Abstract

Fluorescence lifetime imaging ophthalmoscopy (FLIO) has developed as a new diagnostic tool in ophthalmology. FLIO measurements are taken from 30° retinal fields in two spectral channels (short spectral channel (SSC): 498–560 nm, long spectral channel (LSC): 560–720 nm). Because of the layered structure of the eye, the detected signal is an interaction of the fluorescence decay of the anterior part and of the fundus. By comparing FLIO measurements before and after cataract surgery, the impact of the natural lens was proven, despite the application of a confocal laser scanning (cSLO) technique. The goal of this work was to determine the best algorithmic solution to isolate the sole fundus fluorescence lifetime from the measured signal, suppressing artifacts from the natural lens. Three principles based on a tri-exponential model were investigated: a tailfit, a layer-based approach with a temporally shifted component, and the inclusion of a separately measured fluorescence decay of the natural lens. The mean fluorescence lifetime τm,12 is calculated using only the shortest and the intermediate exponential component. τm,all is calculated using all three exponential components. The results of tri-exponential tailfit after cataract surgery were considered as a reference, because the implanted artificial lens can be assumed as non-fluorescent. In SSC, the best accordance of τm,all of the reference was determined with τm,12 of the tailfit before surgery. If high-quality natural lens measurements are available, the correspondence of τm,12 is best with τm,all of the reference. In LSC, there is a good accordance for all models between τm,12 before and after surgery. To study the pure fundus fluorescence decay in eyes with natural lenses, we advise to utilize fluorescence lifetime τm,12 of a triple-exponential tailfit, as it corresponds well with the mean fluorescence lifetime τm,all of eyes with fluorescence-less artificial intraocular lenses.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Schweitzer, A. Kolb, M. Hammer, and E. Thamm, “τ mapping of the autofluorescence of the human ocular fundus,” in EOS/SPIE/ELA European Biomedical Optics Week – EBiOS, 2000), 79–89.
  2. D. Schweitzer, M. Hammer, F. Schweitzer, R. Anders, T. Doebbecke, S. Schenke, E. R. Gaillard, and E. R. Gaillard, “In vivo measurement of time-resolved autofluorescence at the human fundus,” J. Biomed. Opt. 9(6), 1214–1222 (2004).
    [Crossref]
  3. M. Klemm, A. Dietzel, J. Haueisen, E. Nagel, M. Hammer, and D. Schweitzer, “Repeatability of Autofluorescence Lifetime Imaging at the Human Fundus in Healthy Volunteers,” Curr. Eye Res. 38(7), 793–801 (2013).
    [Crossref]
  4. C. Dysli, G. Quellec, M. Abegg, M. N. Menke, U. Wolf-Schnurrbusch, J. Kowal, J. Blatz, O. La Schiazza, A. B. Leichtle, S. Wolf, and M. S. Zinkernagel, “Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects,” Invest. Ophthalmol. Visual Sci. 55(4), 2106–2113 (2014).
    [Crossref]
  5. S. Kwon, E. Borrelli, W. Fan, A. Ebraheem, K. M. Marion, and S. R. Sadda, “Repeatability of Fluorescence Lifetime Imaging Ophthalmoscopy in Normal Subjects With Mydriasis,” Trans. Vis. Sci. Tech. 8(3), 15 (2019).
    [Crossref]
  6. L. Marcu, P. M. W. French, and D. S. Elson, Fluorescence LifetimeSpectroscopy and Imaging : Principles and Applications in Biomedical Diagnostics (CRC Press/Taylor & Francis Group, 2014).
  7. L. Sauer, D. Schweitzer, L. Ramm, R. Augsten, M. Hammer, and S. Peters, “Impact of Macular Pigment on Fundus Autofluorescence Lifetimes,” Invest. Ophthalmol. Visual Sci. 56(8), 4668–4679 (2015).
    [Crossref]
  8. L. Sauer, K. M. Andersen, B. X. Li, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO) of Macular Pigment,” Invest. Ophthalmol. Visual Sci. 59(7), 3094–3103 (2018).
    [Crossref]
  9. M. Klemm, L. Sauer, S. Klee, D. Link, S. Peters, M. Hammer, D. Schweitzer, and J. Haueisen, “Bleaching effects and fluorescence lifetime imaging ophthalmoscopy,” Biomed. Opt. Express 10(3), 1446–1461 (2019).
    [Crossref]
  10. S. R. Sadda, E. Borrelli, W. Y. Fan, A. Ebraheem, K. M. Marion, and S. Kwon, “Impact of mydriasis in fluorescence lifetime imaging ophthalmoscopy,” PLoS One 13(12), e0209194 (2018).
    [Crossref]
  11. D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007).
    [Crossref]
  12. D. Schweitzer, “Autofluorescence diagnostics of ophthalmic diseases,” in Natural Biomarkers for Cellular Metabolism: Biology, Techniques, and Applications, 1st ed., V. V. Heikal and A. A. Ghukasyan, eds. (CRC Press/Taylor & Francis Group, 2015), pp. 317–344.
  13. S. Peters, M. Hammer, and D. Schweitzer, “Two-photon excited fluorescence microscopy application for ex vivo investigation of ocular fundus samples,” Proc. SPIE 8086, 808605 (2011).
    [Crossref]
  14. D. Schweitzer, S. Jentsch, S. Schenke, M. Hammer, C. Biskup, and E. Gaillard, “Spectral and Time-resolved Studies on Ocular Structures,” in European Conferences on Biomedical Optics (SPIE, 2007), Vol. 6628.
  15. D. Schweitzer, S. Quick, S. Schenke, M. Klemm, S. Gehlert, M. Hammer, S. Jentsch, and J. Fischer, “Comparison of parameters of time-resolved autofluorescence between healthy subjects and patients suffering from early AMD,” Ophthalmologe 106(8), 714–722 (2009).
    [Crossref]
  16. D. Schweitzer, S. Quick, M. Klemm, M. Hammer, S. Jentsch, and J. Dawczynski, “Time-resolved autofluorescence in retinal vascular occlusions,” Ophthalmologe 107(12), 1145–1152 (2010).
    [Crossref]
  17. S. Jentsch, D. Schweitzer, K. U. Schmidtke, S. Peters, J. Dawczynski, K. J. Bar, and M. Hammer, “Retinal fluorescence lifetime imaging ophthalmoscopy measures depend on the severity of Alzheimer's disease,” Acta Ophthalmol. 93(4), e241–e247 (2015).
    [Crossref]
  18. D. Schweitzer, L. Deutsch, M. Klemm, S. Jentsch, M. Hammer, S. Peters, J. Haueisen, U. A. Müller, and J. Dawczynski, “Fluorescence lifetime imaging ophthalmoscopy in type 2 diabetic patients who have no signs of diabetic retinopathy,” J. Biomed. Opt. 20(6), 061106 (2015).
    [Crossref]
  19. J. Schmidt, S. Peters, L. Sauer, D. Schweitzer, M. Klemm, R. Augsten, N. Muller, and M. Hammer, “Fundus autofluorescence lifetimes are increased in non-proliferative diabetic retinopathy,” Acta Ophthalmol. 95(1), 33–40 (2017).
    [Crossref]
  20. L. Sauer, S. Peters, J. Schmidt, D. Schweitzer, M. Klemm, L. Ramm, R. Augsten, and M. Hammer, “Monitoring macular pigment changes in macular holes using fluorescence lifetime imaging ophthalmoscopy,” Acta Ophthalmol. 95(5), 481–492 (2017).
    [Crossref]
  21. L. Sauer, M. Klemm, S. Peters, D. Schweitzer, J. Schmidt, L. Kreilkamp, L. Ramm, D. Meller, and M. Hammer, “Monitoring foveal sparing in geographic atrophy with fluorescence lifetime imaging ophthalmoscopy - a novel approach,” Acta Ophthalmol. 96(3), 257–266 (2018).
    [Crossref]
  22. L. Sauer, R. H. Gensure, K. M. Andersen, L. Kreilkamp, G. S. Hageman, M. Hammer, and P. S. Bernstein, “Patterns of Fundus Autofluorescence Lifetimes In Eyes of Individuals With Nonexudative Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 59(4), AMD65–AMD77 (2018).
    [Crossref]
  23. K. M. Andersen, L. Sauer, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Characterization of Retinitis Pigmentosa Using Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO),” Trans. Vis. Sci. Tech. 7(3), 20 (2018).
    [Crossref]
  24. L. Sauer, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy: A Novel Way to Assess Macular Telangiectasia Type 2,” Ophthalmol. Retina 2(6), 587–598 (2018).
    [Crossref]
  25. L. Sauer, C. B. Komanski, A. S. Vitale, E. D. Hansen, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO) in Eyes With Pigment Epithelial Detachments Due to Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 60(8), 3054–3063 (2019).
    [Crossref]
  26. L. Sauer, A. S. Vitale, K. M. Andersen, B. Hart, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy (Flio) Patterns in Clinically Unaffected Children of Macular Telangiectasia Type 2 (Mactel) Patients,” Retina 40(4), 695–704 (2020).
    [Crossref]
  27. C. Dysli, S. Wolf, and M. S. Zinkernagel, “Fluorescence Lifetime Imaging in Retinal Artery Occlusion,” Invest. Ophthalmol. Visual Sci. 56(5), 3329–3336 (2015).
    [Crossref]
  28. C. Dysli, S. Wolf, and M. S. Zinkernagel, “Autofluorescence Lifetimes in Geographic Atrophy in Patients With Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 57(6), 2479–2487 (2016).
    [Crossref]
  29. C. Dysli, R. Fink, S. Wolf, and M. S. Zinkernagel, “Fluorescence Lifetimes of Drusen in Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 58(11), 4856–4862 (2017).
    [Crossref]
  30. C. Dysli, L. Berger, S. Wolf, and M. S. Zinkernagel, “Fundus Autofluorescence Lifetimes and Central Serous Chorioretinopathy,” Retina 37(11), 2151–2161 (2017).
    [Crossref]
  31. C. Dysli, K. Schurch, E. Pascal, S. Wolf, and M. S. Zinkernagel, “Fundus Autofluorescence Lifetime Patterns in Retinitis Pigmentosa,” Invest. Ophthalmol. Visual Sci. 59(5), 1769–1778 (2018).
    [Crossref]
  32. C. Dysli, S. Wolf, H. V. Tran, and M. S. Zinkernagel, “Autofluorescence Lifetimes in Patients With Choroideremia Identify Photoreceptors in Areas With Retinal Pigment Epithelium Atrophy,” Invest. Ophthalmol. Visual Sci. 57(15), 6714–6721 (2016).
    [Crossref]
  33. C. Dysli, S. Wolf, M. Y. Berezin, L. Sauer, M. Hammer, and M. S. Zinkernagel, “Fluorescence lifetime imaging ophthalmoscopy,” Prog. Retinal Eye Res. 60, 120–143 (2017).
    [Crossref]
  34. L. Sauer, K. M. Andersen, C. Dysli, M. S. Zinkernagel, P. S. Bernstein, and M. Hammer, “Review of clinical approaches in fluorescence lifetime imaging ophthalmoscopy,” J. Biomed. Opt. 23(09), 1–20 (2018).
    [Crossref]
  35. C. Dysli, M. Dysli, V. Enzmann, S. Wolf, and M. S. Zinkernagel, “Fluorescence Lifetime Imaging of the Ocular Fundus in Mice,” Invest. Ophthalmol. Visual Sci. 55(11), 7206–7215 (2014).
    [Crossref]
  36. C. Dysli, M. Dysli, M. S. Zinkernagel, and V. Enzmann, “Effect of pharmacologically induced retinal degeneration on retinal autofluorescence lifetimes in mice,” Exp. Eye Res. 153, 178–185 (2016).
    [Crossref]
  37. D. Schweitzer, M. Hammer, and F. Schweitzer, “Limits of the confocal laser-scanning technique in measurements of time-resolved autofluorescence of the eye-ground,” Biomed. Tech. 50(9), 263–267 (2005).
    [Crossref]
  38. D. Schweitzer, “Ophthalmic applications of FLIM,” in Fluorescence Lifetime Spectroscopy and Imaging : Principles and Applications in Biomedical Diagnostics, L. Marcu, P. M. W. French, and D. S. Elson, eds. (CRC Press/Taylor & Francis Group, 2014), pp. 423–447.
  39. G. E. Eldred and M. L. Katz, “Fluorophores of the Human Retinal-Pigment Epithelium - Separation and Spectral Characterization,” Exp. Eye Res. 47(1), 71–86 (1988).
    [Crossref]
  40. M. Klemm, J. Blum, D. Link, M. Hammer, J. Haueisen, and D. Schweitzer, “Combination of confocal principle and aperture stop separation improves suppression of crystalline lens fluorescence in an eye model,” Biomed. Opt. Express 7(9), 3198–3210 (2016).
    [Crossref]
  41. B.-G. Wang, “[Multiphoton microscopy and laser nanosurgery of the cornea using near-infrared nanojoule femtosecond laser pulses],” Dissertation (University Hospital Jena, Jena, 2006).
  42. J. J. Hunter, B. Masella, A. Dubra, R. Sharma, L. Yin, W. H. Merigan, G. Palczewska, K. Palczewski, and D. R. Williams, “Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy,” Biomed. Opt. Express 2(1), 139–148 (2011).
    [Crossref]
  43. J. Mavadia, J. F. Xi, Y. P. Chen, and X. D. Li, “An all-fiber-optic endoscopy platform for simultaneous OCT and fluorescence imaging,” Biomed. Opt. Express 3(11), 2851–2859 (2012).
    [Crossref]
  44. J. Park, J. A. Jo, S. Shrestha, P. Pande, Q. J. Wan, and B. E. Applegate, “A dual-modality optical coherence tomography and fluorescence lifetime imaging microscopy system for simultaneous morphological and biochemical tissue characterization,” Biomed. Opt. Express 1(1), 186–200 (2010).
    [Crossref]
  45. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006), p. 954.
  46. W. Becker, The bh TCPSC Handbook, 8th ed. (Becker & Hickl GmbH, 2019), p. 954.
  47. D. Schweitzer, “Metabolic mapping,” in Medical Retina: Focus on Retinal Imaging (Essentials in Ophthalmology), F. G. Holz and R. F. Spaide, eds. (Springer, 2010), pp. 107–123.
  48. Early Treatment Diabetic Retinopathy Study Research Group, “Grading diabetic retinopathy from stereoscopic color fundus photographs–an extension of the modified Airlie House classification. ETDRS report number 10,” Ophthalmology 98(5), 786–806 (1991).
    [Crossref]
  49. S. S. Shapiro and M. B. Wilk, “An Analysis of Variance Test for Normality (Complete Samples),” Biometrika 52(3-4), 591–611 (1965).
    [Crossref]
  50. M. Klemm, D. Schweitzer, S. Peters, L. Sauer, M. Hammer, and J. Haueisen, “FLIMX: A Software Package to Determine and Analyze the Fluorescence Lifetime in Time-Resolved Fluorescence Data from the Human Eye,” PLoS One 10(7), e0131640 (2015).
    [Crossref]
  51. H. Pau, J. Degen, and H. H. Schmidtke, “Different Regional Changes of Fluorescence-Spectra of Clear Human Lenses and Nuclear Cataracts,” Graefe’s Arch. Clin. Exp. Ophthalmol. 231(11), 656–661 (1993).
    [Crossref]
  52. D. Moher, S. Hopewell, K. F. Schulz, V. Montori, P. C. Gotzsche, P. J. Devereaux, D. Elbourne, M. Egger, and D. G. Altman, “CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials,” BMJ 340(mar23 1), c869 (2010).
    [Crossref]
  53. D. Schweitzer, L. Deutsch, M. Klemm, S. Jentsch, M. Hammer, J. Dawczynski, and U. A. Mueller, “Detection Of Early Metabolic Alterations In Diabetes Mellitus By Time-resolved Fundus Autofluorescence (FLIM),” Invest. Ophthalmol. Visual Sci. 52, 1753 (2011).
  54. D. K. Karumanchi, E. R. Gaillard, and J. Dillon, “Early Diagnosis of Diabetes through the Eye,” Photochem. Photobiol. 91(6), 1497–1504 (2015).
    [Crossref]
  55. D. Schweitzer, M. Klemm, M. Hammer, S. Jentsch, and F. Schweitzer, “Method for simultaneous detection of functionality and tomography,” Clinical and Biomedical Spectroscopy 7368, 736804 (2009).
    [Crossref]
  56. W. Becker, A. Bergmann, and L. Sauer, “Shifted-Component Model Improves FLIO Data Analysis,” (Becker & Hickl GmbH, Berlin, Germany, 2018).
  57. D. Schweitzer and M. Hammer, “Fluorescence Lifetime Imaging in Ophthalmology,” in Advanced Time-Correlated Single Photon Counting Applications, W. Becker, ed. (Springer International Publishing, 2015), pp. 509–540.
  58. M. G. O. Grafe, A. Hoffmann, and C. Spielmann, “Ultrafast fluorescence spectroscopy for axial resolution of flurorophore distributions,” Appl. Phys. B: Lasers Opt. 117(3), 833–840 (2014).
    [Crossref]
  59. M. Koellner and J. Wolfrum, “How Many Photons Are Necessary for Fluorescence-Lifetime Measurements,” Chem. Phys. Lett. 200(1-2), 199–204 (1992).
    [Crossref]

2020 (1)

L. Sauer, A. S. Vitale, K. M. Andersen, B. Hart, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy (Flio) Patterns in Clinically Unaffected Children of Macular Telangiectasia Type 2 (Mactel) Patients,” Retina 40(4), 695–704 (2020).
[Crossref]

2019 (3)

L. Sauer, C. B. Komanski, A. S. Vitale, E. D. Hansen, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO) in Eyes With Pigment Epithelial Detachments Due to Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 60(8), 3054–3063 (2019).
[Crossref]

S. Kwon, E. Borrelli, W. Fan, A. Ebraheem, K. M. Marion, and S. R. Sadda, “Repeatability of Fluorescence Lifetime Imaging Ophthalmoscopy in Normal Subjects With Mydriasis,” Trans. Vis. Sci. Tech. 8(3), 15 (2019).
[Crossref]

M. Klemm, L. Sauer, S. Klee, D. Link, S. Peters, M. Hammer, D. Schweitzer, and J. Haueisen, “Bleaching effects and fluorescence lifetime imaging ophthalmoscopy,” Biomed. Opt. Express 10(3), 1446–1461 (2019).
[Crossref]

2018 (8)

S. R. Sadda, E. Borrelli, W. Y. Fan, A. Ebraheem, K. M. Marion, and S. Kwon, “Impact of mydriasis in fluorescence lifetime imaging ophthalmoscopy,” PLoS One 13(12), e0209194 (2018).
[Crossref]

L. Sauer, K. M. Andersen, B. X. Li, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO) of Macular Pigment,” Invest. Ophthalmol. Visual Sci. 59(7), 3094–3103 (2018).
[Crossref]

L. Sauer, M. Klemm, S. Peters, D. Schweitzer, J. Schmidt, L. Kreilkamp, L. Ramm, D. Meller, and M. Hammer, “Monitoring foveal sparing in geographic atrophy with fluorescence lifetime imaging ophthalmoscopy - a novel approach,” Acta Ophthalmol. 96(3), 257–266 (2018).
[Crossref]

L. Sauer, R. H. Gensure, K. M. Andersen, L. Kreilkamp, G. S. Hageman, M. Hammer, and P. S. Bernstein, “Patterns of Fundus Autofluorescence Lifetimes In Eyes of Individuals With Nonexudative Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 59(4), AMD65–AMD77 (2018).
[Crossref]

K. M. Andersen, L. Sauer, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Characterization of Retinitis Pigmentosa Using Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO),” Trans. Vis. Sci. Tech. 7(3), 20 (2018).
[Crossref]

L. Sauer, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy: A Novel Way to Assess Macular Telangiectasia Type 2,” Ophthalmol. Retina 2(6), 587–598 (2018).
[Crossref]

C. Dysli, K. Schurch, E. Pascal, S. Wolf, and M. S. Zinkernagel, “Fundus Autofluorescence Lifetime Patterns in Retinitis Pigmentosa,” Invest. Ophthalmol. Visual Sci. 59(5), 1769–1778 (2018).
[Crossref]

L. Sauer, K. M. Andersen, C. Dysli, M. S. Zinkernagel, P. S. Bernstein, and M. Hammer, “Review of clinical approaches in fluorescence lifetime imaging ophthalmoscopy,” J. Biomed. Opt. 23(09), 1–20 (2018).
[Crossref]

2017 (5)

C. Dysli, S. Wolf, M. Y. Berezin, L. Sauer, M. Hammer, and M. S. Zinkernagel, “Fluorescence lifetime imaging ophthalmoscopy,” Prog. Retinal Eye Res. 60, 120–143 (2017).
[Crossref]

J. Schmidt, S. Peters, L. Sauer, D. Schweitzer, M. Klemm, R. Augsten, N. Muller, and M. Hammer, “Fundus autofluorescence lifetimes are increased in non-proliferative diabetic retinopathy,” Acta Ophthalmol. 95(1), 33–40 (2017).
[Crossref]

L. Sauer, S. Peters, J. Schmidt, D. Schweitzer, M. Klemm, L. Ramm, R. Augsten, and M. Hammer, “Monitoring macular pigment changes in macular holes using fluorescence lifetime imaging ophthalmoscopy,” Acta Ophthalmol. 95(5), 481–492 (2017).
[Crossref]

C. Dysli, R. Fink, S. Wolf, and M. S. Zinkernagel, “Fluorescence Lifetimes of Drusen in Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 58(11), 4856–4862 (2017).
[Crossref]

C. Dysli, L. Berger, S. Wolf, and M. S. Zinkernagel, “Fundus Autofluorescence Lifetimes and Central Serous Chorioretinopathy,” Retina 37(11), 2151–2161 (2017).
[Crossref]

2016 (4)

C. Dysli, S. Wolf, and M. S. Zinkernagel, “Autofluorescence Lifetimes in Geographic Atrophy in Patients With Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 57(6), 2479–2487 (2016).
[Crossref]

C. Dysli, S. Wolf, H. V. Tran, and M. S. Zinkernagel, “Autofluorescence Lifetimes in Patients With Choroideremia Identify Photoreceptors in Areas With Retinal Pigment Epithelium Atrophy,” Invest. Ophthalmol. Visual Sci. 57(15), 6714–6721 (2016).
[Crossref]

C. Dysli, M. Dysli, M. S. Zinkernagel, and V. Enzmann, “Effect of pharmacologically induced retinal degeneration on retinal autofluorescence lifetimes in mice,” Exp. Eye Res. 153, 178–185 (2016).
[Crossref]

M. Klemm, J. Blum, D. Link, M. Hammer, J. Haueisen, and D. Schweitzer, “Combination of confocal principle and aperture stop separation improves suppression of crystalline lens fluorescence in an eye model,” Biomed. Opt. Express 7(9), 3198–3210 (2016).
[Crossref]

2015 (6)

M. Klemm, D. Schweitzer, S. Peters, L. Sauer, M. Hammer, and J. Haueisen, “FLIMX: A Software Package to Determine and Analyze the Fluorescence Lifetime in Time-Resolved Fluorescence Data from the Human Eye,” PLoS One 10(7), e0131640 (2015).
[Crossref]

D. K. Karumanchi, E. R. Gaillard, and J. Dillon, “Early Diagnosis of Diabetes through the Eye,” Photochem. Photobiol. 91(6), 1497–1504 (2015).
[Crossref]

C. Dysli, S. Wolf, and M. S. Zinkernagel, “Fluorescence Lifetime Imaging in Retinal Artery Occlusion,” Invest. Ophthalmol. Visual Sci. 56(5), 3329–3336 (2015).
[Crossref]

S. Jentsch, D. Schweitzer, K. U. Schmidtke, S. Peters, J. Dawczynski, K. J. Bar, and M. Hammer, “Retinal fluorescence lifetime imaging ophthalmoscopy measures depend on the severity of Alzheimer's disease,” Acta Ophthalmol. 93(4), e241–e247 (2015).
[Crossref]

D. Schweitzer, L. Deutsch, M. Klemm, S. Jentsch, M. Hammer, S. Peters, J. Haueisen, U. A. Müller, and J. Dawczynski, “Fluorescence lifetime imaging ophthalmoscopy in type 2 diabetic patients who have no signs of diabetic retinopathy,” J. Biomed. Opt. 20(6), 061106 (2015).
[Crossref]

L. Sauer, D. Schweitzer, L. Ramm, R. Augsten, M. Hammer, and S. Peters, “Impact of Macular Pigment on Fundus Autofluorescence Lifetimes,” Invest. Ophthalmol. Visual Sci. 56(8), 4668–4679 (2015).
[Crossref]

2014 (3)

C. Dysli, G. Quellec, M. Abegg, M. N. Menke, U. Wolf-Schnurrbusch, J. Kowal, J. Blatz, O. La Schiazza, A. B. Leichtle, S. Wolf, and M. S. Zinkernagel, “Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects,” Invest. Ophthalmol. Visual Sci. 55(4), 2106–2113 (2014).
[Crossref]

C. Dysli, M. Dysli, V. Enzmann, S. Wolf, and M. S. Zinkernagel, “Fluorescence Lifetime Imaging of the Ocular Fundus in Mice,” Invest. Ophthalmol. Visual Sci. 55(11), 7206–7215 (2014).
[Crossref]

M. G. O. Grafe, A. Hoffmann, and C. Spielmann, “Ultrafast fluorescence spectroscopy for axial resolution of flurorophore distributions,” Appl. Phys. B: Lasers Opt. 117(3), 833–840 (2014).
[Crossref]

2013 (1)

M. Klemm, A. Dietzel, J. Haueisen, E. Nagel, M. Hammer, and D. Schweitzer, “Repeatability of Autofluorescence Lifetime Imaging at the Human Fundus in Healthy Volunteers,” Curr. Eye Res. 38(7), 793–801 (2013).
[Crossref]

2012 (1)

2011 (3)

J. J. Hunter, B. Masella, A. Dubra, R. Sharma, L. Yin, W. H. Merigan, G. Palczewska, K. Palczewski, and D. R. Williams, “Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy,” Biomed. Opt. Express 2(1), 139–148 (2011).
[Crossref]

D. Schweitzer, L. Deutsch, M. Klemm, S. Jentsch, M. Hammer, J. Dawczynski, and U. A. Mueller, “Detection Of Early Metabolic Alterations In Diabetes Mellitus By Time-resolved Fundus Autofluorescence (FLIM),” Invest. Ophthalmol. Visual Sci. 52, 1753 (2011).

S. Peters, M. Hammer, and D. Schweitzer, “Two-photon excited fluorescence microscopy application for ex vivo investigation of ocular fundus samples,” Proc. SPIE 8086, 808605 (2011).
[Crossref]

2010 (3)

D. Schweitzer, S. Quick, M. Klemm, M. Hammer, S. Jentsch, and J. Dawczynski, “Time-resolved autofluorescence in retinal vascular occlusions,” Ophthalmologe 107(12), 1145–1152 (2010).
[Crossref]

D. Moher, S. Hopewell, K. F. Schulz, V. Montori, P. C. Gotzsche, P. J. Devereaux, D. Elbourne, M. Egger, and D. G. Altman, “CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials,” BMJ 340(mar23 1), c869 (2010).
[Crossref]

J. Park, J. A. Jo, S. Shrestha, P. Pande, Q. J. Wan, and B. E. Applegate, “A dual-modality optical coherence tomography and fluorescence lifetime imaging microscopy system for simultaneous morphological and biochemical tissue characterization,” Biomed. Opt. Express 1(1), 186–200 (2010).
[Crossref]

2009 (2)

D. Schweitzer, M. Klemm, M. Hammer, S. Jentsch, and F. Schweitzer, “Method for simultaneous detection of functionality and tomography,” Clinical and Biomedical Spectroscopy 7368, 736804 (2009).
[Crossref]

D. Schweitzer, S. Quick, S. Schenke, M. Klemm, S. Gehlert, M. Hammer, S. Jentsch, and J. Fischer, “Comparison of parameters of time-resolved autofluorescence between healthy subjects and patients suffering from early AMD,” Ophthalmologe 106(8), 714–722 (2009).
[Crossref]

2007 (1)

D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007).
[Crossref]

2005 (1)

D. Schweitzer, M. Hammer, and F. Schweitzer, “Limits of the confocal laser-scanning technique in measurements of time-resolved autofluorescence of the eye-ground,” Biomed. Tech. 50(9), 263–267 (2005).
[Crossref]

2004 (1)

D. Schweitzer, M. Hammer, F. Schweitzer, R. Anders, T. Doebbecke, S. Schenke, E. R. Gaillard, and E. R. Gaillard, “In vivo measurement of time-resolved autofluorescence at the human fundus,” J. Biomed. Opt. 9(6), 1214–1222 (2004).
[Crossref]

1993 (1)

H. Pau, J. Degen, and H. H. Schmidtke, “Different Regional Changes of Fluorescence-Spectra of Clear Human Lenses and Nuclear Cataracts,” Graefe’s Arch. Clin. Exp. Ophthalmol. 231(11), 656–661 (1993).
[Crossref]

1992 (1)

M. Koellner and J. Wolfrum, “How Many Photons Are Necessary for Fluorescence-Lifetime Measurements,” Chem. Phys. Lett. 200(1-2), 199–204 (1992).
[Crossref]

1991 (1)

Early Treatment Diabetic Retinopathy Study Research Group, “Grading diabetic retinopathy from stereoscopic color fundus photographs–an extension of the modified Airlie House classification. ETDRS report number 10,” Ophthalmology 98(5), 786–806 (1991).
[Crossref]

1988 (1)

G. E. Eldred and M. L. Katz, “Fluorophores of the Human Retinal-Pigment Epithelium - Separation and Spectral Characterization,” Exp. Eye Res. 47(1), 71–86 (1988).
[Crossref]

1965 (1)

S. S. Shapiro and M. B. Wilk, “An Analysis of Variance Test for Normality (Complete Samples),” Biometrika 52(3-4), 591–611 (1965).
[Crossref]

Abegg, M.

C. Dysli, G. Quellec, M. Abegg, M. N. Menke, U. Wolf-Schnurrbusch, J. Kowal, J. Blatz, O. La Schiazza, A. B. Leichtle, S. Wolf, and M. S. Zinkernagel, “Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects,” Invest. Ophthalmol. Visual Sci. 55(4), 2106–2113 (2014).
[Crossref]

Altman, D. G.

D. Moher, S. Hopewell, K. F. Schulz, V. Montori, P. C. Gotzsche, P. J. Devereaux, D. Elbourne, M. Egger, and D. G. Altman, “CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials,” BMJ 340(mar23 1), c869 (2010).
[Crossref]

Anders, R.

D. Schweitzer, M. Hammer, F. Schweitzer, R. Anders, T. Doebbecke, S. Schenke, E. R. Gaillard, and E. R. Gaillard, “In vivo measurement of time-resolved autofluorescence at the human fundus,” J. Biomed. Opt. 9(6), 1214–1222 (2004).
[Crossref]

Andersen, K. M.

L. Sauer, A. S. Vitale, K. M. Andersen, B. Hart, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy (Flio) Patterns in Clinically Unaffected Children of Macular Telangiectasia Type 2 (Mactel) Patients,” Retina 40(4), 695–704 (2020).
[Crossref]

L. Sauer, K. M. Andersen, C. Dysli, M. S. Zinkernagel, P. S. Bernstein, and M. Hammer, “Review of clinical approaches in fluorescence lifetime imaging ophthalmoscopy,” J. Biomed. Opt. 23(09), 1–20 (2018).
[Crossref]

L. Sauer, K. M. Andersen, B. X. Li, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO) of Macular Pigment,” Invest. Ophthalmol. Visual Sci. 59(7), 3094–3103 (2018).
[Crossref]

L. Sauer, R. H. Gensure, K. M. Andersen, L. Kreilkamp, G. S. Hageman, M. Hammer, and P. S. Bernstein, “Patterns of Fundus Autofluorescence Lifetimes In Eyes of Individuals With Nonexudative Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 59(4), AMD65–AMD77 (2018).
[Crossref]

K. M. Andersen, L. Sauer, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Characterization of Retinitis Pigmentosa Using Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO),” Trans. Vis. Sci. Tech. 7(3), 20 (2018).
[Crossref]

Applegate, B. E.

Augsten, R.

J. Schmidt, S. Peters, L. Sauer, D. Schweitzer, M. Klemm, R. Augsten, N. Muller, and M. Hammer, “Fundus autofluorescence lifetimes are increased in non-proliferative diabetic retinopathy,” Acta Ophthalmol. 95(1), 33–40 (2017).
[Crossref]

L. Sauer, S. Peters, J. Schmidt, D. Schweitzer, M. Klemm, L. Ramm, R. Augsten, and M. Hammer, “Monitoring macular pigment changes in macular holes using fluorescence lifetime imaging ophthalmoscopy,” Acta Ophthalmol. 95(5), 481–492 (2017).
[Crossref]

L. Sauer, D. Schweitzer, L. Ramm, R. Augsten, M. Hammer, and S. Peters, “Impact of Macular Pigment on Fundus Autofluorescence Lifetimes,” Invest. Ophthalmol. Visual Sci. 56(8), 4668–4679 (2015).
[Crossref]

Bar, K. J.

S. Jentsch, D. Schweitzer, K. U. Schmidtke, S. Peters, J. Dawczynski, K. J. Bar, and M. Hammer, “Retinal fluorescence lifetime imaging ophthalmoscopy measures depend on the severity of Alzheimer's disease,” Acta Ophthalmol. 93(4), e241–e247 (2015).
[Crossref]

Becker, W.

D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007).
[Crossref]

W. Becker, The bh TCPSC Handbook, 8th ed. (Becker & Hickl GmbH, 2019), p. 954.

W. Becker, A. Bergmann, and L. Sauer, “Shifted-Component Model Improves FLIO Data Analysis,” (Becker & Hickl GmbH, Berlin, Germany, 2018).

Berezin, M. Y.

C. Dysli, S. Wolf, M. Y. Berezin, L. Sauer, M. Hammer, and M. S. Zinkernagel, “Fluorescence lifetime imaging ophthalmoscopy,” Prog. Retinal Eye Res. 60, 120–143 (2017).
[Crossref]

Berger, L.

C. Dysli, L. Berger, S. Wolf, and M. S. Zinkernagel, “Fundus Autofluorescence Lifetimes and Central Serous Chorioretinopathy,” Retina 37(11), 2151–2161 (2017).
[Crossref]

Bergmann, A.

D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007).
[Crossref]

W. Becker, A. Bergmann, and L. Sauer, “Shifted-Component Model Improves FLIO Data Analysis,” (Becker & Hickl GmbH, Berlin, Germany, 2018).

Bernstein, P. S.

L. Sauer, A. S. Vitale, K. M. Andersen, B. Hart, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy (Flio) Patterns in Clinically Unaffected Children of Macular Telangiectasia Type 2 (Mactel) Patients,” Retina 40(4), 695–704 (2020).
[Crossref]

L. Sauer, C. B. Komanski, A. S. Vitale, E. D. Hansen, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO) in Eyes With Pigment Epithelial Detachments Due to Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 60(8), 3054–3063 (2019).
[Crossref]

L. Sauer, R. H. Gensure, K. M. Andersen, L. Kreilkamp, G. S. Hageman, M. Hammer, and P. S. Bernstein, “Patterns of Fundus Autofluorescence Lifetimes In Eyes of Individuals With Nonexudative Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 59(4), AMD65–AMD77 (2018).
[Crossref]

K. M. Andersen, L. Sauer, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Characterization of Retinitis Pigmentosa Using Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO),” Trans. Vis. Sci. Tech. 7(3), 20 (2018).
[Crossref]

L. Sauer, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy: A Novel Way to Assess Macular Telangiectasia Type 2,” Ophthalmol. Retina 2(6), 587–598 (2018).
[Crossref]

L. Sauer, K. M. Andersen, C. Dysli, M. S. Zinkernagel, P. S. Bernstein, and M. Hammer, “Review of clinical approaches in fluorescence lifetime imaging ophthalmoscopy,” J. Biomed. Opt. 23(09), 1–20 (2018).
[Crossref]

L. Sauer, K. M. Andersen, B. X. Li, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO) of Macular Pigment,” Invest. Ophthalmol. Visual Sci. 59(7), 3094–3103 (2018).
[Crossref]

Birckner, E.

D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007).
[Crossref]

Biskup, C.

D. Schweitzer, S. Jentsch, S. Schenke, M. Hammer, C. Biskup, and E. Gaillard, “Spectral and Time-resolved Studies on Ocular Structures,” in European Conferences on Biomedical Optics (SPIE, 2007), Vol. 6628.

Blatz, J.

C. Dysli, G. Quellec, M. Abegg, M. N. Menke, U. Wolf-Schnurrbusch, J. Kowal, J. Blatz, O. La Schiazza, A. B. Leichtle, S. Wolf, and M. S. Zinkernagel, “Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects,” Invest. Ophthalmol. Visual Sci. 55(4), 2106–2113 (2014).
[Crossref]

Blum, J.

Borrelli, E.

S. Kwon, E. Borrelli, W. Fan, A. Ebraheem, K. M. Marion, and S. R. Sadda, “Repeatability of Fluorescence Lifetime Imaging Ophthalmoscopy in Normal Subjects With Mydriasis,” Trans. Vis. Sci. Tech. 8(3), 15 (2019).
[Crossref]

S. R. Sadda, E. Borrelli, W. Y. Fan, A. Ebraheem, K. M. Marion, and S. Kwon, “Impact of mydriasis in fluorescence lifetime imaging ophthalmoscopy,” PLoS One 13(12), e0209194 (2018).
[Crossref]

Chen, Y. P.

Dawczynski, J.

S. Jentsch, D. Schweitzer, K. U. Schmidtke, S. Peters, J. Dawczynski, K. J. Bar, and M. Hammer, “Retinal fluorescence lifetime imaging ophthalmoscopy measures depend on the severity of Alzheimer's disease,” Acta Ophthalmol. 93(4), e241–e247 (2015).
[Crossref]

D. Schweitzer, L. Deutsch, M. Klemm, S. Jentsch, M. Hammer, S. Peters, J. Haueisen, U. A. Müller, and J. Dawczynski, “Fluorescence lifetime imaging ophthalmoscopy in type 2 diabetic patients who have no signs of diabetic retinopathy,” J. Biomed. Opt. 20(6), 061106 (2015).
[Crossref]

D. Schweitzer, L. Deutsch, M. Klemm, S. Jentsch, M. Hammer, J. Dawczynski, and U. A. Mueller, “Detection Of Early Metabolic Alterations In Diabetes Mellitus By Time-resolved Fundus Autofluorescence (FLIM),” Invest. Ophthalmol. Visual Sci. 52, 1753 (2011).

D. Schweitzer, S. Quick, M. Klemm, M. Hammer, S. Jentsch, and J. Dawczynski, “Time-resolved autofluorescence in retinal vascular occlusions,” Ophthalmologe 107(12), 1145–1152 (2010).
[Crossref]

Degen, J.

H. Pau, J. Degen, and H. H. Schmidtke, “Different Regional Changes of Fluorescence-Spectra of Clear Human Lenses and Nuclear Cataracts,” Graefe’s Arch. Clin. Exp. Ophthalmol. 231(11), 656–661 (1993).
[Crossref]

Deutsch, L.

D. Schweitzer, L. Deutsch, M. Klemm, S. Jentsch, M. Hammer, S. Peters, J. Haueisen, U. A. Müller, and J. Dawczynski, “Fluorescence lifetime imaging ophthalmoscopy in type 2 diabetic patients who have no signs of diabetic retinopathy,” J. Biomed. Opt. 20(6), 061106 (2015).
[Crossref]

D. Schweitzer, L. Deutsch, M. Klemm, S. Jentsch, M. Hammer, J. Dawczynski, and U. A. Mueller, “Detection Of Early Metabolic Alterations In Diabetes Mellitus By Time-resolved Fundus Autofluorescence (FLIM),” Invest. Ophthalmol. Visual Sci. 52, 1753 (2011).

Devereaux, P. J.

D. Moher, S. Hopewell, K. F. Schulz, V. Montori, P. C. Gotzsche, P. J. Devereaux, D. Elbourne, M. Egger, and D. G. Altman, “CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials,” BMJ 340(mar23 1), c869 (2010).
[Crossref]

Dietzel, A.

M. Klemm, A. Dietzel, J. Haueisen, E. Nagel, M. Hammer, and D. Schweitzer, “Repeatability of Autofluorescence Lifetime Imaging at the Human Fundus in Healthy Volunteers,” Curr. Eye Res. 38(7), 793–801 (2013).
[Crossref]

Dillon, J.

D. K. Karumanchi, E. R. Gaillard, and J. Dillon, “Early Diagnosis of Diabetes through the Eye,” Photochem. Photobiol. 91(6), 1497–1504 (2015).
[Crossref]

Doebbecke, T.

D. Schweitzer, M. Hammer, F. Schweitzer, R. Anders, T. Doebbecke, S. Schenke, E. R. Gaillard, and E. R. Gaillard, “In vivo measurement of time-resolved autofluorescence at the human fundus,” J. Biomed. Opt. 9(6), 1214–1222 (2004).
[Crossref]

Dubra, A.

Dysli, C.

L. Sauer, K. M. Andersen, C. Dysli, M. S. Zinkernagel, P. S. Bernstein, and M. Hammer, “Review of clinical approaches in fluorescence lifetime imaging ophthalmoscopy,” J. Biomed. Opt. 23(09), 1–20 (2018).
[Crossref]

C. Dysli, K. Schurch, E. Pascal, S. Wolf, and M. S. Zinkernagel, “Fundus Autofluorescence Lifetime Patterns in Retinitis Pigmentosa,” Invest. Ophthalmol. Visual Sci. 59(5), 1769–1778 (2018).
[Crossref]

C. Dysli, R. Fink, S. Wolf, and M. S. Zinkernagel, “Fluorescence Lifetimes of Drusen in Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 58(11), 4856–4862 (2017).
[Crossref]

C. Dysli, L. Berger, S. Wolf, and M. S. Zinkernagel, “Fundus Autofluorescence Lifetimes and Central Serous Chorioretinopathy,” Retina 37(11), 2151–2161 (2017).
[Crossref]

C. Dysli, S. Wolf, M. Y. Berezin, L. Sauer, M. Hammer, and M. S. Zinkernagel, “Fluorescence lifetime imaging ophthalmoscopy,” Prog. Retinal Eye Res. 60, 120–143 (2017).
[Crossref]

C. Dysli, M. Dysli, M. S. Zinkernagel, and V. Enzmann, “Effect of pharmacologically induced retinal degeneration on retinal autofluorescence lifetimes in mice,” Exp. Eye Res. 153, 178–185 (2016).
[Crossref]

C. Dysli, S. Wolf, and M. S. Zinkernagel, “Autofluorescence Lifetimes in Geographic Atrophy in Patients With Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 57(6), 2479–2487 (2016).
[Crossref]

C. Dysli, S. Wolf, H. V. Tran, and M. S. Zinkernagel, “Autofluorescence Lifetimes in Patients With Choroideremia Identify Photoreceptors in Areas With Retinal Pigment Epithelium Atrophy,” Invest. Ophthalmol. Visual Sci. 57(15), 6714–6721 (2016).
[Crossref]

C. Dysli, S. Wolf, and M. S. Zinkernagel, “Fluorescence Lifetime Imaging in Retinal Artery Occlusion,” Invest. Ophthalmol. Visual Sci. 56(5), 3329–3336 (2015).
[Crossref]

C. Dysli, M. Dysli, V. Enzmann, S. Wolf, and M. S. Zinkernagel, “Fluorescence Lifetime Imaging of the Ocular Fundus in Mice,” Invest. Ophthalmol. Visual Sci. 55(11), 7206–7215 (2014).
[Crossref]

C. Dysli, G. Quellec, M. Abegg, M. N. Menke, U. Wolf-Schnurrbusch, J. Kowal, J. Blatz, O. La Schiazza, A. B. Leichtle, S. Wolf, and M. S. Zinkernagel, “Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects,” Invest. Ophthalmol. Visual Sci. 55(4), 2106–2113 (2014).
[Crossref]

Dysli, M.

C. Dysli, M. Dysli, M. S. Zinkernagel, and V. Enzmann, “Effect of pharmacologically induced retinal degeneration on retinal autofluorescence lifetimes in mice,” Exp. Eye Res. 153, 178–185 (2016).
[Crossref]

C. Dysli, M. Dysli, V. Enzmann, S. Wolf, and M. S. Zinkernagel, “Fluorescence Lifetime Imaging of the Ocular Fundus in Mice,” Invest. Ophthalmol. Visual Sci. 55(11), 7206–7215 (2014).
[Crossref]

Ebraheem, A.

S. Kwon, E. Borrelli, W. Fan, A. Ebraheem, K. M. Marion, and S. R. Sadda, “Repeatability of Fluorescence Lifetime Imaging Ophthalmoscopy in Normal Subjects With Mydriasis,” Trans. Vis. Sci. Tech. 8(3), 15 (2019).
[Crossref]

S. R. Sadda, E. Borrelli, W. Y. Fan, A. Ebraheem, K. M. Marion, and S. Kwon, “Impact of mydriasis in fluorescence lifetime imaging ophthalmoscopy,” PLoS One 13(12), e0209194 (2018).
[Crossref]

Egger, M.

D. Moher, S. Hopewell, K. F. Schulz, V. Montori, P. C. Gotzsche, P. J. Devereaux, D. Elbourne, M. Egger, and D. G. Altman, “CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials,” BMJ 340(mar23 1), c869 (2010).
[Crossref]

Elbourne, D.

D. Moher, S. Hopewell, K. F. Schulz, V. Montori, P. C. Gotzsche, P. J. Devereaux, D. Elbourne, M. Egger, and D. G. Altman, “CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials,” BMJ 340(mar23 1), c869 (2010).
[Crossref]

Eldred, G. E.

G. E. Eldred and M. L. Katz, “Fluorophores of the Human Retinal-Pigment Epithelium - Separation and Spectral Characterization,” Exp. Eye Res. 47(1), 71–86 (1988).
[Crossref]

Elson, D. S.

L. Marcu, P. M. W. French, and D. S. Elson, Fluorescence LifetimeSpectroscopy and Imaging : Principles and Applications in Biomedical Diagnostics (CRC Press/Taylor & Francis Group, 2014).

Enzmann, V.

C. Dysli, M. Dysli, M. S. Zinkernagel, and V. Enzmann, “Effect of pharmacologically induced retinal degeneration on retinal autofluorescence lifetimes in mice,” Exp. Eye Res. 153, 178–185 (2016).
[Crossref]

C. Dysli, M. Dysli, V. Enzmann, S. Wolf, and M. S. Zinkernagel, “Fluorescence Lifetime Imaging of the Ocular Fundus in Mice,” Invest. Ophthalmol. Visual Sci. 55(11), 7206–7215 (2014).
[Crossref]

Fan, W.

S. Kwon, E. Borrelli, W. Fan, A. Ebraheem, K. M. Marion, and S. R. Sadda, “Repeatability of Fluorescence Lifetime Imaging Ophthalmoscopy in Normal Subjects With Mydriasis,” Trans. Vis. Sci. Tech. 8(3), 15 (2019).
[Crossref]

Fan, W. Y.

S. R. Sadda, E. Borrelli, W. Y. Fan, A. Ebraheem, K. M. Marion, and S. Kwon, “Impact of mydriasis in fluorescence lifetime imaging ophthalmoscopy,” PLoS One 13(12), e0209194 (2018).
[Crossref]

Fink, R.

C. Dysli, R. Fink, S. Wolf, and M. S. Zinkernagel, “Fluorescence Lifetimes of Drusen in Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 58(11), 4856–4862 (2017).
[Crossref]

Fischer, J.

D. Schweitzer, S. Quick, S. Schenke, M. Klemm, S. Gehlert, M. Hammer, S. Jentsch, and J. Fischer, “Comparison of parameters of time-resolved autofluorescence between healthy subjects and patients suffering from early AMD,” Ophthalmologe 106(8), 714–722 (2009).
[Crossref]

French, P. M. W.

L. Marcu, P. M. W. French, and D. S. Elson, Fluorescence LifetimeSpectroscopy and Imaging : Principles and Applications in Biomedical Diagnostics (CRC Press/Taylor & Francis Group, 2014).

Gaillard, E.

D. Schweitzer, S. Jentsch, S. Schenke, M. Hammer, C. Biskup, and E. Gaillard, “Spectral and Time-resolved Studies on Ocular Structures,” in European Conferences on Biomedical Optics (SPIE, 2007), Vol. 6628.

Gaillard, E. R.

D. K. Karumanchi, E. R. Gaillard, and J. Dillon, “Early Diagnosis of Diabetes through the Eye,” Photochem. Photobiol. 91(6), 1497–1504 (2015).
[Crossref]

D. Schweitzer, M. Hammer, F. Schweitzer, R. Anders, T. Doebbecke, S. Schenke, E. R. Gaillard, and E. R. Gaillard, “In vivo measurement of time-resolved autofluorescence at the human fundus,” J. Biomed. Opt. 9(6), 1214–1222 (2004).
[Crossref]

D. Schweitzer, M. Hammer, F. Schweitzer, R. Anders, T. Doebbecke, S. Schenke, E. R. Gaillard, and E. R. Gaillard, “In vivo measurement of time-resolved autofluorescence at the human fundus,” J. Biomed. Opt. 9(6), 1214–1222 (2004).
[Crossref]

Gehlert, S.

D. Schweitzer, S. Quick, S. Schenke, M. Klemm, S. Gehlert, M. Hammer, S. Jentsch, and J. Fischer, “Comparison of parameters of time-resolved autofluorescence between healthy subjects and patients suffering from early AMD,” Ophthalmologe 106(8), 714–722 (2009).
[Crossref]

Gensure, R. H.

K. M. Andersen, L. Sauer, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Characterization of Retinitis Pigmentosa Using Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO),” Trans. Vis. Sci. Tech. 7(3), 20 (2018).
[Crossref]

L. Sauer, R. H. Gensure, K. M. Andersen, L. Kreilkamp, G. S. Hageman, M. Hammer, and P. S. Bernstein, “Patterns of Fundus Autofluorescence Lifetimes In Eyes of Individuals With Nonexudative Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 59(4), AMD65–AMD77 (2018).
[Crossref]

L. Sauer, K. M. Andersen, B. X. Li, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO) of Macular Pigment,” Invest. Ophthalmol. Visual Sci. 59(7), 3094–3103 (2018).
[Crossref]

L. Sauer, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy: A Novel Way to Assess Macular Telangiectasia Type 2,” Ophthalmol. Retina 2(6), 587–598 (2018).
[Crossref]

Gotzsche, P. C.

D. Moher, S. Hopewell, K. F. Schulz, V. Montori, P. C. Gotzsche, P. J. Devereaux, D. Elbourne, M. Egger, and D. G. Altman, “CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials,” BMJ 340(mar23 1), c869 (2010).
[Crossref]

Grafe, M. G. O.

M. G. O. Grafe, A. Hoffmann, and C. Spielmann, “Ultrafast fluorescence spectroscopy for axial resolution of flurorophore distributions,” Appl. Phys. B: Lasers Opt. 117(3), 833–840 (2014).
[Crossref]

Hageman, G. S.

L. Sauer, R. H. Gensure, K. M. Andersen, L. Kreilkamp, G. S. Hageman, M. Hammer, and P. S. Bernstein, “Patterns of Fundus Autofluorescence Lifetimes In Eyes of Individuals With Nonexudative Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 59(4), AMD65–AMD77 (2018).
[Crossref]

Hammer, M.

M. Klemm, L. Sauer, S. Klee, D. Link, S. Peters, M. Hammer, D. Schweitzer, and J. Haueisen, “Bleaching effects and fluorescence lifetime imaging ophthalmoscopy,” Biomed. Opt. Express 10(3), 1446–1461 (2019).
[Crossref]

L. Sauer, K. M. Andersen, B. X. Li, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO) of Macular Pigment,” Invest. Ophthalmol. Visual Sci. 59(7), 3094–3103 (2018).
[Crossref]

L. Sauer, R. H. Gensure, K. M. Andersen, L. Kreilkamp, G. S. Hageman, M. Hammer, and P. S. Bernstein, “Patterns of Fundus Autofluorescence Lifetimes In Eyes of Individuals With Nonexudative Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 59(4), AMD65–AMD77 (2018).
[Crossref]

K. M. Andersen, L. Sauer, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Characterization of Retinitis Pigmentosa Using Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO),” Trans. Vis. Sci. Tech. 7(3), 20 (2018).
[Crossref]

L. Sauer, M. Klemm, S. Peters, D. Schweitzer, J. Schmidt, L. Kreilkamp, L. Ramm, D. Meller, and M. Hammer, “Monitoring foveal sparing in geographic atrophy with fluorescence lifetime imaging ophthalmoscopy - a novel approach,” Acta Ophthalmol. 96(3), 257–266 (2018).
[Crossref]

L. Sauer, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy: A Novel Way to Assess Macular Telangiectasia Type 2,” Ophthalmol. Retina 2(6), 587–598 (2018).
[Crossref]

L. Sauer, K. M. Andersen, C. Dysli, M. S. Zinkernagel, P. S. Bernstein, and M. Hammer, “Review of clinical approaches in fluorescence lifetime imaging ophthalmoscopy,” J. Biomed. Opt. 23(09), 1–20 (2018).
[Crossref]

C. Dysli, S. Wolf, M. Y. Berezin, L. Sauer, M. Hammer, and M. S. Zinkernagel, “Fluorescence lifetime imaging ophthalmoscopy,” Prog. Retinal Eye Res. 60, 120–143 (2017).
[Crossref]

J. Schmidt, S. Peters, L. Sauer, D. Schweitzer, M. Klemm, R. Augsten, N. Muller, and M. Hammer, “Fundus autofluorescence lifetimes are increased in non-proliferative diabetic retinopathy,” Acta Ophthalmol. 95(1), 33–40 (2017).
[Crossref]

L. Sauer, S. Peters, J. Schmidt, D. Schweitzer, M. Klemm, L. Ramm, R. Augsten, and M. Hammer, “Monitoring macular pigment changes in macular holes using fluorescence lifetime imaging ophthalmoscopy,” Acta Ophthalmol. 95(5), 481–492 (2017).
[Crossref]

M. Klemm, J. Blum, D. Link, M. Hammer, J. Haueisen, and D. Schweitzer, “Combination of confocal principle and aperture stop separation improves suppression of crystalline lens fluorescence in an eye model,” Biomed. Opt. Express 7(9), 3198–3210 (2016).
[Crossref]

M. Klemm, D. Schweitzer, S. Peters, L. Sauer, M. Hammer, and J. Haueisen, “FLIMX: A Software Package to Determine and Analyze the Fluorescence Lifetime in Time-Resolved Fluorescence Data from the Human Eye,” PLoS One 10(7), e0131640 (2015).
[Crossref]

D. Schweitzer, L. Deutsch, M. Klemm, S. Jentsch, M. Hammer, S. Peters, J. Haueisen, U. A. Müller, and J. Dawczynski, “Fluorescence lifetime imaging ophthalmoscopy in type 2 diabetic patients who have no signs of diabetic retinopathy,” J. Biomed. Opt. 20(6), 061106 (2015).
[Crossref]

S. Jentsch, D. Schweitzer, K. U. Schmidtke, S. Peters, J. Dawczynski, K. J. Bar, and M. Hammer, “Retinal fluorescence lifetime imaging ophthalmoscopy measures depend on the severity of Alzheimer's disease,” Acta Ophthalmol. 93(4), e241–e247 (2015).
[Crossref]

L. Sauer, D. Schweitzer, L. Ramm, R. Augsten, M. Hammer, and S. Peters, “Impact of Macular Pigment on Fundus Autofluorescence Lifetimes,” Invest. Ophthalmol. Visual Sci. 56(8), 4668–4679 (2015).
[Crossref]

M. Klemm, A. Dietzel, J. Haueisen, E. Nagel, M. Hammer, and D. Schweitzer, “Repeatability of Autofluorescence Lifetime Imaging at the Human Fundus in Healthy Volunteers,” Curr. Eye Res. 38(7), 793–801 (2013).
[Crossref]

S. Peters, M. Hammer, and D. Schweitzer, “Two-photon excited fluorescence microscopy application for ex vivo investigation of ocular fundus samples,” Proc. SPIE 8086, 808605 (2011).
[Crossref]

D. Schweitzer, L. Deutsch, M. Klemm, S. Jentsch, M. Hammer, J. Dawczynski, and U. A. Mueller, “Detection Of Early Metabolic Alterations In Diabetes Mellitus By Time-resolved Fundus Autofluorescence (FLIM),” Invest. Ophthalmol. Visual Sci. 52, 1753 (2011).

D. Schweitzer, S. Quick, M. Klemm, M. Hammer, S. Jentsch, and J. Dawczynski, “Time-resolved autofluorescence in retinal vascular occlusions,” Ophthalmologe 107(12), 1145–1152 (2010).
[Crossref]

D. Schweitzer, S. Quick, S. Schenke, M. Klemm, S. Gehlert, M. Hammer, S. Jentsch, and J. Fischer, “Comparison of parameters of time-resolved autofluorescence between healthy subjects and patients suffering from early AMD,” Ophthalmologe 106(8), 714–722 (2009).
[Crossref]

D. Schweitzer, M. Klemm, M. Hammer, S. Jentsch, and F. Schweitzer, “Method for simultaneous detection of functionality and tomography,” Clinical and Biomedical Spectroscopy 7368, 736804 (2009).
[Crossref]

D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007).
[Crossref]

D. Schweitzer, M. Hammer, and F. Schweitzer, “Limits of the confocal laser-scanning technique in measurements of time-resolved autofluorescence of the eye-ground,” Biomed. Tech. 50(9), 263–267 (2005).
[Crossref]

D. Schweitzer, M. Hammer, F. Schweitzer, R. Anders, T. Doebbecke, S. Schenke, E. R. Gaillard, and E. R. Gaillard, “In vivo measurement of time-resolved autofluorescence at the human fundus,” J. Biomed. Opt. 9(6), 1214–1222 (2004).
[Crossref]

D. Schweitzer, A. Kolb, M. Hammer, and E. Thamm, “τ mapping of the autofluorescence of the human ocular fundus,” in EOS/SPIE/ELA European Biomedical Optics Week – EBiOS, 2000), 79–89.

D. Schweitzer, S. Jentsch, S. Schenke, M. Hammer, C. Biskup, and E. Gaillard, “Spectral and Time-resolved Studies on Ocular Structures,” in European Conferences on Biomedical Optics (SPIE, 2007), Vol. 6628.

D. Schweitzer and M. Hammer, “Fluorescence Lifetime Imaging in Ophthalmology,” in Advanced Time-Correlated Single Photon Counting Applications, W. Becker, ed. (Springer International Publishing, 2015), pp. 509–540.

Hansen, E. D.

L. Sauer, C. B. Komanski, A. S. Vitale, E. D. Hansen, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO) in Eyes With Pigment Epithelial Detachments Due to Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 60(8), 3054–3063 (2019).
[Crossref]

Hart, B.

L. Sauer, A. S. Vitale, K. M. Andersen, B. Hart, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy (Flio) Patterns in Clinically Unaffected Children of Macular Telangiectasia Type 2 (Mactel) Patients,” Retina 40(4), 695–704 (2020).
[Crossref]

Haueisen, J.

M. Klemm, L. Sauer, S. Klee, D. Link, S. Peters, M. Hammer, D. Schweitzer, and J. Haueisen, “Bleaching effects and fluorescence lifetime imaging ophthalmoscopy,” Biomed. Opt. Express 10(3), 1446–1461 (2019).
[Crossref]

M. Klemm, J. Blum, D. Link, M. Hammer, J. Haueisen, and D. Schweitzer, “Combination of confocal principle and aperture stop separation improves suppression of crystalline lens fluorescence in an eye model,” Biomed. Opt. Express 7(9), 3198–3210 (2016).
[Crossref]

M. Klemm, D. Schweitzer, S. Peters, L. Sauer, M. Hammer, and J. Haueisen, “FLIMX: A Software Package to Determine and Analyze the Fluorescence Lifetime in Time-Resolved Fluorescence Data from the Human Eye,” PLoS One 10(7), e0131640 (2015).
[Crossref]

D. Schweitzer, L. Deutsch, M. Klemm, S. Jentsch, M. Hammer, S. Peters, J. Haueisen, U. A. Müller, and J. Dawczynski, “Fluorescence lifetime imaging ophthalmoscopy in type 2 diabetic patients who have no signs of diabetic retinopathy,” J. Biomed. Opt. 20(6), 061106 (2015).
[Crossref]

M. Klemm, A. Dietzel, J. Haueisen, E. Nagel, M. Hammer, and D. Schweitzer, “Repeatability of Autofluorescence Lifetime Imaging at the Human Fundus in Healthy Volunteers,” Curr. Eye Res. 38(7), 793–801 (2013).
[Crossref]

Hoffmann, A.

M. G. O. Grafe, A. Hoffmann, and C. Spielmann, “Ultrafast fluorescence spectroscopy for axial resolution of flurorophore distributions,” Appl. Phys. B: Lasers Opt. 117(3), 833–840 (2014).
[Crossref]

Hopewell, S.

D. Moher, S. Hopewell, K. F. Schulz, V. Montori, P. C. Gotzsche, P. J. Devereaux, D. Elbourne, M. Egger, and D. G. Altman, “CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials,” BMJ 340(mar23 1), c869 (2010).
[Crossref]

Hunter, J. J.

Jentsch, S.

D. Schweitzer, L. Deutsch, M. Klemm, S. Jentsch, M. Hammer, S. Peters, J. Haueisen, U. A. Müller, and J. Dawczynski, “Fluorescence lifetime imaging ophthalmoscopy in type 2 diabetic patients who have no signs of diabetic retinopathy,” J. Biomed. Opt. 20(6), 061106 (2015).
[Crossref]

S. Jentsch, D. Schweitzer, K. U. Schmidtke, S. Peters, J. Dawczynski, K. J. Bar, and M. Hammer, “Retinal fluorescence lifetime imaging ophthalmoscopy measures depend on the severity of Alzheimer's disease,” Acta Ophthalmol. 93(4), e241–e247 (2015).
[Crossref]

D. Schweitzer, L. Deutsch, M. Klemm, S. Jentsch, M. Hammer, J. Dawczynski, and U. A. Mueller, “Detection Of Early Metabolic Alterations In Diabetes Mellitus By Time-resolved Fundus Autofluorescence (FLIM),” Invest. Ophthalmol. Visual Sci. 52, 1753 (2011).

D. Schweitzer, S. Quick, M. Klemm, M. Hammer, S. Jentsch, and J. Dawczynski, “Time-resolved autofluorescence in retinal vascular occlusions,” Ophthalmologe 107(12), 1145–1152 (2010).
[Crossref]

D. Schweitzer, S. Quick, S. Schenke, M. Klemm, S. Gehlert, M. Hammer, S. Jentsch, and J. Fischer, “Comparison of parameters of time-resolved autofluorescence between healthy subjects and patients suffering from early AMD,” Ophthalmologe 106(8), 714–722 (2009).
[Crossref]

D. Schweitzer, M. Klemm, M. Hammer, S. Jentsch, and F. Schweitzer, “Method for simultaneous detection of functionality and tomography,” Clinical and Biomedical Spectroscopy 7368, 736804 (2009).
[Crossref]

D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007).
[Crossref]

D. Schweitzer, S. Jentsch, S. Schenke, M. Hammer, C. Biskup, and E. Gaillard, “Spectral and Time-resolved Studies on Ocular Structures,” in European Conferences on Biomedical Optics (SPIE, 2007), Vol. 6628.

Jo, J. A.

Karumanchi, D. K.

D. K. Karumanchi, E. R. Gaillard, and J. Dillon, “Early Diagnosis of Diabetes through the Eye,” Photochem. Photobiol. 91(6), 1497–1504 (2015).
[Crossref]

Katz, M. L.

G. E. Eldred and M. L. Katz, “Fluorophores of the Human Retinal-Pigment Epithelium - Separation and Spectral Characterization,” Exp. Eye Res. 47(1), 71–86 (1988).
[Crossref]

Klee, S.

Klemm, M.

M. Klemm, L. Sauer, S. Klee, D. Link, S. Peters, M. Hammer, D. Schweitzer, and J. Haueisen, “Bleaching effects and fluorescence lifetime imaging ophthalmoscopy,” Biomed. Opt. Express 10(3), 1446–1461 (2019).
[Crossref]

L. Sauer, M. Klemm, S. Peters, D. Schweitzer, J. Schmidt, L. Kreilkamp, L. Ramm, D. Meller, and M. Hammer, “Monitoring foveal sparing in geographic atrophy with fluorescence lifetime imaging ophthalmoscopy - a novel approach,” Acta Ophthalmol. 96(3), 257–266 (2018).
[Crossref]

L. Sauer, S. Peters, J. Schmidt, D. Schweitzer, M. Klemm, L. Ramm, R. Augsten, and M. Hammer, “Monitoring macular pigment changes in macular holes using fluorescence lifetime imaging ophthalmoscopy,” Acta Ophthalmol. 95(5), 481–492 (2017).
[Crossref]

J. Schmidt, S. Peters, L. Sauer, D. Schweitzer, M. Klemm, R. Augsten, N. Muller, and M. Hammer, “Fundus autofluorescence lifetimes are increased in non-proliferative diabetic retinopathy,” Acta Ophthalmol. 95(1), 33–40 (2017).
[Crossref]

M. Klemm, J. Blum, D. Link, M. Hammer, J. Haueisen, and D. Schweitzer, “Combination of confocal principle and aperture stop separation improves suppression of crystalline lens fluorescence in an eye model,” Biomed. Opt. Express 7(9), 3198–3210 (2016).
[Crossref]

M. Klemm, D. Schweitzer, S. Peters, L. Sauer, M. Hammer, and J. Haueisen, “FLIMX: A Software Package to Determine and Analyze the Fluorescence Lifetime in Time-Resolved Fluorescence Data from the Human Eye,” PLoS One 10(7), e0131640 (2015).
[Crossref]

D. Schweitzer, L. Deutsch, M. Klemm, S. Jentsch, M. Hammer, S. Peters, J. Haueisen, U. A. Müller, and J. Dawczynski, “Fluorescence lifetime imaging ophthalmoscopy in type 2 diabetic patients who have no signs of diabetic retinopathy,” J. Biomed. Opt. 20(6), 061106 (2015).
[Crossref]

M. Klemm, A. Dietzel, J. Haueisen, E. Nagel, M. Hammer, and D. Schweitzer, “Repeatability of Autofluorescence Lifetime Imaging at the Human Fundus in Healthy Volunteers,” Curr. Eye Res. 38(7), 793–801 (2013).
[Crossref]

D. Schweitzer, L. Deutsch, M. Klemm, S. Jentsch, M. Hammer, J. Dawczynski, and U. A. Mueller, “Detection Of Early Metabolic Alterations In Diabetes Mellitus By Time-resolved Fundus Autofluorescence (FLIM),” Invest. Ophthalmol. Visual Sci. 52, 1753 (2011).

D. Schweitzer, S. Quick, M. Klemm, M. Hammer, S. Jentsch, and J. Dawczynski, “Time-resolved autofluorescence in retinal vascular occlusions,” Ophthalmologe 107(12), 1145–1152 (2010).
[Crossref]

D. Schweitzer, S. Quick, S. Schenke, M. Klemm, S. Gehlert, M. Hammer, S. Jentsch, and J. Fischer, “Comparison of parameters of time-resolved autofluorescence between healthy subjects and patients suffering from early AMD,” Ophthalmologe 106(8), 714–722 (2009).
[Crossref]

D. Schweitzer, M. Klemm, M. Hammer, S. Jentsch, and F. Schweitzer, “Method for simultaneous detection of functionality and tomography,” Clinical and Biomedical Spectroscopy 7368, 736804 (2009).
[Crossref]

Koellner, M.

M. Koellner and J. Wolfrum, “How Many Photons Are Necessary for Fluorescence-Lifetime Measurements,” Chem. Phys. Lett. 200(1-2), 199–204 (1992).
[Crossref]

Kolb, A.

D. Schweitzer, A. Kolb, M. Hammer, and E. Thamm, “τ mapping of the autofluorescence of the human ocular fundus,” in EOS/SPIE/ELA European Biomedical Optics Week – EBiOS, 2000), 79–89.

Komanski, C. B.

L. Sauer, C. B. Komanski, A. S. Vitale, E. D. Hansen, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO) in Eyes With Pigment Epithelial Detachments Due to Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 60(8), 3054–3063 (2019).
[Crossref]

Kowal, J.

C. Dysli, G. Quellec, M. Abegg, M. N. Menke, U. Wolf-Schnurrbusch, J. Kowal, J. Blatz, O. La Schiazza, A. B. Leichtle, S. Wolf, and M. S. Zinkernagel, “Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects,” Invest. Ophthalmol. Visual Sci. 55(4), 2106–2113 (2014).
[Crossref]

Kreilkamp, L.

L. Sauer, M. Klemm, S. Peters, D. Schweitzer, J. Schmidt, L. Kreilkamp, L. Ramm, D. Meller, and M. Hammer, “Monitoring foveal sparing in geographic atrophy with fluorescence lifetime imaging ophthalmoscopy - a novel approach,” Acta Ophthalmol. 96(3), 257–266 (2018).
[Crossref]

L. Sauer, R. H. Gensure, K. M. Andersen, L. Kreilkamp, G. S. Hageman, M. Hammer, and P. S. Bernstein, “Patterns of Fundus Autofluorescence Lifetimes In Eyes of Individuals With Nonexudative Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 59(4), AMD65–AMD77 (2018).
[Crossref]

Kwon, S.

S. Kwon, E. Borrelli, W. Fan, A. Ebraheem, K. M. Marion, and S. R. Sadda, “Repeatability of Fluorescence Lifetime Imaging Ophthalmoscopy in Normal Subjects With Mydriasis,” Trans. Vis. Sci. Tech. 8(3), 15 (2019).
[Crossref]

S. R. Sadda, E. Borrelli, W. Y. Fan, A. Ebraheem, K. M. Marion, and S. Kwon, “Impact of mydriasis in fluorescence lifetime imaging ophthalmoscopy,” PLoS One 13(12), e0209194 (2018).
[Crossref]

La Schiazza, O.

C. Dysli, G. Quellec, M. Abegg, M. N. Menke, U. Wolf-Schnurrbusch, J. Kowal, J. Blatz, O. La Schiazza, A. B. Leichtle, S. Wolf, and M. S. Zinkernagel, “Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects,” Invest. Ophthalmol. Visual Sci. 55(4), 2106–2113 (2014).
[Crossref]

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006), p. 954.

Leichtle, A. B.

C. Dysli, G. Quellec, M. Abegg, M. N. Menke, U. Wolf-Schnurrbusch, J. Kowal, J. Blatz, O. La Schiazza, A. B. Leichtle, S. Wolf, and M. S. Zinkernagel, “Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects,” Invest. Ophthalmol. Visual Sci. 55(4), 2106–2113 (2014).
[Crossref]

Li, B. X.

L. Sauer, K. M. Andersen, B. X. Li, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO) of Macular Pigment,” Invest. Ophthalmol. Visual Sci. 59(7), 3094–3103 (2018).
[Crossref]

Li, X. D.

Link, D.

Marcu, L.

L. Marcu, P. M. W. French, and D. S. Elson, Fluorescence LifetimeSpectroscopy and Imaging : Principles and Applications in Biomedical Diagnostics (CRC Press/Taylor & Francis Group, 2014).

Marion, K. M.

S. Kwon, E. Borrelli, W. Fan, A. Ebraheem, K. M. Marion, and S. R. Sadda, “Repeatability of Fluorescence Lifetime Imaging Ophthalmoscopy in Normal Subjects With Mydriasis,” Trans. Vis. Sci. Tech. 8(3), 15 (2019).
[Crossref]

S. R. Sadda, E. Borrelli, W. Y. Fan, A. Ebraheem, K. M. Marion, and S. Kwon, “Impact of mydriasis in fluorescence lifetime imaging ophthalmoscopy,” PLoS One 13(12), e0209194 (2018).
[Crossref]

Masella, B.

Mavadia, J.

Meller, D.

L. Sauer, M. Klemm, S. Peters, D. Schweitzer, J. Schmidt, L. Kreilkamp, L. Ramm, D. Meller, and M. Hammer, “Monitoring foveal sparing in geographic atrophy with fluorescence lifetime imaging ophthalmoscopy - a novel approach,” Acta Ophthalmol. 96(3), 257–266 (2018).
[Crossref]

Menke, M. N.

C. Dysli, G. Quellec, M. Abegg, M. N. Menke, U. Wolf-Schnurrbusch, J. Kowal, J. Blatz, O. La Schiazza, A. B. Leichtle, S. Wolf, and M. S. Zinkernagel, “Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects,” Invest. Ophthalmol. Visual Sci. 55(4), 2106–2113 (2014).
[Crossref]

Merigan, W. H.

Moher, D.

D. Moher, S. Hopewell, K. F. Schulz, V. Montori, P. C. Gotzsche, P. J. Devereaux, D. Elbourne, M. Egger, and D. G. Altman, “CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials,” BMJ 340(mar23 1), c869 (2010).
[Crossref]

Montori, V.

D. Moher, S. Hopewell, K. F. Schulz, V. Montori, P. C. Gotzsche, P. J. Devereaux, D. Elbourne, M. Egger, and D. G. Altman, “CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials,” BMJ 340(mar23 1), c869 (2010).
[Crossref]

Mueller, U. A.

D. Schweitzer, L. Deutsch, M. Klemm, S. Jentsch, M. Hammer, J. Dawczynski, and U. A. Mueller, “Detection Of Early Metabolic Alterations In Diabetes Mellitus By Time-resolved Fundus Autofluorescence (FLIM),” Invest. Ophthalmol. Visual Sci. 52, 1753 (2011).

Muller, N.

J. Schmidt, S. Peters, L. Sauer, D. Schweitzer, M. Klemm, R. Augsten, N. Muller, and M. Hammer, “Fundus autofluorescence lifetimes are increased in non-proliferative diabetic retinopathy,” Acta Ophthalmol. 95(1), 33–40 (2017).
[Crossref]

Müller, U. A.

D. Schweitzer, L. Deutsch, M. Klemm, S. Jentsch, M. Hammer, S. Peters, J. Haueisen, U. A. Müller, and J. Dawczynski, “Fluorescence lifetime imaging ophthalmoscopy in type 2 diabetic patients who have no signs of diabetic retinopathy,” J. Biomed. Opt. 20(6), 061106 (2015).
[Crossref]

Nagel, E.

M. Klemm, A. Dietzel, J. Haueisen, E. Nagel, M. Hammer, and D. Schweitzer, “Repeatability of Autofluorescence Lifetime Imaging at the Human Fundus in Healthy Volunteers,” Curr. Eye Res. 38(7), 793–801 (2013).
[Crossref]

Palczewska, G.

Palczewski, K.

Pande, P.

Park, J.

Pascal, E.

C. Dysli, K. Schurch, E. Pascal, S. Wolf, and M. S. Zinkernagel, “Fundus Autofluorescence Lifetime Patterns in Retinitis Pigmentosa,” Invest. Ophthalmol. Visual Sci. 59(5), 1769–1778 (2018).
[Crossref]

Pau, H.

H. Pau, J. Degen, and H. H. Schmidtke, “Different Regional Changes of Fluorescence-Spectra of Clear Human Lenses and Nuclear Cataracts,” Graefe’s Arch. Clin. Exp. Ophthalmol. 231(11), 656–661 (1993).
[Crossref]

Peters, S.

M. Klemm, L. Sauer, S. Klee, D. Link, S. Peters, M. Hammer, D. Schweitzer, and J. Haueisen, “Bleaching effects and fluorescence lifetime imaging ophthalmoscopy,” Biomed. Opt. Express 10(3), 1446–1461 (2019).
[Crossref]

L. Sauer, M. Klemm, S. Peters, D. Schweitzer, J. Schmidt, L. Kreilkamp, L. Ramm, D. Meller, and M. Hammer, “Monitoring foveal sparing in geographic atrophy with fluorescence lifetime imaging ophthalmoscopy - a novel approach,” Acta Ophthalmol. 96(3), 257–266 (2018).
[Crossref]

L. Sauer, S. Peters, J. Schmidt, D. Schweitzer, M. Klemm, L. Ramm, R. Augsten, and M. Hammer, “Monitoring macular pigment changes in macular holes using fluorescence lifetime imaging ophthalmoscopy,” Acta Ophthalmol. 95(5), 481–492 (2017).
[Crossref]

J. Schmidt, S. Peters, L. Sauer, D. Schweitzer, M. Klemm, R. Augsten, N. Muller, and M. Hammer, “Fundus autofluorescence lifetimes are increased in non-proliferative diabetic retinopathy,” Acta Ophthalmol. 95(1), 33–40 (2017).
[Crossref]

D. Schweitzer, L. Deutsch, M. Klemm, S. Jentsch, M. Hammer, S. Peters, J. Haueisen, U. A. Müller, and J. Dawczynski, “Fluorescence lifetime imaging ophthalmoscopy in type 2 diabetic patients who have no signs of diabetic retinopathy,” J. Biomed. Opt. 20(6), 061106 (2015).
[Crossref]

S. Jentsch, D. Schweitzer, K. U. Schmidtke, S. Peters, J. Dawczynski, K. J. Bar, and M. Hammer, “Retinal fluorescence lifetime imaging ophthalmoscopy measures depend on the severity of Alzheimer's disease,” Acta Ophthalmol. 93(4), e241–e247 (2015).
[Crossref]

L. Sauer, D. Schweitzer, L. Ramm, R. Augsten, M. Hammer, and S. Peters, “Impact of Macular Pigment on Fundus Autofluorescence Lifetimes,” Invest. Ophthalmol. Visual Sci. 56(8), 4668–4679 (2015).
[Crossref]

M. Klemm, D. Schweitzer, S. Peters, L. Sauer, M. Hammer, and J. Haueisen, “FLIMX: A Software Package to Determine and Analyze the Fluorescence Lifetime in Time-Resolved Fluorescence Data from the Human Eye,” PLoS One 10(7), e0131640 (2015).
[Crossref]

S. Peters, M. Hammer, and D. Schweitzer, “Two-photon excited fluorescence microscopy application for ex vivo investigation of ocular fundus samples,” Proc. SPIE 8086, 808605 (2011).
[Crossref]

Quellec, G.

C. Dysli, G. Quellec, M. Abegg, M. N. Menke, U. Wolf-Schnurrbusch, J. Kowal, J. Blatz, O. La Schiazza, A. B. Leichtle, S. Wolf, and M. S. Zinkernagel, “Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects,” Invest. Ophthalmol. Visual Sci. 55(4), 2106–2113 (2014).
[Crossref]

Quick, S.

D. Schweitzer, S. Quick, M. Klemm, M. Hammer, S. Jentsch, and J. Dawczynski, “Time-resolved autofluorescence in retinal vascular occlusions,” Ophthalmologe 107(12), 1145–1152 (2010).
[Crossref]

D. Schweitzer, S. Quick, S. Schenke, M. Klemm, S. Gehlert, M. Hammer, S. Jentsch, and J. Fischer, “Comparison of parameters of time-resolved autofluorescence between healthy subjects and patients suffering from early AMD,” Ophthalmologe 106(8), 714–722 (2009).
[Crossref]

Ramm, L.

L. Sauer, M. Klemm, S. Peters, D. Schweitzer, J. Schmidt, L. Kreilkamp, L. Ramm, D. Meller, and M. Hammer, “Monitoring foveal sparing in geographic atrophy with fluorescence lifetime imaging ophthalmoscopy - a novel approach,” Acta Ophthalmol. 96(3), 257–266 (2018).
[Crossref]

L. Sauer, S. Peters, J. Schmidt, D. Schweitzer, M. Klemm, L. Ramm, R. Augsten, and M. Hammer, “Monitoring macular pigment changes in macular holes using fluorescence lifetime imaging ophthalmoscopy,” Acta Ophthalmol. 95(5), 481–492 (2017).
[Crossref]

L. Sauer, D. Schweitzer, L. Ramm, R. Augsten, M. Hammer, and S. Peters, “Impact of Macular Pigment on Fundus Autofluorescence Lifetimes,” Invest. Ophthalmol. Visual Sci. 56(8), 4668–4679 (2015).
[Crossref]

Sadda, S. R.

S. Kwon, E. Borrelli, W. Fan, A. Ebraheem, K. M. Marion, and S. R. Sadda, “Repeatability of Fluorescence Lifetime Imaging Ophthalmoscopy in Normal Subjects With Mydriasis,” Trans. Vis. Sci. Tech. 8(3), 15 (2019).
[Crossref]

S. R. Sadda, E. Borrelli, W. Y. Fan, A. Ebraheem, K. M. Marion, and S. Kwon, “Impact of mydriasis in fluorescence lifetime imaging ophthalmoscopy,” PLoS One 13(12), e0209194 (2018).
[Crossref]

Sauer, L.

L. Sauer, A. S. Vitale, K. M. Andersen, B. Hart, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy (Flio) Patterns in Clinically Unaffected Children of Macular Telangiectasia Type 2 (Mactel) Patients,” Retina 40(4), 695–704 (2020).
[Crossref]

L. Sauer, C. B. Komanski, A. S. Vitale, E. D. Hansen, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO) in Eyes With Pigment Epithelial Detachments Due to Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 60(8), 3054–3063 (2019).
[Crossref]

M. Klemm, L. Sauer, S. Klee, D. Link, S. Peters, M. Hammer, D. Schweitzer, and J. Haueisen, “Bleaching effects and fluorescence lifetime imaging ophthalmoscopy,” Biomed. Opt. Express 10(3), 1446–1461 (2019).
[Crossref]

L. Sauer, K. M. Andersen, B. X. Li, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO) of Macular Pigment,” Invest. Ophthalmol. Visual Sci. 59(7), 3094–3103 (2018).
[Crossref]

L. Sauer, M. Klemm, S. Peters, D. Schweitzer, J. Schmidt, L. Kreilkamp, L. Ramm, D. Meller, and M. Hammer, “Monitoring foveal sparing in geographic atrophy with fluorescence lifetime imaging ophthalmoscopy - a novel approach,” Acta Ophthalmol. 96(3), 257–266 (2018).
[Crossref]

L. Sauer, R. H. Gensure, K. M. Andersen, L. Kreilkamp, G. S. Hageman, M. Hammer, and P. S. Bernstein, “Patterns of Fundus Autofluorescence Lifetimes In Eyes of Individuals With Nonexudative Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 59(4), AMD65–AMD77 (2018).
[Crossref]

K. M. Andersen, L. Sauer, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Characterization of Retinitis Pigmentosa Using Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO),” Trans. Vis. Sci. Tech. 7(3), 20 (2018).
[Crossref]

L. Sauer, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy: A Novel Way to Assess Macular Telangiectasia Type 2,” Ophthalmol. Retina 2(6), 587–598 (2018).
[Crossref]

L. Sauer, K. M. Andersen, C. Dysli, M. S. Zinkernagel, P. S. Bernstein, and M. Hammer, “Review of clinical approaches in fluorescence lifetime imaging ophthalmoscopy,” J. Biomed. Opt. 23(09), 1–20 (2018).
[Crossref]

C. Dysli, S. Wolf, M. Y. Berezin, L. Sauer, M. Hammer, and M. S. Zinkernagel, “Fluorescence lifetime imaging ophthalmoscopy,” Prog. Retinal Eye Res. 60, 120–143 (2017).
[Crossref]

J. Schmidt, S. Peters, L. Sauer, D. Schweitzer, M. Klemm, R. Augsten, N. Muller, and M. Hammer, “Fundus autofluorescence lifetimes are increased in non-proliferative diabetic retinopathy,” Acta Ophthalmol. 95(1), 33–40 (2017).
[Crossref]

L. Sauer, S. Peters, J. Schmidt, D. Schweitzer, M. Klemm, L. Ramm, R. Augsten, and M. Hammer, “Monitoring macular pigment changes in macular holes using fluorescence lifetime imaging ophthalmoscopy,” Acta Ophthalmol. 95(5), 481–492 (2017).
[Crossref]

L. Sauer, D. Schweitzer, L. Ramm, R. Augsten, M. Hammer, and S. Peters, “Impact of Macular Pigment on Fundus Autofluorescence Lifetimes,” Invest. Ophthalmol. Visual Sci. 56(8), 4668–4679 (2015).
[Crossref]

M. Klemm, D. Schweitzer, S. Peters, L. Sauer, M. Hammer, and J. Haueisen, “FLIMX: A Software Package to Determine and Analyze the Fluorescence Lifetime in Time-Resolved Fluorescence Data from the Human Eye,” PLoS One 10(7), e0131640 (2015).
[Crossref]

W. Becker, A. Bergmann, and L. Sauer, “Shifted-Component Model Improves FLIO Data Analysis,” (Becker & Hickl GmbH, Berlin, Germany, 2018).

Schenke, S.

D. Schweitzer, S. Quick, S. Schenke, M. Klemm, S. Gehlert, M. Hammer, S. Jentsch, and J. Fischer, “Comparison of parameters of time-resolved autofluorescence between healthy subjects and patients suffering from early AMD,” Ophthalmologe 106(8), 714–722 (2009).
[Crossref]

D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007).
[Crossref]

D. Schweitzer, M. Hammer, F. Schweitzer, R. Anders, T. Doebbecke, S. Schenke, E. R. Gaillard, and E. R. Gaillard, “In vivo measurement of time-resolved autofluorescence at the human fundus,” J. Biomed. Opt. 9(6), 1214–1222 (2004).
[Crossref]

D. Schweitzer, S. Jentsch, S. Schenke, M. Hammer, C. Biskup, and E. Gaillard, “Spectral and Time-resolved Studies on Ocular Structures,” in European Conferences on Biomedical Optics (SPIE, 2007), Vol. 6628.

Schmidt, J.

L. Sauer, M. Klemm, S. Peters, D. Schweitzer, J. Schmidt, L. Kreilkamp, L. Ramm, D. Meller, and M. Hammer, “Monitoring foveal sparing in geographic atrophy with fluorescence lifetime imaging ophthalmoscopy - a novel approach,” Acta Ophthalmol. 96(3), 257–266 (2018).
[Crossref]

J. Schmidt, S. Peters, L. Sauer, D. Schweitzer, M. Klemm, R. Augsten, N. Muller, and M. Hammer, “Fundus autofluorescence lifetimes are increased in non-proliferative diabetic retinopathy,” Acta Ophthalmol. 95(1), 33–40 (2017).
[Crossref]

L. Sauer, S. Peters, J. Schmidt, D. Schweitzer, M. Klemm, L. Ramm, R. Augsten, and M. Hammer, “Monitoring macular pigment changes in macular holes using fluorescence lifetime imaging ophthalmoscopy,” Acta Ophthalmol. 95(5), 481–492 (2017).
[Crossref]

Schmidtke, H. H.

H. Pau, J. Degen, and H. H. Schmidtke, “Different Regional Changes of Fluorescence-Spectra of Clear Human Lenses and Nuclear Cataracts,” Graefe’s Arch. Clin. Exp. Ophthalmol. 231(11), 656–661 (1993).
[Crossref]

Schmidtke, K. U.

S. Jentsch, D. Schweitzer, K. U. Schmidtke, S. Peters, J. Dawczynski, K. J. Bar, and M. Hammer, “Retinal fluorescence lifetime imaging ophthalmoscopy measures depend on the severity of Alzheimer's disease,” Acta Ophthalmol. 93(4), e241–e247 (2015).
[Crossref]

Schulz, K. F.

D. Moher, S. Hopewell, K. F. Schulz, V. Montori, P. C. Gotzsche, P. J. Devereaux, D. Elbourne, M. Egger, and D. G. Altman, “CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials,” BMJ 340(mar23 1), c869 (2010).
[Crossref]

Schurch, K.

C. Dysli, K. Schurch, E. Pascal, S. Wolf, and M. S. Zinkernagel, “Fundus Autofluorescence Lifetime Patterns in Retinitis Pigmentosa,” Invest. Ophthalmol. Visual Sci. 59(5), 1769–1778 (2018).
[Crossref]

Schweitzer, D.

M. Klemm, L. Sauer, S. Klee, D. Link, S. Peters, M. Hammer, D. Schweitzer, and J. Haueisen, “Bleaching effects and fluorescence lifetime imaging ophthalmoscopy,” Biomed. Opt. Express 10(3), 1446–1461 (2019).
[Crossref]

L. Sauer, M. Klemm, S. Peters, D. Schweitzer, J. Schmidt, L. Kreilkamp, L. Ramm, D. Meller, and M. Hammer, “Monitoring foveal sparing in geographic atrophy with fluorescence lifetime imaging ophthalmoscopy - a novel approach,” Acta Ophthalmol. 96(3), 257–266 (2018).
[Crossref]

L. Sauer, S. Peters, J. Schmidt, D. Schweitzer, M. Klemm, L. Ramm, R. Augsten, and M. Hammer, “Monitoring macular pigment changes in macular holes using fluorescence lifetime imaging ophthalmoscopy,” Acta Ophthalmol. 95(5), 481–492 (2017).
[Crossref]

J. Schmidt, S. Peters, L. Sauer, D. Schweitzer, M. Klemm, R. Augsten, N. Muller, and M. Hammer, “Fundus autofluorescence lifetimes are increased in non-proliferative diabetic retinopathy,” Acta Ophthalmol. 95(1), 33–40 (2017).
[Crossref]

M. Klemm, J. Blum, D. Link, M. Hammer, J. Haueisen, and D. Schweitzer, “Combination of confocal principle and aperture stop separation improves suppression of crystalline lens fluorescence in an eye model,” Biomed. Opt. Express 7(9), 3198–3210 (2016).
[Crossref]

M. Klemm, D. Schweitzer, S. Peters, L. Sauer, M. Hammer, and J. Haueisen, “FLIMX: A Software Package to Determine and Analyze the Fluorescence Lifetime in Time-Resolved Fluorescence Data from the Human Eye,” PLoS One 10(7), e0131640 (2015).
[Crossref]

D. Schweitzer, L. Deutsch, M. Klemm, S. Jentsch, M. Hammer, S. Peters, J. Haueisen, U. A. Müller, and J. Dawczynski, “Fluorescence lifetime imaging ophthalmoscopy in type 2 diabetic patients who have no signs of diabetic retinopathy,” J. Biomed. Opt. 20(6), 061106 (2015).
[Crossref]

S. Jentsch, D. Schweitzer, K. U. Schmidtke, S. Peters, J. Dawczynski, K. J. Bar, and M. Hammer, “Retinal fluorescence lifetime imaging ophthalmoscopy measures depend on the severity of Alzheimer's disease,” Acta Ophthalmol. 93(4), e241–e247 (2015).
[Crossref]

L. Sauer, D. Schweitzer, L. Ramm, R. Augsten, M. Hammer, and S. Peters, “Impact of Macular Pigment on Fundus Autofluorescence Lifetimes,” Invest. Ophthalmol. Visual Sci. 56(8), 4668–4679 (2015).
[Crossref]

M. Klemm, A. Dietzel, J. Haueisen, E. Nagel, M. Hammer, and D. Schweitzer, “Repeatability of Autofluorescence Lifetime Imaging at the Human Fundus in Healthy Volunteers,” Curr. Eye Res. 38(7), 793–801 (2013).
[Crossref]

S. Peters, M. Hammer, and D. Schweitzer, “Two-photon excited fluorescence microscopy application for ex vivo investigation of ocular fundus samples,” Proc. SPIE 8086, 808605 (2011).
[Crossref]

D. Schweitzer, L. Deutsch, M. Klemm, S. Jentsch, M. Hammer, J. Dawczynski, and U. A. Mueller, “Detection Of Early Metabolic Alterations In Diabetes Mellitus By Time-resolved Fundus Autofluorescence (FLIM),” Invest. Ophthalmol. Visual Sci. 52, 1753 (2011).

D. Schweitzer, S. Quick, M. Klemm, M. Hammer, S. Jentsch, and J. Dawczynski, “Time-resolved autofluorescence in retinal vascular occlusions,” Ophthalmologe 107(12), 1145–1152 (2010).
[Crossref]

D. Schweitzer, S. Quick, S. Schenke, M. Klemm, S. Gehlert, M. Hammer, S. Jentsch, and J. Fischer, “Comparison of parameters of time-resolved autofluorescence between healthy subjects and patients suffering from early AMD,” Ophthalmologe 106(8), 714–722 (2009).
[Crossref]

D. Schweitzer, M. Klemm, M. Hammer, S. Jentsch, and F. Schweitzer, “Method for simultaneous detection of functionality and tomography,” Clinical and Biomedical Spectroscopy 7368, 736804 (2009).
[Crossref]

D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007).
[Crossref]

D. Schweitzer, M. Hammer, and F. Schweitzer, “Limits of the confocal laser-scanning technique in measurements of time-resolved autofluorescence of the eye-ground,” Biomed. Tech. 50(9), 263–267 (2005).
[Crossref]

D. Schweitzer, M. Hammer, F. Schweitzer, R. Anders, T. Doebbecke, S. Schenke, E. R. Gaillard, and E. R. Gaillard, “In vivo measurement of time-resolved autofluorescence at the human fundus,” J. Biomed. Opt. 9(6), 1214–1222 (2004).
[Crossref]

D. Schweitzer, A. Kolb, M. Hammer, and E. Thamm, “τ mapping of the autofluorescence of the human ocular fundus,” in EOS/SPIE/ELA European Biomedical Optics Week – EBiOS, 2000), 79–89.

D. Schweitzer, “Autofluorescence diagnostics of ophthalmic diseases,” in Natural Biomarkers for Cellular Metabolism: Biology, Techniques, and Applications, 1st ed., V. V. Heikal and A. A. Ghukasyan, eds. (CRC Press/Taylor & Francis Group, 2015), pp. 317–344.

D. Schweitzer, S. Jentsch, S. Schenke, M. Hammer, C. Biskup, and E. Gaillard, “Spectral and Time-resolved Studies on Ocular Structures,” in European Conferences on Biomedical Optics (SPIE, 2007), Vol. 6628.

D. Schweitzer and M. Hammer, “Fluorescence Lifetime Imaging in Ophthalmology,” in Advanced Time-Correlated Single Photon Counting Applications, W. Becker, ed. (Springer International Publishing, 2015), pp. 509–540.

D. Schweitzer, “Metabolic mapping,” in Medical Retina: Focus on Retinal Imaging (Essentials in Ophthalmology), F. G. Holz and R. F. Spaide, eds. (Springer, 2010), pp. 107–123.

D. Schweitzer, “Ophthalmic applications of FLIM,” in Fluorescence Lifetime Spectroscopy and Imaging : Principles and Applications in Biomedical Diagnostics, L. Marcu, P. M. W. French, and D. S. Elson, eds. (CRC Press/Taylor & Francis Group, 2014), pp. 423–447.

Schweitzer, F.

D. Schweitzer, M. Klemm, M. Hammer, S. Jentsch, and F. Schweitzer, “Method for simultaneous detection of functionality and tomography,” Clinical and Biomedical Spectroscopy 7368, 736804 (2009).
[Crossref]

D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007).
[Crossref]

D. Schweitzer, M. Hammer, and F. Schweitzer, “Limits of the confocal laser-scanning technique in measurements of time-resolved autofluorescence of the eye-ground,” Biomed. Tech. 50(9), 263–267 (2005).
[Crossref]

D. Schweitzer, M. Hammer, F. Schweitzer, R. Anders, T. Doebbecke, S. Schenke, E. R. Gaillard, and E. R. Gaillard, “In vivo measurement of time-resolved autofluorescence at the human fundus,” J. Biomed. Opt. 9(6), 1214–1222 (2004).
[Crossref]

Shapiro, S. S.

S. S. Shapiro and M. B. Wilk, “An Analysis of Variance Test for Normality (Complete Samples),” Biometrika 52(3-4), 591–611 (1965).
[Crossref]

Sharma, R.

Shrestha, S.

Spielmann, C.

M. G. O. Grafe, A. Hoffmann, and C. Spielmann, “Ultrafast fluorescence spectroscopy for axial resolution of flurorophore distributions,” Appl. Phys. B: Lasers Opt. 117(3), 833–840 (2014).
[Crossref]

Thamm, E.

D. Schweitzer, A. Kolb, M. Hammer, and E. Thamm, “τ mapping of the autofluorescence of the human ocular fundus,” in EOS/SPIE/ELA European Biomedical Optics Week – EBiOS, 2000), 79–89.

Tran, H. V.

C. Dysli, S. Wolf, H. V. Tran, and M. S. Zinkernagel, “Autofluorescence Lifetimes in Patients With Choroideremia Identify Photoreceptors in Areas With Retinal Pigment Epithelium Atrophy,” Invest. Ophthalmol. Visual Sci. 57(15), 6714–6721 (2016).
[Crossref]

Vitale, A. S.

L. Sauer, A. S. Vitale, K. M. Andersen, B. Hart, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy (Flio) Patterns in Clinically Unaffected Children of Macular Telangiectasia Type 2 (Mactel) Patients,” Retina 40(4), 695–704 (2020).
[Crossref]

L. Sauer, C. B. Komanski, A. S. Vitale, E. D. Hansen, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO) in Eyes With Pigment Epithelial Detachments Due to Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 60(8), 3054–3063 (2019).
[Crossref]

Wan, Q. J.

Wang, B.-G.

B.-G. Wang, “[Multiphoton microscopy and laser nanosurgery of the cornea using near-infrared nanojoule femtosecond laser pulses],” Dissertation (University Hospital Jena, Jena, 2006).

Wilk, M. B.

S. S. Shapiro and M. B. Wilk, “An Analysis of Variance Test for Normality (Complete Samples),” Biometrika 52(3-4), 591–611 (1965).
[Crossref]

Williams, D. R.

Wolf, S.

C. Dysli, K. Schurch, E. Pascal, S. Wolf, and M. S. Zinkernagel, “Fundus Autofluorescence Lifetime Patterns in Retinitis Pigmentosa,” Invest. Ophthalmol. Visual Sci. 59(5), 1769–1778 (2018).
[Crossref]

C. Dysli, L. Berger, S. Wolf, and M. S. Zinkernagel, “Fundus Autofluorescence Lifetimes and Central Serous Chorioretinopathy,” Retina 37(11), 2151–2161 (2017).
[Crossref]

C. Dysli, R. Fink, S. Wolf, and M. S. Zinkernagel, “Fluorescence Lifetimes of Drusen in Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 58(11), 4856–4862 (2017).
[Crossref]

C. Dysli, S. Wolf, M. Y. Berezin, L. Sauer, M. Hammer, and M. S. Zinkernagel, “Fluorescence lifetime imaging ophthalmoscopy,” Prog. Retinal Eye Res. 60, 120–143 (2017).
[Crossref]

C. Dysli, S. Wolf, and M. S. Zinkernagel, “Autofluorescence Lifetimes in Geographic Atrophy in Patients With Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 57(6), 2479–2487 (2016).
[Crossref]

C. Dysli, S. Wolf, H. V. Tran, and M. S. Zinkernagel, “Autofluorescence Lifetimes in Patients With Choroideremia Identify Photoreceptors in Areas With Retinal Pigment Epithelium Atrophy,” Invest. Ophthalmol. Visual Sci. 57(15), 6714–6721 (2016).
[Crossref]

C. Dysli, S. Wolf, and M. S. Zinkernagel, “Fluorescence Lifetime Imaging in Retinal Artery Occlusion,” Invest. Ophthalmol. Visual Sci. 56(5), 3329–3336 (2015).
[Crossref]

C. Dysli, M. Dysli, V. Enzmann, S. Wolf, and M. S. Zinkernagel, “Fluorescence Lifetime Imaging of the Ocular Fundus in Mice,” Invest. Ophthalmol. Visual Sci. 55(11), 7206–7215 (2014).
[Crossref]

C. Dysli, G. Quellec, M. Abegg, M. N. Menke, U. Wolf-Schnurrbusch, J. Kowal, J. Blatz, O. La Schiazza, A. B. Leichtle, S. Wolf, and M. S. Zinkernagel, “Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects,” Invest. Ophthalmol. Visual Sci. 55(4), 2106–2113 (2014).
[Crossref]

Wolfrum, J.

M. Koellner and J. Wolfrum, “How Many Photons Are Necessary for Fluorescence-Lifetime Measurements,” Chem. Phys. Lett. 200(1-2), 199–204 (1992).
[Crossref]

Wolf-Schnurrbusch, U.

C. Dysli, G. Quellec, M. Abegg, M. N. Menke, U. Wolf-Schnurrbusch, J. Kowal, J. Blatz, O. La Schiazza, A. B. Leichtle, S. Wolf, and M. S. Zinkernagel, “Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects,” Invest. Ophthalmol. Visual Sci. 55(4), 2106–2113 (2014).
[Crossref]

Xi, J. F.

Yin, L.

Zinkernagel, M. S.

L. Sauer, K. M. Andersen, C. Dysli, M. S. Zinkernagel, P. S. Bernstein, and M. Hammer, “Review of clinical approaches in fluorescence lifetime imaging ophthalmoscopy,” J. Biomed. Opt. 23(09), 1–20 (2018).
[Crossref]

C. Dysli, K. Schurch, E. Pascal, S. Wolf, and M. S. Zinkernagel, “Fundus Autofluorescence Lifetime Patterns in Retinitis Pigmentosa,” Invest. Ophthalmol. Visual Sci. 59(5), 1769–1778 (2018).
[Crossref]

C. Dysli, L. Berger, S. Wolf, and M. S. Zinkernagel, “Fundus Autofluorescence Lifetimes and Central Serous Chorioretinopathy,” Retina 37(11), 2151–2161 (2017).
[Crossref]

C. Dysli, R. Fink, S. Wolf, and M. S. Zinkernagel, “Fluorescence Lifetimes of Drusen in Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 58(11), 4856–4862 (2017).
[Crossref]

C. Dysli, S. Wolf, M. Y. Berezin, L. Sauer, M. Hammer, and M. S. Zinkernagel, “Fluorescence lifetime imaging ophthalmoscopy,” Prog. Retinal Eye Res. 60, 120–143 (2017).
[Crossref]

C. Dysli, S. Wolf, H. V. Tran, and M. S. Zinkernagel, “Autofluorescence Lifetimes in Patients With Choroideremia Identify Photoreceptors in Areas With Retinal Pigment Epithelium Atrophy,” Invest. Ophthalmol. Visual Sci. 57(15), 6714–6721 (2016).
[Crossref]

C. Dysli, M. Dysli, M. S. Zinkernagel, and V. Enzmann, “Effect of pharmacologically induced retinal degeneration on retinal autofluorescence lifetimes in mice,” Exp. Eye Res. 153, 178–185 (2016).
[Crossref]

C. Dysli, S. Wolf, and M. S. Zinkernagel, “Autofluorescence Lifetimes in Geographic Atrophy in Patients With Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 57(6), 2479–2487 (2016).
[Crossref]

C. Dysli, S. Wolf, and M. S. Zinkernagel, “Fluorescence Lifetime Imaging in Retinal Artery Occlusion,” Invest. Ophthalmol. Visual Sci. 56(5), 3329–3336 (2015).
[Crossref]

C. Dysli, M. Dysli, V. Enzmann, S. Wolf, and M. S. Zinkernagel, “Fluorescence Lifetime Imaging of the Ocular Fundus in Mice,” Invest. Ophthalmol. Visual Sci. 55(11), 7206–7215 (2014).
[Crossref]

C. Dysli, G. Quellec, M. Abegg, M. N. Menke, U. Wolf-Schnurrbusch, J. Kowal, J. Blatz, O. La Schiazza, A. B. Leichtle, S. Wolf, and M. S. Zinkernagel, “Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects,” Invest. Ophthalmol. Visual Sci. 55(4), 2106–2113 (2014).
[Crossref]

Acta Ophthalmol. (4)

J. Schmidt, S. Peters, L. Sauer, D. Schweitzer, M. Klemm, R. Augsten, N. Muller, and M. Hammer, “Fundus autofluorescence lifetimes are increased in non-proliferative diabetic retinopathy,” Acta Ophthalmol. 95(1), 33–40 (2017).
[Crossref]

L. Sauer, S. Peters, J. Schmidt, D. Schweitzer, M. Klemm, L. Ramm, R. Augsten, and M. Hammer, “Monitoring macular pigment changes in macular holes using fluorescence lifetime imaging ophthalmoscopy,” Acta Ophthalmol. 95(5), 481–492 (2017).
[Crossref]

L. Sauer, M. Klemm, S. Peters, D. Schweitzer, J. Schmidt, L. Kreilkamp, L. Ramm, D. Meller, and M. Hammer, “Monitoring foveal sparing in geographic atrophy with fluorescence lifetime imaging ophthalmoscopy - a novel approach,” Acta Ophthalmol. 96(3), 257–266 (2018).
[Crossref]

S. Jentsch, D. Schweitzer, K. U. Schmidtke, S. Peters, J. Dawczynski, K. J. Bar, and M. Hammer, “Retinal fluorescence lifetime imaging ophthalmoscopy measures depend on the severity of Alzheimer's disease,” Acta Ophthalmol. 93(4), e241–e247 (2015).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

M. G. O. Grafe, A. Hoffmann, and C. Spielmann, “Ultrafast fluorescence spectroscopy for axial resolution of flurorophore distributions,” Appl. Phys. B: Lasers Opt. 117(3), 833–840 (2014).
[Crossref]

Biomed. Opt. Express (5)

Biomed. Tech. (1)

D. Schweitzer, M. Hammer, and F. Schweitzer, “Limits of the confocal laser-scanning technique in measurements of time-resolved autofluorescence of the eye-ground,” Biomed. Tech. 50(9), 263–267 (2005).
[Crossref]

Biometrika (1)

S. S. Shapiro and M. B. Wilk, “An Analysis of Variance Test for Normality (Complete Samples),” Biometrika 52(3-4), 591–611 (1965).
[Crossref]

BMJ (1)

D. Moher, S. Hopewell, K. F. Schulz, V. Montori, P. C. Gotzsche, P. J. Devereaux, D. Elbourne, M. Egger, and D. G. Altman, “CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials,” BMJ 340(mar23 1), c869 (2010).
[Crossref]

Chem. Phys. Lett. (1)

M. Koellner and J. Wolfrum, “How Many Photons Are Necessary for Fluorescence-Lifetime Measurements,” Chem. Phys. Lett. 200(1-2), 199–204 (1992).
[Crossref]

Clinical and Biomedical Spectroscopy (1)

D. Schweitzer, M. Klemm, M. Hammer, S. Jentsch, and F. Schweitzer, “Method for simultaneous detection of functionality and tomography,” Clinical and Biomedical Spectroscopy 7368, 736804 (2009).
[Crossref]

Curr. Eye Res. (1)

M. Klemm, A. Dietzel, J. Haueisen, E. Nagel, M. Hammer, and D. Schweitzer, “Repeatability of Autofluorescence Lifetime Imaging at the Human Fundus in Healthy Volunteers,” Curr. Eye Res. 38(7), 793–801 (2013).
[Crossref]

Exp. Eye Res. (2)

G. E. Eldred and M. L. Katz, “Fluorophores of the Human Retinal-Pigment Epithelium - Separation and Spectral Characterization,” Exp. Eye Res. 47(1), 71–86 (1988).
[Crossref]

C. Dysli, M. Dysli, M. S. Zinkernagel, and V. Enzmann, “Effect of pharmacologically induced retinal degeneration on retinal autofluorescence lifetimes in mice,” Exp. Eye Res. 153, 178–185 (2016).
[Crossref]

Graefe’s Arch. Clin. Exp. Ophthalmol. (1)

H. Pau, J. Degen, and H. H. Schmidtke, “Different Regional Changes of Fluorescence-Spectra of Clear Human Lenses and Nuclear Cataracts,” Graefe’s Arch. Clin. Exp. Ophthalmol. 231(11), 656–661 (1993).
[Crossref]

Invest. Ophthalmol. Visual Sci. (12)

C. Dysli, M. Dysli, V. Enzmann, S. Wolf, and M. S. Zinkernagel, “Fluorescence Lifetime Imaging of the Ocular Fundus in Mice,” Invest. Ophthalmol. Visual Sci. 55(11), 7206–7215 (2014).
[Crossref]

D. Schweitzer, L. Deutsch, M. Klemm, S. Jentsch, M. Hammer, J. Dawczynski, and U. A. Mueller, “Detection Of Early Metabolic Alterations In Diabetes Mellitus By Time-resolved Fundus Autofluorescence (FLIM),” Invest. Ophthalmol. Visual Sci. 52, 1753 (2011).

C. Dysli, G. Quellec, M. Abegg, M. N. Menke, U. Wolf-Schnurrbusch, J. Kowal, J. Blatz, O. La Schiazza, A. B. Leichtle, S. Wolf, and M. S. Zinkernagel, “Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects,” Invest. Ophthalmol. Visual Sci. 55(4), 2106–2113 (2014).
[Crossref]

L. Sauer, D. Schweitzer, L. Ramm, R. Augsten, M. Hammer, and S. Peters, “Impact of Macular Pigment on Fundus Autofluorescence Lifetimes,” Invest. Ophthalmol. Visual Sci. 56(8), 4668–4679 (2015).
[Crossref]

L. Sauer, K. M. Andersen, B. X. Li, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO) of Macular Pigment,” Invest. Ophthalmol. Visual Sci. 59(7), 3094–3103 (2018).
[Crossref]

L. Sauer, C. B. Komanski, A. S. Vitale, E. D. Hansen, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO) in Eyes With Pigment Epithelial Detachments Due to Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 60(8), 3054–3063 (2019).
[Crossref]

L. Sauer, R. H. Gensure, K. M. Andersen, L. Kreilkamp, G. S. Hageman, M. Hammer, and P. S. Bernstein, “Patterns of Fundus Autofluorescence Lifetimes In Eyes of Individuals With Nonexudative Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 59(4), AMD65–AMD77 (2018).
[Crossref]

C. Dysli, S. Wolf, and M. S. Zinkernagel, “Fluorescence Lifetime Imaging in Retinal Artery Occlusion,” Invest. Ophthalmol. Visual Sci. 56(5), 3329–3336 (2015).
[Crossref]

C. Dysli, S. Wolf, and M. S. Zinkernagel, “Autofluorescence Lifetimes in Geographic Atrophy in Patients With Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 57(6), 2479–2487 (2016).
[Crossref]

C. Dysli, R. Fink, S. Wolf, and M. S. Zinkernagel, “Fluorescence Lifetimes of Drusen in Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 58(11), 4856–4862 (2017).
[Crossref]

C. Dysli, K. Schurch, E. Pascal, S. Wolf, and M. S. Zinkernagel, “Fundus Autofluorescence Lifetime Patterns in Retinitis Pigmentosa,” Invest. Ophthalmol. Visual Sci. 59(5), 1769–1778 (2018).
[Crossref]

C. Dysli, S. Wolf, H. V. Tran, and M. S. Zinkernagel, “Autofluorescence Lifetimes in Patients With Choroideremia Identify Photoreceptors in Areas With Retinal Pigment Epithelium Atrophy,” Invest. Ophthalmol. Visual Sci. 57(15), 6714–6721 (2016).
[Crossref]

J. Biomed. Opt. (3)

L. Sauer, K. M. Andersen, C. Dysli, M. S. Zinkernagel, P. S. Bernstein, and M. Hammer, “Review of clinical approaches in fluorescence lifetime imaging ophthalmoscopy,” J. Biomed. Opt. 23(09), 1–20 (2018).
[Crossref]

D. Schweitzer, L. Deutsch, M. Klemm, S. Jentsch, M. Hammer, S. Peters, J. Haueisen, U. A. Müller, and J. Dawczynski, “Fluorescence lifetime imaging ophthalmoscopy in type 2 diabetic patients who have no signs of diabetic retinopathy,” J. Biomed. Opt. 20(6), 061106 (2015).
[Crossref]

D. Schweitzer, M. Hammer, F. Schweitzer, R. Anders, T. Doebbecke, S. Schenke, E. R. Gaillard, and E. R. Gaillard, “In vivo measurement of time-resolved autofluorescence at the human fundus,” J. Biomed. Opt. 9(6), 1214–1222 (2004).
[Crossref]

Microsc. Res. Tech. (1)

D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007).
[Crossref]

Ophthalmol. Retina (1)

L. Sauer, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy: A Novel Way to Assess Macular Telangiectasia Type 2,” Ophthalmol. Retina 2(6), 587–598 (2018).
[Crossref]

Ophthalmologe (2)

D. Schweitzer, S. Quick, S. Schenke, M. Klemm, S. Gehlert, M. Hammer, S. Jentsch, and J. Fischer, “Comparison of parameters of time-resolved autofluorescence between healthy subjects and patients suffering from early AMD,” Ophthalmologe 106(8), 714–722 (2009).
[Crossref]

D. Schweitzer, S. Quick, M. Klemm, M. Hammer, S. Jentsch, and J. Dawczynski, “Time-resolved autofluorescence in retinal vascular occlusions,” Ophthalmologe 107(12), 1145–1152 (2010).
[Crossref]

Ophthalmology (1)

Early Treatment Diabetic Retinopathy Study Research Group, “Grading diabetic retinopathy from stereoscopic color fundus photographs–an extension of the modified Airlie House classification. ETDRS report number 10,” Ophthalmology 98(5), 786–806 (1991).
[Crossref]

Photochem. Photobiol. (1)

D. K. Karumanchi, E. R. Gaillard, and J. Dillon, “Early Diagnosis of Diabetes through the Eye,” Photochem. Photobiol. 91(6), 1497–1504 (2015).
[Crossref]

PLoS One (2)

M. Klemm, D. Schweitzer, S. Peters, L. Sauer, M. Hammer, and J. Haueisen, “FLIMX: A Software Package to Determine and Analyze the Fluorescence Lifetime in Time-Resolved Fluorescence Data from the Human Eye,” PLoS One 10(7), e0131640 (2015).
[Crossref]

S. R. Sadda, E. Borrelli, W. Y. Fan, A. Ebraheem, K. M. Marion, and S. Kwon, “Impact of mydriasis in fluorescence lifetime imaging ophthalmoscopy,” PLoS One 13(12), e0209194 (2018).
[Crossref]

Proc. SPIE (1)

S. Peters, M. Hammer, and D. Schweitzer, “Two-photon excited fluorescence microscopy application for ex vivo investigation of ocular fundus samples,” Proc. SPIE 8086, 808605 (2011).
[Crossref]

Prog. Retinal Eye Res. (1)

C. Dysli, S. Wolf, M. Y. Berezin, L. Sauer, M. Hammer, and M. S. Zinkernagel, “Fluorescence lifetime imaging ophthalmoscopy,” Prog. Retinal Eye Res. 60, 120–143 (2017).
[Crossref]

Retina (2)

C. Dysli, L. Berger, S. Wolf, and M. S. Zinkernagel, “Fundus Autofluorescence Lifetimes and Central Serous Chorioretinopathy,” Retina 37(11), 2151–2161 (2017).
[Crossref]

L. Sauer, A. S. Vitale, K. M. Andersen, B. Hart, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy (Flio) Patterns in Clinically Unaffected Children of Macular Telangiectasia Type 2 (Mactel) Patients,” Retina 40(4), 695–704 (2020).
[Crossref]

Trans. Vis. Sci. Tech. (2)

K. M. Andersen, L. Sauer, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Characterization of Retinitis Pigmentosa Using Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO),” Trans. Vis. Sci. Tech. 7(3), 20 (2018).
[Crossref]

S. Kwon, E. Borrelli, W. Fan, A. Ebraheem, K. M. Marion, and S. R. Sadda, “Repeatability of Fluorescence Lifetime Imaging Ophthalmoscopy in Normal Subjects With Mydriasis,” Trans. Vis. Sci. Tech. 8(3), 15 (2019).
[Crossref]

Other (11)

L. Marcu, P. M. W. French, and D. S. Elson, Fluorescence LifetimeSpectroscopy and Imaging : Principles and Applications in Biomedical Diagnostics (CRC Press/Taylor & Francis Group, 2014).

D. Schweitzer, A. Kolb, M. Hammer, and E. Thamm, “τ mapping of the autofluorescence of the human ocular fundus,” in EOS/SPIE/ELA European Biomedical Optics Week – EBiOS, 2000), 79–89.

D. Schweitzer, S. Jentsch, S. Schenke, M. Hammer, C. Biskup, and E. Gaillard, “Spectral and Time-resolved Studies on Ocular Structures,” in European Conferences on Biomedical Optics (SPIE, 2007), Vol. 6628.

D. Schweitzer, “Autofluorescence diagnostics of ophthalmic diseases,” in Natural Biomarkers for Cellular Metabolism: Biology, Techniques, and Applications, 1st ed., V. V. Heikal and A. A. Ghukasyan, eds. (CRC Press/Taylor & Francis Group, 2015), pp. 317–344.

B.-G. Wang, “[Multiphoton microscopy and laser nanosurgery of the cornea using near-infrared nanojoule femtosecond laser pulses],” Dissertation (University Hospital Jena, Jena, 2006).

D. Schweitzer, “Ophthalmic applications of FLIM,” in Fluorescence Lifetime Spectroscopy and Imaging : Principles and Applications in Biomedical Diagnostics, L. Marcu, P. M. W. French, and D. S. Elson, eds. (CRC Press/Taylor & Francis Group, 2014), pp. 423–447.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006), p. 954.

W. Becker, The bh TCPSC Handbook, 8th ed. (Becker & Hickl GmbH, 2019), p. 954.

D. Schweitzer, “Metabolic mapping,” in Medical Retina: Focus on Retinal Imaging (Essentials in Ophthalmology), F. G. Holz and R. F. Spaide, eds. (Springer, 2010), pp. 107–123.

W. Becker, A. Bergmann, and L. Sauer, “Shifted-Component Model Improves FLIO Data Analysis,” (Becker & Hickl GmbH, Berlin, Germany, 2018).

D. Schweitzer and M. Hammer, “Fluorescence Lifetime Imaging in Ophthalmology,” in Advanced Time-Correlated Single Photon Counting Applications, W. Becker, ed. (Springer International Publishing, 2015), pp. 509–540.

Supplementary Material (1)

NameDescription
» Supplement 1       Addition descriptive statistics

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Top: Schema of the human eye. Bottom: Sections of time-resolved fluorescence decays of the natural lens (light green), the fundus (dark green) and their superposition (black), which is the measured signal of a single pixel in FLIO.
Fig. 2.
Fig. 2. In vivo measured fluorescence spectrum of the crystalline lens of a 62-year-old man above 500 nm, excited at 468 nm. The dashed line represents the cut-off wavelength for both spectral channels of the FLIO device. SSC: short spectral channel; LSC: long spectral channel.
Fig. 3.
Fig. 3. Fluorescence intensity (A and B) and fluorescence lifetimes (C, D, and E) before cataract surgery (A, C, and D), and after cataract surgery (B and E). C (M1) and E (Reference) show the mean fluorescence lifetime τm,all using three exponential components while D (M1) shows τm,12 using only the first two exponential components. There is a good correspondence between τm,all after cataract surgery with τm,12 before cataract surgery. The color scaling is identical for all fluorescence lifetimes.
Fig. 4.
Fig. 4. Mean fluorescence lifetimes τm,all (dark color) and τm,12 (light color) including standard deviation averaged over all patients for the reference (green) and all models (blue) for both spectral channels and all regions. Red * indicate no significant difference to τm,all of the reference and purple # indicate no significant difference to τm,12 of the reference.
Fig. 5.
Fig. 5. Violin diagrams of τm,all for reference (green) and all models (blue) in the outer ring of the ETDRS grid. The white dot represents the median, the black line represents the mean, and the black crosses represent the 95% confidence interval.
Fig. 6.
Fig. 6. Pairwise differences of τm,12 from all models and τm,all from reference for the outer ring. The white dot represents the median, the black line represents the mean, and the black crosses represent the 95% confidence interval.
Fig. 7.
Fig. 7. Pairwise differences of τm,12 of all models and τm,12 of the reference in LSC. The white dot represents the median, the black line represents the mean, the black crosses represent the 95% confidence interval.

Tables (1)

Tables Icon

Table 1. Applied models and their parameters

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I 1 ( t ) I 0 = I R F i α i e t τ i + b
I 1 ( t ) I 0 = I R F i α i e t t c i τ i + b
I 1 ( t ) I 0 = I R F i α i e t t c i τ i + α l e n s I l e n s ( t t c l e n s ) + b
χ r 2 = 1 m p j = 1 m ( I M ( t j ) I C ( t j ) ) 2 I M ( t j )
t c = 2 d n c
τ m = i α i τ i i α i