng, H. Liu, and L. Xiang, “X-ray-induced acoustic computed tomography with an ultrasound transducer ring-array,” Appl. Phys. Lett. 110(10), 103504 (2017).
[Crossref]

Liu, P.

R. A. Kruger, P. Liu, Y. R. Fang, and C. R. Appledorn, “Photoacoustic ultrasound (PAUS)—reconstruction tomography,” Med. Phys. 22(10), 1605–1609 (1995).
[Crossref]

Liu, W.

M. Chen, H. J. Knox, Y. Tang, W. Liu, L. Nie, J. Chan, and J. Yao, “Simultaneous photoacoustic imaging of intravascular and tissue oxygenation,” Opt. Lett. 44(15), 3773–3776 (2019).
[Crossref]

W. Liu and J. Yao, “Photoacoustic microscopy: principles and biomedical applications,” Biomed. Eng. Lett. 8(2), 203–213 (2018).
[Crossref]

W. Liu, D. M. Shcherbakova, N. Kurupassery, Y. Li, Q. Zhou, V. V. Verkhusha, and J. Yao, “Quad-mode functional and molecular photoacoustic microscopy,” Sci. Rep. 8(1), 11123 (2018).
[Crossref]

Liu, X.

D. Huang, X. Liu, L. Su, C. Shao, R. Jia, and S. Hong, “Measuring Grüneisen parameter of iron and copper by an improved high pressure-jump method,” J. Phys. D: Appl. Phys. 40(17), 5327–5330 (2007).
[Crossref]

Liu, Z.

H. Lei, W. Zhang, I. Oraiqat, Z. Liu, J. Ni, X. Wang, and I. El Naqa, “Toward in vivo dosimetry in external beam radiotherapy using x-ray acoustic computed tomography: A soft-tissue phantom study validation,” Med. Phys. 45, 4191–4200 (2018).
[Crossref]

Lovell, J. F.

J. Xia, C. Kim, and J. F. Lovell, “Opportunities for photoacoustic-guided drug delivery,” Curr. Drug Targets 16(6), 571–581 (2015).
[Crossref]

C. Lee, J. Kim, Y. Zhang, M. Jeon, C. Liu, L. Song, J. F. Lovell, and C. Kim, “Dual-color photoacoustic lymph node imaging using nanoformulated naphthalocyanines,” Biomaterials 73, 142–148 (2015).
[Crossref]

Managuli, R.

S. Jeon, E.-Y. Park, W. Choi, R. Managuli, K. jong Lee, and C. Kim, “Real-time delay-multiply-and-sum beamforming with coherence factor for in vivo clinical photoacoustic imaging of humans,” Photoacoustics 15, 100136 (2019).
[Crossref]

Manohar, S.

S. M. Schoustra, D. Piras, R. Huijink, T. J. Op’t Root, L. Alink, W. M. Kobold, W. Steenbergen, and S. Manohar, “Twente Photoacoustic Mammoscope 2: system overview and three-dimensional vascular network images in healthy breasts,” J. Biomed. Opt. 24(12), 1 (2019).
[Crossref]

Mascarenhas, S.

S. Mascarenhas, H. Vargas, and C. Cesar, “A photoacoustical radiation dosimeter,” Med. Phys. 11(1), 73–74 (1984).
[Crossref]

Moradi, F.

F. Moradi, M. U. Khandaker, T. Alrefae, H. Ramazanian, and D. Bradley, “Monte Carlo simulations and analysis of transmitted gamma ray spectra through various tissue phantoms,” Appl. Radiat. Isot. 146, 120–126 (2019).
[Crossref]

Nadvoretskiy, V.

Nguyen, D.

S. Tang, D. Nguyen, A. Zarafshani, C. Ramseyer, B. Zheng, H. Liu, and L. Xiang, “X-ray-induced acoustic computed tomography with an ultrasound transducer ring-array,” Appl. Phys. Lett. 110(10), 103504 (2017).
[Crossref]

Ni, J.

H. Lei, W. Zhang, I. Oraiqat, Z. Liu, J. Ni, X. Wang, and I. El Naqa, “Toward in vivo dosimetry in external beam radiotherapy using x-ray acoustic computed tomography: A soft-tissue phantom study validation,” Med. Phys. 45, 4191–4200 (2018).
[Crossref]

Nie, L.

Ntziachristos, V.

S. Kellnberger, D. Soliman, G. J. Tserevelakis, M. Seeger, H. Yang, A. Karlas, L. Prade, M. Omar, and V. Ntziachristos, “Optoacoustic microscopy at multiple discrete frequencies,” Light: Sci. Appl. 7(1), 109 (2018).
[Crossref]

Omar, M.

S. Kellnberger, D. Soliman, G. J. Tserevelakis, M. Seeger, H. Yang, A. Karlas, L. Prade, M. Omar, and V. Ntziachristos, “Optoacoustic microscopy at multiple discrete frequencies,” Light: Sci. Appl. 7(1), 109 (2018).
[Crossref]

Op’t Root, T. J.

S. M. Schoustra, D. Piras, R. Huijink, T. J. Op’t Root, L. Alink, W. M. Kobold, W. Steenbergen, and S. Manohar, “Twente Photoacoustic Mammoscope 2: system overview and three-dimensional vascular network images in healthy breasts,” J. Biomed. Opt. 24(12), 1 (2019).
[Crossref]

Oraevsky, A.

Oraevsky, A. A.

H.-P. F. Brecht, R. Su, M. P. Fronheiser, S. A. Ermilov, A. Conjusteau, and A. A. Oraevsky, “Whole-body three-dimensional optoacoustic tomography system for small animals,” J. Biomed. Opt. 14(6), 064007 (2009).
[Crossref]

Oraiqat, I.

H. Lei, W. Zhang, I. Oraiqat, Z. Liu, J. Ni, X. Wang, and I. El Naqa, “Toward in vivo dosimetry in external beam radiotherapy using x-ray acoustic computed tomography: A soft-tissue phantom study validation,” Med. Phys. 45, 4191–4200 (2018).
[Crossref]

Paltauf, G.

Park, B.

B. Park, H. Lee, S. Jeon, J. Ahn, H. H. Kim, and C. Kim, “Reflection-mode switchable subwavelength Bessel-beam and Gaussian-beam photoacoustic microscopy in vivo,” J. Biophotonics 12, e201800215 (2019).
[Crossref]

Park, E.-Y.

S. Jeon, E.-Y. Park, W. Choi, R. Managuli, K. jong Lee, and C. Kim, “Real-time delay-multiply-and-sum beamforming with coherence factor for in vivo clinical photoacoustic imaging of humans,” Photoacoustics 15, 100136 (2019).
[Crossref]

W. Choi, E.-Y. Park, S. Jeon, and C. Kim, “Clinical photoacoustic imaging platforms,” Biomed. Eng. Lett. 8(2), 139–155 (2018).
[Crossref]

J. Kim, E.-Y. Park, Y. Jung, B. C. Kim, J. H. Kim, C.-Y. Yi, I. J. Kim, and C. Kim, “X-ray acoustic-based dosimetry using a focused ultrasound transducer and a medical linear accelerator,” IEEE Trans. Radiat. Plasma Med. Sci. 1(6), 534–540 (2017).
[Crossref]

Petrova, E.

Piras, D.

S. M. Schoustra, D. Piras, R. Huijink, T. J. Op’t Root, L. Alink, W. M. Kobold, W. Steenbergen, and S. Manohar, “Twente Photoacoustic Mammoscope 2: system overview and three-dimensional vascular network images in healthy breasts,” J. Biomed. Opt. 24(12), 1 (2019).
[Crossref]

Prade, L.

S. Kellnberger, D. Soliman, G. J. Tserevelakis, M. Seeger, H. Yang, A. Karlas, L. Prade, M. Omar, and V. Ntziachristos, “Optoacoustic microscopy at multiple discrete frequencies,” Light: Sci. Appl. 7(1), 109 (2018).
[Crossref]

Pramanik, M.

P. K. Upputuri and M. Pramanik, “Fast photoacoustic imaging systems using pulsed laser diodes: a review,” Biomed. Eng. Lett. 8(2), 167–181 (2018).
[Crossref]

Pratx, G.

L. Xiang, B. Han, C. Carpenter, G. Pratx, Y. Kuang, and L. Xing, “X-ray acoustic computed tomography with pulsed x-ray beam from a medical linear accelerator,” Med. Phys. 40(1), 010701 (2012).
[Crossref]

Ramazanian, H.

F. Moradi, M. U. Khandaker, T. Alrefae, H. Ramazanian, and D. Bradley, “Monte Carlo simulations and analysis of transmitted gamma ray spectra through various tissue phantoms,” Appl. Radiat. Isot. 146, 120–126 (2019).
[Crossref]

Ramseyer, C.

S. Tang, C. Ramseyer, P. Samant, and L. Xiang, “X-ray-induced acoustic computed tomography of concrete infrastructure,” Appl. Phys. Lett. 112(6), 063504 (2018).
[Crossref]

S. Tang, D. Nguyen, A. Zarafshani, C. Ramseyer, B. Zheng, H. Liu, and L. Xiang, “X-ray-induced acoustic computed tomography with an ultrasound transducer ring-array,” Appl. Phys. Lett. 110(10), 103504 (2017).
[Crossref]

Samant, P.

S. Tang, C. Ramseyer, P. Samant, and L. Xiang, “X-ray-induced acoustic computed tomography of concrete infrastructure,” Appl. Phys. Lett. 112(6), 063504 (2018).
[Crossref]

Schmidt-Kloiber, H.

Schoustra, S. M.

S. M. Schoustra, D. Piras, R. Huijink, T. J. Op’t Root, L. Alink, W. M. Kobold, W. Steenbergen, and S. Manohar, “Twente Photoacoustic Mammoscope 2: system overview and three-dimensional vascular network images in healthy breasts,” J. Biomed. Opt. 24(12), 1 (2019).
[Crossref]

Seeger, M.

S. Kellnberger, D. Soliman, G. J. Tserevelakis, M. Seeger, H. Yang, A. Karlas, L. Prade, M. Omar, and V. Ntziachristos, “Optoacoustic microscopy at multiple discrete frequencies,” Light: Sci. Appl. 7(1), 109 (2018).
[Crossref]

Shao, C.

D. Huang, X. Liu, L. Su, C. Shao, R. Jia, and S. Hong, “Measuring Grüneisen parameter of iron and copper by an improved high pressure-jump method,” J. Phys. D: Appl. Phys. 40(17), 5327–5330 (2007).
[Crossref]

Shcherbakova, D. M.

W. Liu, D. M. Shcherbakova, N. Kurupassery, Y. Li, Q. Zhou, V. V. Verkhusha, and J. Yao, “Quad-mode functional and molecular photoacoustic microscopy,” Sci. Rep. 8(1), 11123 (2018).
[Crossref]

Soliman, D.

S. Kellnberger, D. Soliman, G. J. Tserevelakis, M. Seeger, H. Yang, A. Karlas, L. Prade, M. Omar, and V. Ntziachristos, “Optoacoustic microscopy at multiple discrete frequencies,” Light: Sci. Appl. 7(1), 109 (2018).
[Crossref]

Song, L.

C. Lee, J. Kim, Y. Zhang, M. Jeon, C. Liu, L. Song, J. F. Lovell, and C. Kim, “Dual-color photoacoustic lymph node imaging using nanoformulated naphthalocyanines,” Biomaterials 73, 142–148 (2015).
[Crossref]

Steenbergen, W.

S. M. Schoustra, D. Piras, R. Huijink, T. J. Op’t Root, L. Alink, W. M. Kobold, W. Steenbergen, and S. Manohar, “Twente Photoacoustic Mammoscope 2: system overview and three-dimensional vascular network images in healthy breasts,” J. Biomed. Opt. 24(12), 1 (2019).
[Crossref]

Steinberg, I.

I. Steinberg, D. M. Huland, O. Vermesh, H. E. Frostig, W. S. Tummers, and S. S. Gambhir, “Photoacoustic clinical imaging,” Photoacoustics 14, 77–98 (2019).
[Crossref]

Su, L.

D. Huang, X. Liu, L. Su, C. Shao, R. Jia, and S. Hong, “Measuring Grüneisen parameter of iron and copper by an improved high pressure-jump method,” J. Phys. D: Appl. Phys. 40(17), 5327–5330 (2007).
[Crossref]

Su, R.

E. Petrova, S. Ermilov, R. Su, V. Nadvoretskiy, A. Conjusteau, and A. Oraevsky, “Using optoacoustic imaging for measuring the temperature dependence of Grüneisen parameter in optically absorbing solutions,” Opt. Express 21(21), 25077–25090 (2013).
[Crossref]

H.-P. F. Brecht, R. Su, M. P. Fronheiser, S. A. Ermilov, A. Conjusteau, and A. A. Oraevsky, “Whole-body three-dimensional optoacoustic tomography system for small animals,” J. Biomed. Opt. 14(6), 064007 (2009).
[Crossref]

Tai, S.

Tang, S.

S. Tang, C. Ramseyer, P. Samant, and L. Xiang, “X-ray-induced acoustic computed tomography of concrete infrastructure,” Appl. Phys. Lett. 112(6), 063504 (2018).
[Crossref]

S. Tang, K. Yang, Y. Chen, and L. Xiang, “X-ray-induced acoustic computed tomography for 3D breast imaging: A simulation study,” Med. Phys. 45, 1662–1672 (2018).
[Crossref]

S. Tang, D. Nguyen, A. Zarafshani, C. Ramseyer, B. Zheng, H. Liu, and L. Xiang, “X-ray-induced acoustic computed tomography with an ultrasound transducer ring-array,” Appl. Phys. Lett. 110(10), 103504 (2017).
[Crossref]

L. Xiang, S. Tang, M. Ahmad, and L. Xing, “High resolution X-ray-induced acoustic tomography,” Sci. Rep. 6(1), 26118 (2016).
[Crossref]

Tang, Y.

Thakore, B.

R. Joshi, N. Bhatt, B. Thakore, P. Vyas, and A. Jani, “Grüneisen parameter and equations of states for cospper–High pressure study,” Computational Condensed Matter 15, 79–84 (2018).
[Crossref]

Tserevelakis, G. J.

S. Kellnberger, D. Soliman, G. J. Tserevelakis, M. Seeger, H. Yang, A. Karlas, L. Prade, M. Omar, and V. Ntziachristos, “Optoacoustic microscopy at multiple discrete frequencies,” Light: Sci. Appl. 7(1), 109 (2018).
[Crossref]

Tummers, W. S.

I. Steinberg, D. M. Huland, O. Vermesh, H. E. Frostig, W. S. Tummers, and S. S. Gambhir, “Photoacoustic clinical imaging,” Photoacoustics 14, 77–98 (2019).
[Crossref]

Upputuri, P. K.

P. K. Upputuri and M. Pramanik, “Fast photoacoustic imaging systems using pulsed laser diodes: a review,” Biomed. Eng. Lett. 8(2), 167–181 (2018).
[Crossref]

Vargas, H.

S. Mascarenhas, H. Vargas, and C. Cesar, “A photoacoustical radiation dosimeter,” Med. Phys. 11(1), 73–74 (1984).
[Crossref]

Verkhusha, V. V.

W. Liu, D. M. Shcherbakova, N. Kurupassery, Y. Li, Q. Zhou, V. V. Verkhusha, and J. Yao, “Quad-mode functional and molecular photoacoustic microscopy,” Sci. Rep. 8(1), 11123 (2018).
[Crossref]

Vermesh, O.

I. Steinberg, D. M. Huland, O. Vermesh, H. E. Frostig, W. S. Tummers, and S. S. Gambhir, “Photoacoustic clinical imaging,” Photoacoustics 14, 77–98 (2019).
[Crossref]

Vyas, P.

R. Joshi, N. Bhatt, B. Thakore, P. Vyas, and A. Jani, “Grüneisen parameter and equations of states for cospper–High pressure study,” Computational Condensed Matter 15, 79–84 (2018).
[Crossref]

Wang, L. V.

J. Yao, H. Ke, S. Tai, Y. Zhou, and L. V. Wang, “Absolute photoacoustic thermometry in deep tissue,” Opt. Lett. 38(24), 5228–5231 (2013).
[Crossref]

M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E 71(1), 016706 (2005).
[Crossref]

Wang, X.

H. Lei, W. Zhang, I. Oraiqat, Z. Liu, J. Ni, X. Wang, and I. El Naqa, “Toward in vivo dosimetry in external beam radiotherapy using x-ray acoustic computed tomography: A soft-tissue phantom study validation,” Med. Phys. 45, 4191–4200 (2018).
[Crossref]

S. Hickling, H. Lei, M. Hobson, P. Léger, X. Wang, and I. El Naqa, “Experimental evaluation of x-ray acoustic computed tomography for radiotherapy dosimetry applications,” Med. Phys. 44(2), 608–617 (2017).
[Crossref]

Weber, H. P.

Woo, B. J.

S. Jeon, J. Kim, D. Lee, B. J. Woo, and C. Kim, “Review on practical photoacoustic microscopy,” Photoacoustics 15, 100141 (2019).
[Crossref]

Xia, J.

J. Xia, C. Kim, and J. F. Lovell, “Opportunities for photoacoustic-guided drug delivery,” Curr. Drug Targets 16(6), 571–581 (2015).
[Crossref]

Xiang, L.

S. Tang, K. Yang, Y. Chen, and L. Xiang, “X-ray-induced acoustic computed tomography for 3D breast imaging: A simulation study,” Med. Phys. 45, 1662–1672 (2018).
[Crossref]

S. Tang, C. Ramseyer, P. Samant, and L. Xiang, “X-ray-induced acoustic computed tomography of concrete infrastructure,” Appl. Phys. Lett. 112(6), 063504 (2018).
[Crossref]

S. Tang, D. Nguyen, A. Zarafshani, C. Ramseyer, B. Zheng, H. Liu, and L. Xiang, “X-ray-induced acoustic computed tomography with an ultrasound transducer ring-array,” Appl. Phys. Lett. 110(10), 103504 (2017).
[Crossref]

L. Xiang, S. Tang, M. Ahmad, and L. Xing, “High resolution X-ray-induced acoustic tomography,” Sci. Rep. 6(1), 26118 (2016).
[Crossref]

L. Xiang, B. Han, C. Carpenter, G. Pratx, Y. Kuang, and L. Xing, “X-ray acoustic computed tomography with pulsed x-ray beam from a medical linear accelerator,” Med. Phys. 40(1), 010701 (2012).
[Crossref]

Xing, L.

L. Xiang, S. Tang, M. Ahmad, and L. Xing, “High resolution X-ray-induced acoustic tomography,” Sci. Rep. 6(1), 26118 (2016).
[Crossref]

L. Xiang, B. Han, C. Carpenter, G. Pratx, Y. Kuang, and L. Xing, “X-ray acoustic computed tomography with pulsed x-ray beam from a medical linear accelerator,” Med. Phys. 40(1), 010701 (2012).
[Crossref]

Xu, M.

M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E 71(1), 016706 (2005).
[Crossref]

Yang, H.

S. Kellnberger, D. Soliman, G. J. Tserevelakis, M. Seeger, H. Yang, A. Karlas, L. Prade, M. Omar, and V. Ntziachristos, “Optoacoustic microscopy at multiple discrete frequencies,” Light: Sci. Appl. 7(1), 109 (2018).
[Crossref]

Yang, K.

S. Tang, K. Yang, Y. Chen, and L. Xiang, “X-ray-induced acoustic computed tomography for 3D breast imaging: A simulation study,” Med. Phys. 45, 1662–1672 (2018).
[Crossref]

Yao, J.

M. Chen, H. J. Knox, Y. Tang, W. Liu, L. Nie, J. Chan, and J. Yao, “Simultaneous photoacoustic imaging of intravascular and tissue oxygenation,” Opt. Lett. 44(15), 3773–3776 (2019).
[Crossref]

W. Liu, D. M. Shcherbakova, N. Kurupassery, Y. Li, Q. Zhou, V. V. Verkhusha, and J. Yao, “Quad-mode functional and molecular photoacoustic microscopy,” Sci. Rep. 8(1), 11123 (2018).
[Crossref]

W. Liu and J. Yao, “Photoacoustic microscopy: principles and biomedical applications,” Biomed. Eng. Lett. 8(2), 203–213 (2018).
[Crossref]

J. Yao, H. Ke, S. Tai, Y. Zhou, and L. V. Wang, “Absolute photoacoustic thermometry in deep tissue,” Opt. Lett. 38(24), 5228–5231 (2013).
[Crossref]

Yi, C.-Y.

J. Kim, E.-Y. Park, Y. Jung, B. C. Kim, J. H. Kim, C.-Y. Yi, I. J. Kim, and C. Kim, “X-ray acoustic-based dosimetry using a focused ultrasound transducer and a medical linear accelerator,” IEEE Trans. Radiat. Plasma Med. Sci. 1(6), 534–540 (2017).
[Crossref]

Yoo, J.

D. Lee, S. Beack, J. Yoo, S. K. Kim, C. Lee, W. Kwon, S. K. Hahn, and C. Kim, “In Vivo Photoacoustic Imaging of Livers Using Biodegradable Hyaluronic Acid-Conjugated Silica Nanoparticles,” Adv. Funct. Mater. 28, 1800941 (2018).
[Crossref]

Zarafshani, A.

S. Tang, D. Nguyen, A. Zarafshani, C. Ramseyer, B. Zheng, H. Liu, and L. Xiang, “X-ray-induced acoustic computed tomography with an ultrasound transducer ring-array,” Appl. Phys. Lett. 110(10), 103504 (2017).
[Crossref]

Zhang, W.

H. Lei, W. Zhang, I. Oraiqat, Z. Liu, J. Ni, X. Wang, and I. El Naqa, “Toward in vivo dosimetry in external beam radiotherapy using x-ray acoustic computed tomography: A soft-tissue phantom study validation,” Med. Phys. 45, 4191–4200 (2018).
[Crossref]

Zhang, Y.

C. Lee, J. Kim, Y. Zhang, M. Jeon, C. Liu, L. Song, J. F. Lovell, and C. Kim, “Dual-color photoacoustic lymph node imaging using nanoformulated naphthalocyanines,” Biomaterials 73, 142–148 (2015).
[Crossref]

Zheng, B.

S. Tang, D. Nguyen, A. Zarafshani, C. Ramseyer, B. Zheng, H. Liu, and L. Xiang, “X-ray-induced acoustic computed tomography with an ultrasound transducer ring-array,” Appl. Phys. Lett. 110(10), 103504 (2017).
[Crossref]

Zhou, Q.

W. Liu, D. M. Shcherbakova, N. Kurupassery, Y. Li, Q. Zhou, V. V. Verkhusha, and J. Yao, “Quad-mode functional and molecular photoacoustic microscopy,” Sci. Rep. 8(1), 11123 (2018).
[Crossref]

Zhou, Y.

Adv. Funct. Mater. (1)

D. Lee, S. Beack, J. Yoo, S. K. Kim, C. Lee, W. Kwon, S. K. Hahn, and C. Kim, “In Vivo Photoacoustic Imaging of Livers Using Biodegradable Hyaluronic Acid-Conjugated Silica Nanoparticles,” Adv. Funct. Mater. 28, 1800941 (2018).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

S. Tang, C. Ramseyer, P. Samant, and L. Xiang, “X-ray-induced acoustic computed tomography of concrete infrastructure,” Appl. Phys. Lett. 112(6), 063504 (2018).
[Crossref]

S. Tang, D. Nguyen, A. Zarafshani, C. Ramseyer, B. Zheng, H. Liu, and L. Xiang, “X-ray-induced acoustic computed tomography with an ultrasound transducer ring-array,” Appl. Phys. Lett. 110(10), 103504 (2017).
[Crossref]

Appl. Radiat. Isot. (1)

F. Moradi, M. U. Khandaker, T. Alrefae, H. Ramazanian, and D. Bradley, “Monte Carlo simulations and analysis of transmitted gamma ray spectra through various tissue phantoms,” Appl. Radiat. Isot. 146, 120–126 (2019).
[Crossref]

Biomaterials (1)

C. Lee, J. Kim, Y. Zhang, M. Jeon, C. Liu, L. Song, J. F. Lovell, and C. Kim, “Dual-color photoacoustic lymph node imaging using nanoformulated naphthalocyanines,” Biomaterials 73, 142–148 (2015).
[Crossref]

Biomed. Eng. Lett. (3)

P. K. Upputuri and M. Pramanik, “Fast photoacoustic imaging systems using pulsed laser diodes: a review,” Biomed. Eng. Lett. 8(2), 167–181 (2018).
[Crossref]

W. Liu and J. Yao, “Photoacoustic microscopy: principles and biomedical applications,” Biomed. Eng. Lett. 8(2), 203–213 (2018).
[Crossref]

W. Choi, E.-Y. Park, S. Jeon, and C. Kim, “Clinical photoacoustic imaging platforms,” Biomed. Eng. Lett. 8(2), 139–155 (2018).
[Crossref]

Computational Condensed Matter (1)

R. Joshi, N. Bhatt, B. Thakore, P. Vyas, and A. Jani, “Grüneisen parameter and equations of states for cospper–High pressure study,” Computational Condensed Matter 15, 79–84 (2018).
[Crossref]

Curr. Drug Targets (1)

J. Xia, C. Kim, and J. F. Lovell, “Opportunities for photoacoustic-guided drug delivery,” Curr. Drug Targets 16(6), 571–581 (2015).
[Crossref]

IEEE Trans. Radiat. Plasma Med. Sci. (1)

J. Kim, E.-Y. Park, Y. Jung, B. C. Kim, J. H. Kim, C.-Y. Yi, I. J. Kim, and C. Kim, “X-ray acoustic-based dosimetry using a focused ultrasound transducer and a medical linear accelerator,” IEEE Trans. Radiat. Plasma Med. Sci. 1(6), 534–540 (2017).
[Crossref]

IEEE Trans. Sonics Ultrason. (1)

S. Hickling, P. Léger, and I. El Naqa, “On the detectability of acoustic waves induced following irradiation by a radiotherapy linear accelerator,” IEEE Trans. Sonics Ultrason. 63(5), 683–690 (2016).
[Crossref]

Int. J. Radiat. Oncol., Biol., Phys. (1)

S. Hickling, M. Hobson, and I. El Naqa, “Feasibility of x-ray acoustic computed tomography as a tool for noninvasive volumetric in vivo dosimetry,” Int. J. Radiat. Oncol., Biol., Phys. 90, S843 (2014).
[Crossref]

J. Biomed. Opt. (2)

H.-P. F. Brecht, R. Su, M. P. Fronheiser, S. A. Ermilov, A. Conjusteau, and A. A. Oraevsky, “Whole-body three-dimensional optoacoustic tomography system for small animals,” J. Biomed. Opt. 14(6), 064007 (2009).
[Crossref]

S. M. Schoustra, D. Piras, R. Huijink, T. J. Op’t Root, L. Alink, W. M. Kobold, W. Steenbergen, and S. Manohar, “Twente Photoacoustic Mammoscope 2: system overview and three-dimensional vascular network images in healthy breasts,” J. Biomed. Opt. 24(12), 1 (2019).
[Crossref]

J. Biophotonics (1)

B. Park, H. Lee, S. Jeon, J. Ahn, H. H. Kim, and C. Kim, “Reflection-mode switchable subwavelength Bessel-beam and Gaussian-beam photoacoustic microscopy in vivo,” J. Biophotonics 12, e201800215 (2019).
[Crossref]

J. Phys. D: Appl. Phys. (1)

D. Huang, X. Liu, L. Su, C. Shao, R. Jia, and S. Hong, “Measuring Grüneisen parameter of iron and copper by an improved high pressure-jump method,” J. Phys. D: Appl. Phys. 40(17), 5327–5330 (2007).
[Crossref]

Light: Sci. Appl. (2)

J. Kim, J. Y. Kim, S. Jeon, J. W. Baik, S. H. Cho, and C. Kim, “Super-resolution localization photoacoustic microscopy using intrinsic red blood cells as contrast absorbers,” Light: Sci. Appl. 8(1), 103 (2019).
[Crossref]

S. Kellnberger, D. Soliman, G. J. Tserevelakis, M. Seeger, H. Yang, A. Karlas, L. Prade, M. Omar, and V. Ntziachristos, “Optoacoustic microscopy at multiple discrete frequencies,” Light: Sci. Appl. 7(1), 109 (2018).
[Crossref]

Med. Phys. (6)

S. Mascarenhas, H. Vargas, and C. Cesar, “A photoacoustical radiation dosimeter,” Med. Phys. 11(1), 73–74 (1984).
[Crossref]

S. Tang, K. Yang, Y. Chen, and L. Xiang, “X-ray-induced acoustic computed tomography for 3D breast imaging: A simulation study,” Med. Phys. 45, 1662–1672 (2018).
[Crossref]

H. Lei, W. Zhang, I. Oraiqat, Z. Liu, J. Ni, X. Wang, and I. El Naqa, “Toward in vivo dosimetry in external beam radiotherapy using x-ray acoustic computed tomography: A soft-tissue phantom study validation,” Med. Phys. 45, 4191–4200 (2018).
[Crossref]

R. A. Kruger, P. Liu, Y. R. Fang, and C. R. Appledorn, “Photoacoustic ultrasound (PAUS)—reconstruction tomography,” Med. Phys. 22(10), 1605–1609 (1995).
[Crossref]

S. Hickling, H. Lei, M. Hobson, P. Léger, X. Wang, and I. El Naqa, “Experimental evaluation of x-ray acoustic computed tomography for radiotherapy dosimetry applications,” Med. Phys. 44(2), 608–617 (2017).
[Crossref]

L. Xiang, B. Han, C. Carpenter, G. Pratx, Y. Kuang, and L. Xing, “X-ray acoustic computed tomography with pulsed x-ray beam from a medical linear accelerator,” Med. Phys. 40(1), 010701 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Photoacoustics (3)

I. Steinberg, D. M. Huland, O. Vermesh, H. E. Frostig, W. S. Tummers, and S. S. Gambhir, “Photoacoustic clinical imaging,” Photoacoustics 14, 77–98 (2019).
[Crossref]

S. Jeon, J. Kim, D. Lee, B. J. Woo, and C. Kim, “Review on practical photoacoustic microscopy,” Photoacoustics 15, 100141 (2019).
[Crossref]

S. Jeon, E.-Y. Park, W. Choi, R. Managuli, K. jong Lee, and C. Kim, “Real-time delay-multiply-and-sum beamforming with coherence factor for in vivo clinical photoacoustic imaging of humans,” Photoacoustics 15, 100136 (2019).
[Crossref]

Phys. Rev. E (1)

M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E 71(1), 016706 (2005).
[Crossref]

Sci. Rep. (2)

W. Liu, D. M. Shcherbakova, N. Kurupassery, Y. Li, Q. Zhou, V. V. Verkhusha, and J. Yao, “Quad-mode functional and molecular photoacoustic microscopy,” Sci. Rep. 8(1), 11123 (2018).
[Crossref]

L. Xiang, S. Tang, M. Ahmad, and L. Xing, “High resolution X-ray-induced acoustic tomography,” Sci. Rep. 6(1), 26118 (2016).
[Crossref]

Other (1)

C. Kim and Z. Chen, Multimodal Photoacoustic Imaging: Systems, Applications, and Agents (Springer, 2018).

Supplementary Material (3)

NameDescription
» Visualization 1       Visualization 1. 3D volumetric XACT video of a rod-shaped lead target.
» Visualization 2       Visualization 2. 3D volumetric XACT video of a ribbon-shaped lead target.
» Visualization 3       Visualization 3. 3D volumetric XACT video of a cross-shaped lead targets in chicken tissues.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic of a 3D volumetric X-ray induced acoustic computed tomography system.
Fig. 2.
Fig. 2. . (a) Reconstruction geometry. R, radius of the arc-shaped US array transducer; ${{\varphi }_\textrm{i}}$, ith transducer element’s angle. (b) Pipeline of the custom-developed graphics processing unit (GPU) software. TR, transducer.
Fig. 3.
Fig. 3. (a) Schematic of X-ray induced acoustic (XA) signal generation and detection. (b) Mass energy absorption coefficients of Al, aluminum; Cu, copper; glass; C, graphite; Pb, lead; and Fe, steel. (c) Measured XA amplitude at 270 kVp.
Fig. 4.
Fig. 4. 3D volumetric X-ray induced acoustic computed tomography (XACT) of an elongated lead target. (a) Photograph. (b) 3D volumetric XACT image (Visualization 1). (c) Cross-sectional XACT image (X-Y plane). (d) XA amplitude profile acquired along the yellow dashed line in c. (e) XA amplitude profile along time. (f) Spectrum of the XA signal.
Fig. 5.
Fig. 5. 3D volumetric X-ray induced acoustic computed tomography of a ribbon-shaped lead sample and a cross-shaped lead targets in chicken tissues. (a1 and b1) Photograph of the lead targets. (a2 and b2) Reconstructed 3D volumetric XACT images (Visualization 2 and Visualization 3). Cross-sectional XACT images in (a3 and b3) X-Y and (a4 and b4) X-Z planes. (a5 and b5) XA amplitude profile acquired along the yellow dashed line in a3 and b3. (a6 and b6) XA amplitude profile acquired along the yellow dashed line in a4 and b4.

Tables (1)

Tables Icon

Table 1. Comparison of the execution times of the back-projection algorithm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

( 2 1 v s 2 t 2 ) p ( r 0 , t ) = β C p H ( r 0 , t ) t
p ( O , t ) = β 4 π C p d r | r | H ( r , τ ) τ | τ = | r | v s
d i = ( R cos φ i ρ cos θ ) 2 + ( ρ sin θ ) 2 + ( z R sin φ i )
p 0 = Γ η t h μ a F