Abstract

Single-molecule localization microscopy (SMLM) enables fluorescent microscopy with nanometric resolution. While localizing molecules close to the coverslip is relatively straightforward using high numerical aperture (NA) oil immersion (OI) objectives, optical aberrations impede SMLM deeper in watery samples. Adaptive optics (AO) with a deformable mirror (DM) can be used to correct such aberrations and to induce precise levels of astigmatism to encode the z-position of molecules. Alternatively, the use of water immersion (WI) objectives might be sufficient to limit the most dominant aberrations. Here we compare SMLM at various depths using either WI or OI with or without AO. In addition, we compare the performance of a cylindrical lens and a DM for astigmatism-based z-encoding. We find that OI combined with adaptive optics improves localization precision beyond the performance of WI-based imaging and enables deep (>10 µm) 3D localization.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Depth-dependent PSF calibration and aberration correction for 3D single-molecule localization

Yiming Li, Yu-Le Wu, Philipp Hoess, Markus Mund, and Jonas Ries
Biomed. Opt. Express 10(6) 2708-2718 (2019)

Computational correction of spatially variant optical aberrations in 3D single-molecule localization microscopy

T. Yan, C. J. Richardson, M. Zhang, and A. Gahlmann
Opt. Express 27(9) 12582-12599 (2019)

PSF shaping using adaptive optics for three-dimensional single-molecule super-resolution imaging and tracking

Ignacio Izeddin, Mohamed El Beheiry, Jordi Andilla, Daniel Ciepielewski, Xavier Darzacq, and Maxime Dahan
Opt. Express 20(5) 4957-4967 (2012)

References

  • View by:
  • |
  • |
  • |

  1. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
    [Crossref]
  2. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
    [Crossref]
  3. T. J. Gould, S. T. Hess, and J. Bewersdorf, “Optical nanoscopy: from acquisition to analysis,” Annu. Rev. Biomed. Eng. 14(1), 231–254 (2012).
    [Crossref]
  4. B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy,” Science 319(5864), 810–813 (2008).
    [Crossref]
  5. I. Izeddin, M. El Beheiry, J. Andilla, D. Ciepielewski, X. Darzacq, and M. Dahan, “PSF shaping using adaptive optics for three-dimensional single-molecule super-resolution imaging and tracking,” Opt. Express 20(5), 4957–4967 (2012).
    [Crossref]
  6. B. C. Coles, S. E. Webb, N. Schwartz, D. J. Rolfe, M. Martin-Fernandez, and V. Lo Schiavo, “Characterisation of the effects of optical aberrations in single molecule techniques,” Biomed. Opt. Express 7(5), 1755–1767 (2016).
    [Crossref]
  7. M. Schwertner, M. J. Booth, and T. Wilson, “Specimen-induced distortions in light microscopy,” J. Microsc. 228(1), 97–102 (2007).
    [Crossref]
  8. D. S. Wan, M. Rajadhyaksha, and R. H. Webb, “Analysis of spherical aberration of a water immersion objective: application to specimens with refractive indices 1.33–1.40,” J. Microsc. 197(3), 274–284 (2000).
    [Crossref]
  9. D. Burke, B. Patton, F. Huang, J. Bewersdorf, and M. J. Booth, “Adaptive optics correction of specimen-induced aberrations in single-molecule switching microscopy,” Optica 2(2), 177–185 (2015).
    [Crossref]
  10. M. J. Mlodzianoski, M. F. Juette, G. L. Beane, and J. Bewersdorf, “Experimental characterization of 3D localization techniques for particle-tracking and super-resolution microscopy,” Opt. Express 17(10), 8264–8277 (2009).
    [Crossref]
  11. Y. Li, Y. L. Wu, P. Hoess, M. Mund, and J. Ries, “Depth-dependent PSF calibration and aberration correction for 3D single-molecule localization,” Biomed. Opt. Express 10(6), 2708–2718 (2019).
    [Crossref]
  12. R. McGorty, J. Schnitzbauer, W. Zhang, and B. Huang, “Correction of depth-dependent aberrations in 3D single-molecule localization and super-resolution microscopy,” Opt. Lett. 39(2), 275–278 (2014).
    [Crossref]
  13. M. J. Mlodzianoski, P. J. Cheng-Hathaway, S. M. Bemiller, T. J. McCray, S. Liu, D. A. Miller, B. T. Lamb, G. E. Landreth, and F. Huang, “Active PSF shaping and adaptive optics enable volumetric localization microscopy through brain sections,” Nat. Methods 15(8), 583–586 (2018).
    [Crossref]
  14. A. Edelstein, N. Amodaj, K. Hoover, R. Vale, and N. Stuurman, “Computer control of microscopes using microManager,” Current Protocols in Molecular Biology, Frederick M. Ausubel, ed. (Wiley, 2010), Chapter 14.
  15. M. J. Booth, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. 99(9), 5788–5792 (2002).
    [Crossref]
  16. R. J. Noll, “Zernike Polynomials and Atmospheric-Turbulence,” J. Opt. Soc. Am. 66(3), 207–211 (1976).
    [Crossref]
  17. E. Hecht, Optics, 4th ed. (Addison-Wesley, Reading, Mass., 2002), pp. vi, 698 p.
  18. R. P. Tas, C. Y. Chen, E. A. Katrukha, M. Vleugel, M. Kok, M. Dogterom, A. Akhmanova, and L. C. Kapitein, “Guided by Light: Optical Control of Microtubule Gliding Assays,” Nano Lett. 18(12), 7524–7528 (2018).
    [Crossref]
  19. B. Huang, S. A. Jones, B. Brandenburg, and X. Zhuang, “Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution,” Nat. Methods 5(12), 1047–1052 (2008).
    [Crossref]
  20. A. Chazeau, E. A. Katrukha, C. C. Hoogenraad, and L. C. Kapitein, “Studying neuronal microtubule organization and microtubule-associated proteins using single molecule localization microscopy,” Methods Cell Biol. 131, 127–149 (2016).
    [Crossref]
  21. S. Stallinga and B. Rieger, “Accuracy of the gaussian point spread function model in 2D localization microscopy,” Opt. Express 18(24), 24461–24476 (2010).
    [Crossref]
  22. M. Siemons, C. N. Hulleman, R. O. Thorsen, C. S. Smith, and S. Stallinga, “High precision wavefront control in point spread function engineering for single emitter localization,” Opt. Express 26(7), 8397–8416 (2018).
    [Crossref]
  23. A. von Diezmann, M. Y. Lee, M. D. Lew, and W. E. Moerner, “Correcting field-dependent aberrations with nanoscale accuracy in three-dimensional single-molecule localization microscopy,” Optica 2(11), 985–993 (2015).
    [Crossref]
  24. Y. Shechtman, S. J. Sahl, A. S. Backer, and W. E. Moerner, “Optimal Point Spread Function Design for 3D Imaging,” Phys. Rev. Lett. 113(13), 133902 (2014).
    [Crossref]
  25. S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U. S. A. 106(9), 2995–2999 (2009).
    [Crossref]
  26. M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5(6), 527–529 (2008).
    [Crossref]

2019 (1)

2018 (3)

M. Siemons, C. N. Hulleman, R. O. Thorsen, C. S. Smith, and S. Stallinga, “High precision wavefront control in point spread function engineering for single emitter localization,” Opt. Express 26(7), 8397–8416 (2018).
[Crossref]

R. P. Tas, C. Y. Chen, E. A. Katrukha, M. Vleugel, M. Kok, M. Dogterom, A. Akhmanova, and L. C. Kapitein, “Guided by Light: Optical Control of Microtubule Gliding Assays,” Nano Lett. 18(12), 7524–7528 (2018).
[Crossref]

M. J. Mlodzianoski, P. J. Cheng-Hathaway, S. M. Bemiller, T. J. McCray, S. Liu, D. A. Miller, B. T. Lamb, G. E. Landreth, and F. Huang, “Active PSF shaping and adaptive optics enable volumetric localization microscopy through brain sections,” Nat. Methods 15(8), 583–586 (2018).
[Crossref]

2016 (2)

A. Chazeau, E. A. Katrukha, C. C. Hoogenraad, and L. C. Kapitein, “Studying neuronal microtubule organization and microtubule-associated proteins using single molecule localization microscopy,” Methods Cell Biol. 131, 127–149 (2016).
[Crossref]

B. C. Coles, S. E. Webb, N. Schwartz, D. J. Rolfe, M. Martin-Fernandez, and V. Lo Schiavo, “Characterisation of the effects of optical aberrations in single molecule techniques,” Biomed. Opt. Express 7(5), 1755–1767 (2016).
[Crossref]

2015 (2)

2014 (2)

R. McGorty, J. Schnitzbauer, W. Zhang, and B. Huang, “Correction of depth-dependent aberrations in 3D single-molecule localization and super-resolution microscopy,” Opt. Lett. 39(2), 275–278 (2014).
[Crossref]

Y. Shechtman, S. J. Sahl, A. S. Backer, and W. E. Moerner, “Optimal Point Spread Function Design for 3D Imaging,” Phys. Rev. Lett. 113(13), 133902 (2014).
[Crossref]

2012 (2)

2010 (1)

2009 (2)

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U. S. A. 106(9), 2995–2999 (2009).
[Crossref]

M. J. Mlodzianoski, M. F. Juette, G. L. Beane, and J. Bewersdorf, “Experimental characterization of 3D localization techniques for particle-tracking and super-resolution microscopy,” Opt. Express 17(10), 8264–8277 (2009).
[Crossref]

2008 (3)

M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5(6), 527–529 (2008).
[Crossref]

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy,” Science 319(5864), 810–813 (2008).
[Crossref]

B. Huang, S. A. Jones, B. Brandenburg, and X. Zhuang, “Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution,” Nat. Methods 5(12), 1047–1052 (2008).
[Crossref]

2007 (1)

M. Schwertner, M. J. Booth, and T. Wilson, “Specimen-induced distortions in light microscopy,” J. Microsc. 228(1), 97–102 (2007).
[Crossref]

2006 (2)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref]

2002 (1)

M. J. Booth, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. 99(9), 5788–5792 (2002).
[Crossref]

2000 (1)

D. S. Wan, M. Rajadhyaksha, and R. H. Webb, “Analysis of spherical aberration of a water immersion objective: application to specimens with refractive indices 1.33–1.40,” J. Microsc. 197(3), 274–284 (2000).
[Crossref]

1976 (1)

Akhmanova, A.

R. P. Tas, C. Y. Chen, E. A. Katrukha, M. Vleugel, M. Kok, M. Dogterom, A. Akhmanova, and L. C. Kapitein, “Guided by Light: Optical Control of Microtubule Gliding Assays,” Nano Lett. 18(12), 7524–7528 (2018).
[Crossref]

Amodaj, N.

A. Edelstein, N. Amodaj, K. Hoover, R. Vale, and N. Stuurman, “Computer control of microscopes using microManager,” Current Protocols in Molecular Biology, Frederick M. Ausubel, ed. (Wiley, 2010), Chapter 14.

Andilla, J.

Backer, A. S.

Y. Shechtman, S. J. Sahl, A. S. Backer, and W. E. Moerner, “Optimal Point Spread Function Design for 3D Imaging,” Phys. Rev. Lett. 113(13), 133902 (2014).
[Crossref]

Bates, M.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy,” Science 319(5864), 810–813 (2008).
[Crossref]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref]

Beane, G. L.

Bemiller, S. M.

M. J. Mlodzianoski, P. J. Cheng-Hathaway, S. M. Bemiller, T. J. McCray, S. Liu, D. A. Miller, B. T. Lamb, G. E. Landreth, and F. Huang, “Active PSF shaping and adaptive optics enable volumetric localization microscopy through brain sections,” Nat. Methods 15(8), 583–586 (2018).
[Crossref]

Bennett, B. T.

M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5(6), 527–529 (2008).
[Crossref]

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Bewersdorf, J.

D. Burke, B. Patton, F. Huang, J. Bewersdorf, and M. J. Booth, “Adaptive optics correction of specimen-induced aberrations in single-molecule switching microscopy,” Optica 2(2), 177–185 (2015).
[Crossref]

T. J. Gould, S. T. Hess, and J. Bewersdorf, “Optical nanoscopy: from acquisition to analysis,” Annu. Rev. Biomed. Eng. 14(1), 231–254 (2012).
[Crossref]

M. J. Mlodzianoski, M. F. Juette, G. L. Beane, and J. Bewersdorf, “Experimental characterization of 3D localization techniques for particle-tracking and super-resolution microscopy,” Opt. Express 17(10), 8264–8277 (2009).
[Crossref]

M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5(6), 527–529 (2008).
[Crossref]

Biteen, J. S.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U. S. A. 106(9), 2995–2999 (2009).
[Crossref]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Booth, M. J.

D. Burke, B. Patton, F. Huang, J. Bewersdorf, and M. J. Booth, “Adaptive optics correction of specimen-induced aberrations in single-molecule switching microscopy,” Optica 2(2), 177–185 (2015).
[Crossref]

M. Schwertner, M. J. Booth, and T. Wilson, “Specimen-induced distortions in light microscopy,” J. Microsc. 228(1), 97–102 (2007).
[Crossref]

M. J. Booth, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. 99(9), 5788–5792 (2002).
[Crossref]

Brandenburg, B.

B. Huang, S. A. Jones, B. Brandenburg, and X. Zhuang, “Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution,” Nat. Methods 5(12), 1047–1052 (2008).
[Crossref]

Burke, D.

Chazeau, A.

A. Chazeau, E. A. Katrukha, C. C. Hoogenraad, and L. C. Kapitein, “Studying neuronal microtubule organization and microtubule-associated proteins using single molecule localization microscopy,” Methods Cell Biol. 131, 127–149 (2016).
[Crossref]

Chen, C. Y.

R. P. Tas, C. Y. Chen, E. A. Katrukha, M. Vleugel, M. Kok, M. Dogterom, A. Akhmanova, and L. C. Kapitein, “Guided by Light: Optical Control of Microtubule Gliding Assays,” Nano Lett. 18(12), 7524–7528 (2018).
[Crossref]

Cheng-Hathaway, P. J.

M. J. Mlodzianoski, P. J. Cheng-Hathaway, S. M. Bemiller, T. J. McCray, S. Liu, D. A. Miller, B. T. Lamb, G. E. Landreth, and F. Huang, “Active PSF shaping and adaptive optics enable volumetric localization microscopy through brain sections,” Nat. Methods 15(8), 583–586 (2018).
[Crossref]

Ciepielewski, D.

Coles, B. C.

Dahan, M.

Darzacq, X.

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Dogterom, M.

R. P. Tas, C. Y. Chen, E. A. Katrukha, M. Vleugel, M. Kok, M. Dogterom, A. Akhmanova, and L. C. Kapitein, “Guided by Light: Optical Control of Microtubule Gliding Assays,” Nano Lett. 18(12), 7524–7528 (2018).
[Crossref]

Edelstein, A.

A. Edelstein, N. Amodaj, K. Hoover, R. Vale, and N. Stuurman, “Computer control of microscopes using microManager,” Current Protocols in Molecular Biology, Frederick M. Ausubel, ed. (Wiley, 2010), Chapter 14.

El Beheiry, M.

Gould, T. J.

T. J. Gould, S. T. Hess, and J. Bewersdorf, “Optical nanoscopy: from acquisition to analysis,” Annu. Rev. Biomed. Eng. 14(1), 231–254 (2012).
[Crossref]

M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5(6), 527–529 (2008).
[Crossref]

Hecht, E.

E. Hecht, Optics, 4th ed. (Addison-Wesley, Reading, Mass., 2002), pp. vi, 698 p.

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Hess, S. T.

T. J. Gould, S. T. Hess, and J. Bewersdorf, “Optical nanoscopy: from acquisition to analysis,” Annu. Rev. Biomed. Eng. 14(1), 231–254 (2012).
[Crossref]

M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5(6), 527–529 (2008).
[Crossref]

Hoess, P.

Hoogenraad, C. C.

A. Chazeau, E. A. Katrukha, C. C. Hoogenraad, and L. C. Kapitein, “Studying neuronal microtubule organization and microtubule-associated proteins using single molecule localization microscopy,” Methods Cell Biol. 131, 127–149 (2016).
[Crossref]

Hoover, K.

A. Edelstein, N. Amodaj, K. Hoover, R. Vale, and N. Stuurman, “Computer control of microscopes using microManager,” Current Protocols in Molecular Biology, Frederick M. Ausubel, ed. (Wiley, 2010), Chapter 14.

Huang, B.

R. McGorty, J. Schnitzbauer, W. Zhang, and B. Huang, “Correction of depth-dependent aberrations in 3D single-molecule localization and super-resolution microscopy,” Opt. Lett. 39(2), 275–278 (2014).
[Crossref]

B. Huang, S. A. Jones, B. Brandenburg, and X. Zhuang, “Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution,” Nat. Methods 5(12), 1047–1052 (2008).
[Crossref]

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy,” Science 319(5864), 810–813 (2008).
[Crossref]

Huang, F.

M. J. Mlodzianoski, P. J. Cheng-Hathaway, S. M. Bemiller, T. J. McCray, S. Liu, D. A. Miller, B. T. Lamb, G. E. Landreth, and F. Huang, “Active PSF shaping and adaptive optics enable volumetric localization microscopy through brain sections,” Nat. Methods 15(8), 583–586 (2018).
[Crossref]

D. Burke, B. Patton, F. Huang, J. Bewersdorf, and M. J. Booth, “Adaptive optics correction of specimen-induced aberrations in single-molecule switching microscopy,” Optica 2(2), 177–185 (2015).
[Crossref]

Hulleman, C. N.

Izeddin, I.

Jones, S. A.

B. Huang, S. A. Jones, B. Brandenburg, and X. Zhuang, “Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution,” Nat. Methods 5(12), 1047–1052 (2008).
[Crossref]

Juette, M. F.

M. J. Mlodzianoski, M. F. Juette, G. L. Beane, and J. Bewersdorf, “Experimental characterization of 3D localization techniques for particle-tracking and super-resolution microscopy,” Opt. Express 17(10), 8264–8277 (2009).
[Crossref]

M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5(6), 527–529 (2008).
[Crossref]

Juškaitis, R.

M. J. Booth, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. 99(9), 5788–5792 (2002).
[Crossref]

Kapitein, L. C.

R. P. Tas, C. Y. Chen, E. A. Katrukha, M. Vleugel, M. Kok, M. Dogterom, A. Akhmanova, and L. C. Kapitein, “Guided by Light: Optical Control of Microtubule Gliding Assays,” Nano Lett. 18(12), 7524–7528 (2018).
[Crossref]

A. Chazeau, E. A. Katrukha, C. C. Hoogenraad, and L. C. Kapitein, “Studying neuronal microtubule organization and microtubule-associated proteins using single molecule localization microscopy,” Methods Cell Biol. 131, 127–149 (2016).
[Crossref]

Katrukha, E. A.

R. P. Tas, C. Y. Chen, E. A. Katrukha, M. Vleugel, M. Kok, M. Dogterom, A. Akhmanova, and L. C. Kapitein, “Guided by Light: Optical Control of Microtubule Gliding Assays,” Nano Lett. 18(12), 7524–7528 (2018).
[Crossref]

A. Chazeau, E. A. Katrukha, C. C. Hoogenraad, and L. C. Kapitein, “Studying neuronal microtubule organization and microtubule-associated proteins using single molecule localization microscopy,” Methods Cell Biol. 131, 127–149 (2016).
[Crossref]

Kok, M.

R. P. Tas, C. Y. Chen, E. A. Katrukha, M. Vleugel, M. Kok, M. Dogterom, A. Akhmanova, and L. C. Kapitein, “Guided by Light: Optical Control of Microtubule Gliding Assays,” Nano Lett. 18(12), 7524–7528 (2018).
[Crossref]

Lamb, B. T.

M. J. Mlodzianoski, P. J. Cheng-Hathaway, S. M. Bemiller, T. J. McCray, S. Liu, D. A. Miller, B. T. Lamb, G. E. Landreth, and F. Huang, “Active PSF shaping and adaptive optics enable volumetric localization microscopy through brain sections,” Nat. Methods 15(8), 583–586 (2018).
[Crossref]

Landreth, G. E.

M. J. Mlodzianoski, P. J. Cheng-Hathaway, S. M. Bemiller, T. J. McCray, S. Liu, D. A. Miller, B. T. Lamb, G. E. Landreth, and F. Huang, “Active PSF shaping and adaptive optics enable volumetric localization microscopy through brain sections,” Nat. Methods 15(8), 583–586 (2018).
[Crossref]

Lee, M. Y.

Lessard, M. D.

M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5(6), 527–529 (2008).
[Crossref]

Lew, M. D.

Li, Y.

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Liu, N.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U. S. A. 106(9), 2995–2999 (2009).
[Crossref]

Liu, S.

M. J. Mlodzianoski, P. J. Cheng-Hathaway, S. M. Bemiller, T. J. McCray, S. Liu, D. A. Miller, B. T. Lamb, G. E. Landreth, and F. Huang, “Active PSF shaping and adaptive optics enable volumetric localization microscopy through brain sections,” Nat. Methods 15(8), 583–586 (2018).
[Crossref]

Lo Schiavo, V.

Lord, S. J.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U. S. A. 106(9), 2995–2999 (2009).
[Crossref]

Martin-Fernandez, M.

McCray, T. J.

M. J. Mlodzianoski, P. J. Cheng-Hathaway, S. M. Bemiller, T. J. McCray, S. Liu, D. A. Miller, B. T. Lamb, G. E. Landreth, and F. Huang, “Active PSF shaping and adaptive optics enable volumetric localization microscopy through brain sections,” Nat. Methods 15(8), 583–586 (2018).
[Crossref]

McGorty, R.

Miller, D. A.

M. J. Mlodzianoski, P. J. Cheng-Hathaway, S. M. Bemiller, T. J. McCray, S. Liu, D. A. Miller, B. T. Lamb, G. E. Landreth, and F. Huang, “Active PSF shaping and adaptive optics enable volumetric localization microscopy through brain sections,” Nat. Methods 15(8), 583–586 (2018).
[Crossref]

Mlodzianoski, M. J.

M. J. Mlodzianoski, P. J. Cheng-Hathaway, S. M. Bemiller, T. J. McCray, S. Liu, D. A. Miller, B. T. Lamb, G. E. Landreth, and F. Huang, “Active PSF shaping and adaptive optics enable volumetric localization microscopy through brain sections,” Nat. Methods 15(8), 583–586 (2018).
[Crossref]

M. J. Mlodzianoski, M. F. Juette, G. L. Beane, and J. Bewersdorf, “Experimental characterization of 3D localization techniques for particle-tracking and super-resolution microscopy,” Opt. Express 17(10), 8264–8277 (2009).
[Crossref]

M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5(6), 527–529 (2008).
[Crossref]

Moerner, W. E.

A. von Diezmann, M. Y. Lee, M. D. Lew, and W. E. Moerner, “Correcting field-dependent aberrations with nanoscale accuracy in three-dimensional single-molecule localization microscopy,” Optica 2(11), 985–993 (2015).
[Crossref]

Y. Shechtman, S. J. Sahl, A. S. Backer, and W. E. Moerner, “Optimal Point Spread Function Design for 3D Imaging,” Phys. Rev. Lett. 113(13), 133902 (2014).
[Crossref]

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U. S. A. 106(9), 2995–2999 (2009).
[Crossref]

Mund, M.

Nagpure, B. S.

M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5(6), 527–529 (2008).
[Crossref]

Neil, M. A. A.

M. J. Booth, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. 99(9), 5788–5792 (2002).
[Crossref]

Noll, R. J.

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Patton, B.

Pavani, S. R. P.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U. S. A. 106(9), 2995–2999 (2009).
[Crossref]

Piestun, R.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U. S. A. 106(9), 2995–2999 (2009).
[Crossref]

Rajadhyaksha, M.

D. S. Wan, M. Rajadhyaksha, and R. H. Webb, “Analysis of spherical aberration of a water immersion objective: application to specimens with refractive indices 1.33–1.40,” J. Microsc. 197(3), 274–284 (2000).
[Crossref]

Rieger, B.

Ries, J.

Rolfe, D. J.

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref]

Sahl, S. J.

Y. Shechtman, S. J. Sahl, A. S. Backer, and W. E. Moerner, “Optimal Point Spread Function Design for 3D Imaging,” Phys. Rev. Lett. 113(13), 133902 (2014).
[Crossref]

Schnitzbauer, J.

Schwartz, N.

Schwertner, M.

M. Schwertner, M. J. Booth, and T. Wilson, “Specimen-induced distortions in light microscopy,” J. Microsc. 228(1), 97–102 (2007).
[Crossref]

Shechtman, Y.

Y. Shechtman, S. J. Sahl, A. S. Backer, and W. E. Moerner, “Optimal Point Spread Function Design for 3D Imaging,” Phys. Rev. Lett. 113(13), 133902 (2014).
[Crossref]

Siemons, M.

Smith, C. S.

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Stallinga, S.

Stuurman, N.

A. Edelstein, N. Amodaj, K. Hoover, R. Vale, and N. Stuurman, “Computer control of microscopes using microManager,” Current Protocols in Molecular Biology, Frederick M. Ausubel, ed. (Wiley, 2010), Chapter 14.

Tas, R. P.

R. P. Tas, C. Y. Chen, E. A. Katrukha, M. Vleugel, M. Kok, M. Dogterom, A. Akhmanova, and L. C. Kapitein, “Guided by Light: Optical Control of Microtubule Gliding Assays,” Nano Lett. 18(12), 7524–7528 (2018).
[Crossref]

Thompson, M. A.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U. S. A. 106(9), 2995–2999 (2009).
[Crossref]

Thorsen, R. O.

Twieg, R. J.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U. S. A. 106(9), 2995–2999 (2009).
[Crossref]

Vale, R.

A. Edelstein, N. Amodaj, K. Hoover, R. Vale, and N. Stuurman, “Computer control of microscopes using microManager,” Current Protocols in Molecular Biology, Frederick M. Ausubel, ed. (Wiley, 2010), Chapter 14.

Vleugel, M.

R. P. Tas, C. Y. Chen, E. A. Katrukha, M. Vleugel, M. Kok, M. Dogterom, A. Akhmanova, and L. C. Kapitein, “Guided by Light: Optical Control of Microtubule Gliding Assays,” Nano Lett. 18(12), 7524–7528 (2018).
[Crossref]

von Diezmann, A.

Wan, D. S.

D. S. Wan, M. Rajadhyaksha, and R. H. Webb, “Analysis of spherical aberration of a water immersion objective: application to specimens with refractive indices 1.33–1.40,” J. Microsc. 197(3), 274–284 (2000).
[Crossref]

Wang, W.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy,” Science 319(5864), 810–813 (2008).
[Crossref]

Webb, R. H.

D. S. Wan, M. Rajadhyaksha, and R. H. Webb, “Analysis of spherical aberration of a water immersion objective: application to specimens with refractive indices 1.33–1.40,” J. Microsc. 197(3), 274–284 (2000).
[Crossref]

Webb, S. E.

Wilson, T.

M. Schwertner, M. J. Booth, and T. Wilson, “Specimen-induced distortions in light microscopy,” J. Microsc. 228(1), 97–102 (2007).
[Crossref]

M. J. Booth, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. 99(9), 5788–5792 (2002).
[Crossref]

Wu, Y. L.

Zhang, W.

Zhuang, X.

B. Huang, S. A. Jones, B. Brandenburg, and X. Zhuang, “Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution,” Nat. Methods 5(12), 1047–1052 (2008).
[Crossref]

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy,” Science 319(5864), 810–813 (2008).
[Crossref]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref]

Annu. Rev. Biomed. Eng. (1)

T. J. Gould, S. T. Hess, and J. Bewersdorf, “Optical nanoscopy: from acquisition to analysis,” Annu. Rev. Biomed. Eng. 14(1), 231–254 (2012).
[Crossref]

Biomed. Opt. Express (2)

J. Microsc. (2)

M. Schwertner, M. J. Booth, and T. Wilson, “Specimen-induced distortions in light microscopy,” J. Microsc. 228(1), 97–102 (2007).
[Crossref]

D. S. Wan, M. Rajadhyaksha, and R. H. Webb, “Analysis of spherical aberration of a water immersion objective: application to specimens with refractive indices 1.33–1.40,” J. Microsc. 197(3), 274–284 (2000).
[Crossref]

J. Opt. Soc. Am. (1)

Methods Cell Biol. (1)

A. Chazeau, E. A. Katrukha, C. C. Hoogenraad, and L. C. Kapitein, “Studying neuronal microtubule organization and microtubule-associated proteins using single molecule localization microscopy,” Methods Cell Biol. 131, 127–149 (2016).
[Crossref]

Nano Lett. (1)

R. P. Tas, C. Y. Chen, E. A. Katrukha, M. Vleugel, M. Kok, M. Dogterom, A. Akhmanova, and L. C. Kapitein, “Guided by Light: Optical Control of Microtubule Gliding Assays,” Nano Lett. 18(12), 7524–7528 (2018).
[Crossref]

Nat. Methods (4)

B. Huang, S. A. Jones, B. Brandenburg, and X. Zhuang, “Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution,” Nat. Methods 5(12), 1047–1052 (2008).
[Crossref]

M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5(6), 527–529 (2008).
[Crossref]

M. J. Mlodzianoski, P. J. Cheng-Hathaway, S. M. Bemiller, T. J. McCray, S. Liu, D. A. Miller, B. T. Lamb, G. E. Landreth, and F. Huang, “Active PSF shaping and adaptive optics enable volumetric localization microscopy through brain sections,” Nat. Methods 15(8), 583–586 (2018).
[Crossref]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Optica (2)

Phys. Rev. Lett. (1)

Y. Shechtman, S. J. Sahl, A. S. Backer, and W. E. Moerner, “Optimal Point Spread Function Design for 3D Imaging,” Phys. Rev. Lett. 113(13), 133902 (2014).
[Crossref]

Proc. Natl. Acad. Sci. (1)

M. J. Booth, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. 99(9), 5788–5792 (2002).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U. S. A. 106(9), 2995–2999 (2009).
[Crossref]

Science (2)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy,” Science 319(5864), 810–813 (2008).
[Crossref]

Other (2)

A. Edelstein, N. Amodaj, K. Hoover, R. Vale, and N. Stuurman, “Computer control of microscopes using microManager,” Current Protocols in Molecular Biology, Frederick M. Ausubel, ed. (Wiley, 2010), Chapter 14.

E. Hecht, Optics, 4th ed. (Addison-Wesley, Reading, Mass., 2002), pp. vi, 698 p.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Use of Adaptive optics improves 2D SMLM away from the coverslip. (a) Schematic representation of the imaging setup. Fluorescence from the sample, consisting of green fluorescent beads and stabilized HiLyte647-conjugated microtubules suspended in agarose gel, is collected via a water immersion (WI) or oil immersion (OI) objective and projected on a camera either directly (left side; optionally through a CL) or via a DM (two mirrors in the AO-module are not shown). Left inset shows a representative SMLM reconstruction of the HiLyte647-MTs, scalebar is 1 µm. Right inset shows images and cross sections of a fluorescent bead at the coverslip (left panel) and at 25 µm depth without (middle panel) and with aberration correction (right panel). Cross sections at the drawn lines are shown on the right. Abbreviations: OBJ: objective; TL: tube lens; IIP: intermediate image plane, M1/2/3: mirrors discussed in main text, M3 is a flip-mirror; L1/2/3: lenses discussed in main text; SH-sensor: Shack-Hartmann sensor; DM: deformable mirror. (b,c,d) Localization distribution for different imaging depths for the WI objective lens (b), OI (c) and OI with adaptive optics (d). (e) The normalized fraction of estimated localization precisions below 15 nm as function of depth. (f) The average estimated localization precision as function of depth for WI and OI with and without adaptive optics. (g) Histogram of localization precision for integrated photons counts between 1400 and 1600. This interval is corrected for transmission efficiencies of the WI objective and the AO-module. Data collection parameters are indicated in Table 1.
Fig. 2.
Fig. 2. Adaptive optics allow z-encoding away from the coverslip. (a) PSF with astigmatism of a 100 nm green fluorescent bead in agarose gel on the coverslip (top panels) and at 18 µm depth (bottom panels) at stage z-positions of −250 nm (left), 0 nm (middle) and 250 nm (right panel) with respect to the focal plane of the OI objective. Astigmatism was induced with the CL. (b) Curves of the difference between PSF x-width and y-width as function of the stage z-position with respect to the objective focal plane, at increasing distance from the coverslip for the 100x OI objective. (c,d) Same as (a) and (b) but adaptive optics was used to both correct aberrations and induce astigmatism. (e,f) Same as A and B, but imaged with the 60x WI objective. The size of the ROI is 2 × 2 µm in all images.
Fig. 3.
Fig. 3. Simulation study on the depth-dependent loss of astigmatism. a) Aberration profile with 60 nm astigmatism at the coverslip and corresponding PSF at different z-positions. The dashed line indicates the NA of the objective (1.49). b) The aberration profile without AO with 60 nm astigmatism at a depth of 15 um. c) The aberration profile and corresponding PSF at a depth of 15 um with AO with 60 nm astigmatism. d) The aberration profile at a depth of 15 um with AO with 120 nm astigmatism. e) Simulated calibration curves at different depths with AO performed. In order to maintain a similar curve, more astigmatism needs to be added, even with AO. f) Optimal amount of astigmatism as function of depth for different calibration NAs and alongside the experimental values.
Fig. 4.
Fig. 4. Inducing astigmatism with AO does not distort the field of view. (a) Overlaid images of green fluorescent beads without (red) and with (green) CL inserted in the optical path (left) and a zoom of the region in the white box (right). Scalebar is 10 µm. (b) Displacement of bead locations when astigmatism is induced with the CL (black arrows) and with adaptive optics (red arrows). Scalebar for shifts is 1 µm. (c) Overlaid images of green fluorescent beads without (red) and with (green) astigmatism induced with the DM (left) and a zoom of the region in the white box (right). Scalebar is 10 µm. (d) Graph showing y-displacement when astigmatism is induced using the CL (black) and adaptive optics (red) as function of y-position with respect to the center of the field of view.
Fig. 5.
Fig. 5. Field dependency of the aberrations for the CL-module (a-c) and AO module (d-f). (a) Aberration level in the field of view for the left camera port without CL. The red line indicates Maréchal's diffraction limit (<72 mλ) . (b) The most apparent aberration in the configuration of (a) is astigmatism. Color indicates the amount of astigmatism and the arrows the direction. (c) Induced astigmatism on the left port with CL. (d) Aberration level in the field of view for the right camera port with AO-module, corrected in the center of the FOV. The red line indicates Maréchal's diffraction limit (<72 mλ). (e) The most apparent aberration in the configuration of (d) is coma. Color indicates the amount of coma and the arrow the direction. (f) Field dependency of the induced astigmatism (100 nm rms) on the right port with DM.
Fig. 6.
Fig. 6. Tunability of astigmatism. (a) Cross sections in x and y of a PSF of a 100 nm green fluorescent bead without astigmatism (left panels) and with 50 nm RMS astigmatism induced with the DM (right panels). Pixel size in z is 20 nm. (b) PSF width of a 100 nm green fluorescent bead in x (circles) and y (triangles) as function of the z-position of the stage, without astigmatism (black) and with 0.05 µm RMS astigmatism induced with the DM (red). (c) Focal plane offset as function of the amount of induced astigmatism (mean ± sd, N = 5 beads). Red line represents a least squares fit with a second order polynomial. (d) Difference between PSF x-width and y-width as function of the z-position of the stage for different rms astigmatism levels of 0 nm (black), 30 nm (blue), 60 nm (green), and 90 nm (red). (e) Absolute values of the inverse of calibration slope α as function of the focal plane offset (mean ± sd, N = 5). A second order polynomial was fit to the data. (f) Axial localization precision as function of z-position for the measured precision, least-squares standard error (LS-SE) and Cramer-Rao Lower Bound (CRLB) with 60 nm of astigmatism. (g) Axial localization precision as function of induced astigmatism averaged over a ± 250 nm z-range. (h) Lateral localization precision as function of induced astigmatism averaged over a ± 250 nm z-range. (i) Total localization precision as function of induced astigmatism averaged over a ± 250 nm z-range.
Fig. 7.
Fig. 7. Adaptive optics improves 3D SMLM using OI in Caco2-cell monolayers. (a) Widefield image of Ezrin-AF647 in a monolayer of Caco2 cells at a depth of 12 µm. (b) 3D SMLM reconstruction of (a). Scalebars is 1 µm. (c). Zoom of the area in the white box of Fig. (b) and cross section at the red dotted line (bottom panel). Scalebars are 500 nm.

Tables (1)

Tables Icon

Table 1. Number of experimental repeats and molecules used in Fig. 1.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T 1 2 = 1 2 n 2 cos ( θ 2 ) n 1 cos ( θ 1 ) [ ( 2 n 1 cos ( θ 1 ) n 2 cos ( θ 2 ) + n 1 cos ( θ 1 ) ) 2 + ( 2 n 2 cos ( θ 1 ) n 1 cos ( θ 2 ) + n 2 cos ( θ 1 ) ) 2 ] ,
C E o i C E w i = ϕ = 0 2 π θ = 0 θ 1.329 T w a t e r g l a s s sin ( θ ) d θ d ϕ ϕ = 0 2 π θ = 0 θ 1.27 T w a t e r g l a s s T g l a s s w a t e r sin ( θ ) d θ d ϕ ,
σ θ k 2 = χ 2 n p C k k ,
σ z = α 2 ( σ x width 2 + σ y width 2 ) ,