Abstract

High-resolution fluorescent microscopic imaging techniques are in high demand to observe detailed structures or dynamic mechanisms of biological samples. Structured illumination microscopy (SIM) has grabbed much attention in super-resolution imaging due to simple configuration, high compatibility with common fluorescent molecules, and fast image acquisition. Here, we report Lissajous scanning SIM (LS-SIM) by using a high fill-factor Lissajous scanning micromirror and laser beam modulation. The LS-SIM was realized by a Lissajous scanned structured illumination module, relay optics, and a conventional fluorescent microscope. The micromirror comprises an inner mirror and an outer frame, which are scanned at pseudo-resonance with electrostatic actuation. The biaxial scanning frequencies are selected by the frequency selection rule for high fill-factor (> 80%) Lissajous scanning. Structured illumination (SI) was then realized by modulating the intensity of a laser beam at the least common multiple (LCM) of the scanning frequencies. A compact Lissajous scanned SI module containing a fiber-optic collimator and Lissajous micromirror has been fully packaged and coupled with relay optics and a fiber-based diode pumped solid state (DPSS) laser including acousto-optic-modulator (AOM). Various structured images were obtained by shifting the phase and orientation of the illumination patterns and finally mounted with a conventional fluorescent microscope. The LS-SIM has experimentally demonstrated high-resolution fluorescent microscopic imaging of reference targets and human lung cancer cell PC-9 cells. The LS-SIM exhibits the observable region in spatial frequency space over 2x, the line-edge sharpness over 1.5x, and the peak-to-valley (P-V) ratio over 2x, compared to widefield fluorescent microscopy. This method can provide a new route for advanced high-resolution fluorescent microscopic imaging.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Yang and H. Chen, The 3D reconstruction of face model with active structured light and stereo vision fusion, 3rd IEEE International Conference on Computer and Communications (ICCC), pp. 1902–1906 (2017)
  2. H. M. Hondori, M. Khademi, L. Dodakian, S. C. Cramer, and C. V. Lopes, “A Spatial Augmented Reality rehab system for post-stroke hand rehabilitation,” Stud. Health Technol. Inform 184, 279–285 (2013).
    [Crossref]
  3. D. Li, L. Shao, B.-C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. H. Ill, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
    [Crossref]
  4. M. Saxena, G. Eluru, and S. S. Gorthi, “Structured illumination microscopy,” Adv. Opt. Photonics 7(2), 241–275 (2015).
    [Crossref]
  5. F. Ströhl and C. F. Kaminski, “Frontiers in structured illumination microscopy,” Optica 3(6), 667–677 (2016).
    [Crossref]
  6. Y. Wu and H. Shroff, “Faster, sharper, and deeper: structured illumination microscopy for biological imaging,” Nat. Methods 15(12), 1011–1019 (2018).
    [Crossref]
  7. A. Lal, C. Shan, and P. Xi, “Structured illumination microscopy image reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 22(4), 50–63 (2016).
    [Crossref]
  8. Z. Li, J. Hou, J. Suo, C. Qiao, L. Kong, and Q. Dai, “Contrast and resolution enhanced optical sectioning in scattering tissue using line-scanning two-photon structured illumination microscopy,” Opt. Express 25(25), 32010–32020 (2017).
    [Crossref]
  9. Y. Hirano, A. Matsuda, and Y. Hiraoka, “Recent advancements in structured-illumination microscopy toward live-cell imaging,” Microscopy 64(4), 237–249 (2015).
    [Crossref]
  10. X. Zhou, M. Lei, D. Dan, B. Yao, Y. Yang, J. Qian, G. Chen, and P. R. Bianco, “Image recombination transform algorithm for superresolution structured illumination microscopy,” J. Biomed. Opt. 21(9), 096009 (2016).
    [Crossref]
  11. F. Gao, H. Muhamedsalih, and X. Jiang, “Surface and thickness measurements of transparent thin-film layers utilizing modulation-based structured-illumination microscopy,” Opt. Express 26(3), 2944–2953 (2018).
    [Crossref]
  12. N. Chakrova, R. Heintzmann, B. Rieger, and S. Stallinga, “Studying different illumination patterns for resolution improvement in fluorescence microscopy,” Opt. Express 23(24), 31367–31383 (2015).
    [Crossref]
  13. S.-P. Yang, J.-B. Kim, Y.-H. Seo, and K.-H. Jeong, “Rotational Offset Microlens Arrays for Highly Efficient Structured Pattern Projection,” Adv. Opt. Mater. 8(16), 2000395 (2020).
    [Crossref]
  14. P. Křížek, I. Raška, and G. M. Hagen, “Flexible structured illumination microscope with a programmable illumination array,” Opt. Express 20(22), 24585–24599 (2012).
    [Crossref]
  15. M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional Resolution Doubling in Wide-field Fluorescence Microscopy by Structured Illumination,” Biophys. J. 94(12), 4957–4970 (2008).
    [Crossref]
  16. R. Förster, H.-W. Lu-Walther, A. Jost, M. Kielhorn, K. Wicker, and R. Heinyzmann, “Simple structured illumination microscope setup with high acquisition speed by using a spatial light modulator,” Opt. Express 22(17), 20663–20677 (2014).
    [Crossref]
  17. O. Mandula, M. Kielhorn, K. Wicker, G. Krampert, I. Kleppe, and R. Heintzmann, “Line scan-structured illumination microscopy super-resolution imaging in thick fluorescent samples,” Opt. Express 20(22), 24167–24174 (2012).
    [Crossref]
  18. Y. Huang, D. Zhu, L. Jin, C. Kuang, Y. Xu, and X. Liu, “Laser scanning saturated structured illumination microscopy based on phase modulation,” Opt. Commun. 396, 261–266 (2017).
    [Crossref]
  19. A. G. York, P. Chandris, D. D. Nogare, J. Head, P. Wawrzusin, R. S. Fischer, A. Chitnis, and H. Shroff, “Instant super-resolution imaging in live cells and embryos via analog image processing,” Nat. Methods 10(11), 1122–1126 (2013).
    [Crossref]
  20. K. Hwang, Y.-H. Seo, J. Ahn, P. Kim, and K.-H. Jeong, “Frequency selection rule for high definition and high frame rate Lissajous scanning,” Sci. Rep. 7(1), 14075 (2017).
    [Crossref]
  21. Y.-H. Seo, K. Hwang, H. Kim, and K.-H. Jeong, “Scanning MEMS Mirror for High Definition and High Frame Rate Lissajous Patterns,” Micromachines 10(1), 67 (2019).
    [Crossref]
  22. Y.-H. Seo, H. Kim, S.-P. Yang, K. Hwang, and K.-H. Jeong, “Lissajous scanned variable structured illumination for dynamic stereo depth map,” Opt. Express 28(10), 15173–15180 (2020).
    [Crossref]
  23. K. Hwang, Y.-H. Seo, and K.-H. Jeong, “Microscanners for optical endomicroscopic applications,” Micro and Nano Syst. Lett. 5(1), 1 (2017).
    [Crossref]
  24. W. Liang, K. Murari, Y. Zhang, Y. Chen, M. -J. Li, and X. Li, “Increased Illumination Uniformity and Reduced Photodamage Offered by the Lissajous Scanning in Fiber-Optic Two-Photon Endomicroscopy,” J. Biomed. Opt. 17(2), 021108 (2012).
    [Crossref]
  25. R. Farrugia, B. Portelli, I. Grech, D. Camilleri, O. Casha, J. Micallef, and E. Gatt, “Air Damping Analysis in Resonating Micro-Mirrors,” Symposium on Design, Test, Integration & Packaging of MEMS and MOEMS (DTIP), pp. 1–5 (2018).
  26. T. Izawa, T. Sasaki, and K. Hane, “Scanning Micro-Mirror with an Electrostatic Spring for Compensation of Hard-Spring Nonlinearity,” Micromachines 8(8), 240 (2017).
    [Crossref]
  27. D. Keum, H. Jung, and K.-H. Jeong, “Planar Emulation of Natural Compound Eyes,” Small 8(14), 2169–2173 (2012).
    [Crossref]

2020 (2)

S.-P. Yang, J.-B. Kim, Y.-H. Seo, and K.-H. Jeong, “Rotational Offset Microlens Arrays for Highly Efficient Structured Pattern Projection,” Adv. Opt. Mater. 8(16), 2000395 (2020).
[Crossref]

Y.-H. Seo, H. Kim, S.-P. Yang, K. Hwang, and K.-H. Jeong, “Lissajous scanned variable structured illumination for dynamic stereo depth map,” Opt. Express 28(10), 15173–15180 (2020).
[Crossref]

2019 (1)

Y.-H. Seo, K. Hwang, H. Kim, and K.-H. Jeong, “Scanning MEMS Mirror for High Definition and High Frame Rate Lissajous Patterns,” Micromachines 10(1), 67 (2019).
[Crossref]

2018 (2)

F. Gao, H. Muhamedsalih, and X. Jiang, “Surface and thickness measurements of transparent thin-film layers utilizing modulation-based structured-illumination microscopy,” Opt. Express 26(3), 2944–2953 (2018).
[Crossref]

Y. Wu and H. Shroff, “Faster, sharper, and deeper: structured illumination microscopy for biological imaging,” Nat. Methods 15(12), 1011–1019 (2018).
[Crossref]

2017 (5)

Z. Li, J. Hou, J. Suo, C. Qiao, L. Kong, and Q. Dai, “Contrast and resolution enhanced optical sectioning in scattering tissue using line-scanning two-photon structured illumination microscopy,” Opt. Express 25(25), 32010–32020 (2017).
[Crossref]

Y. Huang, D. Zhu, L. Jin, C. Kuang, Y. Xu, and X. Liu, “Laser scanning saturated structured illumination microscopy based on phase modulation,” Opt. Commun. 396, 261–266 (2017).
[Crossref]

T. Izawa, T. Sasaki, and K. Hane, “Scanning Micro-Mirror with an Electrostatic Spring for Compensation of Hard-Spring Nonlinearity,” Micromachines 8(8), 240 (2017).
[Crossref]

K. Hwang, Y.-H. Seo, and K.-H. Jeong, “Microscanners for optical endomicroscopic applications,” Micro and Nano Syst. Lett. 5(1), 1 (2017).
[Crossref]

K. Hwang, Y.-H. Seo, J. Ahn, P. Kim, and K.-H. Jeong, “Frequency selection rule for high definition and high frame rate Lissajous scanning,” Sci. Rep. 7(1), 14075 (2017).
[Crossref]

2016 (3)

X. Zhou, M. Lei, D. Dan, B. Yao, Y. Yang, J. Qian, G. Chen, and P. R. Bianco, “Image recombination transform algorithm for superresolution structured illumination microscopy,” J. Biomed. Opt. 21(9), 096009 (2016).
[Crossref]

A. Lal, C. Shan, and P. Xi, “Structured illumination microscopy image reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 22(4), 50–63 (2016).
[Crossref]

F. Ströhl and C. F. Kaminski, “Frontiers in structured illumination microscopy,” Optica 3(6), 667–677 (2016).
[Crossref]

2015 (4)

D. Li, L. Shao, B.-C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. H. Ill, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref]

M. Saxena, G. Eluru, and S. S. Gorthi, “Structured illumination microscopy,” Adv. Opt. Photonics 7(2), 241–275 (2015).
[Crossref]

Y. Hirano, A. Matsuda, and Y. Hiraoka, “Recent advancements in structured-illumination microscopy toward live-cell imaging,” Microscopy 64(4), 237–249 (2015).
[Crossref]

N. Chakrova, R. Heintzmann, B. Rieger, and S. Stallinga, “Studying different illumination patterns for resolution improvement in fluorescence microscopy,” Opt. Express 23(24), 31367–31383 (2015).
[Crossref]

2014 (1)

2013 (2)

A. G. York, P. Chandris, D. D. Nogare, J. Head, P. Wawrzusin, R. S. Fischer, A. Chitnis, and H. Shroff, “Instant super-resolution imaging in live cells and embryos via analog image processing,” Nat. Methods 10(11), 1122–1126 (2013).
[Crossref]

H. M. Hondori, M. Khademi, L. Dodakian, S. C. Cramer, and C. V. Lopes, “A Spatial Augmented Reality rehab system for post-stroke hand rehabilitation,” Stud. Health Technol. Inform 184, 279–285 (2013).
[Crossref]

2012 (4)

O. Mandula, M. Kielhorn, K. Wicker, G. Krampert, I. Kleppe, and R. Heintzmann, “Line scan-structured illumination microscopy super-resolution imaging in thick fluorescent samples,” Opt. Express 20(22), 24167–24174 (2012).
[Crossref]

P. Křížek, I. Raška, and G. M. Hagen, “Flexible structured illumination microscope with a programmable illumination array,” Opt. Express 20(22), 24585–24599 (2012).
[Crossref]

W. Liang, K. Murari, Y. Zhang, Y. Chen, M. -J. Li, and X. Li, “Increased Illumination Uniformity and Reduced Photodamage Offered by the Lissajous Scanning in Fiber-Optic Two-Photon Endomicroscopy,” J. Biomed. Opt. 17(2), 021108 (2012).
[Crossref]

D. Keum, H. Jung, and K.-H. Jeong, “Planar Emulation of Natural Compound Eyes,” Small 8(14), 2169–2173 (2012).
[Crossref]

2008 (1)

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional Resolution Doubling in Wide-field Fluorescence Microscopy by Structured Illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref]

Agard, D. A.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional Resolution Doubling in Wide-field Fluorescence Microscopy by Structured Illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref]

Ahn, J.

K. Hwang, Y.-H. Seo, J. Ahn, P. Kim, and K.-H. Jeong, “Frequency selection rule for high definition and high frame rate Lissajous scanning,” Sci. Rep. 7(1), 14075 (2017).
[Crossref]

Baird, M. A.

D. Li, L. Shao, B.-C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. H. Ill, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref]

Beach, J. R.

D. Li, L. Shao, B.-C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. H. Ill, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref]

Betzig, E.

D. Li, L. Shao, B.-C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. H. Ill, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref]

Bianco, P. R.

X. Zhou, M. Lei, D. Dan, B. Yao, Y. Yang, J. Qian, G. Chen, and P. R. Bianco, “Image recombination transform algorithm for superresolution structured illumination microscopy,” J. Biomed. Opt. 21(9), 096009 (2016).
[Crossref]

Camilleri, D.

R. Farrugia, B. Portelli, I. Grech, D. Camilleri, O. Casha, J. Micallef, and E. Gatt, “Air Damping Analysis in Resonating Micro-Mirrors,” Symposium on Design, Test, Integration & Packaging of MEMS and MOEMS (DTIP), pp. 1–5 (2018).

Cande, W. Z.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional Resolution Doubling in Wide-field Fluorescence Microscopy by Structured Illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref]

Carlton, P. M.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional Resolution Doubling in Wide-field Fluorescence Microscopy by Structured Illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref]

Casha, O.

R. Farrugia, B. Portelli, I. Grech, D. Camilleri, O. Casha, J. Micallef, and E. Gatt, “Air Damping Analysis in Resonating Micro-Mirrors,” Symposium on Design, Test, Integration & Packaging of MEMS and MOEMS (DTIP), pp. 1–5 (2018).

Chakrova, N.

Chandris, P.

A. G. York, P. Chandris, D. D. Nogare, J. Head, P. Wawrzusin, R. S. Fischer, A. Chitnis, and H. Shroff, “Instant super-resolution imaging in live cells and embryos via analog image processing,” Nat. Methods 10(11), 1122–1126 (2013).
[Crossref]

Chen, B.-C.

D. Li, L. Shao, B.-C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. H. Ill, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref]

Chen, G.

X. Zhou, M. Lei, D. Dan, B. Yao, Y. Yang, J. Qian, G. Chen, and P. R. Bianco, “Image recombination transform algorithm for superresolution structured illumination microscopy,” J. Biomed. Opt. 21(9), 096009 (2016).
[Crossref]

Chen, H.

J. Yang and H. Chen, The 3D reconstruction of face model with active structured light and stereo vision fusion, 3rd IEEE International Conference on Computer and Communications (ICCC), pp. 1902–1906 (2017)

Chen, Y.

W. Liang, K. Murari, Y. Zhang, Y. Chen, M. -J. Li, and X. Li, “Increased Illumination Uniformity and Reduced Photodamage Offered by the Lissajous Scanning in Fiber-Optic Two-Photon Endomicroscopy,” J. Biomed. Opt. 17(2), 021108 (2012).
[Crossref]

Chitnis, A.

A. G. York, P. Chandris, D. D. Nogare, J. Head, P. Wawrzusin, R. S. Fischer, A. Chitnis, and H. Shroff, “Instant super-resolution imaging in live cells and embryos via analog image processing,” Nat. Methods 10(11), 1122–1126 (2013).
[Crossref]

Cramer, S. C.

H. M. Hondori, M. Khademi, L. Dodakian, S. C. Cramer, and C. V. Lopes, “A Spatial Augmented Reality rehab system for post-stroke hand rehabilitation,” Stud. Health Technol. Inform 184, 279–285 (2013).
[Crossref]

Dai, Q.

Dan, D.

X. Zhou, M. Lei, D. Dan, B. Yao, Y. Yang, J. Qian, G. Chen, and P. R. Bianco, “Image recombination transform algorithm for superresolution structured illumination microscopy,” J. Biomed. Opt. 21(9), 096009 (2016).
[Crossref]

Davidson, M. W.

D. Li, L. Shao, B.-C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. H. Ill, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref]

Dodakian, L.

H. M. Hondori, M. Khademi, L. Dodakian, S. C. Cramer, and C. V. Lopes, “A Spatial Augmented Reality rehab system for post-stroke hand rehabilitation,” Stud. Health Technol. Inform 184, 279–285 (2013).
[Crossref]

Eluru, G.

M. Saxena, G. Eluru, and S. S. Gorthi, “Structured illumination microscopy,” Adv. Opt. Photonics 7(2), 241–275 (2015).
[Crossref]

Farrugia, R.

R. Farrugia, B. Portelli, I. Grech, D. Camilleri, O. Casha, J. Micallef, and E. Gatt, “Air Damping Analysis in Resonating Micro-Mirrors,” Symposium on Design, Test, Integration & Packaging of MEMS and MOEMS (DTIP), pp. 1–5 (2018).

Fischer, R. S.

A. G. York, P. Chandris, D. D. Nogare, J. Head, P. Wawrzusin, R. S. Fischer, A. Chitnis, and H. Shroff, “Instant super-resolution imaging in live cells and embryos via analog image processing,” Nat. Methods 10(11), 1122–1126 (2013).
[Crossref]

Förster, R.

Gao, F.

Gatt, E.

R. Farrugia, B. Portelli, I. Grech, D. Camilleri, O. Casha, J. Micallef, and E. Gatt, “Air Damping Analysis in Resonating Micro-Mirrors,” Symposium on Design, Test, Integration & Packaging of MEMS and MOEMS (DTIP), pp. 1–5 (2018).

Golubovskaya, I. N.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional Resolution Doubling in Wide-field Fluorescence Microscopy by Structured Illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref]

Gorthi, S. S.

M. Saxena, G. Eluru, and S. S. Gorthi, “Structured illumination microscopy,” Adv. Opt. Photonics 7(2), 241–275 (2015).
[Crossref]

Grech, I.

R. Farrugia, B. Portelli, I. Grech, D. Camilleri, O. Casha, J. Micallef, and E. Gatt, “Air Damping Analysis in Resonating Micro-Mirrors,” Symposium on Design, Test, Integration & Packaging of MEMS and MOEMS (DTIP), pp. 1–5 (2018).

Gustafsson, M. G. L.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional Resolution Doubling in Wide-field Fluorescence Microscopy by Structured Illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref]

Hagen, G. M.

Hane, K.

T. Izawa, T. Sasaki, and K. Hane, “Scanning Micro-Mirror with an Electrostatic Spring for Compensation of Hard-Spring Nonlinearity,” Micromachines 8(8), 240 (2017).
[Crossref]

Head, J.

A. G. York, P. Chandris, D. D. Nogare, J. Head, P. Wawrzusin, R. S. Fischer, A. Chitnis, and H. Shroff, “Instant super-resolution imaging in live cells and embryos via analog image processing,” Nat. Methods 10(11), 1122–1126 (2013).
[Crossref]

Heintzmann, R.

Heinyzmann, R.

Hirano, Y.

Y. Hirano, A. Matsuda, and Y. Hiraoka, “Recent advancements in structured-illumination microscopy toward live-cell imaging,” Microscopy 64(4), 237–249 (2015).
[Crossref]

Hiraoka, Y.

Y. Hirano, A. Matsuda, and Y. Hiraoka, “Recent advancements in structured-illumination microscopy toward live-cell imaging,” Microscopy 64(4), 237–249 (2015).
[Crossref]

Hondori, H. M.

H. M. Hondori, M. Khademi, L. Dodakian, S. C. Cramer, and C. V. Lopes, “A Spatial Augmented Reality rehab system for post-stroke hand rehabilitation,” Stud. Health Technol. Inform 184, 279–285 (2013).
[Crossref]

Hou, J.

Huang, Y.

Y. Huang, D. Zhu, L. Jin, C. Kuang, Y. Xu, and X. Liu, “Laser scanning saturated structured illumination microscopy based on phase modulation,” Opt. Commun. 396, 261–266 (2017).
[Crossref]

Hwang, K.

Y.-H. Seo, H. Kim, S.-P. Yang, K. Hwang, and K.-H. Jeong, “Lissajous scanned variable structured illumination for dynamic stereo depth map,” Opt. Express 28(10), 15173–15180 (2020).
[Crossref]

Y.-H. Seo, K. Hwang, H. Kim, and K.-H. Jeong, “Scanning MEMS Mirror for High Definition and High Frame Rate Lissajous Patterns,” Micromachines 10(1), 67 (2019).
[Crossref]

K. Hwang, Y.-H. Seo, J. Ahn, P. Kim, and K.-H. Jeong, “Frequency selection rule for high definition and high frame rate Lissajous scanning,” Sci. Rep. 7(1), 14075 (2017).
[Crossref]

K. Hwang, Y.-H. Seo, and K.-H. Jeong, “Microscanners for optical endomicroscopic applications,” Micro and Nano Syst. Lett. 5(1), 1 (2017).
[Crossref]

Ill, J. A. H.

D. Li, L. Shao, B.-C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. H. Ill, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref]

Izawa, T.

T. Izawa, T. Sasaki, and K. Hane, “Scanning Micro-Mirror with an Electrostatic Spring for Compensation of Hard-Spring Nonlinearity,” Micromachines 8(8), 240 (2017).
[Crossref]

Jeong, K.-H.

Y.-H. Seo, H. Kim, S.-P. Yang, K. Hwang, and K.-H. Jeong, “Lissajous scanned variable structured illumination for dynamic stereo depth map,” Opt. Express 28(10), 15173–15180 (2020).
[Crossref]

S.-P. Yang, J.-B. Kim, Y.-H. Seo, and K.-H. Jeong, “Rotational Offset Microlens Arrays for Highly Efficient Structured Pattern Projection,” Adv. Opt. Mater. 8(16), 2000395 (2020).
[Crossref]

Y.-H. Seo, K. Hwang, H. Kim, and K.-H. Jeong, “Scanning MEMS Mirror for High Definition and High Frame Rate Lissajous Patterns,” Micromachines 10(1), 67 (2019).
[Crossref]

K. Hwang, Y.-H. Seo, J. Ahn, P. Kim, and K.-H. Jeong, “Frequency selection rule for high definition and high frame rate Lissajous scanning,” Sci. Rep. 7(1), 14075 (2017).
[Crossref]

K. Hwang, Y.-H. Seo, and K.-H. Jeong, “Microscanners for optical endomicroscopic applications,” Micro and Nano Syst. Lett. 5(1), 1 (2017).
[Crossref]

D. Keum, H. Jung, and K.-H. Jeong, “Planar Emulation of Natural Compound Eyes,” Small 8(14), 2169–2173 (2012).
[Crossref]

Jiang, X.

Jin, L.

Y. Huang, D. Zhu, L. Jin, C. Kuang, Y. Xu, and X. Liu, “Laser scanning saturated structured illumination microscopy based on phase modulation,” Opt. Commun. 396, 261–266 (2017).
[Crossref]

Jost, A.

Jung, H.

D. Keum, H. Jung, and K.-H. Jeong, “Planar Emulation of Natural Compound Eyes,” Small 8(14), 2169–2173 (2012).
[Crossref]

Kaminski, C. F.

Keum, D.

D. Keum, H. Jung, and K.-H. Jeong, “Planar Emulation of Natural Compound Eyes,” Small 8(14), 2169–2173 (2012).
[Crossref]

Khademi, M.

H. M. Hondori, M. Khademi, L. Dodakian, S. C. Cramer, and C. V. Lopes, “A Spatial Augmented Reality rehab system for post-stroke hand rehabilitation,” Stud. Health Technol. Inform 184, 279–285 (2013).
[Crossref]

Kielhorn, M.

Kim, H.

Y.-H. Seo, H. Kim, S.-P. Yang, K. Hwang, and K.-H. Jeong, “Lissajous scanned variable structured illumination for dynamic stereo depth map,” Opt. Express 28(10), 15173–15180 (2020).
[Crossref]

Y.-H. Seo, K. Hwang, H. Kim, and K.-H. Jeong, “Scanning MEMS Mirror for High Definition and High Frame Rate Lissajous Patterns,” Micromachines 10(1), 67 (2019).
[Crossref]

Kim, J.-B.

S.-P. Yang, J.-B. Kim, Y.-H. Seo, and K.-H. Jeong, “Rotational Offset Microlens Arrays for Highly Efficient Structured Pattern Projection,” Adv. Opt. Mater. 8(16), 2000395 (2020).
[Crossref]

Kim, P.

K. Hwang, Y.-H. Seo, J. Ahn, P. Kim, and K.-H. Jeong, “Frequency selection rule for high definition and high frame rate Lissajous scanning,” Sci. Rep. 7(1), 14075 (2017).
[Crossref]

Kirchhausen, T.

D. Li, L. Shao, B.-C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. H. Ill, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref]

Kleppe, I.

Kong, L.

Krampert, G.

Krížek, P.

Kuang, C.

Y. Huang, D. Zhu, L. Jin, C. Kuang, Y. Xu, and X. Liu, “Laser scanning saturated structured illumination microscopy based on phase modulation,” Opt. Commun. 396, 261–266 (2017).
[Crossref]

Lal, A.

A. Lal, C. Shan, and P. Xi, “Structured illumination microscopy image reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 22(4), 50–63 (2016).
[Crossref]

Lei, M.

X. Zhou, M. Lei, D. Dan, B. Yao, Y. Yang, J. Qian, G. Chen, and P. R. Bianco, “Image recombination transform algorithm for superresolution structured illumination microscopy,” J. Biomed. Opt. 21(9), 096009 (2016).
[Crossref]

Li, D.

D. Li, L. Shao, B.-C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. H. Ill, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref]

Li, M. -J.

W. Liang, K. Murari, Y. Zhang, Y. Chen, M. -J. Li, and X. Li, “Increased Illumination Uniformity and Reduced Photodamage Offered by the Lissajous Scanning in Fiber-Optic Two-Photon Endomicroscopy,” J. Biomed. Opt. 17(2), 021108 (2012).
[Crossref]

Li, X.

W. Liang, K. Murari, Y. Zhang, Y. Chen, M. -J. Li, and X. Li, “Increased Illumination Uniformity and Reduced Photodamage Offered by the Lissajous Scanning in Fiber-Optic Two-Photon Endomicroscopy,” J. Biomed. Opt. 17(2), 021108 (2012).
[Crossref]

Li, Z.

Liang, W.

W. Liang, K. Murari, Y. Zhang, Y. Chen, M. -J. Li, and X. Li, “Increased Illumination Uniformity and Reduced Photodamage Offered by the Lissajous Scanning in Fiber-Optic Two-Photon Endomicroscopy,” J. Biomed. Opt. 17(2), 021108 (2012).
[Crossref]

Liu, X.

Y. Huang, D. Zhu, L. Jin, C. Kuang, Y. Xu, and X. Liu, “Laser scanning saturated structured illumination microscopy based on phase modulation,” Opt. Commun. 396, 261–266 (2017).
[Crossref]

Lopes, C. V.

H. M. Hondori, M. Khademi, L. Dodakian, S. C. Cramer, and C. V. Lopes, “A Spatial Augmented Reality rehab system for post-stroke hand rehabilitation,” Stud. Health Technol. Inform 184, 279–285 (2013).
[Crossref]

Lu-Walther, H.-W.

Mandula, O.

Matsuda, A.

Y. Hirano, A. Matsuda, and Y. Hiraoka, “Recent advancements in structured-illumination microscopy toward live-cell imaging,” Microscopy 64(4), 237–249 (2015).
[Crossref]

Micallef, J.

R. Farrugia, B. Portelli, I. Grech, D. Camilleri, O. Casha, J. Micallef, and E. Gatt, “Air Damping Analysis in Resonating Micro-Mirrors,” Symposium on Design, Test, Integration & Packaging of MEMS and MOEMS (DTIP), pp. 1–5 (2018).

Milkie, D. E.

D. Li, L. Shao, B.-C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. H. Ill, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref]

Moses, B.

D. Li, L. Shao, B.-C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. H. Ill, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref]

Muhamedsalih, H.

Murari, K.

W. Liang, K. Murari, Y. Zhang, Y. Chen, M. -J. Li, and X. Li, “Increased Illumination Uniformity and Reduced Photodamage Offered by the Lissajous Scanning in Fiber-Optic Two-Photon Endomicroscopy,” J. Biomed. Opt. 17(2), 021108 (2012).
[Crossref]

Nogare, D. D.

A. G. York, P. Chandris, D. D. Nogare, J. Head, P. Wawrzusin, R. S. Fischer, A. Chitnis, and H. Shroff, “Instant super-resolution imaging in live cells and embryos via analog image processing,” Nat. Methods 10(11), 1122–1126 (2013).
[Crossref]

Pasham, M.

D. Li, L. Shao, B.-C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. H. Ill, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref]

Portelli, B.

R. Farrugia, B. Portelli, I. Grech, D. Camilleri, O. Casha, J. Micallef, and E. Gatt, “Air Damping Analysis in Resonating Micro-Mirrors,” Symposium on Design, Test, Integration & Packaging of MEMS and MOEMS (DTIP), pp. 1–5 (2018).

Qian, J.

X. Zhou, M. Lei, D. Dan, B. Yao, Y. Yang, J. Qian, G. Chen, and P. R. Bianco, “Image recombination transform algorithm for superresolution structured illumination microscopy,” J. Biomed. Opt. 21(9), 096009 (2016).
[Crossref]

Qiao, C.

Raška, I.

Rieger, B.

Sasaki, T.

T. Izawa, T. Sasaki, and K. Hane, “Scanning Micro-Mirror with an Electrostatic Spring for Compensation of Hard-Spring Nonlinearity,” Micromachines 8(8), 240 (2017).
[Crossref]

Saxena, M.

M. Saxena, G. Eluru, and S. S. Gorthi, “Structured illumination microscopy,” Adv. Opt. Photonics 7(2), 241–275 (2015).
[Crossref]

Sedat, J. W.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional Resolution Doubling in Wide-field Fluorescence Microscopy by Structured Illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref]

Seo, Y.-H.

S.-P. Yang, J.-B. Kim, Y.-H. Seo, and K.-H. Jeong, “Rotational Offset Microlens Arrays for Highly Efficient Structured Pattern Projection,” Adv. Opt. Mater. 8(16), 2000395 (2020).
[Crossref]

Y.-H. Seo, H. Kim, S.-P. Yang, K. Hwang, and K.-H. Jeong, “Lissajous scanned variable structured illumination for dynamic stereo depth map,” Opt. Express 28(10), 15173–15180 (2020).
[Crossref]

Y.-H. Seo, K. Hwang, H. Kim, and K.-H. Jeong, “Scanning MEMS Mirror for High Definition and High Frame Rate Lissajous Patterns,” Micromachines 10(1), 67 (2019).
[Crossref]

K. Hwang, Y.-H. Seo, J. Ahn, P. Kim, and K.-H. Jeong, “Frequency selection rule for high definition and high frame rate Lissajous scanning,” Sci. Rep. 7(1), 14075 (2017).
[Crossref]

K. Hwang, Y.-H. Seo, and K.-H. Jeong, “Microscanners for optical endomicroscopic applications,” Micro and Nano Syst. Lett. 5(1), 1 (2017).
[Crossref]

Shan, C.

A. Lal, C. Shan, and P. Xi, “Structured illumination microscopy image reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 22(4), 50–63 (2016).
[Crossref]

Shao, L.

D. Li, L. Shao, B.-C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. H. Ill, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref]

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional Resolution Doubling in Wide-field Fluorescence Microscopy by Structured Illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref]

Shroff, H.

Y. Wu and H. Shroff, “Faster, sharper, and deeper: structured illumination microscopy for biological imaging,” Nat. Methods 15(12), 1011–1019 (2018).
[Crossref]

A. G. York, P. Chandris, D. D. Nogare, J. Head, P. Wawrzusin, R. S. Fischer, A. Chitnis, and H. Shroff, “Instant super-resolution imaging in live cells and embryos via analog image processing,” Nat. Methods 10(11), 1122–1126 (2013).
[Crossref]

Stallinga, S.

Ströhl, F.

Suo, J.

Wang, C. J. R.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional Resolution Doubling in Wide-field Fluorescence Microscopy by Structured Illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref]

Wawrzusin, P.

A. G. York, P. Chandris, D. D. Nogare, J. Head, P. Wawrzusin, R. S. Fischer, A. Chitnis, and H. Shroff, “Instant super-resolution imaging in live cells and embryos via analog image processing,” Nat. Methods 10(11), 1122–1126 (2013).
[Crossref]

Wicker, K.

Wu, Y.

Y. Wu and H. Shroff, “Faster, sharper, and deeper: structured illumination microscopy for biological imaging,” Nat. Methods 15(12), 1011–1019 (2018).
[Crossref]

Xi, P.

A. Lal, C. Shan, and P. Xi, “Structured illumination microscopy image reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 22(4), 50–63 (2016).
[Crossref]

Xu, P.

D. Li, L. Shao, B.-C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. H. Ill, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref]

Xu, Y.

Y. Huang, D. Zhu, L. Jin, C. Kuang, Y. Xu, and X. Liu, “Laser scanning saturated structured illumination microscopy based on phase modulation,” Opt. Commun. 396, 261–266 (2017).
[Crossref]

Yang, J.

J. Yang and H. Chen, The 3D reconstruction of face model with active structured light and stereo vision fusion, 3rd IEEE International Conference on Computer and Communications (ICCC), pp. 1902–1906 (2017)

Yang, S.-P.

S.-P. Yang, J.-B. Kim, Y.-H. Seo, and K.-H. Jeong, “Rotational Offset Microlens Arrays for Highly Efficient Structured Pattern Projection,” Adv. Opt. Mater. 8(16), 2000395 (2020).
[Crossref]

Y.-H. Seo, H. Kim, S.-P. Yang, K. Hwang, and K.-H. Jeong, “Lissajous scanned variable structured illumination for dynamic stereo depth map,” Opt. Express 28(10), 15173–15180 (2020).
[Crossref]

Yang, Y.

X. Zhou, M. Lei, D. Dan, B. Yao, Y. Yang, J. Qian, G. Chen, and P. R. Bianco, “Image recombination transform algorithm for superresolution structured illumination microscopy,” J. Biomed. Opt. 21(9), 096009 (2016).
[Crossref]

Yao, B.

X. Zhou, M. Lei, D. Dan, B. Yao, Y. Yang, J. Qian, G. Chen, and P. R. Bianco, “Image recombination transform algorithm for superresolution structured illumination microscopy,” J. Biomed. Opt. 21(9), 096009 (2016).
[Crossref]

York, A. G.

A. G. York, P. Chandris, D. D. Nogare, J. Head, P. Wawrzusin, R. S. Fischer, A. Chitnis, and H. Shroff, “Instant super-resolution imaging in live cells and embryos via analog image processing,” Nat. Methods 10(11), 1122–1126 (2013).
[Crossref]

Zhang, M.

D. Li, L. Shao, B.-C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. H. Ill, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref]

Zhang, X.

D. Li, L. Shao, B.-C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. H. Ill, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref]

Zhang, Y.

W. Liang, K. Murari, Y. Zhang, Y. Chen, M. -J. Li, and X. Li, “Increased Illumination Uniformity and Reduced Photodamage Offered by the Lissajous Scanning in Fiber-Optic Two-Photon Endomicroscopy,” J. Biomed. Opt. 17(2), 021108 (2012).
[Crossref]

Zhou, X.

X. Zhou, M. Lei, D. Dan, B. Yao, Y. Yang, J. Qian, G. Chen, and P. R. Bianco, “Image recombination transform algorithm for superresolution structured illumination microscopy,” J. Biomed. Opt. 21(9), 096009 (2016).
[Crossref]

Zhu, D.

Y. Huang, D. Zhu, L. Jin, C. Kuang, Y. Xu, and X. Liu, “Laser scanning saturated structured illumination microscopy based on phase modulation,” Opt. Commun. 396, 261–266 (2017).
[Crossref]

Adv. Opt. Mater. (1)

S.-P. Yang, J.-B. Kim, Y.-H. Seo, and K.-H. Jeong, “Rotational Offset Microlens Arrays for Highly Efficient Structured Pattern Projection,” Adv. Opt. Mater. 8(16), 2000395 (2020).
[Crossref]

Adv. Opt. Photonics (1)

M. Saxena, G. Eluru, and S. S. Gorthi, “Structured illumination microscopy,” Adv. Opt. Photonics 7(2), 241–275 (2015).
[Crossref]

Biophys. J. (1)

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional Resolution Doubling in Wide-field Fluorescence Microscopy by Structured Illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Lal, C. Shan, and P. Xi, “Structured illumination microscopy image reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 22(4), 50–63 (2016).
[Crossref]

J. Biomed. Opt. (2)

X. Zhou, M. Lei, D. Dan, B. Yao, Y. Yang, J. Qian, G. Chen, and P. R. Bianco, “Image recombination transform algorithm for superresolution structured illumination microscopy,” J. Biomed. Opt. 21(9), 096009 (2016).
[Crossref]

W. Liang, K. Murari, Y. Zhang, Y. Chen, M. -J. Li, and X. Li, “Increased Illumination Uniformity and Reduced Photodamage Offered by the Lissajous Scanning in Fiber-Optic Two-Photon Endomicroscopy,” J. Biomed. Opt. 17(2), 021108 (2012).
[Crossref]

Micro and Nano Syst. Lett. (1)

K. Hwang, Y.-H. Seo, and K.-H. Jeong, “Microscanners for optical endomicroscopic applications,” Micro and Nano Syst. Lett. 5(1), 1 (2017).
[Crossref]

Micromachines (2)

T. Izawa, T. Sasaki, and K. Hane, “Scanning Micro-Mirror with an Electrostatic Spring for Compensation of Hard-Spring Nonlinearity,” Micromachines 8(8), 240 (2017).
[Crossref]

Y.-H. Seo, K. Hwang, H. Kim, and K.-H. Jeong, “Scanning MEMS Mirror for High Definition and High Frame Rate Lissajous Patterns,” Micromachines 10(1), 67 (2019).
[Crossref]

Microscopy (1)

Y. Hirano, A. Matsuda, and Y. Hiraoka, “Recent advancements in structured-illumination microscopy toward live-cell imaging,” Microscopy 64(4), 237–249 (2015).
[Crossref]

Nat. Methods (2)

Y. Wu and H. Shroff, “Faster, sharper, and deeper: structured illumination microscopy for biological imaging,” Nat. Methods 15(12), 1011–1019 (2018).
[Crossref]

A. G. York, P. Chandris, D. D. Nogare, J. Head, P. Wawrzusin, R. S. Fischer, A. Chitnis, and H. Shroff, “Instant super-resolution imaging in live cells and embryos via analog image processing,” Nat. Methods 10(11), 1122–1126 (2013).
[Crossref]

Opt. Commun. (1)

Y. Huang, D. Zhu, L. Jin, C. Kuang, Y. Xu, and X. Liu, “Laser scanning saturated structured illumination microscopy based on phase modulation,” Opt. Commun. 396, 261–266 (2017).
[Crossref]

Opt. Express (7)

R. Förster, H.-W. Lu-Walther, A. Jost, M. Kielhorn, K. Wicker, and R. Heinyzmann, “Simple structured illumination microscope setup with high acquisition speed by using a spatial light modulator,” Opt. Express 22(17), 20663–20677 (2014).
[Crossref]

O. Mandula, M. Kielhorn, K. Wicker, G. Krampert, I. Kleppe, and R. Heintzmann, “Line scan-structured illumination microscopy super-resolution imaging in thick fluorescent samples,” Opt. Express 20(22), 24167–24174 (2012).
[Crossref]

F. Gao, H. Muhamedsalih, and X. Jiang, “Surface and thickness measurements of transparent thin-film layers utilizing modulation-based structured-illumination microscopy,” Opt. Express 26(3), 2944–2953 (2018).
[Crossref]

N. Chakrova, R. Heintzmann, B. Rieger, and S. Stallinga, “Studying different illumination patterns for resolution improvement in fluorescence microscopy,” Opt. Express 23(24), 31367–31383 (2015).
[Crossref]

P. Křížek, I. Raška, and G. M. Hagen, “Flexible structured illumination microscope with a programmable illumination array,” Opt. Express 20(22), 24585–24599 (2012).
[Crossref]

Z. Li, J. Hou, J. Suo, C. Qiao, L. Kong, and Q. Dai, “Contrast and resolution enhanced optical sectioning in scattering tissue using line-scanning two-photon structured illumination microscopy,” Opt. Express 25(25), 32010–32020 (2017).
[Crossref]

Y.-H. Seo, H. Kim, S.-P. Yang, K. Hwang, and K.-H. Jeong, “Lissajous scanned variable structured illumination for dynamic stereo depth map,” Opt. Express 28(10), 15173–15180 (2020).
[Crossref]

Optica (1)

Sci. Rep. (1)

K. Hwang, Y.-H. Seo, J. Ahn, P. Kim, and K.-H. Jeong, “Frequency selection rule for high definition and high frame rate Lissajous scanning,” Sci. Rep. 7(1), 14075 (2017).
[Crossref]

Science (1)

D. Li, L. Shao, B.-C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. H. Ill, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref]

Small (1)

D. Keum, H. Jung, and K.-H. Jeong, “Planar Emulation of Natural Compound Eyes,” Small 8(14), 2169–2173 (2012).
[Crossref]

Stud. Health Technol. Inform (1)

H. M. Hondori, M. Khademi, L. Dodakian, S. C. Cramer, and C. V. Lopes, “A Spatial Augmented Reality rehab system for post-stroke hand rehabilitation,” Stud. Health Technol. Inform 184, 279–285 (2013).
[Crossref]

Other (2)

J. Yang and H. Chen, The 3D reconstruction of face model with active structured light and stereo vision fusion, 3rd IEEE International Conference on Computer and Communications (ICCC), pp. 1902–1906 (2017)

R. Farrugia, B. Portelli, I. Grech, D. Camilleri, O. Casha, J. Micallef, and E. Gatt, “Air Damping Analysis in Resonating Micro-Mirrors,” Symposium on Design, Test, Integration & Packaging of MEMS and MOEMS (DTIP), pp. 1–5 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Lissajous scanning structured illumination microscopy (LS-SIM). (a) Working principle of stripe illumination patterns. Lissajous scan trajectory with laser modulation at least common multiple (LCM) of biaxial scanning frequencies forms dot array illumination patterns. One axis’ scanning frequency shift to the frequency in co-prime relation with non-shifted one results in phase fixation of a given axis and finally forms high contrast stripe pattern. (b) A schematic illustration of the experimental set-up for LS-SIM. (c) Patterned frames are acquired by shifting either phase or orientation of the stripe SI pattern, which causes the extension of passband in the spatial frequency domain. The LS-SIM extracts high spatial frequency information of a single target after the reconstruction of multiple patterned frames and finally creates a single resolution-enhanced image.
Fig. 2.
Fig. 2. Microfabrication of Lissajous micromirror and the Q-factor control parameter study. (a) The microfabrication procedure of Lissajous micromirror using a standard SOI process. (b) A SEM image of the fabricated Lissajous micromirror. The key operational structures including flexure and comb-drive are finely defined. (c-e) The Q-factor control for HDHF Lissajous scanning. Broad scanning frequency selection range is highly required for the HDHF Lissajous scanning. The Q-factor of Lissajous micromirror is manipulated depending on the operational damping by mirror diameter and the spring constant of flexure by flexure width.
Fig. 3.
Fig. 3. Opto-mechanical properties of the selected Lissajous micromirror. (a) The scanning frequency response. The micromirror resonates at 4,475 Hz and 6,760 Hz with bandwidth of 12 Hz and 150 Hz for the outer frame and the inner mirror, respectively. (b) The frame-rate and the fill-factor of Lissajous micromirror. The greatest common divisor (GCD) of biaxial scanning frequencies indicates the frame-rate of formed Lissajous scanning. The frame-rate and the fill-factor can be flexibly controlled by the scanning frequency selection rule. Reduction in the GCD causes an increase in the lobe number N and finally, the fill-factor of the Lissajous scanning increases.
Fig. 4.
Fig. 4. The Lissajous scanned SI along with the GCD control. (a) The Lissajous scanned SI formation. The Lissajous micromirror operates at pseudo-resonance and the illumination pattern is statically formed by modulating a laser intensity at the LCM of biaxial scanning frequencies. (b) The Lissajous scanned SI from high GCD to low order. (1st row: simulated SI, 2nd row: captured SI) As the GCD decreases, highly dense illumination pattern is formed. The selected frequency sets are indicated from top to bottom as from coarse (high GCD) to dense (low GCD) structured illumination. (c) The GCD color map of scanning frequency sets within the operational range. Only a limited number of scanning frequency sets do not violate the minimum GCD condition.
Fig. 5.
Fig. 5. A scanning module for LS-SIM. (a-b) A Lissajous scanned SI module is fully packaged with the fiber-optic collimator and the PCB wire-bonded Lissajous micromirror.
Fig. 6.
Fig. 6. Microscopic fluorescent images through LS-SIM and a comparison between the conventional fluorescent microscopy and the LS-SIM. (a,d) Reference fluorescent target imaging to prove resolution enhancement of the LS-SIM. (b,c,e) The Fourier magnitude spectrum, the line-edge sharpness, and the P-V ratio are acquired for additional supporting analysis. (WF: Widefield fluorescent microscopy, LS-SIM: Lissajous scanning SIM)
Fig. 7.
Fig. 7. The LS-SIM in the cellular imaging application. (a-b) The LS-SIM has been demonstrated with human lung cancer cell PC-9 cells. Various fluorescent dyes such as PI dye and cytoskeleton fluorescent dye, are used to prove high compatibility with common fluorescent dyes. The reconstructed LS-SIM images experience a significant resolution enhancement. (RM: Reflectance microscopy, WF: Widefield fluorescent microscopy, CLSM: Confocal laser scanning microscopy, LS-SIM: Lissajous scanning SIM)