Abstract

Zebrafish are an important animal model, whose structure and function information can be used to study development, pathologic changes and genetic mutations. However, limited by the penetration depth, the available optical methods are difficult to image the whole-body zebrafish in juvenile and adult stages. Based on a home-made high-resolution polarization-sensitive optical coherence tomography (PS-OCT) system, we finished in vivo volumetric imaging for zebrafish, and various muscles can be clearly discerned by scanning from dorsal, ventral, and lateral directions. Besides structure information, polarization properties extracted from PS-OCT images provide abundant function information to distinguish different muscles. Furthermore, we found local retardation and local optic axis of zebrafish muscle are related to their composition and fiber orientation. We think high-resolution PS-OCT will be a promising tool in studying myopathy models of zebrafish.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science 308(5728), 1599–1603 (2005).
    [Crossref]
  2. H. Jungbluth, S. Treves, F. Zorzato, A. Sarkozy, J. Ochala, C. Sewry, R. Phadke, M. Gautel, and F. Muntoni, “Congenital myopathies: disorders of excitation–contraction coupling and muscle contraction,” Nat. Rev. Neurol. 14(3), 151–167 (2018).
    [Crossref]
  3. W. R. Saliba, L. H. Goldstein, G. S. Habib, and M. S. Elias, “Toxic myopathy induced by the ingestion of loquat leaf extract,” Ann. Rheum. Dis. 63(10), 1355–1356 (2004).
    [Crossref]
  4. J. R. Guyon, L. S. Steffen, M. H. Howell, T. J. Pusack, C. Lawrence, and L. M. Kunkel, “Modeling human muscle disease in zebrafish,” Biochim. Biophys. Acta, Mol. Basis Dis. 1772(2), 205–215 (2007).
    [Crossref]
  5. D. P. S. Osborn, H. L. Pond, N. Mazaheri, J. Dejardin, C. J. Munn, K. Mushref, E. S. Cauley, I. Moroni, M. B. Pasanisi, E. A. Sellars, R. S. Hill, J. N. Partlow, R. K. Willaert, J. Bharj, R. A. Malamiri, H. Galehdari, G. Shariati, R. Maroofian, M. Mora, L. E. Swan, T. Voit, F. J. Conti, Y. Jamshidi, and M. C. Manzini, “Mutations in INPP5 K cause a form of congenital muscular dystrophy overlapping Marinesco-Sjögren syndrome and dystroglycanopathy,” Am. J. Hum. Genet. 100(3), 537–545 (2017).
    [Crossref]
  6. K. M. Lebold, C. V. Löhr, C. L. Barton, G. W. Miller, E. M. Labut, R. L. Tanguay, and M. G. Traber, “Chronic vitamin E deficiency promotes vitamin C deficiency in zebrafish leading to degenerative myopathy and impaired swimming behavior,” Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol. 157(4), 382–389 (2013).
    [Crossref]
  7. A. M. Fallata, R. A. Wyatt, J. M. Levesque, A. Dufour, C. M. Overall, and B. D. Crawford, “Intracellular localization in zebrafish muscle and conserved sequence features suggest roles for gelatinase A moonlighting in sarcomere maintenance,” Biomedicines 7(4), 93 (2019).
    [Crossref]
  8. A. Kaufmann, M. Mickoleit, M. Weber, and J. Huisken, “Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope,” Development 139(17), 3242–3247 (2012).
    [Crossref]
  9. S. Gao, Y. Tang, and W. Lin, “Development of a two-photon turn-on fluorescent probe for cysteine and its bio-imaging applications in living cells, tissues, and zebrafish,” New J. Chem. 42(17), 14075–14078 (2018).
    [Crossref]
  10. N. Huang, H. Guo, W. Qi, Z. Zhang, J. Rong, Z. Yuan, W. Ge, H. Jiang, and L. Xi, “Whole-body multispectral photoacoustic imaging of adult zebrafish,” Biomed. Opt. Express 7(9), 3543–3550 (2016).
    [Crossref]
  11. Y. Lin, X. Xiang, T. Chen, C. Gao, H. Fu, L. Wang, L. Deng, L. Zeng, and J. Zhang, “In vivo monitoring and high-resolution characterizing of the prednisolone-induced osteoporotic process on adult zebrafish by optical coherence tomography,” Biomed. Opt. Express 10(3), 1184–1195 (2019).
    [Crossref]
  12. M. Jang, H. Ko, J. H. Hong, W. K. Lee, J.-S. Lee, and W. Choi, “Deep tissue space-gated microscopy via acousto-optic interaction,” Nat. Commun. 11(1), 710 (2020).
    [Crossref]
  13. R. Haindl, A. J. Deloria, C. Sturtzel, H. Sattmann, W. Rohringer, B. Fischer, M. Andreana, A. Unterhuber, T. Schwerte, M. Distel, W. Drexler, R. Leitgeb, and M. Liu, “Functional optical coherence tomography and photoacoustic microscopy imaging for zebrafish larvae,” Biomed. Opt. Express 11(4), 2137–2151 (2020).
    [Crossref]
  14. W. Kim and B. E. Applegate, “In vivo molecular contrast OCT imaging of methylene blue,” Opt. Lett. 40(7), 1426–1429 (2015).
    [Crossref]
  15. J. van Rooij and J. Kalkman, “Polarization contrast optical diffraction tomography,” Biomed. Opt. Express 11(4), 2109–2121 (2020).
    [Crossref]
  16. A. Le Gratiet, M. d’Amora, M. Duocastella, R. Marongiu, A. Bendandi, S. Giordani, P. Bianchini, and A. Diaspro, “Zebrafish structural development in Mueller-matrix scanning microscopy,” Sci. Rep. 9(1), 19974 (2019).
    [Crossref]
  17. J. Berger, T. Sztal, and P. D. Currie, “Quantification of birefringence readily measures the level of muscle damage in zebrafish,” Biochem. Biophys. Res. Commun. 423(4), 785–788 (2012).
    [Crossref]
  18. Q. Li, K. Karnowski, P. B. Noble, A. Cairncross, A. James, M. Villiger, and D. D. Sampson, “Robust reconstruction of local optic axis orientation with fiber-based polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 9(11), 5437–5455 (2018).
    [Crossref]
  19. Y. Wang, K. Zhang, N. B. Wasala, D. Duan, and G. Yao, “Optical polarization tractography revealed significant fiber disarray in skeletal muscles of a mouse model for Duchenne muscular dystrophy,” Biomed. Opt. Express 6(2), 347–352 (2015).
    [Crossref]
  20. Y. Wang, K. Zhang, D. Duan, and G. Yao, “Heart structural remodeling in a mouse model of Duchenne cardiomyopathy revealed using optical polarization tractography [Invited],” Biomed. Opt. Express 8(3), 1271–1276 (2017).
    [Crossref]
  21. P. Rossignoli, N. Tiso, M. Santagiustina, E. Autizi, E. Grisan, and L. Palmieri, “Polarization sensitive optical coherence tomography for zebrafish imaging,” in 2015 Fotonica AEIT Italian Conference on Photonics Technologies (IET) (2015), pp. 1–4.
  22. B. Baumann, M. Augustin, A. Lichtenegger, D. J. Harper, M. Muck, P. Eugui, A. Wartak, M. Pircher, and C. K. Hitzenberger, “Polarization-sensitive optical coherence tomography imaging of the anterior mouse eye,” J. Biomed. Opt. 23(08), 1 (2018).
    [Crossref]
  23. E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express 13(25), 10217–10229 (2005).
    [Crossref]
  24. N. Ortega-Quijano, T. Marvdashti, and A. K. E. Bowden, “Enhanced depolarization contrast in polarization-sensitive optical coherence tomography,” Opt. Lett. 41(10), 2350–2353 (2016).
    [Crossref]
  25. Q. Xiong, N. Wang, X. Liu, S. Chen, H. Liang, S. Chen, and L. Liu, “Single input state polarization-sensitive optical coherence tomography with high resolution and polarization distortion correction,” Opt. Express 27(5), 6910–6924 (2019).
    [Crossref]
  26. B. Baumann, “Polarization sensitive optical coherence tomography: A review of technology and applications,” Appl. Sci. 7(5), 474 (2017).
    [Crossref]
  27. C. Fan and G. Yao, “Mapping local optical axis in birefringent samples using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(11), 110501 (2012).
    [Crossref]
  28. D. J. Harper, M. Augustin, A. Lichtenegger, P. Eugui, C. Reyes, M. Glösmann, C. K. Hitzenberger, and B. Baumann, “White light polarization sensitive optical coherence tomography for sub-micron axial resolution and spectroscopic contrast in the murine retina,” Biomed. Opt. Express 9(5), 2115–2129 (2018).
    [Crossref]
  29. C. Fan and G. Yao, “Correcting optical-axis calculation in polarization-sensitive optical coherence tomography,” IEEE Trans. Biomed. Eng. 57(10), 2556–2559 (2010).
    [Crossref]
  30. G. Kaneko, H. Shirakami, Y. Hirano, M. Oba, H. Yoshinaga, A. Khieokhajonkhet, R. Nagasaka, H. Kondo, I. Hirono, and H. Ushio, “Diversity of lipid distribution in fish skeletal muscle,” Zool. Sci. 33(2), 170–178 (2016).
    [Crossref]
  31. W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express 16(2), 1096–1103 (2008).
    [Crossref]
  32. L. Chin, X. Yang, R. A. McLaughlin, P. B. Noble, and D. D. Sampson, “En face parametric imaging of tissue birefringence using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 18(6), 066005 (2013).
    [Crossref]
  33. A. Daya, R. Donaka, and D. Karasik, “Zebrafish models of sarcopenia,” Dis. Models Mech. 13(3), dmm042689 (2020).
    [Crossref]

2020 (4)

2019 (4)

Y. Lin, X. Xiang, T. Chen, C. Gao, H. Fu, L. Wang, L. Deng, L. Zeng, and J. Zhang, “In vivo monitoring and high-resolution characterizing of the prednisolone-induced osteoporotic process on adult zebrafish by optical coherence tomography,” Biomed. Opt. Express 10(3), 1184–1195 (2019).
[Crossref]

Q. Xiong, N. Wang, X. Liu, S. Chen, H. Liang, S. Chen, and L. Liu, “Single input state polarization-sensitive optical coherence tomography with high resolution and polarization distortion correction,” Opt. Express 27(5), 6910–6924 (2019).
[Crossref]

A. Le Gratiet, M. d’Amora, M. Duocastella, R. Marongiu, A. Bendandi, S. Giordani, P. Bianchini, and A. Diaspro, “Zebrafish structural development in Mueller-matrix scanning microscopy,” Sci. Rep. 9(1), 19974 (2019).
[Crossref]

A. M. Fallata, R. A. Wyatt, J. M. Levesque, A. Dufour, C. M. Overall, and B. D. Crawford, “Intracellular localization in zebrafish muscle and conserved sequence features suggest roles for gelatinase A moonlighting in sarcomere maintenance,” Biomedicines 7(4), 93 (2019).
[Crossref]

2018 (5)

H. Jungbluth, S. Treves, F. Zorzato, A. Sarkozy, J. Ochala, C. Sewry, R. Phadke, M. Gautel, and F. Muntoni, “Congenital myopathies: disorders of excitation–contraction coupling and muscle contraction,” Nat. Rev. Neurol. 14(3), 151–167 (2018).
[Crossref]

Q. Li, K. Karnowski, P. B. Noble, A. Cairncross, A. James, M. Villiger, and D. D. Sampson, “Robust reconstruction of local optic axis orientation with fiber-based polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 9(11), 5437–5455 (2018).
[Crossref]

S. Gao, Y. Tang, and W. Lin, “Development of a two-photon turn-on fluorescent probe for cysteine and its bio-imaging applications in living cells, tissues, and zebrafish,” New J. Chem. 42(17), 14075–14078 (2018).
[Crossref]

D. J. Harper, M. Augustin, A. Lichtenegger, P. Eugui, C. Reyes, M. Glösmann, C. K. Hitzenberger, and B. Baumann, “White light polarization sensitive optical coherence tomography for sub-micron axial resolution and spectroscopic contrast in the murine retina,” Biomed. Opt. Express 9(5), 2115–2129 (2018).
[Crossref]

B. Baumann, M. Augustin, A. Lichtenegger, D. J. Harper, M. Muck, P. Eugui, A. Wartak, M. Pircher, and C. K. Hitzenberger, “Polarization-sensitive optical coherence tomography imaging of the anterior mouse eye,” J. Biomed. Opt. 23(08), 1 (2018).
[Crossref]

2017 (3)

Y. Wang, K. Zhang, D. Duan, and G. Yao, “Heart structural remodeling in a mouse model of Duchenne cardiomyopathy revealed using optical polarization tractography [Invited],” Biomed. Opt. Express 8(3), 1271–1276 (2017).
[Crossref]

B. Baumann, “Polarization sensitive optical coherence tomography: A review of technology and applications,” Appl. Sci. 7(5), 474 (2017).
[Crossref]

D. P. S. Osborn, H. L. Pond, N. Mazaheri, J. Dejardin, C. J. Munn, K. Mushref, E. S. Cauley, I. Moroni, M. B. Pasanisi, E. A. Sellars, R. S. Hill, J. N. Partlow, R. K. Willaert, J. Bharj, R. A. Malamiri, H. Galehdari, G. Shariati, R. Maroofian, M. Mora, L. E. Swan, T. Voit, F. J. Conti, Y. Jamshidi, and M. C. Manzini, “Mutations in INPP5 K cause a form of congenital muscular dystrophy overlapping Marinesco-Sjögren syndrome and dystroglycanopathy,” Am. J. Hum. Genet. 100(3), 537–545 (2017).
[Crossref]

2016 (3)

2015 (2)

2013 (2)

K. M. Lebold, C. V. Löhr, C. L. Barton, G. W. Miller, E. M. Labut, R. L. Tanguay, and M. G. Traber, “Chronic vitamin E deficiency promotes vitamin C deficiency in zebrafish leading to degenerative myopathy and impaired swimming behavior,” Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol. 157(4), 382–389 (2013).
[Crossref]

L. Chin, X. Yang, R. A. McLaughlin, P. B. Noble, and D. D. Sampson, “En face parametric imaging of tissue birefringence using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 18(6), 066005 (2013).
[Crossref]

2012 (3)

C. Fan and G. Yao, “Mapping local optical axis in birefringent samples using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(11), 110501 (2012).
[Crossref]

A. Kaufmann, M. Mickoleit, M. Weber, and J. Huisken, “Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope,” Development 139(17), 3242–3247 (2012).
[Crossref]

J. Berger, T. Sztal, and P. D. Currie, “Quantification of birefringence readily measures the level of muscle damage in zebrafish,” Biochem. Biophys. Res. Commun. 423(4), 785–788 (2012).
[Crossref]

2010 (1)

C. Fan and G. Yao, “Correcting optical-axis calculation in polarization-sensitive optical coherence tomography,” IEEE Trans. Biomed. Eng. 57(10), 2556–2559 (2010).
[Crossref]

2008 (1)

2007 (1)

J. R. Guyon, L. S. Steffen, M. H. Howell, T. J. Pusack, C. Lawrence, and L. M. Kunkel, “Modeling human muscle disease in zebrafish,” Biochim. Biophys. Acta, Mol. Basis Dis. 1772(2), 205–215 (2007).
[Crossref]

2005 (2)

S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science 308(5728), 1599–1603 (2005).
[Crossref]

E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express 13(25), 10217–10229 (2005).
[Crossref]

2004 (1)

W. R. Saliba, L. H. Goldstein, G. S. Habib, and M. S. Elias, “Toxic myopathy induced by the ingestion of loquat leaf extract,” Ann. Rheum. Dis. 63(10), 1355–1356 (2004).
[Crossref]

Andreana, M.

Applegate, B. E.

Augustin, M.

B. Baumann, M. Augustin, A. Lichtenegger, D. J. Harper, M. Muck, P. Eugui, A. Wartak, M. Pircher, and C. K. Hitzenberger, “Polarization-sensitive optical coherence tomography imaging of the anterior mouse eye,” J. Biomed. Opt. 23(08), 1 (2018).
[Crossref]

D. J. Harper, M. Augustin, A. Lichtenegger, P. Eugui, C. Reyes, M. Glösmann, C. K. Hitzenberger, and B. Baumann, “White light polarization sensitive optical coherence tomography for sub-micron axial resolution and spectroscopic contrast in the murine retina,” Biomed. Opt. Express 9(5), 2115–2129 (2018).
[Crossref]

Autizi, E.

P. Rossignoli, N. Tiso, M. Santagiustina, E. Autizi, E. Grisan, and L. Palmieri, “Polarization sensitive optical coherence tomography for zebrafish imaging,” in 2015 Fotonica AEIT Italian Conference on Photonics Technologies (IET) (2015), pp. 1–4.

Barton, C. L.

K. M. Lebold, C. V. Löhr, C. L. Barton, G. W. Miller, E. M. Labut, R. L. Tanguay, and M. G. Traber, “Chronic vitamin E deficiency promotes vitamin C deficiency in zebrafish leading to degenerative myopathy and impaired swimming behavior,” Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol. 157(4), 382–389 (2013).
[Crossref]

Baumann, B.

B. Baumann, M. Augustin, A. Lichtenegger, D. J. Harper, M. Muck, P. Eugui, A. Wartak, M. Pircher, and C. K. Hitzenberger, “Polarization-sensitive optical coherence tomography imaging of the anterior mouse eye,” J. Biomed. Opt. 23(08), 1 (2018).
[Crossref]

D. J. Harper, M. Augustin, A. Lichtenegger, P. Eugui, C. Reyes, M. Glösmann, C. K. Hitzenberger, and B. Baumann, “White light polarization sensitive optical coherence tomography for sub-micron axial resolution and spectroscopic contrast in the murine retina,” Biomed. Opt. Express 9(5), 2115–2129 (2018).
[Crossref]

B. Baumann, “Polarization sensitive optical coherence tomography: A review of technology and applications,” Appl. Sci. 7(5), 474 (2017).
[Crossref]

Bendandi, A.

A. Le Gratiet, M. d’Amora, M. Duocastella, R. Marongiu, A. Bendandi, S. Giordani, P. Bianchini, and A. Diaspro, “Zebrafish structural development in Mueller-matrix scanning microscopy,” Sci. Rep. 9(1), 19974 (2019).
[Crossref]

Berger, J.

J. Berger, T. Sztal, and P. D. Currie, “Quantification of birefringence readily measures the level of muscle damage in zebrafish,” Biochem. Biophys. Res. Commun. 423(4), 785–788 (2012).
[Crossref]

Bharj, J.

D. P. S. Osborn, H. L. Pond, N. Mazaheri, J. Dejardin, C. J. Munn, K. Mushref, E. S. Cauley, I. Moroni, M. B. Pasanisi, E. A. Sellars, R. S. Hill, J. N. Partlow, R. K. Willaert, J. Bharj, R. A. Malamiri, H. Galehdari, G. Shariati, R. Maroofian, M. Mora, L. E. Swan, T. Voit, F. J. Conti, Y. Jamshidi, and M. C. Manzini, “Mutations in INPP5 K cause a form of congenital muscular dystrophy overlapping Marinesco-Sjögren syndrome and dystroglycanopathy,” Am. J. Hum. Genet. 100(3), 537–545 (2017).
[Crossref]

Bianchini, P.

A. Le Gratiet, M. d’Amora, M. Duocastella, R. Marongiu, A. Bendandi, S. Giordani, P. Bianchini, and A. Diaspro, “Zebrafish structural development in Mueller-matrix scanning microscopy,” Sci. Rep. 9(1), 19974 (2019).
[Crossref]

Bouma, B. E.

Bowden, A. K. E.

Brandmeier, B.

S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science 308(5728), 1599–1603 (2005).
[Crossref]

Cairncross, A.

Cauley, E. S.

D. P. S. Osborn, H. L. Pond, N. Mazaheri, J. Dejardin, C. J. Munn, K. Mushref, E. S. Cauley, I. Moroni, M. B. Pasanisi, E. A. Sellars, R. S. Hill, J. N. Partlow, R. K. Willaert, J. Bharj, R. A. Malamiri, H. Galehdari, G. Shariati, R. Maroofian, M. Mora, L. E. Swan, T. Voit, F. J. Conti, Y. Jamshidi, and M. C. Manzini, “Mutations in INPP5 K cause a form of congenital muscular dystrophy overlapping Marinesco-Sjögren syndrome and dystroglycanopathy,” Am. J. Hum. Genet. 100(3), 537–545 (2017).
[Crossref]

Chen, S.

Chen, T.

Chin, L.

L. Chin, X. Yang, R. A. McLaughlin, P. B. Noble, and D. D. Sampson, “En face parametric imaging of tissue birefringence using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 18(6), 066005 (2013).
[Crossref]

Choi, W.

M. Jang, H. Ko, J. H. Hong, W. K. Lee, J.-S. Lee, and W. Choi, “Deep tissue space-gated microscopy via acousto-optic interaction,” Nat. Commun. 11(1), 710 (2020).
[Crossref]

Conti, F. J.

D. P. S. Osborn, H. L. Pond, N. Mazaheri, J. Dejardin, C. J. Munn, K. Mushref, E. S. Cauley, I. Moroni, M. B. Pasanisi, E. A. Sellars, R. S. Hill, J. N. Partlow, R. K. Willaert, J. Bharj, R. A. Malamiri, H. Galehdari, G. Shariati, R. Maroofian, M. Mora, L. E. Swan, T. Voit, F. J. Conti, Y. Jamshidi, and M. C. Manzini, “Mutations in INPP5 K cause a form of congenital muscular dystrophy overlapping Marinesco-Sjögren syndrome and dystroglycanopathy,” Am. J. Hum. Genet. 100(3), 537–545 (2017).
[Crossref]

Crawford, B. D.

A. M. Fallata, R. A. Wyatt, J. M. Levesque, A. Dufour, C. M. Overall, and B. D. Crawford, “Intracellular localization in zebrafish muscle and conserved sequence features suggest roles for gelatinase A moonlighting in sarcomere maintenance,” Biomedicines 7(4), 93 (2019).
[Crossref]

Currie, P. D.

J. Berger, T. Sztal, and P. D. Currie, “Quantification of birefringence readily measures the level of muscle damage in zebrafish,” Biochem. Biophys. Res. Commun. 423(4), 785–788 (2012).
[Crossref]

d’Amora, M.

A. Le Gratiet, M. d’Amora, M. Duocastella, R. Marongiu, A. Bendandi, S. Giordani, P. Bianchini, and A. Diaspro, “Zebrafish structural development in Mueller-matrix scanning microscopy,” Sci. Rep. 9(1), 19974 (2019).
[Crossref]

Daya, A.

A. Daya, R. Donaka, and D. Karasik, “Zebrafish models of sarcopenia,” Dis. Models Mech. 13(3), dmm042689 (2020).
[Crossref]

de Boer, J. F.

Dejardin, J.

D. P. S. Osborn, H. L. Pond, N. Mazaheri, J. Dejardin, C. J. Munn, K. Mushref, E. S. Cauley, I. Moroni, M. B. Pasanisi, E. A. Sellars, R. S. Hill, J. N. Partlow, R. K. Willaert, J. Bharj, R. A. Malamiri, H. Galehdari, G. Shariati, R. Maroofian, M. Mora, L. E. Swan, T. Voit, F. J. Conti, Y. Jamshidi, and M. C. Manzini, “Mutations in INPP5 K cause a form of congenital muscular dystrophy overlapping Marinesco-Sjögren syndrome and dystroglycanopathy,” Am. J. Hum. Genet. 100(3), 537–545 (2017).
[Crossref]

Deloria, A. J.

Deng, L.

Desjardins, A. E.

Diaspro, A.

A. Le Gratiet, M. d’Amora, M. Duocastella, R. Marongiu, A. Bendandi, S. Giordani, P. Bianchini, and A. Diaspro, “Zebrafish structural development in Mueller-matrix scanning microscopy,” Sci. Rep. 9(1), 19974 (2019).
[Crossref]

Distel, M.

Donaka, R.

A. Daya, R. Donaka, and D. Karasik, “Zebrafish models of sarcopenia,” Dis. Models Mech. 13(3), dmm042689 (2020).
[Crossref]

Drexler, W.

Duan, D.

Dufour, A.

A. M. Fallata, R. A. Wyatt, J. M. Levesque, A. Dufour, C. M. Overall, and B. D. Crawford, “Intracellular localization in zebrafish muscle and conserved sequence features suggest roles for gelatinase A moonlighting in sarcomere maintenance,” Biomedicines 7(4), 93 (2019).
[Crossref]

Duocastella, M.

A. Le Gratiet, M. d’Amora, M. Duocastella, R. Marongiu, A. Bendandi, S. Giordani, P. Bianchini, and A. Diaspro, “Zebrafish structural development in Mueller-matrix scanning microscopy,” Sci. Rep. 9(1), 19974 (2019).
[Crossref]

Edström, L.

S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science 308(5728), 1599–1603 (2005).
[Crossref]

Ehler, E.

S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science 308(5728), 1599–1603 (2005).
[Crossref]

Elias, M. S.

W. R. Saliba, L. H. Goldstein, G. S. Habib, and M. S. Elias, “Toxic myopathy induced by the ingestion of loquat leaf extract,” Ann. Rheum. Dis. 63(10), 1355–1356 (2004).
[Crossref]

Eugui, P.

B. Baumann, M. Augustin, A. Lichtenegger, D. J. Harper, M. Muck, P. Eugui, A. Wartak, M. Pircher, and C. K. Hitzenberger, “Polarization-sensitive optical coherence tomography imaging of the anterior mouse eye,” J. Biomed. Opt. 23(08), 1 (2018).
[Crossref]

D. J. Harper, M. Augustin, A. Lichtenegger, P. Eugui, C. Reyes, M. Glösmann, C. K. Hitzenberger, and B. Baumann, “White light polarization sensitive optical coherence tomography for sub-micron axial resolution and spectroscopic contrast in the murine retina,” Biomed. Opt. Express 9(5), 2115–2129 (2018).
[Crossref]

Fallata, A. M.

A. M. Fallata, R. A. Wyatt, J. M. Levesque, A. Dufour, C. M. Overall, and B. D. Crawford, “Intracellular localization in zebrafish muscle and conserved sequence features suggest roles for gelatinase A moonlighting in sarcomere maintenance,” Biomedicines 7(4), 93 (2019).
[Crossref]

Fan, C.

C. Fan and G. Yao, “Mapping local optical axis in birefringent samples using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(11), 110501 (2012).
[Crossref]

C. Fan and G. Yao, “Correcting optical-axis calculation in polarization-sensitive optical coherence tomography,” IEEE Trans. Biomed. Eng. 57(10), 2556–2559 (2010).
[Crossref]

Fischer, B.

Franzen, G.

S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science 308(5728), 1599–1603 (2005).
[Crossref]

Fu, H.

Galehdari, H.

D. P. S. Osborn, H. L. Pond, N. Mazaheri, J. Dejardin, C. J. Munn, K. Mushref, E. S. Cauley, I. Moroni, M. B. Pasanisi, E. A. Sellars, R. S. Hill, J. N. Partlow, R. K. Willaert, J. Bharj, R. A. Malamiri, H. Galehdari, G. Shariati, R. Maroofian, M. Mora, L. E. Swan, T. Voit, F. J. Conti, Y. Jamshidi, and M. C. Manzini, “Mutations in INPP5 K cause a form of congenital muscular dystrophy overlapping Marinesco-Sjögren syndrome and dystroglycanopathy,” Am. J. Hum. Genet. 100(3), 537–545 (2017).
[Crossref]

Gao, C.

Gao, S.

S. Gao, Y. Tang, and W. Lin, “Development of a two-photon turn-on fluorescent probe for cysteine and its bio-imaging applications in living cells, tissues, and zebrafish,” New J. Chem. 42(17), 14075–14078 (2018).
[Crossref]

Gautel, M.

H. Jungbluth, S. Treves, F. Zorzato, A. Sarkozy, J. Ochala, C. Sewry, R. Phadke, M. Gautel, and F. Muntoni, “Congenital myopathies: disorders of excitation–contraction coupling and muscle contraction,” Nat. Rev. Neurol. 14(3), 151–167 (2018).
[Crossref]

S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science 308(5728), 1599–1603 (2005).
[Crossref]

Ge, W.

Giordani, S.

A. Le Gratiet, M. d’Amora, M. Duocastella, R. Marongiu, A. Bendandi, S. Giordani, P. Bianchini, and A. Diaspro, “Zebrafish structural development in Mueller-matrix scanning microscopy,” Sci. Rep. 9(1), 19974 (2019).
[Crossref]

Glösmann, M.

Goldstein, L. H.

W. R. Saliba, L. H. Goldstein, G. S. Habib, and M. S. Elias, “Toxic myopathy induced by the ingestion of loquat leaf extract,” Ann. Rheum. Dis. 63(10), 1355–1356 (2004).
[Crossref]

Götzinger, E.

Grisan, E.

P. Rossignoli, N. Tiso, M. Santagiustina, E. Autizi, E. Grisan, and L. Palmieri, “Polarization sensitive optical coherence tomography for zebrafish imaging,” in 2015 Fotonica AEIT Italian Conference on Photonics Technologies (IET) (2015), pp. 1–4.

Gunnarsson, L. G.

S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science 308(5728), 1599–1603 (2005).
[Crossref]

Guo, H.

Guyon, J. R.

J. R. Guyon, L. S. Steffen, M. H. Howell, T. J. Pusack, C. Lawrence, and L. M. Kunkel, “Modeling human muscle disease in zebrafish,” Biochim. Biophys. Acta, Mol. Basis Dis. 1772(2), 205–215 (2007).
[Crossref]

Habib, G. S.

W. R. Saliba, L. H. Goldstein, G. S. Habib, and M. S. Elias, “Toxic myopathy induced by the ingestion of loquat leaf extract,” Ann. Rheum. Dis. 63(10), 1355–1356 (2004).
[Crossref]

Hackman, P.

S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science 308(5728), 1599–1603 (2005).
[Crossref]

Haindl, R.

Harper, D. J.

B. Baumann, M. Augustin, A. Lichtenegger, D. J. Harper, M. Muck, P. Eugui, A. Wartak, M. Pircher, and C. K. Hitzenberger, “Polarization-sensitive optical coherence tomography imaging of the anterior mouse eye,” J. Biomed. Opt. 23(08), 1 (2018).
[Crossref]

D. J. Harper, M. Augustin, A. Lichtenegger, P. Eugui, C. Reyes, M. Glösmann, C. K. Hitzenberger, and B. Baumann, “White light polarization sensitive optical coherence tomography for sub-micron axial resolution and spectroscopic contrast in the murine retina,” Biomed. Opt. Express 9(5), 2115–2129 (2018).
[Crossref]

Hedberg, B.

S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science 308(5728), 1599–1603 (2005).
[Crossref]

Hill, R. S.

D. P. S. Osborn, H. L. Pond, N. Mazaheri, J. Dejardin, C. J. Munn, K. Mushref, E. S. Cauley, I. Moroni, M. B. Pasanisi, E. A. Sellars, R. S. Hill, J. N. Partlow, R. K. Willaert, J. Bharj, R. A. Malamiri, H. Galehdari, G. Shariati, R. Maroofian, M. Mora, L. E. Swan, T. Voit, F. J. Conti, Y. Jamshidi, and M. C. Manzini, “Mutations in INPP5 K cause a form of congenital muscular dystrophy overlapping Marinesco-Sjögren syndrome and dystroglycanopathy,” Am. J. Hum. Genet. 100(3), 537–545 (2017).
[Crossref]

Hirano, Y.

G. Kaneko, H. Shirakami, Y. Hirano, M. Oba, H. Yoshinaga, A. Khieokhajonkhet, R. Nagasaka, H. Kondo, I. Hirono, and H. Ushio, “Diversity of lipid distribution in fish skeletal muscle,” Zool. Sci. 33(2), 170–178 (2016).
[Crossref]

Hirono, I.

G. Kaneko, H. Shirakami, Y. Hirano, M. Oba, H. Yoshinaga, A. Khieokhajonkhet, R. Nagasaka, H. Kondo, I. Hirono, and H. Ushio, “Diversity of lipid distribution in fish skeletal muscle,” Zool. Sci. 33(2), 170–178 (2016).
[Crossref]

Hitzenberger, C. K.

Hong, J. H.

M. Jang, H. Ko, J. H. Hong, W. K. Lee, J.-S. Lee, and W. Choi, “Deep tissue space-gated microscopy via acousto-optic interaction,” Nat. Commun. 11(1), 710 (2020).
[Crossref]

Howell, M. H.

J. R. Guyon, L. S. Steffen, M. H. Howell, T. J. Pusack, C. Lawrence, and L. M. Kunkel, “Modeling human muscle disease in zebrafish,” Biochim. Biophys. Acta, Mol. Basis Dis. 1772(2), 205–215 (2007).
[Crossref]

Huang, N.

Hughes, S. M.

S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science 308(5728), 1599–1603 (2005).
[Crossref]

Huisken, J.

A. Kaufmann, M. Mickoleit, M. Weber, and J. Huisken, “Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope,” Development 139(17), 3242–3247 (2012).
[Crossref]

James, A.

Jamshidi, Y.

D. P. S. Osborn, H. L. Pond, N. Mazaheri, J. Dejardin, C. J. Munn, K. Mushref, E. S. Cauley, I. Moroni, M. B. Pasanisi, E. A. Sellars, R. S. Hill, J. N. Partlow, R. K. Willaert, J. Bharj, R. A. Malamiri, H. Galehdari, G. Shariati, R. Maroofian, M. Mora, L. E. Swan, T. Voit, F. J. Conti, Y. Jamshidi, and M. C. Manzini, “Mutations in INPP5 K cause a form of congenital muscular dystrophy overlapping Marinesco-Sjögren syndrome and dystroglycanopathy,” Am. J. Hum. Genet. 100(3), 537–545 (2017).
[Crossref]

Jang, M.

M. Jang, H. Ko, J. H. Hong, W. K. Lee, J.-S. Lee, and W. Choi, “Deep tissue space-gated microscopy via acousto-optic interaction,” Nat. Commun. 11(1), 710 (2020).
[Crossref]

Jiang, H.

Jungbluth, H.

H. Jungbluth, S. Treves, F. Zorzato, A. Sarkozy, J. Ochala, C. Sewry, R. Phadke, M. Gautel, and F. Muntoni, “Congenital myopathies: disorders of excitation–contraction coupling and muscle contraction,” Nat. Rev. Neurol. 14(3), 151–167 (2018).
[Crossref]

Kalkman, J.

Kaneko, G.

G. Kaneko, H. Shirakami, Y. Hirano, M. Oba, H. Yoshinaga, A. Khieokhajonkhet, R. Nagasaka, H. Kondo, I. Hirono, and H. Ushio, “Diversity of lipid distribution in fish skeletal muscle,” Zool. Sci. 33(2), 170–178 (2016).
[Crossref]

Karasik, D.

A. Daya, R. Donaka, and D. Karasik, “Zebrafish models of sarcopenia,” Dis. Models Mech. 13(3), dmm042689 (2020).
[Crossref]

Karnowski, K.

Kaufmann, A.

A. Kaufmann, M. Mickoleit, M. Weber, and J. Huisken, “Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope,” Development 139(17), 3242–3247 (2012).
[Crossref]

Khieokhajonkhet, A.

G. Kaneko, H. Shirakami, Y. Hirano, M. Oba, H. Yoshinaga, A. Khieokhajonkhet, R. Nagasaka, H. Kondo, I. Hirono, and H. Ushio, “Diversity of lipid distribution in fish skeletal muscle,” Zool. Sci. 33(2), 170–178 (2016).
[Crossref]

Kim, W.

Ko, H.

M. Jang, H. Ko, J. H. Hong, W. K. Lee, J.-S. Lee, and W. Choi, “Deep tissue space-gated microscopy via acousto-optic interaction,” Nat. Commun. 11(1), 710 (2020).
[Crossref]

Kondo, H.

G. Kaneko, H. Shirakami, Y. Hirano, M. Oba, H. Yoshinaga, A. Khieokhajonkhet, R. Nagasaka, H. Kondo, I. Hirono, and H. Ushio, “Diversity of lipid distribution in fish skeletal muscle,” Zool. Sci. 33(2), 170–178 (2016).
[Crossref]

Kristensen, J.

S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science 308(5728), 1599–1603 (2005).
[Crossref]

Kunkel, L. M.

J. R. Guyon, L. S. Steffen, M. H. Howell, T. J. Pusack, C. Lawrence, and L. M. Kunkel, “Modeling human muscle disease in zebrafish,” Biochim. Biophys. Acta, Mol. Basis Dis. 1772(2), 205–215 (2007).
[Crossref]

Labut, E. M.

K. M. Lebold, C. V. Löhr, C. L. Barton, G. W. Miller, E. M. Labut, R. L. Tanguay, and M. G. Traber, “Chronic vitamin E deficiency promotes vitamin C deficiency in zebrafish leading to degenerative myopathy and impaired swimming behavior,” Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol. 157(4), 382–389 (2013).
[Crossref]

Lange, S.

S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science 308(5728), 1599–1603 (2005).
[Crossref]

Lawrence, C.

J. R. Guyon, L. S. Steffen, M. H. Howell, T. J. Pusack, C. Lawrence, and L. M. Kunkel, “Modeling human muscle disease in zebrafish,” Biochim. Biophys. Acta, Mol. Basis Dis. 1772(2), 205–215 (2007).
[Crossref]

Le Gratiet, A.

A. Le Gratiet, M. d’Amora, M. Duocastella, R. Marongiu, A. Bendandi, S. Giordani, P. Bianchini, and A. Diaspro, “Zebrafish structural development in Mueller-matrix scanning microscopy,” Sci. Rep. 9(1), 19974 (2019).
[Crossref]

Lebold, K. M.

K. M. Lebold, C. V. Löhr, C. L. Barton, G. W. Miller, E. M. Labut, R. L. Tanguay, and M. G. Traber, “Chronic vitamin E deficiency promotes vitamin C deficiency in zebrafish leading to degenerative myopathy and impaired swimming behavior,” Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol. 157(4), 382–389 (2013).
[Crossref]

Lee, J.-S.

M. Jang, H. Ko, J. H. Hong, W. K. Lee, J.-S. Lee, and W. Choi, “Deep tissue space-gated microscopy via acousto-optic interaction,” Nat. Commun. 11(1), 710 (2020).
[Crossref]

Lee, W. K.

M. Jang, H. Ko, J. H. Hong, W. K. Lee, J.-S. Lee, and W. Choi, “Deep tissue space-gated microscopy via acousto-optic interaction,” Nat. Commun. 11(1), 710 (2020).
[Crossref]

Leitgeb, R.

Levesque, J. M.

A. M. Fallata, R. A. Wyatt, J. M. Levesque, A. Dufour, C. M. Overall, and B. D. Crawford, “Intracellular localization in zebrafish muscle and conserved sequence features suggest roles for gelatinase A moonlighting in sarcomere maintenance,” Biomedicines 7(4), 93 (2019).
[Crossref]

Li, Q.

Liang, H.

Lichtenegger, A.

B. Baumann, M. Augustin, A. Lichtenegger, D. J. Harper, M. Muck, P. Eugui, A. Wartak, M. Pircher, and C. K. Hitzenberger, “Polarization-sensitive optical coherence tomography imaging of the anterior mouse eye,” J. Biomed. Opt. 23(08), 1 (2018).
[Crossref]

D. J. Harper, M. Augustin, A. Lichtenegger, P. Eugui, C. Reyes, M. Glösmann, C. K. Hitzenberger, and B. Baumann, “White light polarization sensitive optical coherence tomography for sub-micron axial resolution and spectroscopic contrast in the murine retina,” Biomed. Opt. Express 9(5), 2115–2129 (2018).
[Crossref]

Lin, W.

S. Gao, Y. Tang, and W. Lin, “Development of a two-photon turn-on fluorescent probe for cysteine and its bio-imaging applications in living cells, tissues, and zebrafish,” New J. Chem. 42(17), 14075–14078 (2018).
[Crossref]

Lin, Y.

Liu, L.

Liu, M.

Liu, X.

Löhr, C. V.

K. M. Lebold, C. V. Löhr, C. L. Barton, G. W. Miller, E. M. Labut, R. L. Tanguay, and M. G. Traber, “Chronic vitamin E deficiency promotes vitamin C deficiency in zebrafish leading to degenerative myopathy and impaired swimming behavior,” Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol. 157(4), 382–389 (2013).
[Crossref]

Malamiri, R. A.

D. P. S. Osborn, H. L. Pond, N. Mazaheri, J. Dejardin, C. J. Munn, K. Mushref, E. S. Cauley, I. Moroni, M. B. Pasanisi, E. A. Sellars, R. S. Hill, J. N. Partlow, R. K. Willaert, J. Bharj, R. A. Malamiri, H. Galehdari, G. Shariati, R. Maroofian, M. Mora, L. E. Swan, T. Voit, F. J. Conti, Y. Jamshidi, and M. C. Manzini, “Mutations in INPP5 K cause a form of congenital muscular dystrophy overlapping Marinesco-Sjögren syndrome and dystroglycanopathy,” Am. J. Hum. Genet. 100(3), 537–545 (2017).
[Crossref]

Manzini, M. C.

D. P. S. Osborn, H. L. Pond, N. Mazaheri, J. Dejardin, C. J. Munn, K. Mushref, E. S. Cauley, I. Moroni, M. B. Pasanisi, E. A. Sellars, R. S. Hill, J. N. Partlow, R. K. Willaert, J. Bharj, R. A. Malamiri, H. Galehdari, G. Shariati, R. Maroofian, M. Mora, L. E. Swan, T. Voit, F. J. Conti, Y. Jamshidi, and M. C. Manzini, “Mutations in INPP5 K cause a form of congenital muscular dystrophy overlapping Marinesco-Sjögren syndrome and dystroglycanopathy,” Am. J. Hum. Genet. 100(3), 537–545 (2017).
[Crossref]

Marchand, S.

S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science 308(5728), 1599–1603 (2005).
[Crossref]

Marongiu, R.

A. Le Gratiet, M. d’Amora, M. Duocastella, R. Marongiu, A. Bendandi, S. Giordani, P. Bianchini, and A. Diaspro, “Zebrafish structural development in Mueller-matrix scanning microscopy,” Sci. Rep. 9(1), 19974 (2019).
[Crossref]

Maroofian, R.

D. P. S. Osborn, H. L. Pond, N. Mazaheri, J. Dejardin, C. J. Munn, K. Mushref, E. S. Cauley, I. Moroni, M. B. Pasanisi, E. A. Sellars, R. S. Hill, J. N. Partlow, R. K. Willaert, J. Bharj, R. A. Malamiri, H. Galehdari, G. Shariati, R. Maroofian, M. Mora, L. E. Swan, T. Voit, F. J. Conti, Y. Jamshidi, and M. C. Manzini, “Mutations in INPP5 K cause a form of congenital muscular dystrophy overlapping Marinesco-Sjögren syndrome and dystroglycanopathy,” Am. J. Hum. Genet. 100(3), 537–545 (2017).
[Crossref]

Marvdashti, T.

Mazaheri, N.

D. P. S. Osborn, H. L. Pond, N. Mazaheri, J. Dejardin, C. J. Munn, K. Mushref, E. S. Cauley, I. Moroni, M. B. Pasanisi, E. A. Sellars, R. S. Hill, J. N. Partlow, R. K. Willaert, J. Bharj, R. A. Malamiri, H. Galehdari, G. Shariati, R. Maroofian, M. Mora, L. E. Swan, T. Voit, F. J. Conti, Y. Jamshidi, and M. C. Manzini, “Mutations in INPP5 K cause a form of congenital muscular dystrophy overlapping Marinesco-Sjögren syndrome and dystroglycanopathy,” Am. J. Hum. Genet. 100(3), 537–545 (2017).
[Crossref]

McLaughlin, R. A.

L. Chin, X. Yang, R. A. McLaughlin, P. B. Noble, and D. D. Sampson, “En face parametric imaging of tissue birefringence using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 18(6), 066005 (2013).
[Crossref]

Mickoleit, M.

A. Kaufmann, M. Mickoleit, M. Weber, and J. Huisken, “Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope,” Development 139(17), 3242–3247 (2012).
[Crossref]

Miller, G. W.

K. M. Lebold, C. V. Löhr, C. L. Barton, G. W. Miller, E. M. Labut, R. L. Tanguay, and M. G. Traber, “Chronic vitamin E deficiency promotes vitamin C deficiency in zebrafish leading to degenerative myopathy and impaired swimming behavior,” Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol. 157(4), 382–389 (2013).
[Crossref]

Mora, M.

D. P. S. Osborn, H. L. Pond, N. Mazaheri, J. Dejardin, C. J. Munn, K. Mushref, E. S. Cauley, I. Moroni, M. B. Pasanisi, E. A. Sellars, R. S. Hill, J. N. Partlow, R. K. Willaert, J. Bharj, R. A. Malamiri, H. Galehdari, G. Shariati, R. Maroofian, M. Mora, L. E. Swan, T. Voit, F. J. Conti, Y. Jamshidi, and M. C. Manzini, “Mutations in INPP5 K cause a form of congenital muscular dystrophy overlapping Marinesco-Sjögren syndrome and dystroglycanopathy,” Am. J. Hum. Genet. 100(3), 537–545 (2017).
[Crossref]

Moroni, I.

D. P. S. Osborn, H. L. Pond, N. Mazaheri, J. Dejardin, C. J. Munn, K. Mushref, E. S. Cauley, I. Moroni, M. B. Pasanisi, E. A. Sellars, R. S. Hill, J. N. Partlow, R. K. Willaert, J. Bharj, R. A. Malamiri, H. Galehdari, G. Shariati, R. Maroofian, M. Mora, L. E. Swan, T. Voit, F. J. Conti, Y. Jamshidi, and M. C. Manzini, “Mutations in INPP5 K cause a form of congenital muscular dystrophy overlapping Marinesco-Sjögren syndrome and dystroglycanopathy,” Am. J. Hum. Genet. 100(3), 537–545 (2017).
[Crossref]

Muck, M.

B. Baumann, M. Augustin, A. Lichtenegger, D. J. Harper, M. Muck, P. Eugui, A. Wartak, M. Pircher, and C. K. Hitzenberger, “Polarization-sensitive optical coherence tomography imaging of the anterior mouse eye,” J. Biomed. Opt. 23(08), 1 (2018).
[Crossref]

Munn, C. J.

D. P. S. Osborn, H. L. Pond, N. Mazaheri, J. Dejardin, C. J. Munn, K. Mushref, E. S. Cauley, I. Moroni, M. B. Pasanisi, E. A. Sellars, R. S. Hill, J. N. Partlow, R. K. Willaert, J. Bharj, R. A. Malamiri, H. Galehdari, G. Shariati, R. Maroofian, M. Mora, L. E. Swan, T. Voit, F. J. Conti, Y. Jamshidi, and M. C. Manzini, “Mutations in INPP5 K cause a form of congenital muscular dystrophy overlapping Marinesco-Sjögren syndrome and dystroglycanopathy,” Am. J. Hum. Genet. 100(3), 537–545 (2017).
[Crossref]

Muntoni, F.

H. Jungbluth, S. Treves, F. Zorzato, A. Sarkozy, J. Ochala, C. Sewry, R. Phadke, M. Gautel, and F. Muntoni, “Congenital myopathies: disorders of excitation–contraction coupling and muscle contraction,” Nat. Rev. Neurol. 14(3), 151–167 (2018).
[Crossref]

Mushref, K.

D. P. S. Osborn, H. L. Pond, N. Mazaheri, J. Dejardin, C. J. Munn, K. Mushref, E. S. Cauley, I. Moroni, M. B. Pasanisi, E. A. Sellars, R. S. Hill, J. N. Partlow, R. K. Willaert, J. Bharj, R. A. Malamiri, H. Galehdari, G. Shariati, R. Maroofian, M. Mora, L. E. Swan, T. Voit, F. J. Conti, Y. Jamshidi, and M. C. Manzini, “Mutations in INPP5 K cause a form of congenital muscular dystrophy overlapping Marinesco-Sjögren syndrome and dystroglycanopathy,” Am. J. Hum. Genet. 100(3), 537–545 (2017).
[Crossref]

Nagasaka, R.

G. Kaneko, H. Shirakami, Y. Hirano, M. Oba, H. Yoshinaga, A. Khieokhajonkhet, R. Nagasaka, H. Kondo, I. Hirono, and H. Ushio, “Diversity of lipid distribution in fish skeletal muscle,” Zool. Sci. 33(2), 170–178 (2016).
[Crossref]

Noble, P. B.

Q. Li, K. Karnowski, P. B. Noble, A. Cairncross, A. James, M. Villiger, and D. D. Sampson, “Robust reconstruction of local optic axis orientation with fiber-based polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 9(11), 5437–5455 (2018).
[Crossref]

L. Chin, X. Yang, R. A. McLaughlin, P. B. Noble, and D. D. Sampson, “En face parametric imaging of tissue birefringence using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 18(6), 066005 (2013).
[Crossref]

Oba, M.

G. Kaneko, H. Shirakami, Y. Hirano, M. Oba, H. Yoshinaga, A. Khieokhajonkhet, R. Nagasaka, H. Kondo, I. Hirono, and H. Ushio, “Diversity of lipid distribution in fish skeletal muscle,” Zool. Sci. 33(2), 170–178 (2016).
[Crossref]

Ochala, J.

H. Jungbluth, S. Treves, F. Zorzato, A. Sarkozy, J. Ochala, C. Sewry, R. Phadke, M. Gautel, and F. Muntoni, “Congenital myopathies: disorders of excitation–contraction coupling and muscle contraction,” Nat. Rev. Neurol. 14(3), 151–167 (2018).
[Crossref]

Oh, W. Y.

Ortega-Quijano, N.

Osborn, D. P. S.

D. P. S. Osborn, H. L. Pond, N. Mazaheri, J. Dejardin, C. J. Munn, K. Mushref, E. S. Cauley, I. Moroni, M. B. Pasanisi, E. A. Sellars, R. S. Hill, J. N. Partlow, R. K. Willaert, J. Bharj, R. A. Malamiri, H. Galehdari, G. Shariati, R. Maroofian, M. Mora, L. E. Swan, T. Voit, F. J. Conti, Y. Jamshidi, and M. C. Manzini, “Mutations in INPP5 K cause a form of congenital muscular dystrophy overlapping Marinesco-Sjögren syndrome and dystroglycanopathy,” Am. J. Hum. Genet. 100(3), 537–545 (2017).
[Crossref]

Overall, C. M.

A. M. Fallata, R. A. Wyatt, J. M. Levesque, A. Dufour, C. M. Overall, and B. D. Crawford, “Intracellular localization in zebrafish muscle and conserved sequence features suggest roles for gelatinase A moonlighting in sarcomere maintenance,” Biomedicines 7(4), 93 (2019).
[Crossref]

Palmieri, L.

P. Rossignoli, N. Tiso, M. Santagiustina, E. Autizi, E. Grisan, and L. Palmieri, “Polarization sensitive optical coherence tomography for zebrafish imaging,” in 2015 Fotonica AEIT Italian Conference on Photonics Technologies (IET) (2015), pp. 1–4.

Park, B. H.

Partlow, J. N.

D. P. S. Osborn, H. L. Pond, N. Mazaheri, J. Dejardin, C. J. Munn, K. Mushref, E. S. Cauley, I. Moroni, M. B. Pasanisi, E. A. Sellars, R. S. Hill, J. N. Partlow, R. K. Willaert, J. Bharj, R. A. Malamiri, H. Galehdari, G. Shariati, R. Maroofian, M. Mora, L. E. Swan, T. Voit, F. J. Conti, Y. Jamshidi, and M. C. Manzini, “Mutations in INPP5 K cause a form of congenital muscular dystrophy overlapping Marinesco-Sjögren syndrome and dystroglycanopathy,” Am. J. Hum. Genet. 100(3), 537–545 (2017).
[Crossref]

Pasanisi, M. B.

D. P. S. Osborn, H. L. Pond, N. Mazaheri, J. Dejardin, C. J. Munn, K. Mushref, E. S. Cauley, I. Moroni, M. B. Pasanisi, E. A. Sellars, R. S. Hill, J. N. Partlow, R. K. Willaert, J. Bharj, R. A. Malamiri, H. Galehdari, G. Shariati, R. Maroofian, M. Mora, L. E. Swan, T. Voit, F. J. Conti, Y. Jamshidi, and M. C. Manzini, “Mutations in INPP5 K cause a form of congenital muscular dystrophy overlapping Marinesco-Sjögren syndrome and dystroglycanopathy,” Am. J. Hum. Genet. 100(3), 537–545 (2017).
[Crossref]

Phadke, R.

H. Jungbluth, S. Treves, F. Zorzato, A. Sarkozy, J. Ochala, C. Sewry, R. Phadke, M. Gautel, and F. Muntoni, “Congenital myopathies: disorders of excitation–contraction coupling and muscle contraction,” Nat. Rev. Neurol. 14(3), 151–167 (2018).
[Crossref]

Pircher, M.

B. Baumann, M. Augustin, A. Lichtenegger, D. J. Harper, M. Muck, P. Eugui, A. Wartak, M. Pircher, and C. K. Hitzenberger, “Polarization-sensitive optical coherence tomography imaging of the anterior mouse eye,” J. Biomed. Opt. 23(08), 1 (2018).
[Crossref]

E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express 13(25), 10217–10229 (2005).
[Crossref]

Pond, H. L.

D. P. S. Osborn, H. L. Pond, N. Mazaheri, J. Dejardin, C. J. Munn, K. Mushref, E. S. Cauley, I. Moroni, M. B. Pasanisi, E. A. Sellars, R. S. Hill, J. N. Partlow, R. K. Willaert, J. Bharj, R. A. Malamiri, H. Galehdari, G. Shariati, R. Maroofian, M. Mora, L. E. Swan, T. Voit, F. J. Conti, Y. Jamshidi, and M. C. Manzini, “Mutations in INPP5 K cause a form of congenital muscular dystrophy overlapping Marinesco-Sjögren syndrome and dystroglycanopathy,” Am. J. Hum. Genet. 100(3), 537–545 (2017).
[Crossref]

Pusack, T. J.

J. R. Guyon, L. S. Steffen, M. H. Howell, T. J. Pusack, C. Lawrence, and L. M. Kunkel, “Modeling human muscle disease in zebrafish,” Biochim. Biophys. Acta, Mol. Basis Dis. 1772(2), 205–215 (2007).
[Crossref]

Qi, W.

Reyes, C.

Richard, I.

S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science 308(5728), 1599–1603 (2005).
[Crossref]

Rohringer, W.

Rong, J.

Rossignoli, P.

P. Rossignoli, N. Tiso, M. Santagiustina, E. Autizi, E. Grisan, and L. Palmieri, “Polarization sensitive optical coherence tomography for zebrafish imaging,” in 2015 Fotonica AEIT Italian Conference on Photonics Technologies (IET) (2015), pp. 1–4.

Rostkova, E.

S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science 308(5728), 1599–1603 (2005).
[Crossref]

Saliba, W. R.

W. R. Saliba, L. H. Goldstein, G. S. Habib, and M. S. Elias, “Toxic myopathy induced by the ingestion of loquat leaf extract,” Ann. Rheum. Dis. 63(10), 1355–1356 (2004).
[Crossref]

Sampson, D. D.

Q. Li, K. Karnowski, P. B. Noble, A. Cairncross, A. James, M. Villiger, and D. D. Sampson, “Robust reconstruction of local optic axis orientation with fiber-based polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 9(11), 5437–5455 (2018).
[Crossref]

L. Chin, X. Yang, R. A. McLaughlin, P. B. Noble, and D. D. Sampson, “En face parametric imaging of tissue birefringence using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 18(6), 066005 (2013).
[Crossref]

Santagiustina, M.

P. Rossignoli, N. Tiso, M. Santagiustina, E. Autizi, E. Grisan, and L. Palmieri, “Polarization sensitive optical coherence tomography for zebrafish imaging,” in 2015 Fotonica AEIT Italian Conference on Photonics Technologies (IET) (2015), pp. 1–4.

Sarkozy, A.

H. Jungbluth, S. Treves, F. Zorzato, A. Sarkozy, J. Ochala, C. Sewry, R. Phadke, M. Gautel, and F. Muntoni, “Congenital myopathies: disorders of excitation–contraction coupling and muscle contraction,” Nat. Rev. Neurol. 14(3), 151–167 (2018).
[Crossref]

Sattmann, H.

Schwerte, T.

Sejersen, T.

S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science 308(5728), 1599–1603 (2005).
[Crossref]

Sellars, E. A.

D. P. S. Osborn, H. L. Pond, N. Mazaheri, J. Dejardin, C. J. Munn, K. Mushref, E. S. Cauley, I. Moroni, M. B. Pasanisi, E. A. Sellars, R. S. Hill, J. N. Partlow, R. K. Willaert, J. Bharj, R. A. Malamiri, H. Galehdari, G. Shariati, R. Maroofian, M. Mora, L. E. Swan, T. Voit, F. J. Conti, Y. Jamshidi, and M. C. Manzini, “Mutations in INPP5 K cause a form of congenital muscular dystrophy overlapping Marinesco-Sjögren syndrome and dystroglycanopathy,” Am. J. Hum. Genet. 100(3), 537–545 (2017).
[Crossref]

Sewry, C.

H. Jungbluth, S. Treves, F. Zorzato, A. Sarkozy, J. Ochala, C. Sewry, R. Phadke, M. Gautel, and F. Muntoni, “Congenital myopathies: disorders of excitation–contraction coupling and muscle contraction,” Nat. Rev. Neurol. 14(3), 151–167 (2018).
[Crossref]

Shariati, G.

D. P. S. Osborn, H. L. Pond, N. Mazaheri, J. Dejardin, C. J. Munn, K. Mushref, E. S. Cauley, I. Moroni, M. B. Pasanisi, E. A. Sellars, R. S. Hill, J. N. Partlow, R. K. Willaert, J. Bharj, R. A. Malamiri, H. Galehdari, G. Shariati, R. Maroofian, M. Mora, L. E. Swan, T. Voit, F. J. Conti, Y. Jamshidi, and M. C. Manzini, “Mutations in INPP5 K cause a form of congenital muscular dystrophy overlapping Marinesco-Sjögren syndrome and dystroglycanopathy,” Am. J. Hum. Genet. 100(3), 537–545 (2017).
[Crossref]

Shirakami, H.

G. Kaneko, H. Shirakami, Y. Hirano, M. Oba, H. Yoshinaga, A. Khieokhajonkhet, R. Nagasaka, H. Kondo, I. Hirono, and H. Ushio, “Diversity of lipid distribution in fish skeletal muscle,” Zool. Sci. 33(2), 170–178 (2016).
[Crossref]

Shishkov, M.

Steffen, L. S.

J. R. Guyon, L. S. Steffen, M. H. Howell, T. J. Pusack, C. Lawrence, and L. M. Kunkel, “Modeling human muscle disease in zebrafish,” Biochim. Biophys. Acta, Mol. Basis Dis. 1772(2), 205–215 (2007).
[Crossref]

Sturtzel, C.

Swan, L. E.

D. P. S. Osborn, H. L. Pond, N. Mazaheri, J. Dejardin, C. J. Munn, K. Mushref, E. S. Cauley, I. Moroni, M. B. Pasanisi, E. A. Sellars, R. S. Hill, J. N. Partlow, R. K. Willaert, J. Bharj, R. A. Malamiri, H. Galehdari, G. Shariati, R. Maroofian, M. Mora, L. E. Swan, T. Voit, F. J. Conti, Y. Jamshidi, and M. C. Manzini, “Mutations in INPP5 K cause a form of congenital muscular dystrophy overlapping Marinesco-Sjögren syndrome and dystroglycanopathy,” Am. J. Hum. Genet. 100(3), 537–545 (2017).
[Crossref]

Sztal, T.

J. Berger, T. Sztal, and P. D. Currie, “Quantification of birefringence readily measures the level of muscle damage in zebrafish,” Biochem. Biophys. Res. Commun. 423(4), 785–788 (2012).
[Crossref]

Tang, Y.

S. Gao, Y. Tang, and W. Lin, “Development of a two-photon turn-on fluorescent probe for cysteine and its bio-imaging applications in living cells, tissues, and zebrafish,” New J. Chem. 42(17), 14075–14078 (2018).
[Crossref]

Tanguay, R. L.

K. M. Lebold, C. V. Löhr, C. L. Barton, G. W. Miller, E. M. Labut, R. L. Tanguay, and M. G. Traber, “Chronic vitamin E deficiency promotes vitamin C deficiency in zebrafish leading to degenerative myopathy and impaired swimming behavior,” Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol. 157(4), 382–389 (2013).
[Crossref]

Tearney, G. J.

Tiso, N.

P. Rossignoli, N. Tiso, M. Santagiustina, E. Autizi, E. Grisan, and L. Palmieri, “Polarization sensitive optical coherence tomography for zebrafish imaging,” in 2015 Fotonica AEIT Italian Conference on Photonics Technologies (IET) (2015), pp. 1–4.

Traber, M. G.

K. M. Lebold, C. V. Löhr, C. L. Barton, G. W. Miller, E. M. Labut, R. L. Tanguay, and M. G. Traber, “Chronic vitamin E deficiency promotes vitamin C deficiency in zebrafish leading to degenerative myopathy and impaired swimming behavior,” Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol. 157(4), 382–389 (2013).
[Crossref]

Treves, S.

H. Jungbluth, S. Treves, F. Zorzato, A. Sarkozy, J. Ochala, C. Sewry, R. Phadke, M. Gautel, and F. Muntoni, “Congenital myopathies: disorders of excitation–contraction coupling and muscle contraction,” Nat. Rev. Neurol. 14(3), 151–167 (2018).
[Crossref]

Udd, B.

S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science 308(5728), 1599–1603 (2005).
[Crossref]

Unterhuber, A.

Ushio, H.

G. Kaneko, H. Shirakami, Y. Hirano, M. Oba, H. Yoshinaga, A. Khieokhajonkhet, R. Nagasaka, H. Kondo, I. Hirono, and H. Ushio, “Diversity of lipid distribution in fish skeletal muscle,” Zool. Sci. 33(2), 170–178 (2016).
[Crossref]

Vakoc, B. J.

van Rooij, J.

Vihola, A.

S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science 308(5728), 1599–1603 (2005).
[Crossref]

Villiger, M.

Voit, T.

D. P. S. Osborn, H. L. Pond, N. Mazaheri, J. Dejardin, C. J. Munn, K. Mushref, E. S. Cauley, I. Moroni, M. B. Pasanisi, E. A. Sellars, R. S. Hill, J. N. Partlow, R. K. Willaert, J. Bharj, R. A. Malamiri, H. Galehdari, G. Shariati, R. Maroofian, M. Mora, L. E. Swan, T. Voit, F. J. Conti, Y. Jamshidi, and M. C. Manzini, “Mutations in INPP5 K cause a form of congenital muscular dystrophy overlapping Marinesco-Sjögren syndrome and dystroglycanopathy,” Am. J. Hum. Genet. 100(3), 537–545 (2017).
[Crossref]

Wang, L.

Wang, N.

Wang, Y.

Wartak, A.

B. Baumann, M. Augustin, A. Lichtenegger, D. J. Harper, M. Muck, P. Eugui, A. Wartak, M. Pircher, and C. K. Hitzenberger, “Polarization-sensitive optical coherence tomography imaging of the anterior mouse eye,” J. Biomed. Opt. 23(08), 1 (2018).
[Crossref]

Wasala, N. B.

Weber, M.

A. Kaufmann, M. Mickoleit, M. Weber, and J. Huisken, “Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope,” Development 139(17), 3242–3247 (2012).
[Crossref]

Willaert, R. K.

D. P. S. Osborn, H. L. Pond, N. Mazaheri, J. Dejardin, C. J. Munn, K. Mushref, E. S. Cauley, I. Moroni, M. B. Pasanisi, E. A. Sellars, R. S. Hill, J. N. Partlow, R. K. Willaert, J. Bharj, R. A. Malamiri, H. Galehdari, G. Shariati, R. Maroofian, M. Mora, L. E. Swan, T. Voit, F. J. Conti, Y. Jamshidi, and M. C. Manzini, “Mutations in INPP5 K cause a form of congenital muscular dystrophy overlapping Marinesco-Sjögren syndrome and dystroglycanopathy,” Am. J. Hum. Genet. 100(3), 537–545 (2017).
[Crossref]

Wyatt, R. A.

A. M. Fallata, R. A. Wyatt, J. M. Levesque, A. Dufour, C. M. Overall, and B. D. Crawford, “Intracellular localization in zebrafish muscle and conserved sequence features suggest roles for gelatinase A moonlighting in sarcomere maintenance,” Biomedicines 7(4), 93 (2019).
[Crossref]

Xi, L.

Xiang, F.

S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science 308(5728), 1599–1603 (2005).
[Crossref]

Xiang, X.

Xiong, Q.

Yakovenko, A.

S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science 308(5728), 1599–1603 (2005).
[Crossref]

Yang, X.

L. Chin, X. Yang, R. A. McLaughlin, P. B. Noble, and D. D. Sampson, “En face parametric imaging of tissue birefringence using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 18(6), 066005 (2013).
[Crossref]

Yao, G.

Y. Wang, K. Zhang, D. Duan, and G. Yao, “Heart structural remodeling in a mouse model of Duchenne cardiomyopathy revealed using optical polarization tractography [Invited],” Biomed. Opt. Express 8(3), 1271–1276 (2017).
[Crossref]

Y. Wang, K. Zhang, N. B. Wasala, D. Duan, and G. Yao, “Optical polarization tractography revealed significant fiber disarray in skeletal muscles of a mouse model for Duchenne muscular dystrophy,” Biomed. Opt. Express 6(2), 347–352 (2015).
[Crossref]

C. Fan and G. Yao, “Mapping local optical axis in birefringent samples using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(11), 110501 (2012).
[Crossref]

C. Fan and G. Yao, “Correcting optical-axis calculation in polarization-sensitive optical coherence tomography,” IEEE Trans. Biomed. Eng. 57(10), 2556–2559 (2010).
[Crossref]

Yoshinaga, H.

G. Kaneko, H. Shirakami, Y. Hirano, M. Oba, H. Yoshinaga, A. Khieokhajonkhet, R. Nagasaka, H. Kondo, I. Hirono, and H. Ushio, “Diversity of lipid distribution in fish skeletal muscle,” Zool. Sci. 33(2), 170–178 (2016).
[Crossref]

Yuan, Z.

Yun, S. H.

Zeng, L.

Zhang, J.

Zhang, K.

Zhang, Z.

Zorzato, F.

H. Jungbluth, S. Treves, F. Zorzato, A. Sarkozy, J. Ochala, C. Sewry, R. Phadke, M. Gautel, and F. Muntoni, “Congenital myopathies: disorders of excitation–contraction coupling and muscle contraction,” Nat. Rev. Neurol. 14(3), 151–167 (2018).
[Crossref]

Am. J. Hum. Genet. (1)

D. P. S. Osborn, H. L. Pond, N. Mazaheri, J. Dejardin, C. J. Munn, K. Mushref, E. S. Cauley, I. Moroni, M. B. Pasanisi, E. A. Sellars, R. S. Hill, J. N. Partlow, R. K. Willaert, J. Bharj, R. A. Malamiri, H. Galehdari, G. Shariati, R. Maroofian, M. Mora, L. E. Swan, T. Voit, F. J. Conti, Y. Jamshidi, and M. C. Manzini, “Mutations in INPP5 K cause a form of congenital muscular dystrophy overlapping Marinesco-Sjögren syndrome and dystroglycanopathy,” Am. J. Hum. Genet. 100(3), 537–545 (2017).
[Crossref]

Ann. Rheum. Dis. (1)

W. R. Saliba, L. H. Goldstein, G. S. Habib, and M. S. Elias, “Toxic myopathy induced by the ingestion of loquat leaf extract,” Ann. Rheum. Dis. 63(10), 1355–1356 (2004).
[Crossref]

Appl. Sci. (1)

B. Baumann, “Polarization sensitive optical coherence tomography: A review of technology and applications,” Appl. Sci. 7(5), 474 (2017).
[Crossref]

Biochem. Biophys. Res. Commun. (1)

J. Berger, T. Sztal, and P. D. Currie, “Quantification of birefringence readily measures the level of muscle damage in zebrafish,” Biochem. Biophys. Res. Commun. 423(4), 785–788 (2012).
[Crossref]

Biochim. Biophys. Acta, Mol. Basis Dis. (1)

J. R. Guyon, L. S. Steffen, M. H. Howell, T. J. Pusack, C. Lawrence, and L. M. Kunkel, “Modeling human muscle disease in zebrafish,” Biochim. Biophys. Acta, Mol. Basis Dis. 1772(2), 205–215 (2007).
[Crossref]

Biomed. Opt. Express (8)

Q. Li, K. Karnowski, P. B. Noble, A. Cairncross, A. James, M. Villiger, and D. D. Sampson, “Robust reconstruction of local optic axis orientation with fiber-based polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 9(11), 5437–5455 (2018).
[Crossref]

Y. Wang, K. Zhang, N. B. Wasala, D. Duan, and G. Yao, “Optical polarization tractography revealed significant fiber disarray in skeletal muscles of a mouse model for Duchenne muscular dystrophy,” Biomed. Opt. Express 6(2), 347–352 (2015).
[Crossref]

Y. Wang, K. Zhang, D. Duan, and G. Yao, “Heart structural remodeling in a mouse model of Duchenne cardiomyopathy revealed using optical polarization tractography [Invited],” Biomed. Opt. Express 8(3), 1271–1276 (2017).
[Crossref]

N. Huang, H. Guo, W. Qi, Z. Zhang, J. Rong, Z. Yuan, W. Ge, H. Jiang, and L. Xi, “Whole-body multispectral photoacoustic imaging of adult zebrafish,” Biomed. Opt. Express 7(9), 3543–3550 (2016).
[Crossref]

Y. Lin, X. Xiang, T. Chen, C. Gao, H. Fu, L. Wang, L. Deng, L. Zeng, and J. Zhang, “In vivo monitoring and high-resolution characterizing of the prednisolone-induced osteoporotic process on adult zebrafish by optical coherence tomography,” Biomed. Opt. Express 10(3), 1184–1195 (2019).
[Crossref]

R. Haindl, A. J. Deloria, C. Sturtzel, H. Sattmann, W. Rohringer, B. Fischer, M. Andreana, A. Unterhuber, T. Schwerte, M. Distel, W. Drexler, R. Leitgeb, and M. Liu, “Functional optical coherence tomography and photoacoustic microscopy imaging for zebrafish larvae,” Biomed. Opt. Express 11(4), 2137–2151 (2020).
[Crossref]

D. J. Harper, M. Augustin, A. Lichtenegger, P. Eugui, C. Reyes, M. Glösmann, C. K. Hitzenberger, and B. Baumann, “White light polarization sensitive optical coherence tomography for sub-micron axial resolution and spectroscopic contrast in the murine retina,” Biomed. Opt. Express 9(5), 2115–2129 (2018).
[Crossref]

J. van Rooij and J. Kalkman, “Polarization contrast optical diffraction tomography,” Biomed. Opt. Express 11(4), 2109–2121 (2020).
[Crossref]

Biomedicines (1)

A. M. Fallata, R. A. Wyatt, J. M. Levesque, A. Dufour, C. M. Overall, and B. D. Crawford, “Intracellular localization in zebrafish muscle and conserved sequence features suggest roles for gelatinase A moonlighting in sarcomere maintenance,” Biomedicines 7(4), 93 (2019).
[Crossref]

Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol. (1)

K. M. Lebold, C. V. Löhr, C. L. Barton, G. W. Miller, E. M. Labut, R. L. Tanguay, and M. G. Traber, “Chronic vitamin E deficiency promotes vitamin C deficiency in zebrafish leading to degenerative myopathy and impaired swimming behavior,” Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol. 157(4), 382–389 (2013).
[Crossref]

Development (1)

A. Kaufmann, M. Mickoleit, M. Weber, and J. Huisken, “Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope,” Development 139(17), 3242–3247 (2012).
[Crossref]

Dis. Models Mech. (1)

A. Daya, R. Donaka, and D. Karasik, “Zebrafish models of sarcopenia,” Dis. Models Mech. 13(3), dmm042689 (2020).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

C. Fan and G. Yao, “Correcting optical-axis calculation in polarization-sensitive optical coherence tomography,” IEEE Trans. Biomed. Eng. 57(10), 2556–2559 (2010).
[Crossref]

J. Biomed. Opt. (3)

C. Fan and G. Yao, “Mapping local optical axis in birefringent samples using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(11), 110501 (2012).
[Crossref]

B. Baumann, M. Augustin, A. Lichtenegger, D. J. Harper, M. Muck, P. Eugui, A. Wartak, M. Pircher, and C. K. Hitzenberger, “Polarization-sensitive optical coherence tomography imaging of the anterior mouse eye,” J. Biomed. Opt. 23(08), 1 (2018).
[Crossref]

L. Chin, X. Yang, R. A. McLaughlin, P. B. Noble, and D. D. Sampson, “En face parametric imaging of tissue birefringence using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 18(6), 066005 (2013).
[Crossref]

Nat. Commun. (1)

M. Jang, H. Ko, J. H. Hong, W. K. Lee, J.-S. Lee, and W. Choi, “Deep tissue space-gated microscopy via acousto-optic interaction,” Nat. Commun. 11(1), 710 (2020).
[Crossref]

Nat. Rev. Neurol. (1)

H. Jungbluth, S. Treves, F. Zorzato, A. Sarkozy, J. Ochala, C. Sewry, R. Phadke, M. Gautel, and F. Muntoni, “Congenital myopathies: disorders of excitation–contraction coupling and muscle contraction,” Nat. Rev. Neurol. 14(3), 151–167 (2018).
[Crossref]

New J. Chem. (1)

S. Gao, Y. Tang, and W. Lin, “Development of a two-photon turn-on fluorescent probe for cysteine and its bio-imaging applications in living cells, tissues, and zebrafish,” New J. Chem. 42(17), 14075–14078 (2018).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Sci. Rep. (1)

A. Le Gratiet, M. d’Amora, M. Duocastella, R. Marongiu, A. Bendandi, S. Giordani, P. Bianchini, and A. Diaspro, “Zebrafish structural development in Mueller-matrix scanning microscopy,” Sci. Rep. 9(1), 19974 (2019).
[Crossref]

Science (1)

S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science 308(5728), 1599–1603 (2005).
[Crossref]

Zool. Sci. (1)

G. Kaneko, H. Shirakami, Y. Hirano, M. Oba, H. Yoshinaga, A. Khieokhajonkhet, R. Nagasaka, H. Kondo, I. Hirono, and H. Ushio, “Diversity of lipid distribution in fish skeletal muscle,” Zool. Sci. 33(2), 170–178 (2016).
[Crossref]

Other (1)

P. Rossignoli, N. Tiso, M. Santagiustina, E. Autizi, E. Grisan, and L. Palmieri, “Polarization sensitive optical coherence tomography for zebrafish imaging,” in 2015 Fotonica AEIT Italian Conference on Photonics Technologies (IET) (2015), pp. 1–4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. (a) Experimental schematic of the PS-OCT system. Polarization optics are drawn in blue. SLD, superluminescent diode; PC, polarization controller; FC, fiber collimator; POL, linear polarizer; BS, non-polarizing beam splitter; QWP, quarter-wave plate; DC, dispersion compensator; ND, neutral density filter; RM, reference mirror; GV, galvanometer scanning mirror; SL, scanning lens; PBS, polarizing beam splitter; SP, spectrometer; H, V, horizontal and vertical polarization state channels. The orange dash-line parallelogram indicates the field of view.
Fig. 2.
Fig. 2. The validation of PS-OCT system based on the octadic-wave plate (OWP) (a) The results of axis orientation and retardation values versus OWP orientation: measured retardation values (blue squares); theoretical retardation values (blue dashed line); measured axis orientation values (pink triangles); theoretical axis orientation values (pink dashed line). (b) The results of axis orientation and retardation values versus path length difference within the desired measurement range of 1.6 mm.
Fig. 3.
Fig. 3. Placements of fish under lateral (a), dorsal (b), and ventral (c) scannings. Scale bars are 2 cm.
Fig. 4.
Fig. 4. En-face images acquired by lateral, dorsal, and ventral scannings. (a)-(b) are the results of lateral scanning at different depths. (c) is the result of dorsal scanning. (d) is the result of ventral scanning. Eye (E), brain (B), semicircular canal (SeC), gill filaments (GF), pectoral fin muscle (PecFM), facial lobe (FL), dorsal fin (DF), anal fin (AF), epaxial muscles (EM), hypaxial muscles (HM), spinal cord (SpC), body cavity (BD), supracarinate muscles (SM), sternohyoid (St), pectoral fin muscle (PecFM), pelvic fin muscle (PelFM), pelvic fin (PelF) and abdominal wall (AW) are shown in (a)-(d). Scale bars are 500 µm.
Fig. 5.
Fig. 5. PS-OCT sagittal images of the zebrafish. (a)-(f) Intensity, DOPU, accumulative retardation, local retardation, accumulative optic axis, and local optic axis image, respectively. The iris (I), cornea (Co), adductor mandibulae (AM), opercle (O), gill (G), pectoral fin (PecF), scales (Sc), skin (Sk), trunk musculature (TM), swim bladder (SB) and vertebral column (VC) can be identified in (a). Scale bars are 500 µm.
Fig. 6.
Fig. 6. Segmentation of the muscle. (a) and (b) are intensity images used to show the segmentation results of muscles based on the thresholds of intensity and DOPU, respectively. (c) and (d) are 3D intensity rendering OCT images of zebrafish before and after segmentation, respectively, where scales (Sc), myoseptum (M), and anal fin musculature (AFM) are pointed out by different green marks. Scale bars are 500 µm.
Fig. 7.
Fig. 7. Birefringence analysis of different muscles of zebrafish by lateral scanning. (a) An en-face image of accumulative retardation, in which the red muscle (RM) area is marked by two black dashed curves, and two randomly selected positions marked by red and green lines are used to further investigate the birefringence of zebrafish muscle. (b) and (c) are their intensity images, (d) and (e) are accumulative retardation images, and (f) and (g) are local retardation images. Epaxial muscles (EM), hypaxial muscles (HM), infracarinates muscles (IM), and red muscle (RM) are pointed out in (b)-(g). RM area is marked by pink dashed circles in (b) and (c). Different muscles are separated by black dashed curves in (d)-(g). (h) is the counting histogram of EM, HM, and RM in the regions marked by white dashed rectangular boxes in (f). (i) is a 3D rendering image of local retardation, where RM, anal fin musculature (AFM), and myoseptum (M) are marked by black dashed curves, the black arrow, and black dot-dashed curves, respectively. Scale bars are 500 µm.
Fig. 8.
Fig. 8. Local optic axis images of zebrafish by lateral scanning. (a) and (b) are two local optic axis images corresponding to Figs. 7(d) and 7(e), respectively. The separated areas by red dashed curves are the same as areas in Figs. 7(d) and 7(e). (c) is the 3D rendering image of local optic axis. (d) is a tissue section of a similar area in the red dashed box. Multiple fiber direction modes are split by yellow dot-dashed curves. The pink dashed curves indicate the local optic axis and the orientation of muscle fiber in (c) and (d), respectively. Scale bars are 500 µm.
Fig. 9.
Fig. 9. (a) and (b) are two en-face local optic axis images at different depths. (c) and (d) are the corresponding streamline diagrams of the local optic axis. (e) is the contrast enhanced en-face intensity image of Fig. 4(a). (f) is the enlarged view of green dashed-line rectangular area in (e). Pink arrows in (e) and (f) indicate muscle fibers, whose orientations are similar to the local optic axes indicated in (c) with a pink arrow. (g) is the histological section corresponding to the red dashed-line rectangular area in (d). Pink solid, dotted, and dot-dashed lines describe the orientations of different muscle fibers. (a), (c) and (e) locate at the same depth of the same fish as Fig. 4(a). Scale bars are 500 µm.
Fig. 10.
Fig. 10. En-face PS-OCT images by ventral scanning. (a)-(e) are intensity, accumulative retardation, local retardation, accumulative optic axis, local optic axis overlaid with corresponding streamline images, respectively. The opercle (O), sternohyoid (St), pectoral fin muscle (PecFM), abdominal wall (AW), and pelvic fin muscle (PelFM) are separated by red dashed curves. (f) is the 3D rendering image of local optic axis. Scale bars are 500 µm.
Fig. 11.
Fig. 11. En-face PS-OCT images by dorsal scanning. (a)-(e) are intensity, accumulative retardation, local retardation, accumulative optic axis, and local optic axis overlaid with corresponding streamline images, respectively. The epaxial muscles (EM) and supracarinate muscles (SM) are separated by red dashed curves. (f) is the 3D rendering image of local optic axis. Scale bars are 500 µm.
Fig. 12.
Fig. 12. Characterization of the injured adult zebrafish. (a)-(c) are intensity, accumulative retardation, and local retardation images, respectively. The injured area marked by a black dashed rectangular box. Scale bars are 250 µm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A ~ H,V ( z ) = A H,V ( z ) exp [ i Φ H,V ( z ) ] .
S = [ I Q U V ] = [ A ~ H A ~ H  +  A ~ V A ~ V A ~ H A ~ H A ~ V A ~ V A ~ H A ~ V  +  A ~ V A ~ H i ( A ~ H A ~ V A ~ V A ~ H ) ] = [ A H 2 + A V 2 A H 2 A V 2 2 A H A V cos Δ Φ 2 A H A V sin Δ Φ ] .
I ( z ) = | A H ( z ) | 2 + | A V ( z ) | 2 δ ( z ) = arctan [ A V ( z ) A H ( z ) ] = 1 2 cos 1 ( Q I ) θ ( z ) = 180 Δ Φ 2 = 90 1 2 tan 1 ( V U ) D O P U ( z ) = ( Q / I ) 2 + ( U / I ) 2 + ( V / I ) 2