Abstract

When the eye is exposed to pulsed infrared (IR) light, it is perceived as visible of the corresponding half wavelength. Previous studies have reported evidence that this is due to a non-linear two-photon absorption process. We have carried out a study which provides additional support to this nonlinear hypothesis. To this end, we have measured the spectral sensitivity at 2 different pulse repetition rates and have developed a theoretical model to account for the experimental observations. This model predicts a ratio between the minimum powers needed to detect the visual stimulus at the 2 pulse repetition rates employed of 0.45 if the stimulus were detected through a nonlinear effect and 1 if it were caused by a linear effect as in normal vision. The value experimentally found was 0.52 ± 0.07, which supports the hypothesis of a nonlinear origin of the two-photon vision phenomena.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Two-photon microperimetry: sensitivity of human photoreceptors to infrared light

Daniel Ruminski, Grazyna Palczewska, Maciej Nowakowski, Agnieszka Zielińska, Vladimir J. Kefalov, Katarzyna Komar, Krzysztof Palczewski, and Maciej Wojtkowski
Biomed. Opt. Express 10(9) 4551-4567 (2019)

Safety assessment in macaques of light exposures for functional two-photon ophthalmoscopy in humans

Christina Schwarz, Robin Sharma, William S. Fischer, Mina Chung, Grazyna Palczewska, Krzysztof Palczewski, David R. Williams, and Jennifer J. Hunter
Biomed. Opt. Express 7(12) 5148-5169 (2016)

Non-invasive assessment of human cone photoreceptor function

Robert F. Cooper, William S. Tuten, Alfredo Dubra, David H. Brainard, and Jessica I. W. Morgan
Biomed. Opt. Express 8(11) 5098-5112 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Commission Internationale de l’Éclairage (Cambridge University Press, 1924).
  2. C. F. Goodeve, “Relative Luminosity in the Extreme Red,” Proc. Roy. Soc. A 155, 664–683 (1936).
  3. D. R. Griffin, R. Hubbard, and G. Wald, “The Sensitivity of the Human Eye to Infra-Red Radiation,” J. Opt. Soc. Am. 37(7), 546 (1947).
    [Crossref]
  4. L. S. Vasilenko, V. P. Chebotaev, and Y. V. Troitskii, “Visual observation of infrared laser emission,” Sov. Phys. JETP 21, 513–514 (1965).
  5. D. H. Sliney, R. T. Wangemann, J. K. Franks, and M. L. Wolbarsht, “Visual sensitivity of the eye to infrared laser radiation,” J. Opt. Soc. Am. 66(4), 339–341 (1976).
    [Crossref]
  6. M. A. Bloch, “Expériences sur la vision,” Comptes Rendus la Soc. Biol. 37, 493–495 (1885).
  7. A. Gorea, “A refresher of the original Bloch’s law paper (Bloch, July 1885),” i-Perception 6(4), 1–6 (2015).
    [Crossref]
  8. Q. Zaidi and J. Pokorny, “Appearance of pulsed infrared light: second harmonic generation in the eye,” Appl. Opt. 27(6), 1064–1068 (1988).
    [Crossref]
  9. V. G. Dmitriev, V. N. Emel’yanov, M. A. Kashintsev, V. V. Kulikov, A. A. Solov’ev, M. F. Stel’makh, and O. B. Cherednichenko, “Nonlinear perception of infrared radiation in the 800–1355 nm range with human eye,” Quantum Electron. 9(4), 475–479 (1979).
    [Crossref]
  10. G. Palczewska, F. Vinberg, P. Stremplewski, M. P. Bircher, D. Salom, K. Komar, Z. Jianye, M. Cascella, M. Wojtkowski, V. Kefalov, and K. Palczewski, “Human infrared vision is triggered by two-photon chromophore isomerization,” Proc. Natl. Acad. Sci. U. S. A. 111(50), E5445–E5454 (2014).
    [Crossref]
  11. D. Ruminski, G. Palczewska, M. Nowakowski, A. Zielińska, V. J. Kefalov, K. Komar, K. Palczewski, M. Wojtkowski, K. Komar, K. Komar, K. Palczewski, K. Palczewski, K. Palczewski, M. Wojtkowski, M. Wojtkowski, and M. Wojtkowski, “Two-photon microperimetry: sensitivity of human photoreceptors to infrared light,” Biomed. Opt. Express 10(9), 4551 (2019).
    [Crossref]
  12. P. Artal, S. Manzanera, K. Komar, A. Gambín-Regadera, and M. Wojtkowski, “Visual acuity in two-photon infrared vision,” Optica 4(12), 1488–1491 (2017).
    [Crossref]
  13. G. McConnell, “Improving the penetration depth in multiphoton excitation laser scanning microscopy,” J. Biomed. Opt. 11(5), 054020 (2006).
    [Crossref]
  14. S. Hecht, S. Shlaer, and M. H. Pirenne, “Energy, quanta and vision,” J. Gen. Physiol. 25(6), 819–840 (1942).
    [Crossref]
  15. F. C. Delori, R. H. Webb, and D. H. Sliney, “Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices,” J. Opt. Soc. Am. A 24(5), 1250–1265 (2007).
    [Crossref]
  16. ANSI Z136.1-2014 (Laser Institute of America, 2014).
  17. H. B. Barlow, “Temporal and Spatial Summation in Human Vision at Different Background Intensities,” J. Physiol. 141(2), 337–350 (1958).
    [Crossref]
  18. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13(3), 481 (1996).
    [Crossref]
  19. W. M. McClain and R. A. Harris, “Two-photon molecular spectroscopy in liquids and gases in Excited States,” in Excited States, E. C. Lim, ed. (Academic, 1977), pp. 1–56.
  20. T. Reuter, “Fifty years of dark adaptation 1961-2011,” Vision Res. 51(21-22), 2243–2262 (2011).
    [Crossref]
  21. S. Hecht, C. Haig, and A. M. Chase, “The influence of light adaptation on subsequent dark adaptation of the eye,” J. Gen. Physiol. 20(6), 831 (1937).
    [Crossref]
  22. T. P. Williams, “Photoreversal of rhodopsin bleaching,” J. Gen. Physiol. 47(4), 679–689 (1964).
    [Crossref]
  23. H. Ripps and R. A. Weale, “Flash bleaching of rhodopsin in the human retina,” J. Physiol. 200(1), 151–159 (1969).
    [Crossref]
  24. T. D. Lamb, “Evolution of vertebrate retinal photoreception,” Philos. Trans. R. Soc., B 364(1531), 2911–2924 (2009).
    [Crossref]
  25. K. Schulmeister, M. Jean, D. Lund, and B. E. Stuck, “Comparison of corneal injury thresholds with laser safety limits,” in International Laser Safety Conference (Laser Institute of America, 2019), Vol. 303, p. 303.

2019 (1)

2017 (1)

2015 (1)

A. Gorea, “A refresher of the original Bloch’s law paper (Bloch, July 1885),” i-Perception 6(4), 1–6 (2015).
[Crossref]

2014 (1)

G. Palczewska, F. Vinberg, P. Stremplewski, M. P. Bircher, D. Salom, K. Komar, Z. Jianye, M. Cascella, M. Wojtkowski, V. Kefalov, and K. Palczewski, “Human infrared vision is triggered by two-photon chromophore isomerization,” Proc. Natl. Acad. Sci. U. S. A. 111(50), E5445–E5454 (2014).
[Crossref]

2011 (1)

T. Reuter, “Fifty years of dark adaptation 1961-2011,” Vision Res. 51(21-22), 2243–2262 (2011).
[Crossref]

2009 (1)

T. D. Lamb, “Evolution of vertebrate retinal photoreception,” Philos. Trans. R. Soc., B 364(1531), 2911–2924 (2009).
[Crossref]

2007 (1)

2006 (1)

G. McConnell, “Improving the penetration depth in multiphoton excitation laser scanning microscopy,” J. Biomed. Opt. 11(5), 054020 (2006).
[Crossref]

1996 (1)

1988 (1)

1979 (1)

V. G. Dmitriev, V. N. Emel’yanov, M. A. Kashintsev, V. V. Kulikov, A. A. Solov’ev, M. F. Stel’makh, and O. B. Cherednichenko, “Nonlinear perception of infrared radiation in the 800–1355 nm range with human eye,” Quantum Electron. 9(4), 475–479 (1979).
[Crossref]

1976 (1)

1969 (1)

H. Ripps and R. A. Weale, “Flash bleaching of rhodopsin in the human retina,” J. Physiol. 200(1), 151–159 (1969).
[Crossref]

1965 (1)

L. S. Vasilenko, V. P. Chebotaev, and Y. V. Troitskii, “Visual observation of infrared laser emission,” Sov. Phys. JETP 21, 513–514 (1965).

1964 (1)

T. P. Williams, “Photoreversal of rhodopsin bleaching,” J. Gen. Physiol. 47(4), 679–689 (1964).
[Crossref]

1958 (1)

H. B. Barlow, “Temporal and Spatial Summation in Human Vision at Different Background Intensities,” J. Physiol. 141(2), 337–350 (1958).
[Crossref]

1947 (1)

1942 (1)

S. Hecht, S. Shlaer, and M. H. Pirenne, “Energy, quanta and vision,” J. Gen. Physiol. 25(6), 819–840 (1942).
[Crossref]

1937 (1)

S. Hecht, C. Haig, and A. M. Chase, “The influence of light adaptation on subsequent dark adaptation of the eye,” J. Gen. Physiol. 20(6), 831 (1937).
[Crossref]

1936 (1)

C. F. Goodeve, “Relative Luminosity in the Extreme Red,” Proc. Roy. Soc. A 155, 664–683 (1936).

1885 (1)

M. A. Bloch, “Expériences sur la vision,” Comptes Rendus la Soc. Biol. 37, 493–495 (1885).

Artal, P.

Barlow, H. B.

H. B. Barlow, “Temporal and Spatial Summation in Human Vision at Different Background Intensities,” J. Physiol. 141(2), 337–350 (1958).
[Crossref]

Bircher, M. P.

G. Palczewska, F. Vinberg, P. Stremplewski, M. P. Bircher, D. Salom, K. Komar, Z. Jianye, M. Cascella, M. Wojtkowski, V. Kefalov, and K. Palczewski, “Human infrared vision is triggered by two-photon chromophore isomerization,” Proc. Natl. Acad. Sci. U. S. A. 111(50), E5445–E5454 (2014).
[Crossref]

Bloch, M. A.

M. A. Bloch, “Expériences sur la vision,” Comptes Rendus la Soc. Biol. 37, 493–495 (1885).

Cascella, M.

G. Palczewska, F. Vinberg, P. Stremplewski, M. P. Bircher, D. Salom, K. Komar, Z. Jianye, M. Cascella, M. Wojtkowski, V. Kefalov, and K. Palczewski, “Human infrared vision is triggered by two-photon chromophore isomerization,” Proc. Natl. Acad. Sci. U. S. A. 111(50), E5445–E5454 (2014).
[Crossref]

Chase, A. M.

S. Hecht, C. Haig, and A. M. Chase, “The influence of light adaptation on subsequent dark adaptation of the eye,” J. Gen. Physiol. 20(6), 831 (1937).
[Crossref]

Chebotaev, V. P.

L. S. Vasilenko, V. P. Chebotaev, and Y. V. Troitskii, “Visual observation of infrared laser emission,” Sov. Phys. JETP 21, 513–514 (1965).

Cherednichenko, O. B.

V. G. Dmitriev, V. N. Emel’yanov, M. A. Kashintsev, V. V. Kulikov, A. A. Solov’ev, M. F. Stel’makh, and O. B. Cherednichenko, “Nonlinear perception of infrared radiation in the 800–1355 nm range with human eye,” Quantum Electron. 9(4), 475–479 (1979).
[Crossref]

Delori, F. C.

Dmitriev, V. G.

V. G. Dmitriev, V. N. Emel’yanov, M. A. Kashintsev, V. V. Kulikov, A. A. Solov’ev, M. F. Stel’makh, and O. B. Cherednichenko, “Nonlinear perception of infrared radiation in the 800–1355 nm range with human eye,” Quantum Electron. 9(4), 475–479 (1979).
[Crossref]

Emel’yanov, V. N.

V. G. Dmitriev, V. N. Emel’yanov, M. A. Kashintsev, V. V. Kulikov, A. A. Solov’ev, M. F. Stel’makh, and O. B. Cherednichenko, “Nonlinear perception of infrared radiation in the 800–1355 nm range with human eye,” Quantum Electron. 9(4), 475–479 (1979).
[Crossref]

Franks, J. K.

Gambín-Regadera, A.

Goodeve, C. F.

C. F. Goodeve, “Relative Luminosity in the Extreme Red,” Proc. Roy. Soc. A 155, 664–683 (1936).

Gorea, A.

A. Gorea, “A refresher of the original Bloch’s law paper (Bloch, July 1885),” i-Perception 6(4), 1–6 (2015).
[Crossref]

Griffin, D. R.

Haig, C.

S. Hecht, C. Haig, and A. M. Chase, “The influence of light adaptation on subsequent dark adaptation of the eye,” J. Gen. Physiol. 20(6), 831 (1937).
[Crossref]

Harris, R. A.

W. M. McClain and R. A. Harris, “Two-photon molecular spectroscopy in liquids and gases in Excited States,” in Excited States, E. C. Lim, ed. (Academic, 1977), pp. 1–56.

Hecht, S.

S. Hecht, S. Shlaer, and M. H. Pirenne, “Energy, quanta and vision,” J. Gen. Physiol. 25(6), 819–840 (1942).
[Crossref]

S. Hecht, C. Haig, and A. M. Chase, “The influence of light adaptation on subsequent dark adaptation of the eye,” J. Gen. Physiol. 20(6), 831 (1937).
[Crossref]

Hubbard, R.

Jean, M.

K. Schulmeister, M. Jean, D. Lund, and B. E. Stuck, “Comparison of corneal injury thresholds with laser safety limits,” in International Laser Safety Conference (Laser Institute of America, 2019), Vol. 303, p. 303.

Jianye, Z.

G. Palczewska, F. Vinberg, P. Stremplewski, M. P. Bircher, D. Salom, K. Komar, Z. Jianye, M. Cascella, M. Wojtkowski, V. Kefalov, and K. Palczewski, “Human infrared vision is triggered by two-photon chromophore isomerization,” Proc. Natl. Acad. Sci. U. S. A. 111(50), E5445–E5454 (2014).
[Crossref]

Kashintsev, M. A.

V. G. Dmitriev, V. N. Emel’yanov, M. A. Kashintsev, V. V. Kulikov, A. A. Solov’ev, M. F. Stel’makh, and O. B. Cherednichenko, “Nonlinear perception of infrared radiation in the 800–1355 nm range with human eye,” Quantum Electron. 9(4), 475–479 (1979).
[Crossref]

Kefalov, V.

G. Palczewska, F. Vinberg, P. Stremplewski, M. P. Bircher, D. Salom, K. Komar, Z. Jianye, M. Cascella, M. Wojtkowski, V. Kefalov, and K. Palczewski, “Human infrared vision is triggered by two-photon chromophore isomerization,” Proc. Natl. Acad. Sci. U. S. A. 111(50), E5445–E5454 (2014).
[Crossref]

Kefalov, V. J.

Komar, K.

D. Ruminski, G. Palczewska, M. Nowakowski, A. Zielińska, V. J. Kefalov, K. Komar, K. Palczewski, M. Wojtkowski, K. Komar, K. Komar, K. Palczewski, K. Palczewski, K. Palczewski, M. Wojtkowski, M. Wojtkowski, and M. Wojtkowski, “Two-photon microperimetry: sensitivity of human photoreceptors to infrared light,” Biomed. Opt. Express 10(9), 4551 (2019).
[Crossref]

D. Ruminski, G. Palczewska, M. Nowakowski, A. Zielińska, V. J. Kefalov, K. Komar, K. Palczewski, M. Wojtkowski, K. Komar, K. Komar, K. Palczewski, K. Palczewski, K. Palczewski, M. Wojtkowski, M. Wojtkowski, and M. Wojtkowski, “Two-photon microperimetry: sensitivity of human photoreceptors to infrared light,” Biomed. Opt. Express 10(9), 4551 (2019).
[Crossref]

D. Ruminski, G. Palczewska, M. Nowakowski, A. Zielińska, V. J. Kefalov, K. Komar, K. Palczewski, M. Wojtkowski, K. Komar, K. Komar, K. Palczewski, K. Palczewski, K. Palczewski, M. Wojtkowski, M. Wojtkowski, and M. Wojtkowski, “Two-photon microperimetry: sensitivity of human photoreceptors to infrared light,” Biomed. Opt. Express 10(9), 4551 (2019).
[Crossref]

P. Artal, S. Manzanera, K. Komar, A. Gambín-Regadera, and M. Wojtkowski, “Visual acuity in two-photon infrared vision,” Optica 4(12), 1488–1491 (2017).
[Crossref]

G. Palczewska, F. Vinberg, P. Stremplewski, M. P. Bircher, D. Salom, K. Komar, Z. Jianye, M. Cascella, M. Wojtkowski, V. Kefalov, and K. Palczewski, “Human infrared vision is triggered by two-photon chromophore isomerization,” Proc. Natl. Acad. Sci. U. S. A. 111(50), E5445–E5454 (2014).
[Crossref]

Kulikov, V. V.

V. G. Dmitriev, V. N. Emel’yanov, M. A. Kashintsev, V. V. Kulikov, A. A. Solov’ev, M. F. Stel’makh, and O. B. Cherednichenko, “Nonlinear perception of infrared radiation in the 800–1355 nm range with human eye,” Quantum Electron. 9(4), 475–479 (1979).
[Crossref]

Lamb, T. D.

T. D. Lamb, “Evolution of vertebrate retinal photoreception,” Philos. Trans. R. Soc., B 364(1531), 2911–2924 (2009).
[Crossref]

Lund, D.

K. Schulmeister, M. Jean, D. Lund, and B. E. Stuck, “Comparison of corneal injury thresholds with laser safety limits,” in International Laser Safety Conference (Laser Institute of America, 2019), Vol. 303, p. 303.

Manzanera, S.

McClain, W. M.

W. M. McClain and R. A. Harris, “Two-photon molecular spectroscopy in liquids and gases in Excited States,” in Excited States, E. C. Lim, ed. (Academic, 1977), pp. 1–56.

McConnell, G.

G. McConnell, “Improving the penetration depth in multiphoton excitation laser scanning microscopy,” J. Biomed. Opt. 11(5), 054020 (2006).
[Crossref]

Nowakowski, M.

Palczewska, G.

D. Ruminski, G. Palczewska, M. Nowakowski, A. Zielińska, V. J. Kefalov, K. Komar, K. Palczewski, M. Wojtkowski, K. Komar, K. Komar, K. Palczewski, K. Palczewski, K. Palczewski, M. Wojtkowski, M. Wojtkowski, and M. Wojtkowski, “Two-photon microperimetry: sensitivity of human photoreceptors to infrared light,” Biomed. Opt. Express 10(9), 4551 (2019).
[Crossref]

G. Palczewska, F. Vinberg, P. Stremplewski, M. P. Bircher, D. Salom, K. Komar, Z. Jianye, M. Cascella, M. Wojtkowski, V. Kefalov, and K. Palczewski, “Human infrared vision is triggered by two-photon chromophore isomerization,” Proc. Natl. Acad. Sci. U. S. A. 111(50), E5445–E5454 (2014).
[Crossref]

Palczewski, K.

D. Ruminski, G. Palczewska, M. Nowakowski, A. Zielińska, V. J. Kefalov, K. Komar, K. Palczewski, M. Wojtkowski, K. Komar, K. Komar, K. Palczewski, K. Palczewski, K. Palczewski, M. Wojtkowski, M. Wojtkowski, and M. Wojtkowski, “Two-photon microperimetry: sensitivity of human photoreceptors to infrared light,” Biomed. Opt. Express 10(9), 4551 (2019).
[Crossref]

D. Ruminski, G. Palczewska, M. Nowakowski, A. Zielińska, V. J. Kefalov, K. Komar, K. Palczewski, M. Wojtkowski, K. Komar, K. Komar, K. Palczewski, K. Palczewski, K. Palczewski, M. Wojtkowski, M. Wojtkowski, and M. Wojtkowski, “Two-photon microperimetry: sensitivity of human photoreceptors to infrared light,” Biomed. Opt. Express 10(9), 4551 (2019).
[Crossref]

D. Ruminski, G. Palczewska, M. Nowakowski, A. Zielińska, V. J. Kefalov, K. Komar, K. Palczewski, M. Wojtkowski, K. Komar, K. Komar, K. Palczewski, K. Palczewski, K. Palczewski, M. Wojtkowski, M. Wojtkowski, and M. Wojtkowski, “Two-photon microperimetry: sensitivity of human photoreceptors to infrared light,” Biomed. Opt. Express 10(9), 4551 (2019).
[Crossref]

D. Ruminski, G. Palczewska, M. Nowakowski, A. Zielińska, V. J. Kefalov, K. Komar, K. Palczewski, M. Wojtkowski, K. Komar, K. Komar, K. Palczewski, K. Palczewski, K. Palczewski, M. Wojtkowski, M. Wojtkowski, and M. Wojtkowski, “Two-photon microperimetry: sensitivity of human photoreceptors to infrared light,” Biomed. Opt. Express 10(9), 4551 (2019).
[Crossref]

G. Palczewska, F. Vinberg, P. Stremplewski, M. P. Bircher, D. Salom, K. Komar, Z. Jianye, M. Cascella, M. Wojtkowski, V. Kefalov, and K. Palczewski, “Human infrared vision is triggered by two-photon chromophore isomerization,” Proc. Natl. Acad. Sci. U. S. A. 111(50), E5445–E5454 (2014).
[Crossref]

Pirenne, M. H.

S. Hecht, S. Shlaer, and M. H. Pirenne, “Energy, quanta and vision,” J. Gen. Physiol. 25(6), 819–840 (1942).
[Crossref]

Pokorny, J.

Reuter, T.

T. Reuter, “Fifty years of dark adaptation 1961-2011,” Vision Res. 51(21-22), 2243–2262 (2011).
[Crossref]

Ripps, H.

H. Ripps and R. A. Weale, “Flash bleaching of rhodopsin in the human retina,” J. Physiol. 200(1), 151–159 (1969).
[Crossref]

Ruminski, D.

Salom, D.

G. Palczewska, F. Vinberg, P. Stremplewski, M. P. Bircher, D. Salom, K. Komar, Z. Jianye, M. Cascella, M. Wojtkowski, V. Kefalov, and K. Palczewski, “Human infrared vision is triggered by two-photon chromophore isomerization,” Proc. Natl. Acad. Sci. U. S. A. 111(50), E5445–E5454 (2014).
[Crossref]

Schulmeister, K.

K. Schulmeister, M. Jean, D. Lund, and B. E. Stuck, “Comparison of corneal injury thresholds with laser safety limits,” in International Laser Safety Conference (Laser Institute of America, 2019), Vol. 303, p. 303.

Shlaer, S.

S. Hecht, S. Shlaer, and M. H. Pirenne, “Energy, quanta and vision,” J. Gen. Physiol. 25(6), 819–840 (1942).
[Crossref]

Sliney, D. H.

Solov’ev, A. A.

V. G. Dmitriev, V. N. Emel’yanov, M. A. Kashintsev, V. V. Kulikov, A. A. Solov’ev, M. F. Stel’makh, and O. B. Cherednichenko, “Nonlinear perception of infrared radiation in the 800–1355 nm range with human eye,” Quantum Electron. 9(4), 475–479 (1979).
[Crossref]

Stel’makh, M. F.

V. G. Dmitriev, V. N. Emel’yanov, M. A. Kashintsev, V. V. Kulikov, A. A. Solov’ev, M. F. Stel’makh, and O. B. Cherednichenko, “Nonlinear perception of infrared radiation in the 800–1355 nm range with human eye,” Quantum Electron. 9(4), 475–479 (1979).
[Crossref]

Stremplewski, P.

G. Palczewska, F. Vinberg, P. Stremplewski, M. P. Bircher, D. Salom, K. Komar, Z. Jianye, M. Cascella, M. Wojtkowski, V. Kefalov, and K. Palczewski, “Human infrared vision is triggered by two-photon chromophore isomerization,” Proc. Natl. Acad. Sci. U. S. A. 111(50), E5445–E5454 (2014).
[Crossref]

Stuck, B. E.

K. Schulmeister, M. Jean, D. Lund, and B. E. Stuck, “Comparison of corneal injury thresholds with laser safety limits,” in International Laser Safety Conference (Laser Institute of America, 2019), Vol. 303, p. 303.

Troitskii, Y. V.

L. S. Vasilenko, V. P. Chebotaev, and Y. V. Troitskii, “Visual observation of infrared laser emission,” Sov. Phys. JETP 21, 513–514 (1965).

Vasilenko, L. S.

L. S. Vasilenko, V. P. Chebotaev, and Y. V. Troitskii, “Visual observation of infrared laser emission,” Sov. Phys. JETP 21, 513–514 (1965).

Vinberg, F.

G. Palczewska, F. Vinberg, P. Stremplewski, M. P. Bircher, D. Salom, K. Komar, Z. Jianye, M. Cascella, M. Wojtkowski, V. Kefalov, and K. Palczewski, “Human infrared vision is triggered by two-photon chromophore isomerization,” Proc. Natl. Acad. Sci. U. S. A. 111(50), E5445–E5454 (2014).
[Crossref]

Wald, G.

Wangemann, R. T.

Weale, R. A.

H. Ripps and R. A. Weale, “Flash bleaching of rhodopsin in the human retina,” J. Physiol. 200(1), 151–159 (1969).
[Crossref]

Webb, R. H.

Webb, W. W.

Williams, T. P.

T. P. Williams, “Photoreversal of rhodopsin bleaching,” J. Gen. Physiol. 47(4), 679–689 (1964).
[Crossref]

Wojtkowski, M.

D. Ruminski, G. Palczewska, M. Nowakowski, A. Zielińska, V. J. Kefalov, K. Komar, K. Palczewski, M. Wojtkowski, K. Komar, K. Komar, K. Palczewski, K. Palczewski, K. Palczewski, M. Wojtkowski, M. Wojtkowski, and M. Wojtkowski, “Two-photon microperimetry: sensitivity of human photoreceptors to infrared light,” Biomed. Opt. Express 10(9), 4551 (2019).
[Crossref]

D. Ruminski, G. Palczewska, M. Nowakowski, A. Zielińska, V. J. Kefalov, K. Komar, K. Palczewski, M. Wojtkowski, K. Komar, K. Komar, K. Palczewski, K. Palczewski, K. Palczewski, M. Wojtkowski, M. Wojtkowski, and M. Wojtkowski, “Two-photon microperimetry: sensitivity of human photoreceptors to infrared light,” Biomed. Opt. Express 10(9), 4551 (2019).
[Crossref]

D. Ruminski, G. Palczewska, M. Nowakowski, A. Zielińska, V. J. Kefalov, K. Komar, K. Palczewski, M. Wojtkowski, K. Komar, K. Komar, K. Palczewski, K. Palczewski, K. Palczewski, M. Wojtkowski, M. Wojtkowski, and M. Wojtkowski, “Two-photon microperimetry: sensitivity of human photoreceptors to infrared light,” Biomed. Opt. Express 10(9), 4551 (2019).
[Crossref]

D. Ruminski, G. Palczewska, M. Nowakowski, A. Zielińska, V. J. Kefalov, K. Komar, K. Palczewski, M. Wojtkowski, K. Komar, K. Komar, K. Palczewski, K. Palczewski, K. Palczewski, M. Wojtkowski, M. Wojtkowski, and M. Wojtkowski, “Two-photon microperimetry: sensitivity of human photoreceptors to infrared light,” Biomed. Opt. Express 10(9), 4551 (2019).
[Crossref]

P. Artal, S. Manzanera, K. Komar, A. Gambín-Regadera, and M. Wojtkowski, “Visual acuity in two-photon infrared vision,” Optica 4(12), 1488–1491 (2017).
[Crossref]

G. Palczewska, F. Vinberg, P. Stremplewski, M. P. Bircher, D. Salom, K. Komar, Z. Jianye, M. Cascella, M. Wojtkowski, V. Kefalov, and K. Palczewski, “Human infrared vision is triggered by two-photon chromophore isomerization,” Proc. Natl. Acad. Sci. U. S. A. 111(50), E5445–E5454 (2014).
[Crossref]

Wolbarsht, M. L.

Xu, C.

Zaidi, Q.

Zielinska, A.

Appl. Opt. (1)

Biomed. Opt. Express (1)

Comptes Rendus la Soc. Biol. (1)

M. A. Bloch, “Expériences sur la vision,” Comptes Rendus la Soc. Biol. 37, 493–495 (1885).

i-Perception (1)

A. Gorea, “A refresher of the original Bloch’s law paper (Bloch, July 1885),” i-Perception 6(4), 1–6 (2015).
[Crossref]

J. Biomed. Opt. (1)

G. McConnell, “Improving the penetration depth in multiphoton excitation laser scanning microscopy,” J. Biomed. Opt. 11(5), 054020 (2006).
[Crossref]

J. Gen. Physiol. (3)

S. Hecht, S. Shlaer, and M. H. Pirenne, “Energy, quanta and vision,” J. Gen. Physiol. 25(6), 819–840 (1942).
[Crossref]

S. Hecht, C. Haig, and A. M. Chase, “The influence of light adaptation on subsequent dark adaptation of the eye,” J. Gen. Physiol. 20(6), 831 (1937).
[Crossref]

T. P. Williams, “Photoreversal of rhodopsin bleaching,” J. Gen. Physiol. 47(4), 679–689 (1964).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Physiol. (2)

H. B. Barlow, “Temporal and Spatial Summation in Human Vision at Different Background Intensities,” J. Physiol. 141(2), 337–350 (1958).
[Crossref]

H. Ripps and R. A. Weale, “Flash bleaching of rhodopsin in the human retina,” J. Physiol. 200(1), 151–159 (1969).
[Crossref]

Optica (1)

Philos. Trans. R. Soc., B (1)

T. D. Lamb, “Evolution of vertebrate retinal photoreception,” Philos. Trans. R. Soc., B 364(1531), 2911–2924 (2009).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

G. Palczewska, F. Vinberg, P. Stremplewski, M. P. Bircher, D. Salom, K. Komar, Z. Jianye, M. Cascella, M. Wojtkowski, V. Kefalov, and K. Palczewski, “Human infrared vision is triggered by two-photon chromophore isomerization,” Proc. Natl. Acad. Sci. U. S. A. 111(50), E5445–E5454 (2014).
[Crossref]

Proc. Roy. Soc. A (1)

C. F. Goodeve, “Relative Luminosity in the Extreme Red,” Proc. Roy. Soc. A 155, 664–683 (1936).

Quantum Electron. (1)

V. G. Dmitriev, V. N. Emel’yanov, M. A. Kashintsev, V. V. Kulikov, A. A. Solov’ev, M. F. Stel’makh, and O. B. Cherednichenko, “Nonlinear perception of infrared radiation in the 800–1355 nm range with human eye,” Quantum Electron. 9(4), 475–479 (1979).
[Crossref]

Sov. Phys. JETP (1)

L. S. Vasilenko, V. P. Chebotaev, and Y. V. Troitskii, “Visual observation of infrared laser emission,” Sov. Phys. JETP 21, 513–514 (1965).

Vision Res. (1)

T. Reuter, “Fifty years of dark adaptation 1961-2011,” Vision Res. 51(21-22), 2243–2262 (2011).
[Crossref]

Other (4)

W. M. McClain and R. A. Harris, “Two-photon molecular spectroscopy in liquids and gases in Excited States,” in Excited States, E. C. Lim, ed. (Academic, 1977), pp. 1–56.

K. Schulmeister, M. Jean, D. Lund, and B. E. Stuck, “Comparison of corneal injury thresholds with laser safety limits,” in International Laser Safety Conference (Laser Institute of America, 2019), Vol. 303, p. 303.

Commission Internationale de l’Éclairage (Cambridge University Press, 1924).

ANSI Z136.1-2014 (Laser Institute of America, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic diagram of the experimental apparatus. The beam from a supercontinuum laser is spectrally filtered by a bandpass and a longpass filters and scanned onto the retina by the 2-axis scanning mirrors. Apertures A1 and A2 are used to select the beam size and to block the beam when necessary respectively. An additional CW laser is available through a shortpass dichroic mirror. Trial lenses are used to correct for the eye’s ametropias.
Fig. 2.
Fig. 2. Average across participants of the minimum average power needed to produce color vision in the IR, measured at selected wavelengths for 2 different pulse repetition rates. Error bars represent inter-participants variability (±1 standard deviation).
Fig. 3.
Fig. 3. Ratio of the average minimum power needed to perceive color in the IR measured at a pulse repetition rate of 1.98 kHz to that measured at 9.91 kHz. The average value is indicated by a dashed blue line. The blueish shaded area frames an interval of ±1 standard deviation. The expected values assuming either the involvement of 1 or 2 photons are indicated by the golden and red lines respectively.
Fig. 4.
Fig. 4. Comparison of the PSFs recorded at the 2 different pulse repetition rates tested. Left: images of both PSFs. Right: Intensity profiles obtained from both PSFs along the dashed line superimposed on the PSFs images.
Fig. 5.
Fig. 5. Comparison of the maximum permissible (MP) average power with the measured average power for the thresholds at the two tested frequencies, A) 1.98 kHz and B) 9.91 kHz.
Fig. 6.
Fig. 6. Comparison of the maximum permissible (MP) peak power with the measured peak power for the thresholds at the two tested frequencies, A) 1.98 kHz and B) 9.91 kHz.

Tables (1)

Tables Icon

Table 1. values of the parameters in Eq. (17)

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

n 2 p = V C ( r , t ) I 2 ( r , t ) σ 2 d v
n 2 p = ϕ 1 2 n 2 p
n 2 p = 1 2 ϕ σ 2 V C ( r ) I 2 ( r , t ) d v
I ( r , t ) = I 0 ( t ) S ( r )
n 2 p = 1 2 ϕ σ 2 I 0 2 ( t ) V C ( r ) S 2 ( r ) d v
I 0 ( t ) = π ( N . A . ) 2 λ 0 2 a P ( t )
n 2 p = 1 2 ϕ σ 2 π 2 ( N . A . ) 4 λ 0 4 a 2 P 2 ( t ) S 2 ( o )
N 2 p ( τ ) = 1 2 ϕ σ 2 π 2 ( N . A . ) 4 λ 0 4 a 2 τ F t p P p 2 S 2 ( o )
N 2 p ( τ ) = 1 2 ϕ σ 2 π 2 ( N . A . ) 4 λ 0 4 a 2 τ t p F S 2 ( o ) P 2
P t h = λ 0 2 π a ( N . A . ) 2 2 t p F ϕ σ 2 τ S 2 ( o ) N t h
P t h 1 P t h 2 = F 1 F 2
n 1 p = V C ( r , t ) I ( r , t ) σ 1 d v
P t h = λ 0 2 ϕ σ 1 π ( N . A . ) 2 a τ S 1 ( o ) N t h
P t h 1 P t h 2 = 1
M P Φ = M P Φ s m a l l s o u r c e C E
C E = 4 α π α min
M P Φ s m a l l s o u r c e = F 0.75 T 0.25 t min 1.07 x 10 2 C T C J C E
M P Φ a v = 2.0 F 0.75 T 0.25 t min 1.07 x 10 2 C T C J C E