Abstract

Scientific-grade lasers are costly components of modern microscopes. For high-power applications, such as single-molecule localization microscopy, their price can become prohibitive. Here, we present an open-source high-power laser engine that can be built for a fraction of the cost. It uses affordable, yet powerful laser diodes at wavelengths of 405 nm, 488 nm and 638 nm and optionally a 561 nm diode-pumped solid-state laser. The light is delivered to the microscope via an agitated multimode fiber in order to suppress speckles. We provide the parts list, CAD files and detailed descriptions, allowing any research group to build their own laser engine.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Robotic microscopy for everyone: the OpenFlexure microscope

Joel T. Collins, Joe Knapper, Julian Stirling, Joram Mduda, Catherine Mkindi, Valeriana Mayagaya, Grace A. Mwakajinga, Paul T. Nyakyi, Valerian L. Sanga, Dave Carbery, Leah White, Sara Dale, Zhen Jieh Lim, Jeremy J. Baumberg, Pietro Cicuta, Samuel McDermott, Boyko Vodenicharski, and Richard Bowman
Biomed. Opt. Express 11(5) 2447-2460 (2020)

Comparing strategies for deep astigmatism-based single-molecule localization microscopy

Marijn Siemons, Bas M. C. Cloin, Desiree M. Salas, Wilco Nijenhuis, Eugene A. Katrukha, and Lukas C. Kapitein
Biomed. Opt. Express 11(2) 735-751 (2020)

Microscopy illumination engineering using a low-cost liquid crystal display

Kaikai Guo, Zichao Bian, Siyuan Dong, Pariksheet Nanda, Ying Min Wang, and Guoan Zheng
Biomed. Opt. Express 6(2) 574-579 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. R. Nicovich, J. Walsh, T. Böcking, and K. Gaus, “NicoLase-An open-source diode laser combiner, fiber launch, and sequencing controller for fluorescence microscopy,” PLoS One 12(3), e0173879 (2017).
    [Crossref]
  2. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
    [Crossref]
  3. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
    [Crossref]
  4. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
    [Crossref]
  5. Y. Lin, J. J. Long, F. Huang, W. C. Duim, S. Kirschbaum, Y. Zhang, L. K. Schroeder, A. A. Rebane, M. G. M. Velasco, A. Virrueta, D. W. Moonan, J. Jiao, S. Y. Hernandez, Y. Zhang, and J. Bewersdorf, “Quantifying and optimizing single-molecule switching nanoscopy at high speeds,” PLoS One 10(5), e0128135 (2015).
    [Crossref]
  6. P. LeBoulluec, H. Liu, and B. Yuan, “A cost-efficient frequency-domain photoacoustic imaging system,” Am. J. Phys. 81(9), 712–717 (2013).
    [Crossref]
  7. T. Wang, S. Nandy, H. S. Salehi, P. D. Kumavor, and Q. Zhu, “A low-cost photoacoustic microscopy system with a laser diode excitation,” Biomed. Opt. Express 5(9), 3053–3058 (2014).
    [Crossref]
  8. L. Zeng, Z. Piao, S. Huang, W. Jia, and Z. Chen, “Label-free optical-resolution photoacoustic microscopy of superficial microvasculature using a compact visible laser diode excitation,” Opt. Express 23(24), 31026–31033 (2015).
    [Crossref]
  9. A. Stylogiannis, L. Prade, A. Buehler, J. Aguirre, G. Sergiadis, and V. Ntziachristos, “Continuous wave laser diodes enable fast optoacoustic imaging,” Photoacoustics 9, 31–38 (2018).
    [Crossref]
  10. J. Miyazaki, H. Tsurui, A. Hayashi-Takagi, H. Kasai, and T. Kobayashi, “Sub-diffraction resolution pump-probe microscopy with shot-noise limited sensitivity using laser diodes,” Opt. Express 22(8), 9024–9032 (2014).
    [Crossref]
  11. S. Schrof, T. Staudt, E. Rittweger, N. Wittenmayer, T. Dresbach, J. Engelhardt, and S. W. Hell, “STED nanoscopy with mass-produced laser diodes,” Opt. Express 19(9), 8066–8072 (2011).
    [Crossref]
  12. K. Kwakwa, A. Savell, T. Davies, I. Munro, S. Parrinello, M. A. Purbhoo, C. Dunsby, M. A. A. Neil, and P. M. W. French, “easySTORM: a robust, lower-cost approach to localisation and TIRF microscopy,” J. Biophotonics 9(9), 948–957 (2016).
    [Crossref]
  13. K. M. Douglass, C. Sieben, A. Archetti, A. Lambert, and S. Manley, “Super-resolution imaging of multiple cells by optimised flat-field epi-illumination,” Nat. Photonics 10(11), 705–708 (2016).
    [Crossref]
  14. J. Deschamps, A. Rowald, and J. Ries, “Efficient homogeneous illumination and optical sectioning for quantitative single-molecule localization microscopy,” Opt. Express 24(24), 28080–28090 (2016).
    [Crossref]
  15. J. W. Goodman, Speckle Phenomena in Optics (Roberts & Company, 2007).
  16. T. Stangner, H. Zhang, T. Dahlberg, K. Wiklund, and M. Andersson, “Step-by-step guide to reduce spatial coherence of laser light using a rotating ground glass diffuser,” Appl. Opt. 56(19), 5427 (2017).
    [Crossref]
  17. S. Mahadevan, S. Halverson, L. Ramsey, and N. Venditti, “Suppression of fiber modal noise induced radial velocity errors for bright emission-line calibration sources,” Astrophys. J. 786(1), 18 (2014).
    [Crossref]
  18. Z. Zhao, B. Xin, L. Li, and Z.-L. Huang, “High-power homogeneous illumination for super-resolution localization microscopy with large field-of-view,” Opt. Express 25(12), 13382–13395 (2017).
    [Crossref]
  19. W. Ha, S. Lee, Y. Jung, J. Kim, and K. Oh, “Speckle reduction in multimode fiber with a piezoelectric transducer in radial vibration for fiber laser marking and display applications,” Proc. SPIE 6873, 68731V (2008).
    [Crossref]
  20. D. S. Metha, D. N. Naik, R. K. Singh, and M. Takeda, “Laser speckle reduction by multimode optical fiber bundle with combined temporal, spatial, and angular diversity,” Appl. Opt. 51(12), 1894–1904 (2012).
    [Crossref]
  21. F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
    [Crossref]
  22. S. A. Jones, S.-H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods 8(6), 499–505 (2011).
    [Crossref]
  23. T. Klein, A. Löschberger, S. Proppert, S. Wolter, S. van de Linde, and M. Sauer, “Live-cell dSTORM with SNAP-tag fusion proteins,” Nat. Methods 8(1), 7–9 (2011).
    [Crossref]
  24. J. V. Thevathasan, M. Kahnwald, K. Cieśliński, P. Hoess, S. K. Peneti, M. Reitberger, D. Heid, K. C. Kasuba, S. J. Hoerner, Y. Li, Y.-L. Wu, M. Mund, U. Matti, P. M. Pereira, R. Henriques, B. Nijmeijer, M. Kueblbeck, V. J. Sabinina, J. Ellenberg, and J. Ries, “Nuclear pores as versatile reference standards for quantitative superresolution microscopy,” Nat. Methods 16(10), 1045–1053 (2019).
    [Crossref]
  25. A. von Appen, J. Kosinski, L. Sparks, A. Ori, A. L. DiGuilio, B. Vollmer, M.-T. Mackmull, N. Banterle, L. Parca, P. Kastritis, K. Buczak, S. Mosalaganti, W. Hagen, A. Andres-Pons, E. A. Lemke, P. Bork, W. Antonin, J. S. Glavy, K. H. Bui, and M. Beck, “In situ structural analysis of the human nuclear pore complex,” Nature 526(7571), 140–143 (2015).
    [Crossref]
  26. A. L. McEvoy, H. Hoi, M. Bates, E. Platonova, P. J. Cranfill, M. A. Baird, M. W. Davidson, H. Ewers, J. Liphardt, and R. E. Campbell, “mMaple: a photoconvertible fluorescent protein for use in multiple imaging modalities,” PLoS One 7(12), e51314 (2012).
    [Crossref]
  27. M. Zhang, H. Chang, Y. Zhang, J. Yu, L. Wu, W. Ji, J. Chen, B. Liu, J. Lu, Y. Liu, J. Zhang, P. Xu, and T. Xu, “Rational design of true monomeric and bright photoactivatable fluorescent proteins,” Nat. Methods 9(7), 727–729 (2012).
    [Crossref]
  28. A. Edelstein, N. Amodaj, K. Hoover, R. Vale, and N. Stuurman, Computer Control of Microscopes Using µManager (John Wiley & Sons, Inc., Hoboken, NJ, USA, 2010).
  29. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
    [Crossref]
  30. M. Heilemann, E. Margeat, R. Kasper, M. Sauer, and P. Tinnefeld, “Carbocyanine dyes as efficient reversible single-molecule optical switch,” J. Am. Chem. Soc. 127(11), 3801–3806 (2005).
    [Crossref]
  31. Y. Li, M. Mund, P. Hoess, J. Deschamps, U. Matti, B. Nijmeijer, V. J. Sabinina, J. Ellenberg, I. Schoen, and J. Ries, “Real-time 3d single-molecule localization using experimental point spread functions,” Nat. Methods 15(5), 367–369 (2018).
    [Crossref]

2019 (1)

J. V. Thevathasan, M. Kahnwald, K. Cieśliński, P. Hoess, S. K. Peneti, M. Reitberger, D. Heid, K. C. Kasuba, S. J. Hoerner, Y. Li, Y.-L. Wu, M. Mund, U. Matti, P. M. Pereira, R. Henriques, B. Nijmeijer, M. Kueblbeck, V. J. Sabinina, J. Ellenberg, and J. Ries, “Nuclear pores as versatile reference standards for quantitative superresolution microscopy,” Nat. Methods 16(10), 1045–1053 (2019).
[Crossref]

2018 (2)

Y. Li, M. Mund, P. Hoess, J. Deschamps, U. Matti, B. Nijmeijer, V. J. Sabinina, J. Ellenberg, I. Schoen, and J. Ries, “Real-time 3d single-molecule localization using experimental point spread functions,” Nat. Methods 15(5), 367–369 (2018).
[Crossref]

A. Stylogiannis, L. Prade, A. Buehler, J. Aguirre, G. Sergiadis, and V. Ntziachristos, “Continuous wave laser diodes enable fast optoacoustic imaging,” Photoacoustics 9, 31–38 (2018).
[Crossref]

2017 (3)

2016 (3)

K. Kwakwa, A. Savell, T. Davies, I. Munro, S. Parrinello, M. A. Purbhoo, C. Dunsby, M. A. A. Neil, and P. M. W. French, “easySTORM: a robust, lower-cost approach to localisation and TIRF microscopy,” J. Biophotonics 9(9), 948–957 (2016).
[Crossref]

K. M. Douglass, C. Sieben, A. Archetti, A. Lambert, and S. Manley, “Super-resolution imaging of multiple cells by optimised flat-field epi-illumination,” Nat. Photonics 10(11), 705–708 (2016).
[Crossref]

J. Deschamps, A. Rowald, and J. Ries, “Efficient homogeneous illumination and optical sectioning for quantitative single-molecule localization microscopy,” Opt. Express 24(24), 28080–28090 (2016).
[Crossref]

2015 (3)

Y. Lin, J. J. Long, F. Huang, W. C. Duim, S. Kirschbaum, Y. Zhang, L. K. Schroeder, A. A. Rebane, M. G. M. Velasco, A. Virrueta, D. W. Moonan, J. Jiao, S. Y. Hernandez, Y. Zhang, and J. Bewersdorf, “Quantifying and optimizing single-molecule switching nanoscopy at high speeds,” PLoS One 10(5), e0128135 (2015).
[Crossref]

L. Zeng, Z. Piao, S. Huang, W. Jia, and Z. Chen, “Label-free optical-resolution photoacoustic microscopy of superficial microvasculature using a compact visible laser diode excitation,” Opt. Express 23(24), 31026–31033 (2015).
[Crossref]

A. von Appen, J. Kosinski, L. Sparks, A. Ori, A. L. DiGuilio, B. Vollmer, M.-T. Mackmull, N. Banterle, L. Parca, P. Kastritis, K. Buczak, S. Mosalaganti, W. Hagen, A. Andres-Pons, E. A. Lemke, P. Bork, W. Antonin, J. S. Glavy, K. H. Bui, and M. Beck, “In situ structural analysis of the human nuclear pore complex,” Nature 526(7571), 140–143 (2015).
[Crossref]

2014 (3)

2013 (2)

P. LeBoulluec, H. Liu, and B. Yuan, “A cost-efficient frequency-domain photoacoustic imaging system,” Am. J. Phys. 81(9), 712–717 (2013).
[Crossref]

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref]

2012 (4)

D. S. Metha, D. N. Naik, R. K. Singh, and M. Takeda, “Laser speckle reduction by multimode optical fiber bundle with combined temporal, spatial, and angular diversity,” Appl. Opt. 51(12), 1894–1904 (2012).
[Crossref]

A. L. McEvoy, H. Hoi, M. Bates, E. Platonova, P. J. Cranfill, M. A. Baird, M. W. Davidson, H. Ewers, J. Liphardt, and R. E. Campbell, “mMaple: a photoconvertible fluorescent protein for use in multiple imaging modalities,” PLoS One 7(12), e51314 (2012).
[Crossref]

M. Zhang, H. Chang, Y. Zhang, J. Yu, L. Wu, W. Ji, J. Chen, B. Liu, J. Lu, Y. Liu, J. Zhang, P. Xu, and T. Xu, “Rational design of true monomeric and bright photoactivatable fluorescent proteins,” Nat. Methods 9(7), 727–729 (2012).
[Crossref]

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

2011 (3)

S. A. Jones, S.-H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods 8(6), 499–505 (2011).
[Crossref]

T. Klein, A. Löschberger, S. Proppert, S. Wolter, S. van de Linde, and M. Sauer, “Live-cell dSTORM with SNAP-tag fusion proteins,” Nat. Methods 8(1), 7–9 (2011).
[Crossref]

S. Schrof, T. Staudt, E. Rittweger, N. Wittenmayer, T. Dresbach, J. Engelhardt, and S. W. Hell, “STED nanoscopy with mass-produced laser diodes,” Opt. Express 19(9), 8066–8072 (2011).
[Crossref]

2008 (1)

W. Ha, S. Lee, Y. Jung, J. Kim, and K. Oh, “Speckle reduction in multimode fiber with a piezoelectric transducer in radial vibration for fiber laser marking and display applications,” Proc. SPIE 6873, 68731V (2008).
[Crossref]

2006 (3)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref]

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref]

2005 (1)

M. Heilemann, E. Margeat, R. Kasper, M. Sauer, and P. Tinnefeld, “Carbocyanine dyes as efficient reversible single-molecule optical switch,” J. Am. Chem. Soc. 127(11), 3801–3806 (2005).
[Crossref]

Aguirre, J.

A. Stylogiannis, L. Prade, A. Buehler, J. Aguirre, G. Sergiadis, and V. Ntziachristos, “Continuous wave laser diodes enable fast optoacoustic imaging,” Photoacoustics 9, 31–38 (2018).
[Crossref]

Amodaj, N.

A. Edelstein, N. Amodaj, K. Hoover, R. Vale, and N. Stuurman, Computer Control of Microscopes Using µManager (John Wiley & Sons, Inc., Hoboken, NJ, USA, 2010).

Andersson, M.

Andres-Pons, A.

A. von Appen, J. Kosinski, L. Sparks, A. Ori, A. L. DiGuilio, B. Vollmer, M.-T. Mackmull, N. Banterle, L. Parca, P. Kastritis, K. Buczak, S. Mosalaganti, W. Hagen, A. Andres-Pons, E. A. Lemke, P. Bork, W. Antonin, J. S. Glavy, K. H. Bui, and M. Beck, “In situ structural analysis of the human nuclear pore complex,” Nature 526(7571), 140–143 (2015).
[Crossref]

Antonin, W.

A. von Appen, J. Kosinski, L. Sparks, A. Ori, A. L. DiGuilio, B. Vollmer, M.-T. Mackmull, N. Banterle, L. Parca, P. Kastritis, K. Buczak, S. Mosalaganti, W. Hagen, A. Andres-Pons, E. A. Lemke, P. Bork, W. Antonin, J. S. Glavy, K. H. Bui, and M. Beck, “In situ structural analysis of the human nuclear pore complex,” Nature 526(7571), 140–143 (2015).
[Crossref]

Archetti, A.

K. M. Douglass, C. Sieben, A. Archetti, A. Lambert, and S. Manley, “Super-resolution imaging of multiple cells by optimised flat-field epi-illumination,” Nat. Photonics 10(11), 705–708 (2016).
[Crossref]

Arganda-Carreras, I.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Baird, M. A.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref]

A. L. McEvoy, H. Hoi, M. Bates, E. Platonova, P. J. Cranfill, M. A. Baird, M. W. Davidson, H. Ewers, J. Liphardt, and R. E. Campbell, “mMaple: a photoconvertible fluorescent protein for use in multiple imaging modalities,” PLoS One 7(12), e51314 (2012).
[Crossref]

Banterle, N.

A. von Appen, J. Kosinski, L. Sparks, A. Ori, A. L. DiGuilio, B. Vollmer, M.-T. Mackmull, N. Banterle, L. Parca, P. Kastritis, K. Buczak, S. Mosalaganti, W. Hagen, A. Andres-Pons, E. A. Lemke, P. Bork, W. Antonin, J. S. Glavy, K. H. Bui, and M. Beck, “In situ structural analysis of the human nuclear pore complex,” Nature 526(7571), 140–143 (2015).
[Crossref]

Bates, M.

A. L. McEvoy, H. Hoi, M. Bates, E. Platonova, P. J. Cranfill, M. A. Baird, M. W. Davidson, H. Ewers, J. Liphardt, and R. E. Campbell, “mMaple: a photoconvertible fluorescent protein for use in multiple imaging modalities,” PLoS One 7(12), e51314 (2012).
[Crossref]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref]

Beck, M.

A. von Appen, J. Kosinski, L. Sparks, A. Ori, A. L. DiGuilio, B. Vollmer, M.-T. Mackmull, N. Banterle, L. Parca, P. Kastritis, K. Buczak, S. Mosalaganti, W. Hagen, A. Andres-Pons, E. A. Lemke, P. Bork, W. Antonin, J. S. Glavy, K. H. Bui, and M. Beck, “In situ structural analysis of the human nuclear pore complex,” Nature 526(7571), 140–143 (2015).
[Crossref]

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Bewersdorf, J.

Y. Lin, J. J. Long, F. Huang, W. C. Duim, S. Kirschbaum, Y. Zhang, L. K. Schroeder, A. A. Rebane, M. G. M. Velasco, A. Virrueta, D. W. Moonan, J. Jiao, S. Y. Hernandez, Y. Zhang, and J. Bewersdorf, “Quantifying and optimizing single-molecule switching nanoscopy at high speeds,” PLoS One 10(5), e0128135 (2015).
[Crossref]

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref]

Böcking, T.

P. R. Nicovich, J. Walsh, T. Böcking, and K. Gaus, “NicoLase-An open-source diode laser combiner, fiber launch, and sequencing controller for fluorescence microscopy,” PLoS One 12(3), e0173879 (2017).
[Crossref]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Bork, P.

A. von Appen, J. Kosinski, L. Sparks, A. Ori, A. L. DiGuilio, B. Vollmer, M.-T. Mackmull, N. Banterle, L. Parca, P. Kastritis, K. Buczak, S. Mosalaganti, W. Hagen, A. Andres-Pons, E. A. Lemke, P. Bork, W. Antonin, J. S. Glavy, K. H. Bui, and M. Beck, “In situ structural analysis of the human nuclear pore complex,” Nature 526(7571), 140–143 (2015).
[Crossref]

Buczak, K.

A. von Appen, J. Kosinski, L. Sparks, A. Ori, A. L. DiGuilio, B. Vollmer, M.-T. Mackmull, N. Banterle, L. Parca, P. Kastritis, K. Buczak, S. Mosalaganti, W. Hagen, A. Andres-Pons, E. A. Lemke, P. Bork, W. Antonin, J. S. Glavy, K. H. Bui, and M. Beck, “In situ structural analysis of the human nuclear pore complex,” Nature 526(7571), 140–143 (2015).
[Crossref]

Buehler, A.

A. Stylogiannis, L. Prade, A. Buehler, J. Aguirre, G. Sergiadis, and V. Ntziachristos, “Continuous wave laser diodes enable fast optoacoustic imaging,” Photoacoustics 9, 31–38 (2018).
[Crossref]

Bui, K. H.

A. von Appen, J. Kosinski, L. Sparks, A. Ori, A. L. DiGuilio, B. Vollmer, M.-T. Mackmull, N. Banterle, L. Parca, P. Kastritis, K. Buczak, S. Mosalaganti, W. Hagen, A. Andres-Pons, E. A. Lemke, P. Bork, W. Antonin, J. S. Glavy, K. H. Bui, and M. Beck, “In situ structural analysis of the human nuclear pore complex,” Nature 526(7571), 140–143 (2015).
[Crossref]

Campbell, R. E.

A. L. McEvoy, H. Hoi, M. Bates, E. Platonova, P. J. Cranfill, M. A. Baird, M. W. Davidson, H. Ewers, J. Liphardt, and R. E. Campbell, “mMaple: a photoconvertible fluorescent protein for use in multiple imaging modalities,” PLoS One 7(12), e51314 (2012).
[Crossref]

Cardona, A.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Chang, H.

M. Zhang, H. Chang, Y. Zhang, J. Yu, L. Wu, W. Ji, J. Chen, B. Liu, J. Lu, Y. Liu, J. Zhang, P. Xu, and T. Xu, “Rational design of true monomeric and bright photoactivatable fluorescent proteins,” Nat. Methods 9(7), 727–729 (2012).
[Crossref]

Chen, J.

M. Zhang, H. Chang, Y. Zhang, J. Yu, L. Wu, W. Ji, J. Chen, B. Liu, J. Lu, Y. Liu, J. Zhang, P. Xu, and T. Xu, “Rational design of true monomeric and bright photoactivatable fluorescent proteins,” Nat. Methods 9(7), 727–729 (2012).
[Crossref]

Chen, Z.

Cieslinski, K.

J. V. Thevathasan, M. Kahnwald, K. Cieśliński, P. Hoess, S. K. Peneti, M. Reitberger, D. Heid, K. C. Kasuba, S. J. Hoerner, Y. Li, Y.-L. Wu, M. Mund, U. Matti, P. M. Pereira, R. Henriques, B. Nijmeijer, M. Kueblbeck, V. J. Sabinina, J. Ellenberg, and J. Ries, “Nuclear pores as versatile reference standards for quantitative superresolution microscopy,” Nat. Methods 16(10), 1045–1053 (2019).
[Crossref]

Cranfill, P. J.

A. L. McEvoy, H. Hoi, M. Bates, E. Platonova, P. J. Cranfill, M. A. Baird, M. W. Davidson, H. Ewers, J. Liphardt, and R. E. Campbell, “mMaple: a photoconvertible fluorescent protein for use in multiple imaging modalities,” PLoS One 7(12), e51314 (2012).
[Crossref]

Dahlberg, T.

Davidson, M. W.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref]

A. L. McEvoy, H. Hoi, M. Bates, E. Platonova, P. J. Cranfill, M. A. Baird, M. W. Davidson, H. Ewers, J. Liphardt, and R. E. Campbell, “mMaple: a photoconvertible fluorescent protein for use in multiple imaging modalities,” PLoS One 7(12), e51314 (2012).
[Crossref]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Davies, T.

K. Kwakwa, A. Savell, T. Davies, I. Munro, S. Parrinello, M. A. Purbhoo, C. Dunsby, M. A. A. Neil, and P. M. W. French, “easySTORM: a robust, lower-cost approach to localisation and TIRF microscopy,” J. Biophotonics 9(9), 948–957 (2016).
[Crossref]

Deschamps, J.

Y. Li, M. Mund, P. Hoess, J. Deschamps, U. Matti, B. Nijmeijer, V. J. Sabinina, J. Ellenberg, I. Schoen, and J. Ries, “Real-time 3d single-molecule localization using experimental point spread functions,” Nat. Methods 15(5), 367–369 (2018).
[Crossref]

J. Deschamps, A. Rowald, and J. Ries, “Efficient homogeneous illumination and optical sectioning for quantitative single-molecule localization microscopy,” Opt. Express 24(24), 28080–28090 (2016).
[Crossref]

DiGuilio, A. L.

A. von Appen, J. Kosinski, L. Sparks, A. Ori, A. L. DiGuilio, B. Vollmer, M.-T. Mackmull, N. Banterle, L. Parca, P. Kastritis, K. Buczak, S. Mosalaganti, W. Hagen, A. Andres-Pons, E. A. Lemke, P. Bork, W. Antonin, J. S. Glavy, K. H. Bui, and M. Beck, “In situ structural analysis of the human nuclear pore complex,” Nature 526(7571), 140–143 (2015).
[Crossref]

Douglass, K. M.

K. M. Douglass, C. Sieben, A. Archetti, A. Lambert, and S. Manley, “Super-resolution imaging of multiple cells by optimised flat-field epi-illumination,” Nat. Photonics 10(11), 705–708 (2016).
[Crossref]

Dresbach, T.

Duim, W. C.

Y. Lin, J. J. Long, F. Huang, W. C. Duim, S. Kirschbaum, Y. Zhang, L. K. Schroeder, A. A. Rebane, M. G. M. Velasco, A. Virrueta, D. W. Moonan, J. Jiao, S. Y. Hernandez, Y. Zhang, and J. Bewersdorf, “Quantifying and optimizing single-molecule switching nanoscopy at high speeds,” PLoS One 10(5), e0128135 (2015).
[Crossref]

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref]

Dunsby, C.

K. Kwakwa, A. Savell, T. Davies, I. Munro, S. Parrinello, M. A. Purbhoo, C. Dunsby, M. A. A. Neil, and P. M. W. French, “easySTORM: a robust, lower-cost approach to localisation and TIRF microscopy,” J. Biophotonics 9(9), 948–957 (2016).
[Crossref]

Edelstein, A.

A. Edelstein, N. Amodaj, K. Hoover, R. Vale, and N. Stuurman, Computer Control of Microscopes Using µManager (John Wiley & Sons, Inc., Hoboken, NJ, USA, 2010).

Eliceiri, K.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Ellenberg, J.

J. V. Thevathasan, M. Kahnwald, K. Cieśliński, P. Hoess, S. K. Peneti, M. Reitberger, D. Heid, K. C. Kasuba, S. J. Hoerner, Y. Li, Y.-L. Wu, M. Mund, U. Matti, P. M. Pereira, R. Henriques, B. Nijmeijer, M. Kueblbeck, V. J. Sabinina, J. Ellenberg, and J. Ries, “Nuclear pores as versatile reference standards for quantitative superresolution microscopy,” Nat. Methods 16(10), 1045–1053 (2019).
[Crossref]

Y. Li, M. Mund, P. Hoess, J. Deschamps, U. Matti, B. Nijmeijer, V. J. Sabinina, J. Ellenberg, I. Schoen, and J. Ries, “Real-time 3d single-molecule localization using experimental point spread functions,” Nat. Methods 15(5), 367–369 (2018).
[Crossref]

Engelhardt, J.

Ewers, H.

A. L. McEvoy, H. Hoi, M. Bates, E. Platonova, P. J. Cranfill, M. A. Baird, M. W. Davidson, H. Ewers, J. Liphardt, and R. E. Campbell, “mMaple: a photoconvertible fluorescent protein for use in multiple imaging modalities,” PLoS One 7(12), e51314 (2012).
[Crossref]

French, P. M. W.

K. Kwakwa, A. Savell, T. Davies, I. Munro, S. Parrinello, M. A. Purbhoo, C. Dunsby, M. A. A. Neil, and P. M. W. French, “easySTORM: a robust, lower-cost approach to localisation and TIRF microscopy,” J. Biophotonics 9(9), 948–957 (2016).
[Crossref]

Frise, E.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Gaus, K.

P. R. Nicovich, J. Walsh, T. Böcking, and K. Gaus, “NicoLase-An open-source diode laser combiner, fiber launch, and sequencing controller for fluorescence microscopy,” PLoS One 12(3), e0173879 (2017).
[Crossref]

Girirajan, T. P. K.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref]

Glavy, J. S.

A. von Appen, J. Kosinski, L. Sparks, A. Ori, A. L. DiGuilio, B. Vollmer, M.-T. Mackmull, N. Banterle, L. Parca, P. Kastritis, K. Buczak, S. Mosalaganti, W. Hagen, A. Andres-Pons, E. A. Lemke, P. Bork, W. Antonin, J. S. Glavy, K. H. Bui, and M. Beck, “In situ structural analysis of the human nuclear pore complex,” Nature 526(7571), 140–143 (2015).
[Crossref]

Goodman, J. W.

J. W. Goodman, Speckle Phenomena in Optics (Roberts & Company, 2007).

Ha, W.

W. Ha, S. Lee, Y. Jung, J. Kim, and K. Oh, “Speckle reduction in multimode fiber with a piezoelectric transducer in radial vibration for fiber laser marking and display applications,” Proc. SPIE 6873, 68731V (2008).
[Crossref]

Hagen, W.

A. von Appen, J. Kosinski, L. Sparks, A. Ori, A. L. DiGuilio, B. Vollmer, M.-T. Mackmull, N. Banterle, L. Parca, P. Kastritis, K. Buczak, S. Mosalaganti, W. Hagen, A. Andres-Pons, E. A. Lemke, P. Bork, W. Antonin, J. S. Glavy, K. H. Bui, and M. Beck, “In situ structural analysis of the human nuclear pore complex,” Nature 526(7571), 140–143 (2015).
[Crossref]

Halverson, S.

S. Mahadevan, S. Halverson, L. Ramsey, and N. Venditti, “Suppression of fiber modal noise induced radial velocity errors for bright emission-line calibration sources,” Astrophys. J. 786(1), 18 (2014).
[Crossref]

Hartenstein, V.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Hartwich, T. M. P.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref]

Hayashi-Takagi, A.

He, J.

S. A. Jones, S.-H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods 8(6), 499–505 (2011).
[Crossref]

Heid, D.

J. V. Thevathasan, M. Kahnwald, K. Cieśliński, P. Hoess, S. K. Peneti, M. Reitberger, D. Heid, K. C. Kasuba, S. J. Hoerner, Y. Li, Y.-L. Wu, M. Mund, U. Matti, P. M. Pereira, R. Henriques, B. Nijmeijer, M. Kueblbeck, V. J. Sabinina, J. Ellenberg, and J. Ries, “Nuclear pores as versatile reference standards for quantitative superresolution microscopy,” Nat. Methods 16(10), 1045–1053 (2019).
[Crossref]

Heilemann, M.

M. Heilemann, E. Margeat, R. Kasper, M. Sauer, and P. Tinnefeld, “Carbocyanine dyes as efficient reversible single-molecule optical switch,” J. Am. Chem. Soc. 127(11), 3801–3806 (2005).
[Crossref]

Hell, S. W.

Henriques, R.

J. V. Thevathasan, M. Kahnwald, K. Cieśliński, P. Hoess, S. K. Peneti, M. Reitberger, D. Heid, K. C. Kasuba, S. J. Hoerner, Y. Li, Y.-L. Wu, M. Mund, U. Matti, P. M. Pereira, R. Henriques, B. Nijmeijer, M. Kueblbeck, V. J. Sabinina, J. Ellenberg, and J. Ries, “Nuclear pores as versatile reference standards for quantitative superresolution microscopy,” Nat. Methods 16(10), 1045–1053 (2019).
[Crossref]

Hernandez, S. Y.

Y. Lin, J. J. Long, F. Huang, W. C. Duim, S. Kirschbaum, Y. Zhang, L. K. Schroeder, A. A. Rebane, M. G. M. Velasco, A. Virrueta, D. W. Moonan, J. Jiao, S. Y. Hernandez, Y. Zhang, and J. Bewersdorf, “Quantifying and optimizing single-molecule switching nanoscopy at high speeds,” PLoS One 10(5), e0128135 (2015).
[Crossref]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Hess, S. T.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref]

Hoerner, S. J.

J. V. Thevathasan, M. Kahnwald, K. Cieśliński, P. Hoess, S. K. Peneti, M. Reitberger, D. Heid, K. C. Kasuba, S. J. Hoerner, Y. Li, Y.-L. Wu, M. Mund, U. Matti, P. M. Pereira, R. Henriques, B. Nijmeijer, M. Kueblbeck, V. J. Sabinina, J. Ellenberg, and J. Ries, “Nuclear pores as versatile reference standards for quantitative superresolution microscopy,” Nat. Methods 16(10), 1045–1053 (2019).
[Crossref]

Hoess, P.

J. V. Thevathasan, M. Kahnwald, K. Cieśliński, P. Hoess, S. K. Peneti, M. Reitberger, D. Heid, K. C. Kasuba, S. J. Hoerner, Y. Li, Y.-L. Wu, M. Mund, U. Matti, P. M. Pereira, R. Henriques, B. Nijmeijer, M. Kueblbeck, V. J. Sabinina, J. Ellenberg, and J. Ries, “Nuclear pores as versatile reference standards for quantitative superresolution microscopy,” Nat. Methods 16(10), 1045–1053 (2019).
[Crossref]

Y. Li, M. Mund, P. Hoess, J. Deschamps, U. Matti, B. Nijmeijer, V. J. Sabinina, J. Ellenberg, I. Schoen, and J. Ries, “Real-time 3d single-molecule localization using experimental point spread functions,” Nat. Methods 15(5), 367–369 (2018).
[Crossref]

Hoi, H.

A. L. McEvoy, H. Hoi, M. Bates, E. Platonova, P. J. Cranfill, M. A. Baird, M. W. Davidson, H. Ewers, J. Liphardt, and R. E. Campbell, “mMaple: a photoconvertible fluorescent protein for use in multiple imaging modalities,” PLoS One 7(12), e51314 (2012).
[Crossref]

Hoover, K.

A. Edelstein, N. Amodaj, K. Hoover, R. Vale, and N. Stuurman, Computer Control of Microscopes Using µManager (John Wiley & Sons, Inc., Hoboken, NJ, USA, 2010).

Huang, F.

Y. Lin, J. J. Long, F. Huang, W. C. Duim, S. Kirschbaum, Y. Zhang, L. K. Schroeder, A. A. Rebane, M. G. M. Velasco, A. Virrueta, D. W. Moonan, J. Jiao, S. Y. Hernandez, Y. Zhang, and J. Bewersdorf, “Quantifying and optimizing single-molecule switching nanoscopy at high speeds,” PLoS One 10(5), e0128135 (2015).
[Crossref]

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref]

Huang, S.

Huang, Z.-L.

Ji, W.

M. Zhang, H. Chang, Y. Zhang, J. Yu, L. Wu, W. Ji, J. Chen, B. Liu, J. Lu, Y. Liu, J. Zhang, P. Xu, and T. Xu, “Rational design of true monomeric and bright photoactivatable fluorescent proteins,” Nat. Methods 9(7), 727–729 (2012).
[Crossref]

Jia, W.

Jiao, J.

Y. Lin, J. J. Long, F. Huang, W. C. Duim, S. Kirschbaum, Y. Zhang, L. K. Schroeder, A. A. Rebane, M. G. M. Velasco, A. Virrueta, D. W. Moonan, J. Jiao, S. Y. Hernandez, Y. Zhang, and J. Bewersdorf, “Quantifying and optimizing single-molecule switching nanoscopy at high speeds,” PLoS One 10(5), e0128135 (2015).
[Crossref]

Jones, S. A.

S. A. Jones, S.-H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods 8(6), 499–505 (2011).
[Crossref]

Jung, Y.

W. Ha, S. Lee, Y. Jung, J. Kim, and K. Oh, “Speckle reduction in multimode fiber with a piezoelectric transducer in radial vibration for fiber laser marking and display applications,” Proc. SPIE 6873, 68731V (2008).
[Crossref]

Kahnwald, M.

J. V. Thevathasan, M. Kahnwald, K. Cieśliński, P. Hoess, S. K. Peneti, M. Reitberger, D. Heid, K. C. Kasuba, S. J. Hoerner, Y. Li, Y.-L. Wu, M. Mund, U. Matti, P. M. Pereira, R. Henriques, B. Nijmeijer, M. Kueblbeck, V. J. Sabinina, J. Ellenberg, and J. Ries, “Nuclear pores as versatile reference standards for quantitative superresolution microscopy,” Nat. Methods 16(10), 1045–1053 (2019).
[Crossref]

Kasai, H.

Kasper, R.

M. Heilemann, E. Margeat, R. Kasper, M. Sauer, and P. Tinnefeld, “Carbocyanine dyes as efficient reversible single-molecule optical switch,” J. Am. Chem. Soc. 127(11), 3801–3806 (2005).
[Crossref]

Kastritis, P.

A. von Appen, J. Kosinski, L. Sparks, A. Ori, A. L. DiGuilio, B. Vollmer, M.-T. Mackmull, N. Banterle, L. Parca, P. Kastritis, K. Buczak, S. Mosalaganti, W. Hagen, A. Andres-Pons, E. A. Lemke, P. Bork, W. Antonin, J. S. Glavy, K. H. Bui, and M. Beck, “In situ structural analysis of the human nuclear pore complex,” Nature 526(7571), 140–143 (2015).
[Crossref]

Kasuba, K. C.

J. V. Thevathasan, M. Kahnwald, K. Cieśliński, P. Hoess, S. K. Peneti, M. Reitberger, D. Heid, K. C. Kasuba, S. J. Hoerner, Y. Li, Y.-L. Wu, M. Mund, U. Matti, P. M. Pereira, R. Henriques, B. Nijmeijer, M. Kueblbeck, V. J. Sabinina, J. Ellenberg, and J. Ries, “Nuclear pores as versatile reference standards for quantitative superresolution microscopy,” Nat. Methods 16(10), 1045–1053 (2019).
[Crossref]

Kaynig, V.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Kim, J.

W. Ha, S. Lee, Y. Jung, J. Kim, and K. Oh, “Speckle reduction in multimode fiber with a piezoelectric transducer in radial vibration for fiber laser marking and display applications,” Proc. SPIE 6873, 68731V (2008).
[Crossref]

Kirschbaum, S.

Y. Lin, J. J. Long, F. Huang, W. C. Duim, S. Kirschbaum, Y. Zhang, L. K. Schroeder, A. A. Rebane, M. G. M. Velasco, A. Virrueta, D. W. Moonan, J. Jiao, S. Y. Hernandez, Y. Zhang, and J. Bewersdorf, “Quantifying and optimizing single-molecule switching nanoscopy at high speeds,” PLoS One 10(5), e0128135 (2015).
[Crossref]

Klein, T.

T. Klein, A. Löschberger, S. Proppert, S. Wolter, S. van de Linde, and M. Sauer, “Live-cell dSTORM with SNAP-tag fusion proteins,” Nat. Methods 8(1), 7–9 (2011).
[Crossref]

Kobayashi, T.

Kosinski, J.

A. von Appen, J. Kosinski, L. Sparks, A. Ori, A. L. DiGuilio, B. Vollmer, M.-T. Mackmull, N. Banterle, L. Parca, P. Kastritis, K. Buczak, S. Mosalaganti, W. Hagen, A. Andres-Pons, E. A. Lemke, P. Bork, W. Antonin, J. S. Glavy, K. H. Bui, and M. Beck, “In situ structural analysis of the human nuclear pore complex,” Nature 526(7571), 140–143 (2015).
[Crossref]

Kueblbeck, M.

J. V. Thevathasan, M. Kahnwald, K. Cieśliński, P. Hoess, S. K. Peneti, M. Reitberger, D. Heid, K. C. Kasuba, S. J. Hoerner, Y. Li, Y.-L. Wu, M. Mund, U. Matti, P. M. Pereira, R. Henriques, B. Nijmeijer, M. Kueblbeck, V. J. Sabinina, J. Ellenberg, and J. Ries, “Nuclear pores as versatile reference standards for quantitative superresolution microscopy,” Nat. Methods 16(10), 1045–1053 (2019).
[Crossref]

Kumavor, P. D.

Kwakwa, K.

K. Kwakwa, A. Savell, T. Davies, I. Munro, S. Parrinello, M. A. Purbhoo, C. Dunsby, M. A. A. Neil, and P. M. W. French, “easySTORM: a robust, lower-cost approach to localisation and TIRF microscopy,” J. Biophotonics 9(9), 948–957 (2016).
[Crossref]

Lambert, A.

K. M. Douglass, C. Sieben, A. Archetti, A. Lambert, and S. Manley, “Super-resolution imaging of multiple cells by optimised flat-field epi-illumination,” Nat. Photonics 10(11), 705–708 (2016).
[Crossref]

LeBoulluec, P.

P. LeBoulluec, H. Liu, and B. Yuan, “A cost-efficient frequency-domain photoacoustic imaging system,” Am. J. Phys. 81(9), 712–717 (2013).
[Crossref]

Lee, S.

W. Ha, S. Lee, Y. Jung, J. Kim, and K. Oh, “Speckle reduction in multimode fiber with a piezoelectric transducer in radial vibration for fiber laser marking and display applications,” Proc. SPIE 6873, 68731V (2008).
[Crossref]

Lemke, E. A.

A. von Appen, J. Kosinski, L. Sparks, A. Ori, A. L. DiGuilio, B. Vollmer, M.-T. Mackmull, N. Banterle, L. Parca, P. Kastritis, K. Buczak, S. Mosalaganti, W. Hagen, A. Andres-Pons, E. A. Lemke, P. Bork, W. Antonin, J. S. Glavy, K. H. Bui, and M. Beck, “In situ structural analysis of the human nuclear pore complex,” Nature 526(7571), 140–143 (2015).
[Crossref]

Li, L.

Li, Y.

J. V. Thevathasan, M. Kahnwald, K. Cieśliński, P. Hoess, S. K. Peneti, M. Reitberger, D. Heid, K. C. Kasuba, S. J. Hoerner, Y. Li, Y.-L. Wu, M. Mund, U. Matti, P. M. Pereira, R. Henriques, B. Nijmeijer, M. Kueblbeck, V. J. Sabinina, J. Ellenberg, and J. Ries, “Nuclear pores as versatile reference standards for quantitative superresolution microscopy,” Nat. Methods 16(10), 1045–1053 (2019).
[Crossref]

Y. Li, M. Mund, P. Hoess, J. Deschamps, U. Matti, B. Nijmeijer, V. J. Sabinina, J. Ellenberg, I. Schoen, and J. Ries, “Real-time 3d single-molecule localization using experimental point spread functions,” Nat. Methods 15(5), 367–369 (2018).
[Crossref]

Lin, Y.

Y. Lin, J. J. Long, F. Huang, W. C. Duim, S. Kirschbaum, Y. Zhang, L. K. Schroeder, A. A. Rebane, M. G. M. Velasco, A. Virrueta, D. W. Moonan, J. Jiao, S. Y. Hernandez, Y. Zhang, and J. Bewersdorf, “Quantifying and optimizing single-molecule switching nanoscopy at high speeds,” PLoS One 10(5), e0128135 (2015).
[Crossref]

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref]

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Liphardt, J.

A. L. McEvoy, H. Hoi, M. Bates, E. Platonova, P. J. Cranfill, M. A. Baird, M. W. Davidson, H. Ewers, J. Liphardt, and R. E. Campbell, “mMaple: a photoconvertible fluorescent protein for use in multiple imaging modalities,” PLoS One 7(12), e51314 (2012).
[Crossref]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Liu, B.

M. Zhang, H. Chang, Y. Zhang, J. Yu, L. Wu, W. Ji, J. Chen, B. Liu, J. Lu, Y. Liu, J. Zhang, P. Xu, and T. Xu, “Rational design of true monomeric and bright photoactivatable fluorescent proteins,” Nat. Methods 9(7), 727–729 (2012).
[Crossref]

Liu, H.

P. LeBoulluec, H. Liu, and B. Yuan, “A cost-efficient frequency-domain photoacoustic imaging system,” Am. J. Phys. 81(9), 712–717 (2013).
[Crossref]

Liu, Y.

M. Zhang, H. Chang, Y. Zhang, J. Yu, L. Wu, W. Ji, J. Chen, B. Liu, J. Lu, Y. Liu, J. Zhang, P. Xu, and T. Xu, “Rational design of true monomeric and bright photoactivatable fluorescent proteins,” Nat. Methods 9(7), 727–729 (2012).
[Crossref]

Long, J. J.

Y. Lin, J. J. Long, F. Huang, W. C. Duim, S. Kirschbaum, Y. Zhang, L. K. Schroeder, A. A. Rebane, M. G. M. Velasco, A. Virrueta, D. W. Moonan, J. Jiao, S. Y. Hernandez, Y. Zhang, and J. Bewersdorf, “Quantifying and optimizing single-molecule switching nanoscopy at high speeds,” PLoS One 10(5), e0128135 (2015).
[Crossref]

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref]

Longair, M.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Löschberger, A.

T. Klein, A. Löschberger, S. Proppert, S. Wolter, S. van de Linde, and M. Sauer, “Live-cell dSTORM with SNAP-tag fusion proteins,” Nat. Methods 8(1), 7–9 (2011).
[Crossref]

Lu, J.

M. Zhang, H. Chang, Y. Zhang, J. Yu, L. Wu, W. Ji, J. Chen, B. Liu, J. Lu, Y. Liu, J. Zhang, P. Xu, and T. Xu, “Rational design of true monomeric and bright photoactivatable fluorescent proteins,” Nat. Methods 9(7), 727–729 (2012).
[Crossref]

Mackmull, M.-T.

A. von Appen, J. Kosinski, L. Sparks, A. Ori, A. L. DiGuilio, B. Vollmer, M.-T. Mackmull, N. Banterle, L. Parca, P. Kastritis, K. Buczak, S. Mosalaganti, W. Hagen, A. Andres-Pons, E. A. Lemke, P. Bork, W. Antonin, J. S. Glavy, K. H. Bui, and M. Beck, “In situ structural analysis of the human nuclear pore complex,” Nature 526(7571), 140–143 (2015).
[Crossref]

Mahadevan, S.

S. Mahadevan, S. Halverson, L. Ramsey, and N. Venditti, “Suppression of fiber modal noise induced radial velocity errors for bright emission-line calibration sources,” Astrophys. J. 786(1), 18 (2014).
[Crossref]

Manley, S.

K. M. Douglass, C. Sieben, A. Archetti, A. Lambert, and S. Manley, “Super-resolution imaging of multiple cells by optimised flat-field epi-illumination,” Nat. Photonics 10(11), 705–708 (2016).
[Crossref]

Margeat, E.

M. Heilemann, E. Margeat, R. Kasper, M. Sauer, and P. Tinnefeld, “Carbocyanine dyes as efficient reversible single-molecule optical switch,” J. Am. Chem. Soc. 127(11), 3801–3806 (2005).
[Crossref]

Mason, M. D.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref]

Matti, U.

J. V. Thevathasan, M. Kahnwald, K. Cieśliński, P. Hoess, S. K. Peneti, M. Reitberger, D. Heid, K. C. Kasuba, S. J. Hoerner, Y. Li, Y.-L. Wu, M. Mund, U. Matti, P. M. Pereira, R. Henriques, B. Nijmeijer, M. Kueblbeck, V. J. Sabinina, J. Ellenberg, and J. Ries, “Nuclear pores as versatile reference standards for quantitative superresolution microscopy,” Nat. Methods 16(10), 1045–1053 (2019).
[Crossref]

Y. Li, M. Mund, P. Hoess, J. Deschamps, U. Matti, B. Nijmeijer, V. J. Sabinina, J. Ellenberg, I. Schoen, and J. Ries, “Real-time 3d single-molecule localization using experimental point spread functions,” Nat. Methods 15(5), 367–369 (2018).
[Crossref]

McEvoy, A. L.

A. L. McEvoy, H. Hoi, M. Bates, E. Platonova, P. J. Cranfill, M. A. Baird, M. W. Davidson, H. Ewers, J. Liphardt, and R. E. Campbell, “mMaple: a photoconvertible fluorescent protein for use in multiple imaging modalities,” PLoS One 7(12), e51314 (2012).
[Crossref]

Metha, D. S.

Miyazaki, J.

Moonan, D. W.

Y. Lin, J. J. Long, F. Huang, W. C. Duim, S. Kirschbaum, Y. Zhang, L. K. Schroeder, A. A. Rebane, M. G. M. Velasco, A. Virrueta, D. W. Moonan, J. Jiao, S. Y. Hernandez, Y. Zhang, and J. Bewersdorf, “Quantifying and optimizing single-molecule switching nanoscopy at high speeds,” PLoS One 10(5), e0128135 (2015).
[Crossref]

Mosalaganti, S.

A. von Appen, J. Kosinski, L. Sparks, A. Ori, A. L. DiGuilio, B. Vollmer, M.-T. Mackmull, N. Banterle, L. Parca, P. Kastritis, K. Buczak, S. Mosalaganti, W. Hagen, A. Andres-Pons, E. A. Lemke, P. Bork, W. Antonin, J. S. Glavy, K. H. Bui, and M. Beck, “In situ structural analysis of the human nuclear pore complex,” Nature 526(7571), 140–143 (2015).
[Crossref]

Mothes, W.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref]

Mund, M.

J. V. Thevathasan, M. Kahnwald, K. Cieśliński, P. Hoess, S. K. Peneti, M. Reitberger, D. Heid, K. C. Kasuba, S. J. Hoerner, Y. Li, Y.-L. Wu, M. Mund, U. Matti, P. M. Pereira, R. Henriques, B. Nijmeijer, M. Kueblbeck, V. J. Sabinina, J. Ellenberg, and J. Ries, “Nuclear pores as versatile reference standards for quantitative superresolution microscopy,” Nat. Methods 16(10), 1045–1053 (2019).
[Crossref]

Y. Li, M. Mund, P. Hoess, J. Deschamps, U. Matti, B. Nijmeijer, V. J. Sabinina, J. Ellenberg, I. Schoen, and J. Ries, “Real-time 3d single-molecule localization using experimental point spread functions,” Nat. Methods 15(5), 367–369 (2018).
[Crossref]

Munro, I.

K. Kwakwa, A. Savell, T. Davies, I. Munro, S. Parrinello, M. A. Purbhoo, C. Dunsby, M. A. A. Neil, and P. M. W. French, “easySTORM: a robust, lower-cost approach to localisation and TIRF microscopy,” J. Biophotonics 9(9), 948–957 (2016).
[Crossref]

Myers, J. R.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref]

Naik, D. N.

Nandy, S.

Neil, M. A. A.

K. Kwakwa, A. Savell, T. Davies, I. Munro, S. Parrinello, M. A. Purbhoo, C. Dunsby, M. A. A. Neil, and P. M. W. French, “easySTORM: a robust, lower-cost approach to localisation and TIRF microscopy,” J. Biophotonics 9(9), 948–957 (2016).
[Crossref]

Nicovich, P. R.

P. R. Nicovich, J. Walsh, T. Böcking, and K. Gaus, “NicoLase-An open-source diode laser combiner, fiber launch, and sequencing controller for fluorescence microscopy,” PLoS One 12(3), e0173879 (2017).
[Crossref]

Nijmeijer, B.

J. V. Thevathasan, M. Kahnwald, K. Cieśliński, P. Hoess, S. K. Peneti, M. Reitberger, D. Heid, K. C. Kasuba, S. J. Hoerner, Y. Li, Y.-L. Wu, M. Mund, U. Matti, P. M. Pereira, R. Henriques, B. Nijmeijer, M. Kueblbeck, V. J. Sabinina, J. Ellenberg, and J. Ries, “Nuclear pores as versatile reference standards for quantitative superresolution microscopy,” Nat. Methods 16(10), 1045–1053 (2019).
[Crossref]

Y. Li, M. Mund, P. Hoess, J. Deschamps, U. Matti, B. Nijmeijer, V. J. Sabinina, J. Ellenberg, I. Schoen, and J. Ries, “Real-time 3d single-molecule localization using experimental point spread functions,” Nat. Methods 15(5), 367–369 (2018).
[Crossref]

Ntziachristos, V.

A. Stylogiannis, L. Prade, A. Buehler, J. Aguirre, G. Sergiadis, and V. Ntziachristos, “Continuous wave laser diodes enable fast optoacoustic imaging,” Photoacoustics 9, 31–38 (2018).
[Crossref]

Oh, K.

W. Ha, S. Lee, Y. Jung, J. Kim, and K. Oh, “Speckle reduction in multimode fiber with a piezoelectric transducer in radial vibration for fiber laser marking and display applications,” Proc. SPIE 6873, 68731V (2008).
[Crossref]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Ori, A.

A. von Appen, J. Kosinski, L. Sparks, A. Ori, A. L. DiGuilio, B. Vollmer, M.-T. Mackmull, N. Banterle, L. Parca, P. Kastritis, K. Buczak, S. Mosalaganti, W. Hagen, A. Andres-Pons, E. A. Lemke, P. Bork, W. Antonin, J. S. Glavy, K. H. Bui, and M. Beck, “In situ structural analysis of the human nuclear pore complex,” Nature 526(7571), 140–143 (2015).
[Crossref]

Parca, L.

A. von Appen, J. Kosinski, L. Sparks, A. Ori, A. L. DiGuilio, B. Vollmer, M.-T. Mackmull, N. Banterle, L. Parca, P. Kastritis, K. Buczak, S. Mosalaganti, W. Hagen, A. Andres-Pons, E. A. Lemke, P. Bork, W. Antonin, J. S. Glavy, K. H. Bui, and M. Beck, “In situ structural analysis of the human nuclear pore complex,” Nature 526(7571), 140–143 (2015).
[Crossref]

Parrinello, S.

K. Kwakwa, A. Savell, T. Davies, I. Munro, S. Parrinello, M. A. Purbhoo, C. Dunsby, M. A. A. Neil, and P. M. W. French, “easySTORM: a robust, lower-cost approach to localisation and TIRF microscopy,” J. Biophotonics 9(9), 948–957 (2016).
[Crossref]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Peneti, S. K.

J. V. Thevathasan, M. Kahnwald, K. Cieśliński, P. Hoess, S. K. Peneti, M. Reitberger, D. Heid, K. C. Kasuba, S. J. Hoerner, Y. Li, Y.-L. Wu, M. Mund, U. Matti, P. M. Pereira, R. Henriques, B. Nijmeijer, M. Kueblbeck, V. J. Sabinina, J. Ellenberg, and J. Ries, “Nuclear pores as versatile reference standards for quantitative superresolution microscopy,” Nat. Methods 16(10), 1045–1053 (2019).
[Crossref]

Pereira, P. M.

J. V. Thevathasan, M. Kahnwald, K. Cieśliński, P. Hoess, S. K. Peneti, M. Reitberger, D. Heid, K. C. Kasuba, S. J. Hoerner, Y. Li, Y.-L. Wu, M. Mund, U. Matti, P. M. Pereira, R. Henriques, B. Nijmeijer, M. Kueblbeck, V. J. Sabinina, J. Ellenberg, and J. Ries, “Nuclear pores as versatile reference standards for quantitative superresolution microscopy,” Nat. Methods 16(10), 1045–1053 (2019).
[Crossref]

Piao, Z.

Pietzsch, T.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Platonova, E.

A. L. McEvoy, H. Hoi, M. Bates, E. Platonova, P. J. Cranfill, M. A. Baird, M. W. Davidson, H. Ewers, J. Liphardt, and R. E. Campbell, “mMaple: a photoconvertible fluorescent protein for use in multiple imaging modalities,” PLoS One 7(12), e51314 (2012).
[Crossref]

Prade, L.

A. Stylogiannis, L. Prade, A. Buehler, J. Aguirre, G. Sergiadis, and V. Ntziachristos, “Continuous wave laser diodes enable fast optoacoustic imaging,” Photoacoustics 9, 31–38 (2018).
[Crossref]

Preibisch, S.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Proppert, S.

T. Klein, A. Löschberger, S. Proppert, S. Wolter, S. van de Linde, and M. Sauer, “Live-cell dSTORM with SNAP-tag fusion proteins,” Nat. Methods 8(1), 7–9 (2011).
[Crossref]

Purbhoo, M. A.

K. Kwakwa, A. Savell, T. Davies, I. Munro, S. Parrinello, M. A. Purbhoo, C. Dunsby, M. A. A. Neil, and P. M. W. French, “easySTORM: a robust, lower-cost approach to localisation and TIRF microscopy,” J. Biophotonics 9(9), 948–957 (2016).
[Crossref]

Ramsey, L.

S. Mahadevan, S. Halverson, L. Ramsey, and N. Venditti, “Suppression of fiber modal noise induced radial velocity errors for bright emission-line calibration sources,” Astrophys. J. 786(1), 18 (2014).
[Crossref]

Rebane, A. A.

Y. Lin, J. J. Long, F. Huang, W. C. Duim, S. Kirschbaum, Y. Zhang, L. K. Schroeder, A. A. Rebane, M. G. M. Velasco, A. Virrueta, D. W. Moonan, J. Jiao, S. Y. Hernandez, Y. Zhang, and J. Bewersdorf, “Quantifying and optimizing single-molecule switching nanoscopy at high speeds,” PLoS One 10(5), e0128135 (2015).
[Crossref]

Reitberger, M.

J. V. Thevathasan, M. Kahnwald, K. Cieśliński, P. Hoess, S. K. Peneti, M. Reitberger, D. Heid, K. C. Kasuba, S. J. Hoerner, Y. Li, Y.-L. Wu, M. Mund, U. Matti, P. M. Pereira, R. Henriques, B. Nijmeijer, M. Kueblbeck, V. J. Sabinina, J. Ellenberg, and J. Ries, “Nuclear pores as versatile reference standards for quantitative superresolution microscopy,” Nat. Methods 16(10), 1045–1053 (2019).
[Crossref]

Ries, J.

J. V. Thevathasan, M. Kahnwald, K. Cieśliński, P. Hoess, S. K. Peneti, M. Reitberger, D. Heid, K. C. Kasuba, S. J. Hoerner, Y. Li, Y.-L. Wu, M. Mund, U. Matti, P. M. Pereira, R. Henriques, B. Nijmeijer, M. Kueblbeck, V. J. Sabinina, J. Ellenberg, and J. Ries, “Nuclear pores as versatile reference standards for quantitative superresolution microscopy,” Nat. Methods 16(10), 1045–1053 (2019).
[Crossref]

Y. Li, M. Mund, P. Hoess, J. Deschamps, U. Matti, B. Nijmeijer, V. J. Sabinina, J. Ellenberg, I. Schoen, and J. Ries, “Real-time 3d single-molecule localization using experimental point spread functions,” Nat. Methods 15(5), 367–369 (2018).
[Crossref]

J. Deschamps, A. Rowald, and J. Ries, “Efficient homogeneous illumination and optical sectioning for quantitative single-molecule localization microscopy,” Opt. Express 24(24), 28080–28090 (2016).
[Crossref]

Rittweger, E.

Rivera-Molina, F. E.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref]

Rowald, A.

Rueden, C.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref]

Saalfeld, S.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Sabinina, V. J.

J. V. Thevathasan, M. Kahnwald, K. Cieśliński, P. Hoess, S. K. Peneti, M. Reitberger, D. Heid, K. C. Kasuba, S. J. Hoerner, Y. Li, Y.-L. Wu, M. Mund, U. Matti, P. M. Pereira, R. Henriques, B. Nijmeijer, M. Kueblbeck, V. J. Sabinina, J. Ellenberg, and J. Ries, “Nuclear pores as versatile reference standards for quantitative superresolution microscopy,” Nat. Methods 16(10), 1045–1053 (2019).
[Crossref]

Y. Li, M. Mund, P. Hoess, J. Deschamps, U. Matti, B. Nijmeijer, V. J. Sabinina, J. Ellenberg, I. Schoen, and J. Ries, “Real-time 3d single-molecule localization using experimental point spread functions,” Nat. Methods 15(5), 367–369 (2018).
[Crossref]

Salehi, H. S.

Sauer, M.

T. Klein, A. Löschberger, S. Proppert, S. Wolter, S. van de Linde, and M. Sauer, “Live-cell dSTORM with SNAP-tag fusion proteins,” Nat. Methods 8(1), 7–9 (2011).
[Crossref]

M. Heilemann, E. Margeat, R. Kasper, M. Sauer, and P. Tinnefeld, “Carbocyanine dyes as efficient reversible single-molecule optical switch,” J. Am. Chem. Soc. 127(11), 3801–3806 (2005).
[Crossref]

Savell, A.

K. Kwakwa, A. Savell, T. Davies, I. Munro, S. Parrinello, M. A. Purbhoo, C. Dunsby, M. A. A. Neil, and P. M. W. French, “easySTORM: a robust, lower-cost approach to localisation and TIRF microscopy,” J. Biophotonics 9(9), 948–957 (2016).
[Crossref]

Schindelin, J.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Schmid, B.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Schoen, I.

Y. Li, M. Mund, P. Hoess, J. Deschamps, U. Matti, B. Nijmeijer, V. J. Sabinina, J. Ellenberg, I. Schoen, and J. Ries, “Real-time 3d single-molecule localization using experimental point spread functions,” Nat. Methods 15(5), 367–369 (2018).
[Crossref]

Schroeder, L. K.

Y. Lin, J. J. Long, F. Huang, W. C. Duim, S. Kirschbaum, Y. Zhang, L. K. Schroeder, A. A. Rebane, M. G. M. Velasco, A. Virrueta, D. W. Moonan, J. Jiao, S. Y. Hernandez, Y. Zhang, and J. Bewersdorf, “Quantifying and optimizing single-molecule switching nanoscopy at high speeds,” PLoS One 10(5), e0128135 (2015).
[Crossref]

Schrof, S.

Sergiadis, G.

A. Stylogiannis, L. Prade, A. Buehler, J. Aguirre, G. Sergiadis, and V. Ntziachristos, “Continuous wave laser diodes enable fast optoacoustic imaging,” Photoacoustics 9, 31–38 (2018).
[Crossref]

Shim, S.-H.

S. A. Jones, S.-H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods 8(6), 499–505 (2011).
[Crossref]

Sieben, C.

K. M. Douglass, C. Sieben, A. Archetti, A. Lambert, and S. Manley, “Super-resolution imaging of multiple cells by optimised flat-field epi-illumination,” Nat. Photonics 10(11), 705–708 (2016).
[Crossref]

Singh, R. K.

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Sparks, L.

A. von Appen, J. Kosinski, L. Sparks, A. Ori, A. L. DiGuilio, B. Vollmer, M.-T. Mackmull, N. Banterle, L. Parca, P. Kastritis, K. Buczak, S. Mosalaganti, W. Hagen, A. Andres-Pons, E. A. Lemke, P. Bork, W. Antonin, J. S. Glavy, K. H. Bui, and M. Beck, “In situ structural analysis of the human nuclear pore complex,” Nature 526(7571), 140–143 (2015).
[Crossref]

Stangner, T.

Staudt, T.

Stuurman, N.

A. Edelstein, N. Amodaj, K. Hoover, R. Vale, and N. Stuurman, Computer Control of Microscopes Using µManager (John Wiley & Sons, Inc., Hoboken, NJ, USA, 2010).

Stylogiannis, A.

A. Stylogiannis, L. Prade, A. Buehler, J. Aguirre, G. Sergiadis, and V. Ntziachristos, “Continuous wave laser diodes enable fast optoacoustic imaging,” Photoacoustics 9, 31–38 (2018).
[Crossref]

Takeda, M.

Thevathasan, J. V.

J. V. Thevathasan, M. Kahnwald, K. Cieśliński, P. Hoess, S. K. Peneti, M. Reitberger, D. Heid, K. C. Kasuba, S. J. Hoerner, Y. Li, Y.-L. Wu, M. Mund, U. Matti, P. M. Pereira, R. Henriques, B. Nijmeijer, M. Kueblbeck, V. J. Sabinina, J. Ellenberg, and J. Ries, “Nuclear pores as versatile reference standards for quantitative superresolution microscopy,” Nat. Methods 16(10), 1045–1053 (2019).
[Crossref]

Tinevez, J.-Y.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Tinnefeld, P.

M. Heilemann, E. Margeat, R. Kasper, M. Sauer, and P. Tinnefeld, “Carbocyanine dyes as efficient reversible single-molecule optical switch,” J. Am. Chem. Soc. 127(11), 3801–3806 (2005).
[Crossref]

Tomancak, P.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Toomre, D.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref]

Tsurui, H.

Uchil, P. D.

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref]

Vale, R.

A. Edelstein, N. Amodaj, K. Hoover, R. Vale, and N. Stuurman, Computer Control of Microscopes Using µManager (John Wiley & Sons, Inc., Hoboken, NJ, USA, 2010).

van de Linde, S.

T. Klein, A. Löschberger, S. Proppert, S. Wolter, S. van de Linde, and M. Sauer, “Live-cell dSTORM with SNAP-tag fusion proteins,” Nat. Methods 8(1), 7–9 (2011).
[Crossref]

Velasco, M. G. M.

Y. Lin, J. J. Long, F. Huang, W. C. Duim, S. Kirschbaum, Y. Zhang, L. K. Schroeder, A. A. Rebane, M. G. M. Velasco, A. Virrueta, D. W. Moonan, J. Jiao, S. Y. Hernandez, Y. Zhang, and J. Bewersdorf, “Quantifying and optimizing single-molecule switching nanoscopy at high speeds,” PLoS One 10(5), e0128135 (2015).
[Crossref]

Venditti, N.

S. Mahadevan, S. Halverson, L. Ramsey, and N. Venditti, “Suppression of fiber modal noise induced radial velocity errors for bright emission-line calibration sources,” Astrophys. J. 786(1), 18 (2014).
[Crossref]

Virrueta, A.

Y. Lin, J. J. Long, F. Huang, W. C. Duim, S. Kirschbaum, Y. Zhang, L. K. Schroeder, A. A. Rebane, M. G. M. Velasco, A. Virrueta, D. W. Moonan, J. Jiao, S. Y. Hernandez, Y. Zhang, and J. Bewersdorf, “Quantifying and optimizing single-molecule switching nanoscopy at high speeds,” PLoS One 10(5), e0128135 (2015).
[Crossref]

Vollmer, B.

A. von Appen, J. Kosinski, L. Sparks, A. Ori, A. L. DiGuilio, B. Vollmer, M.-T. Mackmull, N. Banterle, L. Parca, P. Kastritis, K. Buczak, S. Mosalaganti, W. Hagen, A. Andres-Pons, E. A. Lemke, P. Bork, W. Antonin, J. S. Glavy, K. H. Bui, and M. Beck, “In situ structural analysis of the human nuclear pore complex,” Nature 526(7571), 140–143 (2015).
[Crossref]

von Appen, A.

A. von Appen, J. Kosinski, L. Sparks, A. Ori, A. L. DiGuilio, B. Vollmer, M.-T. Mackmull, N. Banterle, L. Parca, P. Kastritis, K. Buczak, S. Mosalaganti, W. Hagen, A. Andres-Pons, E. A. Lemke, P. Bork, W. Antonin, J. S. Glavy, K. H. Bui, and M. Beck, “In situ structural analysis of the human nuclear pore complex,” Nature 526(7571), 140–143 (2015).
[Crossref]

Walsh, J.

P. R. Nicovich, J. Walsh, T. Böcking, and K. Gaus, “NicoLase-An open-source diode laser combiner, fiber launch, and sequencing controller for fluorescence microscopy,” PLoS One 12(3), e0173879 (2017).
[Crossref]

Wang, T.

White, D. J.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Wiklund, K.

Wittenmayer, N.

Wolter, S.

T. Klein, A. Löschberger, S. Proppert, S. Wolter, S. van de Linde, and M. Sauer, “Live-cell dSTORM with SNAP-tag fusion proteins,” Nat. Methods 8(1), 7–9 (2011).
[Crossref]

Wu, L.

M. Zhang, H. Chang, Y. Zhang, J. Yu, L. Wu, W. Ji, J. Chen, B. Liu, J. Lu, Y. Liu, J. Zhang, P. Xu, and T. Xu, “Rational design of true monomeric and bright photoactivatable fluorescent proteins,” Nat. Methods 9(7), 727–729 (2012).
[Crossref]

Wu, Y.-L.

J. V. Thevathasan, M. Kahnwald, K. Cieśliński, P. Hoess, S. K. Peneti, M. Reitberger, D. Heid, K. C. Kasuba, S. J. Hoerner, Y. Li, Y.-L. Wu, M. Mund, U. Matti, P. M. Pereira, R. Henriques, B. Nijmeijer, M. Kueblbeck, V. J. Sabinina, J. Ellenberg, and J. Ries, “Nuclear pores as versatile reference standards for quantitative superresolution microscopy,” Nat. Methods 16(10), 1045–1053 (2019).
[Crossref]

Xin, B.

Xu, P.

M. Zhang, H. Chang, Y. Zhang, J. Yu, L. Wu, W. Ji, J. Chen, B. Liu, J. Lu, Y. Liu, J. Zhang, P. Xu, and T. Xu, “Rational design of true monomeric and bright photoactivatable fluorescent proteins,” Nat. Methods 9(7), 727–729 (2012).
[Crossref]

Xu, T.

M. Zhang, H. Chang, Y. Zhang, J. Yu, L. Wu, W. Ji, J. Chen, B. Liu, J. Lu, Y. Liu, J. Zhang, P. Xu, and T. Xu, “Rational design of true monomeric and bright photoactivatable fluorescent proteins,” Nat. Methods 9(7), 727–729 (2012).
[Crossref]

Yu, J.

M. Zhang, H. Chang, Y. Zhang, J. Yu, L. Wu, W. Ji, J. Chen, B. Liu, J. Lu, Y. Liu, J. Zhang, P. Xu, and T. Xu, “Rational design of true monomeric and bright photoactivatable fluorescent proteins,” Nat. Methods 9(7), 727–729 (2012).
[Crossref]

Yuan, B.

P. LeBoulluec, H. Liu, and B. Yuan, “A cost-efficient frequency-domain photoacoustic imaging system,” Am. J. Phys. 81(9), 712–717 (2013).
[Crossref]

Zeng, L.

Zhang, H.

Zhang, J.

M. Zhang, H. Chang, Y. Zhang, J. Yu, L. Wu, W. Ji, J. Chen, B. Liu, J. Lu, Y. Liu, J. Zhang, P. Xu, and T. Xu, “Rational design of true monomeric and bright photoactivatable fluorescent proteins,” Nat. Methods 9(7), 727–729 (2012).
[Crossref]

Zhang, M.

M. Zhang, H. Chang, Y. Zhang, J. Yu, L. Wu, W. Ji, J. Chen, B. Liu, J. Lu, Y. Liu, J. Zhang, P. Xu, and T. Xu, “Rational design of true monomeric and bright photoactivatable fluorescent proteins,” Nat. Methods 9(7), 727–729 (2012).
[Crossref]

Zhang, Y.

Y. Lin, J. J. Long, F. Huang, W. C. Duim, S. Kirschbaum, Y. Zhang, L. K. Schroeder, A. A. Rebane, M. G. M. Velasco, A. Virrueta, D. W. Moonan, J. Jiao, S. Y. Hernandez, Y. Zhang, and J. Bewersdorf, “Quantifying and optimizing single-molecule switching nanoscopy at high speeds,” PLoS One 10(5), e0128135 (2015).
[Crossref]

Y. Lin, J. J. Long, F. Huang, W. C. Duim, S. Kirschbaum, Y. Zhang, L. K. Schroeder, A. A. Rebane, M. G. M. Velasco, A. Virrueta, D. W. Moonan, J. Jiao, S. Y. Hernandez, Y. Zhang, and J. Bewersdorf, “Quantifying and optimizing single-molecule switching nanoscopy at high speeds,” PLoS One 10(5), e0128135 (2015).
[Crossref]

M. Zhang, H. Chang, Y. Zhang, J. Yu, L. Wu, W. Ji, J. Chen, B. Liu, J. Lu, Y. Liu, J. Zhang, P. Xu, and T. Xu, “Rational design of true monomeric and bright photoactivatable fluorescent proteins,” Nat. Methods 9(7), 727–729 (2012).
[Crossref]

Zhao, Z.

Zhu, Q.

Zhuang, X.

S. A. Jones, S.-H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods 8(6), 499–505 (2011).
[Crossref]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref]

Am. J. Phys. (1)

P. LeBoulluec, H. Liu, and B. Yuan, “A cost-efficient frequency-domain photoacoustic imaging system,” Am. J. Phys. 81(9), 712–717 (2013).
[Crossref]

Appl. Opt. (2)

Astrophys. J. (1)

S. Mahadevan, S. Halverson, L. Ramsey, and N. Venditti, “Suppression of fiber modal noise induced radial velocity errors for bright emission-line calibration sources,” Astrophys. J. 786(1), 18 (2014).
[Crossref]

Biomed. Opt. Express (1)

Biophys. J. (1)

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref]

J. Am. Chem. Soc. (1)

M. Heilemann, E. Margeat, R. Kasper, M. Sauer, and P. Tinnefeld, “Carbocyanine dyes as efficient reversible single-molecule optical switch,” J. Am. Chem. Soc. 127(11), 3801–3806 (2005).
[Crossref]

J. Biophotonics (1)

K. Kwakwa, A. Savell, T. Davies, I. Munro, S. Parrinello, M. A. Purbhoo, C. Dunsby, M. A. A. Neil, and P. M. W. French, “easySTORM: a robust, lower-cost approach to localisation and TIRF microscopy,” J. Biophotonics 9(9), 948–957 (2016).
[Crossref]

Nat. Methods (8)

F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms,” Nat. Methods 10(7), 653–658 (2013).
[Crossref]

S. A. Jones, S.-H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods 8(6), 499–505 (2011).
[Crossref]

T. Klein, A. Löschberger, S. Proppert, S. Wolter, S. van de Linde, and M. Sauer, “Live-cell dSTORM with SNAP-tag fusion proteins,” Nat. Methods 8(1), 7–9 (2011).
[Crossref]

J. V. Thevathasan, M. Kahnwald, K. Cieśliński, P. Hoess, S. K. Peneti, M. Reitberger, D. Heid, K. C. Kasuba, S. J. Hoerner, Y. Li, Y.-L. Wu, M. Mund, U. Matti, P. M. Pereira, R. Henriques, B. Nijmeijer, M. Kueblbeck, V. J. Sabinina, J. Ellenberg, and J. Ries, “Nuclear pores as versatile reference standards for quantitative superresolution microscopy,” Nat. Methods 16(10), 1045–1053 (2019).
[Crossref]

M. Zhang, H. Chang, Y. Zhang, J. Yu, L. Wu, W. Ji, J. Chen, B. Liu, J. Lu, Y. Liu, J. Zhang, P. Xu, and T. Xu, “Rational design of true monomeric and bright photoactivatable fluorescent proteins,” Nat. Methods 9(7), 727–729 (2012).
[Crossref]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref]

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Y. Li, M. Mund, P. Hoess, J. Deschamps, U. Matti, B. Nijmeijer, V. J. Sabinina, J. Ellenberg, I. Schoen, and J. Ries, “Real-time 3d single-molecule localization using experimental point spread functions,” Nat. Methods 15(5), 367–369 (2018).
[Crossref]

Nat. Photonics (1)

K. M. Douglass, C. Sieben, A. Archetti, A. Lambert, and S. Manley, “Super-resolution imaging of multiple cells by optimised flat-field epi-illumination,” Nat. Photonics 10(11), 705–708 (2016).
[Crossref]

Nature (1)

A. von Appen, J. Kosinski, L. Sparks, A. Ori, A. L. DiGuilio, B. Vollmer, M.-T. Mackmull, N. Banterle, L. Parca, P. Kastritis, K. Buczak, S. Mosalaganti, W. Hagen, A. Andres-Pons, E. A. Lemke, P. Bork, W. Antonin, J. S. Glavy, K. H. Bui, and M. Beck, “In situ structural analysis of the human nuclear pore complex,” Nature 526(7571), 140–143 (2015).
[Crossref]

Opt. Express (5)

Photoacoustics (1)

A. Stylogiannis, L. Prade, A. Buehler, J. Aguirre, G. Sergiadis, and V. Ntziachristos, “Continuous wave laser diodes enable fast optoacoustic imaging,” Photoacoustics 9, 31–38 (2018).
[Crossref]

PLoS One (3)

Y. Lin, J. J. Long, F. Huang, W. C. Duim, S. Kirschbaum, Y. Zhang, L. K. Schroeder, A. A. Rebane, M. G. M. Velasco, A. Virrueta, D. W. Moonan, J. Jiao, S. Y. Hernandez, Y. Zhang, and J. Bewersdorf, “Quantifying and optimizing single-molecule switching nanoscopy at high speeds,” PLoS One 10(5), e0128135 (2015).
[Crossref]

P. R. Nicovich, J. Walsh, T. Böcking, and K. Gaus, “NicoLase-An open-source diode laser combiner, fiber launch, and sequencing controller for fluorescence microscopy,” PLoS One 12(3), e0173879 (2017).
[Crossref]

A. L. McEvoy, H. Hoi, M. Bates, E. Platonova, P. J. Cranfill, M. A. Baird, M. W. Davidson, H. Ewers, J. Liphardt, and R. E. Campbell, “mMaple: a photoconvertible fluorescent protein for use in multiple imaging modalities,” PLoS One 7(12), e51314 (2012).
[Crossref]

Proc. SPIE (1)

W. Ha, S. Lee, Y. Jung, J. Kim, and K. Oh, “Speckle reduction in multimode fiber with a piezoelectric transducer in radial vibration for fiber laser marking and display applications,” Proc. SPIE 6873, 68731V (2008).
[Crossref]

Science (1)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Other (2)

J. W. Goodman, Speckle Phenomena in Optics (Roberts & Company, 2007).

A. Edelstein, N. Amodaj, K. Hoover, R. Vale, and N. Stuurman, Computer Control of Microscopes Using µManager (John Wiley & Sons, Inc., Hoboken, NJ, USA, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Optical path of the laser engine. The laser diodes are mounted in a custom holder. They are collimated by an aspheric lens and combined using a polarizing beamsplitter (red diodes) and dichroic mirrors. The diode-pumped solid-state (dpss) laser is focused on a speckle-reducer and then collimated, each time by an achromatic lens. All lasers are coupled into a multimode optical fiber. The fiber is then introduced into a heavy aluminum box and intertwined with elastic cords suspended at the box corners. A vibration motor is held at the center of the box by the same elastics. Finally, the output of the optical fiber is used in the illumination path of the microscope. The arrow and circle on the output of the red diodes denote the p and s polarizations. L: lens, M: mirror, PBS: polarization beamsplitter, DM: dichroic mirror, LSR: laser speckle-reducer, MM: multimode. The dashed rectangle denotes the optional speckle-reduction system for the dpss laser.
Fig. 2.
Fig. 2. Speckle-reduction. (a) Profiles of the square multimode fiber output without speckle reduction for the four laser lines (only one 638 nm diode is shown here). The speckle contrast is indicated at the bottom of each image. (b) Same profiles with agitation. (c) Lateral intensity profiles of (a) (grey curve) and (b) (orange curve) along the dashed line of (a), averaged over a width of 4 pixels. (d) Profile of the round multimode fiber output for the 561 nm dpss laser without speckle-reduction. (e) Same with agitation (left) and with both agitation and the LSR on (right). (f) Lateral line profiles of (d) (grey curve) and of the bottom panels of (e) (left and right corresponding to the blue and orange curves respectively) along the dashed line of (e), averaged over a width of 4 pixels. All images were acquired with 5 ms exposure time with the following laser intensities: 50 mW (405 nm), 44 mW (488 nm), 50 mW (561 nm) and 600 mW (for both 638 nm diodes).
Fig. 3.
Fig. 3. High-speed localization microscopy. (a) Superresolved image of a fixed U2OS cell nucleus, with the nucleoporin Nup96 tagged with AF647 via SNAP-tag and imaged in a dSTORM buffer (see methods) with a laser power of 30 kW/cm2, reconstructed from 3000 frames with an exposure time of 10 ms. The dashed rectangle delimits the area used for averaging the diameter of individual nuclear pores. (b) Close-up images of two regions of (a): Roi 1 (yellow rectangle) and Roi 2 (blue rectangle).
Fig. 4.
Fig. 4. Pictures. (a) Top view of the laser engine without enclosure. Each optical beam path is represented by a solid line. The individual wavelengths are indicated next to each beam path. The blue rectangle highlights the position of the laser diode mount. (b) Front view of the laser diode mount with an arrow pointing at one aspheric lens. Inset picture: close-up of the laser diode mount’s back. (c) Agitation module.
Fig. 5.
Fig. 5. Optical path of the microscope. A single lens in front of the optical fiber forms an image of the fiber exit in the object focal plane of an achromatic lens. The latter is placed in a 4f configuration with the objective. The illumination light is reflected by a dichroic mirror and the image of the fiber exit is formed once again in the sample plane. The fluorescence is collected by the objective and focused by the tube lens. Finally, a pair of relay lenses re-images the sample onto an EMCCD camera. A 4x clean-up filter is placed in the illumination path to remove fluorescence generated by the multimode fiber, a filterwheel selects an appropriate bandpass filter and a 4x notch filter is inserted in front of the camera to eliminate residual laser light. Two slits are used to constrict the illumination and the detected field of view. d1 and d2 denote the distances varied to tune the size of the illumination in the sample and M1 and M2 are the pair of mirrors used to move it laterally. M: mirror, MM: multimode, Lxxx: achromatic lens of focal length xxx mm, F: filter, DM: dichroic mirror, TL: tube lens, FW: filter wheel.
Fig. 6.
Fig. 6. Speckle dependence on the laser diode output power. (a) Speckle contrast of the square multimode fiber at different power setpoints for the 405 nm laser diode with (red dots) and without (blue dots) agitation. The agitated data points were acquired with 5 ms exposure time. (b) Same as (a) for the 488 nm laser diode. (c) Same as (a) for one of the 638 nm laser diodes. All optical powers were measured directly after the laser diode mount.
Fig. 7.
Fig. 7. Speckle-reduction at different exposure times. (a) Central area of the square multimode fiber at different exposure times for each laser line. The leftmost column is the profile at 5 ms exposure time without agitation. The other columns are the agitated profiles at the exposure time indicated on top of each column. (b) The speckle contrast with agitation (solid line) for the 405 nm laser diode plotted against the exposure time and compared with the speckle contrast in the absence of agitation (dashed line). The output power was 50 mW. (c) Same for the 488 nm laser diode, with 30 mW laser power. (d) Same for the 561 nm dpss laser, with 200 mW laser power. (e) Same for one 638 nm laser diode, with above 400 mW of laser power.
Fig. 8.
Fig. 8. Speckle-reduction of the round multimode fiber. (a) Profiles of the round multimode fiber output without speckle reduction for the four laser lines and additionally for the 561 nm dpss laser with the LSR turned on. The speckle contrast is indicated at the bottom of each image. (b) Same profiles with agitation. (c) Lateral intensity profiles of (a) (blue curve) and (b) (orange curve) along the dashed line of (a), averaged over a width of 4 pixels. All images were acquired with 5 ms exposure time with the following laser intensities: 50 mW (405 nm), 27 mW (488), 50 mW (561 nm) and 580 mW (for both 638 nm diodes).
Fig. 9.
Fig. 9. Stability of the laser diode outputs. (a) Optical power output of the 405 nm laser diode over time (sampled every second) at three different current setpoints (blue, orange and yellow curves). The mean $\pm$ the standard deviation of the last 30 min is indicated above each curve. (b) Same as (a) for the 488 nm laser diode. (c) Same as (a) for one of the 638 nm laser diodes.
Fig. 10.
Fig. 10. Polarization of the multimode fiber outputs. (a) Round multimode fiber output power percentage (with respect to the unobstructed beam), measured after a polarizer and plotted against the polarizer’s angle for both 405 nm and 488 nm laser diodes (LD). (b) Same as (a) for the two 638 nm LDs and their average. (c) Same as (a) for the square multimode fiber. (d) Same as (b) for the square multimode fiber.

Metrics