Abstract

The myelin figure (MF) is one of the basic structures of lipids, and the study of their formation and the effect of various parameters on their growth is useful in understanding several biological processes. In this paper, we address the influence of the pH degree of the surrounding medium on MF dynamics. We introduce a tunable shearing digital holographic microscopy arrangement to obtain quantitative and volumetric information about the complex growth of MFs. Our results show that (1) the time evolution of relative length and volume changes of MFs follows a power-law, (2) the acidity facilitates the growth rate, and (3) the acidic environment causes the formation of thicker MFs.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Peretó, P. López-García, and D. Moreira, “Ancestral lipid biosynthesis and early membrane evolution,” Trends Biochem. Sci. 29(9), 469–477 (2004).
    [Crossref]
  2. D. Bach and E. Wachtel, “Phospholipid/cholesterol model membranes: formation of cholesterol crystallites,” Biochim. Biophys. Acta, Biomembr 1610(2), 187–197 (2003).
    [Crossref]
  3. C. M. Rosetti, A. Mangiarotti, and N. Wilke, “Sizes of lipid domains: What do we know from artificial lipid membranes? what are the possible shared features with membrane rafts in cells?” Biochim. Biophys. Acta, Biomembr 1859(5), 789–802 (2017).
    [Crossref]
  4. G. Paredes-Quijada, H. Aranda-Espinoza, and A. Maldonado, “Shapes of mixed phospholipid vesicles,” J. Biol. Phys. 32(2), 177–181 (2006).
    [Crossref]
  5. A. D. Petelska and Z. A. Figaszewski, “Effect of pH on the interfacial tension of lipid bilayer membrane,” Biophys. J. 78(2), 812–817 (2000).
    [Crossref]
  6. K. S. Vetrivel and G. Thinakaran, “Membrane rafts in Alzheimer’s disease beta-amyloid production,” Biochim. Biophys. Acta, Biomembr 1801(8), 860–867 (2010).
    [Crossref]
  7. L. Kalvodova, N. Kahya, P. Schwille, R. Ehehalt, P. Verkade, D. Drechsel, and K. Simons, “Lipids as modulators of proteolytic activity of bace involvement of cholesterol, glycosphingolipids, and anionic phospholipids in vitro,” J. Biol. Chem. 280(44), 36815–36823 (2005).
    [Crossref]
  8. F. Mesa-Herrera, L. Taoro-González, C. Valdés-Baizabal, M. Diaz, and R. Marín, “Lipid and lipid raft alteration in aging and neurodegenerative diseases: A window for the development of new biomarkers,” Int. J. Mol. Sci. 20(15), 3810 (2019).
    [Crossref]
  9. Y. S. Tarahovsky, A. L. Arsenault, R. C. MacDonald, T. J. McIntosh, and R. M. Epand, “Electrostatic control of phospholipid polymorphism,” Biophys. J. 79(6), 3193–3200 (2000).
    [Crossref]
  10. K. Larsson, Lipids: Molecular Organization, Physical Functions and Technical Applications, vol. 5 (The Oily Press, 1994).
  11. A. Sharma and U. S. Sharma, “Liposomes in drug delivery: progress and limitations,” Int. J. Pharm. 154(2), 123–140 (1997).
    [Crossref]
  12. I. Sakurai, T. Suzuki, and S. Sakurai, “Cross-sectional view of myelin figures,” Biochim. Biophys. Acta, Biomembr 985(1), 101–105 (1989).
    [Crossref]
  13. L.-N. Zou and S. R. Nagel, “Stability and growth of single myelin figures,” Phys. Rev. Lett. 96(13), 138301 (2006).
    [Crossref]
  14. Y. Honda, K. Tsunematsu, A. Suzuki, and T. Akino, “Changes in phospholipids in bronchoalveolar lavage fluid of patients with interstitial lung diseases,” Lung 166(1), 293–301 (1988).
    [Crossref]
  15. A. Vejux, E. Kahn, F. Ménétrier, T. Montange, J. Lherminier, J.-M. Riedinger, and G. Lizard, “Cytotoxic oxysterols induce caspase-independent myelin figure formation and caspase-dependent polar lipid accumulation,” Histochem. Cell Biol. 127(6), 609–624 (2007).
    [Crossref]
  16. M. Buchanan, J. Arrault, and M. Cates, “Swelling and dissolution of lamellar phases: role of bilayer organization,” Langmuir 14(26), 7371–7377 (1998).
    [Crossref]
  17. A. P. Kennedy, J. Sutcliffe, and J.-X. Cheng, “Molecular composition and orientation in myelin figures characterized by coherent anti-stokes Raman scattering microscopy,” Langmuir 21(14), 6478–6486 (2005).
    [Crossref]
  18. E. Evans, H. Bowman, A. Leung, D. Needham, and D. Tirrell, “Biomembrane templates for nanoscale conduits and networks,” Science 273(5277), 933–935 (1996).
    [Crossref]
  19. W. Stoeckenius, “An electron microscope study of myelin figures,” The J. Cell Biol. 5(3), 491–500 (1959).
    [Crossref]
  20. L. Tayebi, M. Mozafari, D. Vashaee, and A. N. Parikh, “Structural configuration of myelin figures using fluorescence microscopy,” Int. J. Photoenergy 2012, 1–7 (2012).
    [Crossref]
  21. N. Fathi, A.-R. Moradi, M. Habibi, D. Vashaee, and L. Tayebi, “Digital holographic microscopy of the myelin figure structural dynamics and the effect of thermal gradient,” Biomed. Opt. Express 4(6), 950–957 (2013).
    [Crossref]
  22. C. Santangelo and P. Pincus, “Coiling instabilities of multilamellar tubes,” Phys. Rev. E 66(6), 061501 (2002).
    [Crossref]
  23. R. Mosaviani, A.-R. Moradi, and L. Tayebi, “Effect of humidity on liquid-crystalline myelin figure growth using digital holographic microscopy,” Mater. Lett. 173, 162–166 (2016).
    [Crossref]
  24. M. Kummrow and W. Helfrich, “Deformation of giant lipid vesicles by electric fields,” Phys. Rev. A 44(12), 8356–8360 (1991).
    [Crossref]
  25. K. Mishima, K. Satoh, and T. Ogihara, “The effects of ph and ions on myelin figure formation in phospholipid-water system,” Chem. Phys. Lett. 106(6), 513–516 (1984).
    [Crossref]
  26. K. Mishima, T. Ogihara, M. Tomita, and K. Satoh, “Growth rate of myelin figures for phosphatidylcholine and phosphatidylethanolamine,” Chem. Phys. Lipids 62(2), 87–91 (1992).
    [Crossref]
  27. I. Sakurai and Y. Kawamura, “Growth mechanism of myelin figures of phosphatidylcholine,” Biochim. Biophys. Acta, Biomembr. 777(2), 347–351 (1984).
    [Crossref]
  28. L.-N. Zou, “Myelin figures: the buckling and flow of wet soap,” Phys. Rev. E 79(6), 061502 (2009).
    [Crossref]
  29. B. Ruozi, D. Belletti, A. Tombesi, G. Tosi, L. Bondioli, F. Forni, and M. A. Vandelli, “AFM, ESEM, TEM, and CLSM in liposomal characterization: a comparative study,” Int. J. Nanomed. 6, 557 (2011).
    [Crossref]
  30. S. Bibi, R. Kaur, M. Henriksen-Lacey, S. E. McNeil, J. Wilkhu, E. Lattmann, D. Christensen, A. R. Mohammed, and Y. Perrie, “Microscopy imaging of liposomes: from coverslips to environmental sem,” Int. J. Pharm. 417(1-2), 138–150 (2011).
    [Crossref]
  31. R. Nallamothu, G. C. Wood, C. B. Pattillo, R. C. Scott, M. F. Kiani, B. M. Moore, and L. A. Thoma, “A tumor vasculature targeted liposome delivery system for combretastatin a4: design, characterization, and in vitro evaluation,” AAPS PharmSciTech 7(2), E7–E16 (2006).
    [Crossref]
  32. H. Bouvrais, T. Pott, L. A. Bagatolli, J. H. Ipsen, and P. Méléard, “Impact of membrane-anchored fluorescent probes on the mechanical properties of lipid bilayers,” Biochim. Biophys. Acta, Biomembr. 1798(7), 1333–1337 (2010).
    [Crossref]
  33. D. Murphy and M. Davidson, “Confocal laser scanning microscopy,” Fundamentals of Light Microscopy and Electronic Imaging pp. 265–305 (2012).
  34. L. Reissig, D. J. Fairhurst, J. Leng, M. E. Cates, A. R. Mount, and S. U. Egelhaaf, “Three-dimensional structure and growth of myelins,” Langmuir 26(19), 15192–15199 (2010).
    [Crossref]
  35. O. Mertins and R. Dimova, “Insights on the interactions of chitosan with phospholipid vesicles. part II: Membrane stiffening and pore formation,” Langmuir 29(47), 14552–14559 (2013).
    [Crossref]
  36. D. B. Murphy, Fundamentals of Light Microscopy and Electronic Imaging (John Wiley & Sons, 2002).
  37. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
    [Crossref]
  38. F. Yi, I. Moon, B. Javidi, D. Boss, and P. P. Marquet, “Automated segmentation of multiple red blood cells with digital holographic microscopy,” J. Biomed. Opt. 18(2), 026006 (2013).
    [Crossref]
  39. V. Farzamrad, A.-R. Moradi, A. Darudi, and L. Tayebi, “Digital holographic microscopy of phase separation in multicomponent lipid membranes,” J. Biomed. Opt. 21(12), 126016 (2016).
    [Crossref]
  40. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of fresnel off-axis holograms,” Appl. Opt. 38(34), 6994–7001 (1999).
    [Crossref]
  41. A. Anand, V. K. Chhaniwal, and B. Javidi, “Real-time digital holographic microscopy for phase contrast 3D imaging of dynamic phenomena,” J. Disp. Technol. 6(10), 500–505 (2010).
  42. O. Matoba, X. Quan, P. Xia, Y. Awatsuji, and T. Nomura, “Multimodal imaging based on digital holography,” Proc. IEEE 105(5), 906–923 (2017).
    [Crossref]
  43. V. Farzam Rad, R. Tavakkoli, A.-R. Moradi, A. Anand, and B. Javidi, “Calcium effect on membrane of an optically trapped erythrocyte studied by digital holographic microscopy,” Appl. Phys. Lett. 111(8), 083701 (2017).
    [Crossref]
  44. Y. Jo, H. Cho, S. Y. Lee, G. Choi, G. Kim, H.-S. Min, and Y. Park, “Quantitative phase imaging and artificial intelligence: a review,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–14 (2019).
    [Crossref]
  45. V. Micó, J. Zheng, J. Garcia, Z. Zalevsky, and P. Gao, “Resolution enhancement in quantitative phase microscopy,” Adv. Opt. Photonics 11(1), 135–214 (2019).
    [Crossref]
  46. V. Abbasian, Y. Ganjkhani, E. A. Akhlaghi, A. Anand, B. Javidi, and A.-R. Moradi, “Super-resolved microsphere-assisted mirau digital holography by oblique illumination,” J. Opt. 20(6), 065301 (2018).
    [Crossref]
  47. B. P. Thiesing, C. J. Mann, and S. Dryepondt, “High temperature measurements of martensitic transformations using digital holography,” Appl. Opt. 52(19), 4426–4432 (2013).
    [Crossref]
  48. M. K. Kim, “Digital holographic microscopy,” in Digital Holographic Microscopy, (Springer, 2011), pp. 149–190.
  49. V. Chhaniwal, A. S. Singh, R. A. Leitgeb, B. Javidi, and A. Anand, “Quantitative phase-contrast imaging with compact digital holographic microscope employing lloyds mirror,” Opt. Lett. 37(24), 5127–5129 (2012).
    [Crossref]
  50. P. Vora, V. Trivedi, S. Mahajan, N. R. Patel, M. Joglekar, V. Chhaniwal, A.-R. Moradi, B. Javidi, and A. Anand, “Wide field of view common-path lateral-shearing digital holographic interference microscope,” J. Biomed. Opt. 22(12), 126001 (2017).
    [Crossref]
  51. P. Ferraro, A. Wax, and Z. Zalevsky, Coherent Light Microscopy: Imaging and Quantitative Phase Analysis, vol. 46 (Springer Science & Business Media, 2011).
  52. A. S. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,” Opt. Express 20(21), 23617–23622 (2012).
    [Crossref]
  53. T. O’Connor, A. Anand, B. Andemariam, and B. Javidi, “Deep learning-based cell identification and disease diagnosis using spatio-temporal cellular dynamics in compact digital holographic microscopy,” Biomed. Opt. Express 11(8), 4491–4508 (2020).
    [Crossref]
  54. A. Anand, I. Moon, and B. Javidi, “Automated disease identification with 3-d optical imaging: a medical diagnostic tool,” Proc. IEEE 105(5), 924–946 (2017).
    [Crossref]
  55. I. Sakurai, “Concentration gradient along the long axis of myelin figures of phosphatidylcholine,” Biochim. Biophys. Acta, Biomembr. 815(1), 149–152 (1985).
    [Crossref]
  56. M. Buchanan, S. U. Egelhaaf, and M. E. Cates, “Dynamics of interface instabilities in nonionic lamellar phases,” Langmuir 16(8), 3718–3726 (2000).
    [Crossref]
  57. R. Taribagil, M. Arunagirinathan, C. Manohar, and J. R. Bellare, “Extended time range modeling of myelin growth,” J. Colloid Interface Sci. 289(1), 242–248 (2005).
    [Crossref]
  58. J.-R. Huang, L.-N. Zou, and T. A. Witten, “Confined multilamellae prefer cylindrical morphology,” Eur. Phys. J. E 18(3), 279–285 (2005).
    [Crossref]
  59. V. Abbasian, S. Rasouli, and A.-R. Moradi, “Microsphere-assisted self-referencing digital holographic microscopy in transmission mode,” J. Opt. 21(4), 045301 (2019).
    [Crossref]
  60. B. Gutmann and H. Weber, “Phase unwrapping with the branch-cut method: role of phase-field direction,” Appl. Opt. 39(26), 4802–4816 (2000).
    [Crossref]

2020 (1)

2019 (4)

V. Abbasian, S. Rasouli, and A.-R. Moradi, “Microsphere-assisted self-referencing digital holographic microscopy in transmission mode,” J. Opt. 21(4), 045301 (2019).
[Crossref]

Y. Jo, H. Cho, S. Y. Lee, G. Choi, G. Kim, H.-S. Min, and Y. Park, “Quantitative phase imaging and artificial intelligence: a review,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–14 (2019).
[Crossref]

V. Micó, J. Zheng, J. Garcia, Z. Zalevsky, and P. Gao, “Resolution enhancement in quantitative phase microscopy,” Adv. Opt. Photonics 11(1), 135–214 (2019).
[Crossref]

F. Mesa-Herrera, L. Taoro-González, C. Valdés-Baizabal, M. Diaz, and R. Marín, “Lipid and lipid raft alteration in aging and neurodegenerative diseases: A window for the development of new biomarkers,” Int. J. Mol. Sci. 20(15), 3810 (2019).
[Crossref]

2018 (1)

V. Abbasian, Y. Ganjkhani, E. A. Akhlaghi, A. Anand, B. Javidi, and A.-R. Moradi, “Super-resolved microsphere-assisted mirau digital holography by oblique illumination,” J. Opt. 20(6), 065301 (2018).
[Crossref]

2017 (5)

O. Matoba, X. Quan, P. Xia, Y. Awatsuji, and T. Nomura, “Multimodal imaging based on digital holography,” Proc. IEEE 105(5), 906–923 (2017).
[Crossref]

V. Farzam Rad, R. Tavakkoli, A.-R. Moradi, A. Anand, and B. Javidi, “Calcium effect on membrane of an optically trapped erythrocyte studied by digital holographic microscopy,” Appl. Phys. Lett. 111(8), 083701 (2017).
[Crossref]

A. Anand, I. Moon, and B. Javidi, “Automated disease identification with 3-d optical imaging: a medical diagnostic tool,” Proc. IEEE 105(5), 924–946 (2017).
[Crossref]

P. Vora, V. Trivedi, S. Mahajan, N. R. Patel, M. Joglekar, V. Chhaniwal, A.-R. Moradi, B. Javidi, and A. Anand, “Wide field of view common-path lateral-shearing digital holographic interference microscope,” J. Biomed. Opt. 22(12), 126001 (2017).
[Crossref]

C. M. Rosetti, A. Mangiarotti, and N. Wilke, “Sizes of lipid domains: What do we know from artificial lipid membranes? what are the possible shared features with membrane rafts in cells?” Biochim. Biophys. Acta, Biomembr 1859(5), 789–802 (2017).
[Crossref]

2016 (2)

R. Mosaviani, A.-R. Moradi, and L. Tayebi, “Effect of humidity on liquid-crystalline myelin figure growth using digital holographic microscopy,” Mater. Lett. 173, 162–166 (2016).
[Crossref]

V. Farzamrad, A.-R. Moradi, A. Darudi, and L. Tayebi, “Digital holographic microscopy of phase separation in multicomponent lipid membranes,” J. Biomed. Opt. 21(12), 126016 (2016).
[Crossref]

2013 (4)

O. Mertins and R. Dimova, “Insights on the interactions of chitosan with phospholipid vesicles. part II: Membrane stiffening and pore formation,” Langmuir 29(47), 14552–14559 (2013).
[Crossref]

N. Fathi, A.-R. Moradi, M. Habibi, D. Vashaee, and L. Tayebi, “Digital holographic microscopy of the myelin figure structural dynamics and the effect of thermal gradient,” Biomed. Opt. Express 4(6), 950–957 (2013).
[Crossref]

F. Yi, I. Moon, B. Javidi, D. Boss, and P. P. Marquet, “Automated segmentation of multiple red blood cells with digital holographic microscopy,” J. Biomed. Opt. 18(2), 026006 (2013).
[Crossref]

B. P. Thiesing, C. J. Mann, and S. Dryepondt, “High temperature measurements of martensitic transformations using digital holography,” Appl. Opt. 52(19), 4426–4432 (2013).
[Crossref]

2012 (3)

2011 (2)

B. Ruozi, D. Belletti, A. Tombesi, G. Tosi, L. Bondioli, F. Forni, and M. A. Vandelli, “AFM, ESEM, TEM, and CLSM in liposomal characterization: a comparative study,” Int. J. Nanomed. 6, 557 (2011).
[Crossref]

S. Bibi, R. Kaur, M. Henriksen-Lacey, S. E. McNeil, J. Wilkhu, E. Lattmann, D. Christensen, A. R. Mohammed, and Y. Perrie, “Microscopy imaging of liposomes: from coverslips to environmental sem,” Int. J. Pharm. 417(1-2), 138–150 (2011).
[Crossref]

2010 (4)

H. Bouvrais, T. Pott, L. A. Bagatolli, J. H. Ipsen, and P. Méléard, “Impact of membrane-anchored fluorescent probes on the mechanical properties of lipid bilayers,” Biochim. Biophys. Acta, Biomembr. 1798(7), 1333–1337 (2010).
[Crossref]

L. Reissig, D. J. Fairhurst, J. Leng, M. E. Cates, A. R. Mount, and S. U. Egelhaaf, “Three-dimensional structure and growth of myelins,” Langmuir 26(19), 15192–15199 (2010).
[Crossref]

K. S. Vetrivel and G. Thinakaran, “Membrane rafts in Alzheimer’s disease beta-amyloid production,” Biochim. Biophys. Acta, Biomembr 1801(8), 860–867 (2010).
[Crossref]

A. Anand, V. K. Chhaniwal, and B. Javidi, “Real-time digital holographic microscopy for phase contrast 3D imaging of dynamic phenomena,” J. Disp. Technol. 6(10), 500–505 (2010).

2009 (1)

L.-N. Zou, “Myelin figures: the buckling and flow of wet soap,” Phys. Rev. E 79(6), 061502 (2009).
[Crossref]

2007 (1)

A. Vejux, E. Kahn, F. Ménétrier, T. Montange, J. Lherminier, J.-M. Riedinger, and G. Lizard, “Cytotoxic oxysterols induce caspase-independent myelin figure formation and caspase-dependent polar lipid accumulation,” Histochem. Cell Biol. 127(6), 609–624 (2007).
[Crossref]

2006 (3)

L.-N. Zou and S. R. Nagel, “Stability and growth of single myelin figures,” Phys. Rev. Lett. 96(13), 138301 (2006).
[Crossref]

G. Paredes-Quijada, H. Aranda-Espinoza, and A. Maldonado, “Shapes of mixed phospholipid vesicles,” J. Biol. Phys. 32(2), 177–181 (2006).
[Crossref]

R. Nallamothu, G. C. Wood, C. B. Pattillo, R. C. Scott, M. F. Kiani, B. M. Moore, and L. A. Thoma, “A tumor vasculature targeted liposome delivery system for combretastatin a4: design, characterization, and in vitro evaluation,” AAPS PharmSciTech 7(2), E7–E16 (2006).
[Crossref]

2005 (5)

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
[Crossref]

L. Kalvodova, N. Kahya, P. Schwille, R. Ehehalt, P. Verkade, D. Drechsel, and K. Simons, “Lipids as modulators of proteolytic activity of bace involvement of cholesterol, glycosphingolipids, and anionic phospholipids in vitro,” J. Biol. Chem. 280(44), 36815–36823 (2005).
[Crossref]

A. P. Kennedy, J. Sutcliffe, and J.-X. Cheng, “Molecular composition and orientation in myelin figures characterized by coherent anti-stokes Raman scattering microscopy,” Langmuir 21(14), 6478–6486 (2005).
[Crossref]

R. Taribagil, M. Arunagirinathan, C. Manohar, and J. R. Bellare, “Extended time range modeling of myelin growth,” J. Colloid Interface Sci. 289(1), 242–248 (2005).
[Crossref]

J.-R. Huang, L.-N. Zou, and T. A. Witten, “Confined multilamellae prefer cylindrical morphology,” Eur. Phys. J. E 18(3), 279–285 (2005).
[Crossref]

2004 (1)

J. Peretó, P. López-García, and D. Moreira, “Ancestral lipid biosynthesis and early membrane evolution,” Trends Biochem. Sci. 29(9), 469–477 (2004).
[Crossref]

2003 (1)

D. Bach and E. Wachtel, “Phospholipid/cholesterol model membranes: formation of cholesterol crystallites,” Biochim. Biophys. Acta, Biomembr 1610(2), 187–197 (2003).
[Crossref]

2002 (1)

C. Santangelo and P. Pincus, “Coiling instabilities of multilamellar tubes,” Phys. Rev. E 66(6), 061501 (2002).
[Crossref]

2000 (4)

A. D. Petelska and Z. A. Figaszewski, “Effect of pH on the interfacial tension of lipid bilayer membrane,” Biophys. J. 78(2), 812–817 (2000).
[Crossref]

Y. S. Tarahovsky, A. L. Arsenault, R. C. MacDonald, T. J. McIntosh, and R. M. Epand, “Electrostatic control of phospholipid polymorphism,” Biophys. J. 79(6), 3193–3200 (2000).
[Crossref]

B. Gutmann and H. Weber, “Phase unwrapping with the branch-cut method: role of phase-field direction,” Appl. Opt. 39(26), 4802–4816 (2000).
[Crossref]

M. Buchanan, S. U. Egelhaaf, and M. E. Cates, “Dynamics of interface instabilities in nonionic lamellar phases,” Langmuir 16(8), 3718–3726 (2000).
[Crossref]

1999 (1)

1998 (1)

M. Buchanan, J. Arrault, and M. Cates, “Swelling and dissolution of lamellar phases: role of bilayer organization,” Langmuir 14(26), 7371–7377 (1998).
[Crossref]

1997 (1)

A. Sharma and U. S. Sharma, “Liposomes in drug delivery: progress and limitations,” Int. J. Pharm. 154(2), 123–140 (1997).
[Crossref]

1996 (1)

E. Evans, H. Bowman, A. Leung, D. Needham, and D. Tirrell, “Biomembrane templates for nanoscale conduits and networks,” Science 273(5277), 933–935 (1996).
[Crossref]

1992 (1)

K. Mishima, T. Ogihara, M. Tomita, and K. Satoh, “Growth rate of myelin figures for phosphatidylcholine and phosphatidylethanolamine,” Chem. Phys. Lipids 62(2), 87–91 (1992).
[Crossref]

1991 (1)

M. Kummrow and W. Helfrich, “Deformation of giant lipid vesicles by electric fields,” Phys. Rev. A 44(12), 8356–8360 (1991).
[Crossref]

1989 (1)

I. Sakurai, T. Suzuki, and S. Sakurai, “Cross-sectional view of myelin figures,” Biochim. Biophys. Acta, Biomembr 985(1), 101–105 (1989).
[Crossref]

1988 (1)

Y. Honda, K. Tsunematsu, A. Suzuki, and T. Akino, “Changes in phospholipids in bronchoalveolar lavage fluid of patients with interstitial lung diseases,” Lung 166(1), 293–301 (1988).
[Crossref]

1985 (1)

I. Sakurai, “Concentration gradient along the long axis of myelin figures of phosphatidylcholine,” Biochim. Biophys. Acta, Biomembr. 815(1), 149–152 (1985).
[Crossref]

1984 (2)

K. Mishima, K. Satoh, and T. Ogihara, “The effects of ph and ions on myelin figure formation in phospholipid-water system,” Chem. Phys. Lett. 106(6), 513–516 (1984).
[Crossref]

I. Sakurai and Y. Kawamura, “Growth mechanism of myelin figures of phosphatidylcholine,” Biochim. Biophys. Acta, Biomembr. 777(2), 347–351 (1984).
[Crossref]

1959 (1)

W. Stoeckenius, “An electron microscope study of myelin figures,” The J. Cell Biol. 5(3), 491–500 (1959).
[Crossref]

Abbasian, V.

V. Abbasian, S. Rasouli, and A.-R. Moradi, “Microsphere-assisted self-referencing digital holographic microscopy in transmission mode,” J. Opt. 21(4), 045301 (2019).
[Crossref]

V. Abbasian, Y. Ganjkhani, E. A. Akhlaghi, A. Anand, B. Javidi, and A.-R. Moradi, “Super-resolved microsphere-assisted mirau digital holography by oblique illumination,” J. Opt. 20(6), 065301 (2018).
[Crossref]

Akhlaghi, E. A.

V. Abbasian, Y. Ganjkhani, E. A. Akhlaghi, A. Anand, B. Javidi, and A.-R. Moradi, “Super-resolved microsphere-assisted mirau digital holography by oblique illumination,” J. Opt. 20(6), 065301 (2018).
[Crossref]

Akino, T.

Y. Honda, K. Tsunematsu, A. Suzuki, and T. Akino, “Changes in phospholipids in bronchoalveolar lavage fluid of patients with interstitial lung diseases,” Lung 166(1), 293–301 (1988).
[Crossref]

Anand, A.

T. O’Connor, A. Anand, B. Andemariam, and B. Javidi, “Deep learning-based cell identification and disease diagnosis using spatio-temporal cellular dynamics in compact digital holographic microscopy,” Biomed. Opt. Express 11(8), 4491–4508 (2020).
[Crossref]

V. Abbasian, Y. Ganjkhani, E. A. Akhlaghi, A. Anand, B. Javidi, and A.-R. Moradi, “Super-resolved microsphere-assisted mirau digital holography by oblique illumination,” J. Opt. 20(6), 065301 (2018).
[Crossref]

V. Farzam Rad, R. Tavakkoli, A.-R. Moradi, A. Anand, and B. Javidi, “Calcium effect on membrane of an optically trapped erythrocyte studied by digital holographic microscopy,” Appl. Phys. Lett. 111(8), 083701 (2017).
[Crossref]

A. Anand, I. Moon, and B. Javidi, “Automated disease identification with 3-d optical imaging: a medical diagnostic tool,” Proc. IEEE 105(5), 924–946 (2017).
[Crossref]

P. Vora, V. Trivedi, S. Mahajan, N. R. Patel, M. Joglekar, V. Chhaniwal, A.-R. Moradi, B. Javidi, and A. Anand, “Wide field of view common-path lateral-shearing digital holographic interference microscope,” J. Biomed. Opt. 22(12), 126001 (2017).
[Crossref]

A. S. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,” Opt. Express 20(21), 23617–23622 (2012).
[Crossref]

V. Chhaniwal, A. S. Singh, R. A. Leitgeb, B. Javidi, and A. Anand, “Quantitative phase-contrast imaging with compact digital holographic microscope employing lloyds mirror,” Opt. Lett. 37(24), 5127–5129 (2012).
[Crossref]

A. Anand, V. K. Chhaniwal, and B. Javidi, “Real-time digital holographic microscopy for phase contrast 3D imaging of dynamic phenomena,” J. Disp. Technol. 6(10), 500–505 (2010).

Andemariam, B.

Aranda-Espinoza, H.

G. Paredes-Quijada, H. Aranda-Espinoza, and A. Maldonado, “Shapes of mixed phospholipid vesicles,” J. Biol. Phys. 32(2), 177–181 (2006).
[Crossref]

Arrault, J.

M. Buchanan, J. Arrault, and M. Cates, “Swelling and dissolution of lamellar phases: role of bilayer organization,” Langmuir 14(26), 7371–7377 (1998).
[Crossref]

Arsenault, A. L.

Y. S. Tarahovsky, A. L. Arsenault, R. C. MacDonald, T. J. McIntosh, and R. M. Epand, “Electrostatic control of phospholipid polymorphism,” Biophys. J. 79(6), 3193–3200 (2000).
[Crossref]

Arunagirinathan, M.

R. Taribagil, M. Arunagirinathan, C. Manohar, and J. R. Bellare, “Extended time range modeling of myelin growth,” J. Colloid Interface Sci. 289(1), 242–248 (2005).
[Crossref]

Awatsuji, Y.

O. Matoba, X. Quan, P. Xia, Y. Awatsuji, and T. Nomura, “Multimodal imaging based on digital holography,” Proc. IEEE 105(5), 906–923 (2017).
[Crossref]

Bach, D.

D. Bach and E. Wachtel, “Phospholipid/cholesterol model membranes: formation of cholesterol crystallites,” Biochim. Biophys. Acta, Biomembr 1610(2), 187–197 (2003).
[Crossref]

Bagatolli, L. A.

H. Bouvrais, T. Pott, L. A. Bagatolli, J. H. Ipsen, and P. Méléard, “Impact of membrane-anchored fluorescent probes on the mechanical properties of lipid bilayers,” Biochim. Biophys. Acta, Biomembr. 1798(7), 1333–1337 (2010).
[Crossref]

Bellare, J. R.

R. Taribagil, M. Arunagirinathan, C. Manohar, and J. R. Bellare, “Extended time range modeling of myelin growth,” J. Colloid Interface Sci. 289(1), 242–248 (2005).
[Crossref]

Belletti, D.

B. Ruozi, D. Belletti, A. Tombesi, G. Tosi, L. Bondioli, F. Forni, and M. A. Vandelli, “AFM, ESEM, TEM, and CLSM in liposomal characterization: a comparative study,” Int. J. Nanomed. 6, 557 (2011).
[Crossref]

Bibi, S.

S. Bibi, R. Kaur, M. Henriksen-Lacey, S. E. McNeil, J. Wilkhu, E. Lattmann, D. Christensen, A. R. Mohammed, and Y. Perrie, “Microscopy imaging of liposomes: from coverslips to environmental sem,” Int. J. Pharm. 417(1-2), 138–150 (2011).
[Crossref]

Bondioli, L.

B. Ruozi, D. Belletti, A. Tombesi, G. Tosi, L. Bondioli, F. Forni, and M. A. Vandelli, “AFM, ESEM, TEM, and CLSM in liposomal characterization: a comparative study,” Int. J. Nanomed. 6, 557 (2011).
[Crossref]

Boss, D.

F. Yi, I. Moon, B. Javidi, D. Boss, and P. P. Marquet, “Automated segmentation of multiple red blood cells with digital holographic microscopy,” J. Biomed. Opt. 18(2), 026006 (2013).
[Crossref]

Bouvrais, H.

H. Bouvrais, T. Pott, L. A. Bagatolli, J. H. Ipsen, and P. Méléard, “Impact of membrane-anchored fluorescent probes on the mechanical properties of lipid bilayers,” Biochim. Biophys. Acta, Biomembr. 1798(7), 1333–1337 (2010).
[Crossref]

Bowman, H.

E. Evans, H. Bowman, A. Leung, D. Needham, and D. Tirrell, “Biomembrane templates for nanoscale conduits and networks,” Science 273(5277), 933–935 (1996).
[Crossref]

Buchanan, M.

M. Buchanan, S. U. Egelhaaf, and M. E. Cates, “Dynamics of interface instabilities in nonionic lamellar phases,” Langmuir 16(8), 3718–3726 (2000).
[Crossref]

M. Buchanan, J. Arrault, and M. Cates, “Swelling and dissolution of lamellar phases: role of bilayer organization,” Langmuir 14(26), 7371–7377 (1998).
[Crossref]

Cates, M.

M. Buchanan, J. Arrault, and M. Cates, “Swelling and dissolution of lamellar phases: role of bilayer organization,” Langmuir 14(26), 7371–7377 (1998).
[Crossref]

Cates, M. E.

L. Reissig, D. J. Fairhurst, J. Leng, M. E. Cates, A. R. Mount, and S. U. Egelhaaf, “Three-dimensional structure and growth of myelins,” Langmuir 26(19), 15192–15199 (2010).
[Crossref]

M. Buchanan, S. U. Egelhaaf, and M. E. Cates, “Dynamics of interface instabilities in nonionic lamellar phases,” Langmuir 16(8), 3718–3726 (2000).
[Crossref]

Cheng, J.-X.

A. P. Kennedy, J. Sutcliffe, and J.-X. Cheng, “Molecular composition and orientation in myelin figures characterized by coherent anti-stokes Raman scattering microscopy,” Langmuir 21(14), 6478–6486 (2005).
[Crossref]

Chhaniwal, V.

P. Vora, V. Trivedi, S. Mahajan, N. R. Patel, M. Joglekar, V. Chhaniwal, A.-R. Moradi, B. Javidi, and A. Anand, “Wide field of view common-path lateral-shearing digital holographic interference microscope,” J. Biomed. Opt. 22(12), 126001 (2017).
[Crossref]

V. Chhaniwal, A. S. Singh, R. A. Leitgeb, B. Javidi, and A. Anand, “Quantitative phase-contrast imaging with compact digital holographic microscope employing lloyds mirror,” Opt. Lett. 37(24), 5127–5129 (2012).
[Crossref]

Chhaniwal, V. K.

A. Anand, V. K. Chhaniwal, and B. Javidi, “Real-time digital holographic microscopy for phase contrast 3D imaging of dynamic phenomena,” J. Disp. Technol. 6(10), 500–505 (2010).

Cho, H.

Y. Jo, H. Cho, S. Y. Lee, G. Choi, G. Kim, H.-S. Min, and Y. Park, “Quantitative phase imaging and artificial intelligence: a review,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–14 (2019).
[Crossref]

Choi, G.

Y. Jo, H. Cho, S. Y. Lee, G. Choi, G. Kim, H.-S. Min, and Y. Park, “Quantitative phase imaging and artificial intelligence: a review,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–14 (2019).
[Crossref]

Christensen, D.

S. Bibi, R. Kaur, M. Henriksen-Lacey, S. E. McNeil, J. Wilkhu, E. Lattmann, D. Christensen, A. R. Mohammed, and Y. Perrie, “Microscopy imaging of liposomes: from coverslips to environmental sem,” Int. J. Pharm. 417(1-2), 138–150 (2011).
[Crossref]

Colomb, T.

Cuche, E.

Darudi, A.

V. Farzamrad, A.-R. Moradi, A. Darudi, and L. Tayebi, “Digital holographic microscopy of phase separation in multicomponent lipid membranes,” J. Biomed. Opt. 21(12), 126016 (2016).
[Crossref]

Davidson, M.

D. Murphy and M. Davidson, “Confocal laser scanning microscopy,” Fundamentals of Light Microscopy and Electronic Imaging pp. 265–305 (2012).

Depeursinge, C.

Diaz, M.

F. Mesa-Herrera, L. Taoro-González, C. Valdés-Baizabal, M. Diaz, and R. Marín, “Lipid and lipid raft alteration in aging and neurodegenerative diseases: A window for the development of new biomarkers,” Int. J. Mol. Sci. 20(15), 3810 (2019).
[Crossref]

Dimova, R.

O. Mertins and R. Dimova, “Insights on the interactions of chitosan with phospholipid vesicles. part II: Membrane stiffening and pore formation,” Langmuir 29(47), 14552–14559 (2013).
[Crossref]

Drechsel, D.

L. Kalvodova, N. Kahya, P. Schwille, R. Ehehalt, P. Verkade, D. Drechsel, and K. Simons, “Lipids as modulators of proteolytic activity of bace involvement of cholesterol, glycosphingolipids, and anionic phospholipids in vitro,” J. Biol. Chem. 280(44), 36815–36823 (2005).
[Crossref]

Dryepondt, S.

Egelhaaf, S. U.

L. Reissig, D. J. Fairhurst, J. Leng, M. E. Cates, A. R. Mount, and S. U. Egelhaaf, “Three-dimensional structure and growth of myelins,” Langmuir 26(19), 15192–15199 (2010).
[Crossref]

M. Buchanan, S. U. Egelhaaf, and M. E. Cates, “Dynamics of interface instabilities in nonionic lamellar phases,” Langmuir 16(8), 3718–3726 (2000).
[Crossref]

Ehehalt, R.

L. Kalvodova, N. Kahya, P. Schwille, R. Ehehalt, P. Verkade, D. Drechsel, and K. Simons, “Lipids as modulators of proteolytic activity of bace involvement of cholesterol, glycosphingolipids, and anionic phospholipids in vitro,” J. Biol. Chem. 280(44), 36815–36823 (2005).
[Crossref]

Emery, Y.

Epand, R. M.

Y. S. Tarahovsky, A. L. Arsenault, R. C. MacDonald, T. J. McIntosh, and R. M. Epand, “Electrostatic control of phospholipid polymorphism,” Biophys. J. 79(6), 3193–3200 (2000).
[Crossref]

Evans, E.

E. Evans, H. Bowman, A. Leung, D. Needham, and D. Tirrell, “Biomembrane templates for nanoscale conduits and networks,” Science 273(5277), 933–935 (1996).
[Crossref]

Fairhurst, D. J.

L. Reissig, D. J. Fairhurst, J. Leng, M. E. Cates, A. R. Mount, and S. U. Egelhaaf, “Three-dimensional structure and growth of myelins,” Langmuir 26(19), 15192–15199 (2010).
[Crossref]

Farzam Rad, V.

V. Farzam Rad, R. Tavakkoli, A.-R. Moradi, A. Anand, and B. Javidi, “Calcium effect on membrane of an optically trapped erythrocyte studied by digital holographic microscopy,” Appl. Phys. Lett. 111(8), 083701 (2017).
[Crossref]

Farzamrad, V.

V. Farzamrad, A.-R. Moradi, A. Darudi, and L. Tayebi, “Digital holographic microscopy of phase separation in multicomponent lipid membranes,” J. Biomed. Opt. 21(12), 126016 (2016).
[Crossref]

Fathi, N.

Ferraro, P.

P. Ferraro, A. Wax, and Z. Zalevsky, Coherent Light Microscopy: Imaging and Quantitative Phase Analysis, vol. 46 (Springer Science & Business Media, 2011).

Figaszewski, Z. A.

A. D. Petelska and Z. A. Figaszewski, “Effect of pH on the interfacial tension of lipid bilayer membrane,” Biophys. J. 78(2), 812–817 (2000).
[Crossref]

Forni, F.

B. Ruozi, D. Belletti, A. Tombesi, G. Tosi, L. Bondioli, F. Forni, and M. A. Vandelli, “AFM, ESEM, TEM, and CLSM in liposomal characterization: a comparative study,” Int. J. Nanomed. 6, 557 (2011).
[Crossref]

Ganjkhani, Y.

V. Abbasian, Y. Ganjkhani, E. A. Akhlaghi, A. Anand, B. Javidi, and A.-R. Moradi, “Super-resolved microsphere-assisted mirau digital holography by oblique illumination,” J. Opt. 20(6), 065301 (2018).
[Crossref]

Gao, P.

V. Micó, J. Zheng, J. Garcia, Z. Zalevsky, and P. Gao, “Resolution enhancement in quantitative phase microscopy,” Adv. Opt. Photonics 11(1), 135–214 (2019).
[Crossref]

Garcia, J.

V. Micó, J. Zheng, J. Garcia, Z. Zalevsky, and P. Gao, “Resolution enhancement in quantitative phase microscopy,” Adv. Opt. Photonics 11(1), 135–214 (2019).
[Crossref]

Gutmann, B.

Habibi, M.

Helfrich, W.

M. Kummrow and W. Helfrich, “Deformation of giant lipid vesicles by electric fields,” Phys. Rev. A 44(12), 8356–8360 (1991).
[Crossref]

Henriksen-Lacey, M.

S. Bibi, R. Kaur, M. Henriksen-Lacey, S. E. McNeil, J. Wilkhu, E. Lattmann, D. Christensen, A. R. Mohammed, and Y. Perrie, “Microscopy imaging of liposomes: from coverslips to environmental sem,” Int. J. Pharm. 417(1-2), 138–150 (2011).
[Crossref]

Honda, Y.

Y. Honda, K. Tsunematsu, A. Suzuki, and T. Akino, “Changes in phospholipids in bronchoalveolar lavage fluid of patients with interstitial lung diseases,” Lung 166(1), 293–301 (1988).
[Crossref]

Huang, J.-R.

J.-R. Huang, L.-N. Zou, and T. A. Witten, “Confined multilamellae prefer cylindrical morphology,” Eur. Phys. J. E 18(3), 279–285 (2005).
[Crossref]

Ipsen, J. H.

H. Bouvrais, T. Pott, L. A. Bagatolli, J. H. Ipsen, and P. Méléard, “Impact of membrane-anchored fluorescent probes on the mechanical properties of lipid bilayers,” Biochim. Biophys. Acta, Biomembr. 1798(7), 1333–1337 (2010).
[Crossref]

Javidi, B.

T. O’Connor, A. Anand, B. Andemariam, and B. Javidi, “Deep learning-based cell identification and disease diagnosis using spatio-temporal cellular dynamics in compact digital holographic microscopy,” Biomed. Opt. Express 11(8), 4491–4508 (2020).
[Crossref]

V. Abbasian, Y. Ganjkhani, E. A. Akhlaghi, A. Anand, B. Javidi, and A.-R. Moradi, “Super-resolved microsphere-assisted mirau digital holography by oblique illumination,” J. Opt. 20(6), 065301 (2018).
[Crossref]

V. Farzam Rad, R. Tavakkoli, A.-R. Moradi, A. Anand, and B. Javidi, “Calcium effect on membrane of an optically trapped erythrocyte studied by digital holographic microscopy,” Appl. Phys. Lett. 111(8), 083701 (2017).
[Crossref]

A. Anand, I. Moon, and B. Javidi, “Automated disease identification with 3-d optical imaging: a medical diagnostic tool,” Proc. IEEE 105(5), 924–946 (2017).
[Crossref]

P. Vora, V. Trivedi, S. Mahajan, N. R. Patel, M. Joglekar, V. Chhaniwal, A.-R. Moradi, B. Javidi, and A. Anand, “Wide field of view common-path lateral-shearing digital holographic interference microscope,” J. Biomed. Opt. 22(12), 126001 (2017).
[Crossref]

F. Yi, I. Moon, B. Javidi, D. Boss, and P. P. Marquet, “Automated segmentation of multiple red blood cells with digital holographic microscopy,” J. Biomed. Opt. 18(2), 026006 (2013).
[Crossref]

A. S. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,” Opt. Express 20(21), 23617–23622 (2012).
[Crossref]

V. Chhaniwal, A. S. Singh, R. A. Leitgeb, B. Javidi, and A. Anand, “Quantitative phase-contrast imaging with compact digital holographic microscope employing lloyds mirror,” Opt. Lett. 37(24), 5127–5129 (2012).
[Crossref]

A. Anand, V. K. Chhaniwal, and B. Javidi, “Real-time digital holographic microscopy for phase contrast 3D imaging of dynamic phenomena,” J. Disp. Technol. 6(10), 500–505 (2010).

Jo, Y.

Y. Jo, H. Cho, S. Y. Lee, G. Choi, G. Kim, H.-S. Min, and Y. Park, “Quantitative phase imaging and artificial intelligence: a review,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–14 (2019).
[Crossref]

Joglekar, M.

P. Vora, V. Trivedi, S. Mahajan, N. R. Patel, M. Joglekar, V. Chhaniwal, A.-R. Moradi, B. Javidi, and A. Anand, “Wide field of view common-path lateral-shearing digital holographic interference microscope,” J. Biomed. Opt. 22(12), 126001 (2017).
[Crossref]

Kahn, E.

A. Vejux, E. Kahn, F. Ménétrier, T. Montange, J. Lherminier, J.-M. Riedinger, and G. Lizard, “Cytotoxic oxysterols induce caspase-independent myelin figure formation and caspase-dependent polar lipid accumulation,” Histochem. Cell Biol. 127(6), 609–624 (2007).
[Crossref]

Kahya, N.

L. Kalvodova, N. Kahya, P. Schwille, R. Ehehalt, P. Verkade, D. Drechsel, and K. Simons, “Lipids as modulators of proteolytic activity of bace involvement of cholesterol, glycosphingolipids, and anionic phospholipids in vitro,” J. Biol. Chem. 280(44), 36815–36823 (2005).
[Crossref]

Kalvodova, L.

L. Kalvodova, N. Kahya, P. Schwille, R. Ehehalt, P. Verkade, D. Drechsel, and K. Simons, “Lipids as modulators of proteolytic activity of bace involvement of cholesterol, glycosphingolipids, and anionic phospholipids in vitro,” J. Biol. Chem. 280(44), 36815–36823 (2005).
[Crossref]

Kaur, R.

S. Bibi, R. Kaur, M. Henriksen-Lacey, S. E. McNeil, J. Wilkhu, E. Lattmann, D. Christensen, A. R. Mohammed, and Y. Perrie, “Microscopy imaging of liposomes: from coverslips to environmental sem,” Int. J. Pharm. 417(1-2), 138–150 (2011).
[Crossref]

Kawamura, Y.

I. Sakurai and Y. Kawamura, “Growth mechanism of myelin figures of phosphatidylcholine,” Biochim. Biophys. Acta, Biomembr. 777(2), 347–351 (1984).
[Crossref]

Kennedy, A. P.

A. P. Kennedy, J. Sutcliffe, and J.-X. Cheng, “Molecular composition and orientation in myelin figures characterized by coherent anti-stokes Raman scattering microscopy,” Langmuir 21(14), 6478–6486 (2005).
[Crossref]

Kiani, M. F.

R. Nallamothu, G. C. Wood, C. B. Pattillo, R. C. Scott, M. F. Kiani, B. M. Moore, and L. A. Thoma, “A tumor vasculature targeted liposome delivery system for combretastatin a4: design, characterization, and in vitro evaluation,” AAPS PharmSciTech 7(2), E7–E16 (2006).
[Crossref]

Kim, G.

Y. Jo, H. Cho, S. Y. Lee, G. Choi, G. Kim, H.-S. Min, and Y. Park, “Quantitative phase imaging and artificial intelligence: a review,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–14 (2019).
[Crossref]

Kim, M. K.

M. K. Kim, “Digital holographic microscopy,” in Digital Holographic Microscopy, (Springer, 2011), pp. 149–190.

Kummrow, M.

M. Kummrow and W. Helfrich, “Deformation of giant lipid vesicles by electric fields,” Phys. Rev. A 44(12), 8356–8360 (1991).
[Crossref]

Larsson, K.

K. Larsson, Lipids: Molecular Organization, Physical Functions and Technical Applications, vol. 5 (The Oily Press, 1994).

Lattmann, E.

S. Bibi, R. Kaur, M. Henriksen-Lacey, S. E. McNeil, J. Wilkhu, E. Lattmann, D. Christensen, A. R. Mohammed, and Y. Perrie, “Microscopy imaging of liposomes: from coverslips to environmental sem,” Int. J. Pharm. 417(1-2), 138–150 (2011).
[Crossref]

Lee, S. Y.

Y. Jo, H. Cho, S. Y. Lee, G. Choi, G. Kim, H.-S. Min, and Y. Park, “Quantitative phase imaging and artificial intelligence: a review,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–14 (2019).
[Crossref]

Leitgeb, R. A.

Leng, J.

L. Reissig, D. J. Fairhurst, J. Leng, M. E. Cates, A. R. Mount, and S. U. Egelhaaf, “Three-dimensional structure and growth of myelins,” Langmuir 26(19), 15192–15199 (2010).
[Crossref]

Leung, A.

E. Evans, H. Bowman, A. Leung, D. Needham, and D. Tirrell, “Biomembrane templates for nanoscale conduits and networks,” Science 273(5277), 933–935 (1996).
[Crossref]

Lherminier, J.

A. Vejux, E. Kahn, F. Ménétrier, T. Montange, J. Lherminier, J.-M. Riedinger, and G. Lizard, “Cytotoxic oxysterols induce caspase-independent myelin figure formation and caspase-dependent polar lipid accumulation,” Histochem. Cell Biol. 127(6), 609–624 (2007).
[Crossref]

Lizard, G.

A. Vejux, E. Kahn, F. Ménétrier, T. Montange, J. Lherminier, J.-M. Riedinger, and G. Lizard, “Cytotoxic oxysterols induce caspase-independent myelin figure formation and caspase-dependent polar lipid accumulation,” Histochem. Cell Biol. 127(6), 609–624 (2007).
[Crossref]

López-García, P.

J. Peretó, P. López-García, and D. Moreira, “Ancestral lipid biosynthesis and early membrane evolution,” Trends Biochem. Sci. 29(9), 469–477 (2004).
[Crossref]

MacDonald, R. C.

Y. S. Tarahovsky, A. L. Arsenault, R. C. MacDonald, T. J. McIntosh, and R. M. Epand, “Electrostatic control of phospholipid polymorphism,” Biophys. J. 79(6), 3193–3200 (2000).
[Crossref]

Magistretti, P. J.

Mahajan, S.

P. Vora, V. Trivedi, S. Mahajan, N. R. Patel, M. Joglekar, V. Chhaniwal, A.-R. Moradi, B. Javidi, and A. Anand, “Wide field of view common-path lateral-shearing digital holographic interference microscope,” J. Biomed. Opt. 22(12), 126001 (2017).
[Crossref]

Maldonado, A.

G. Paredes-Quijada, H. Aranda-Espinoza, and A. Maldonado, “Shapes of mixed phospholipid vesicles,” J. Biol. Phys. 32(2), 177–181 (2006).
[Crossref]

Mangiarotti, A.

C. M. Rosetti, A. Mangiarotti, and N. Wilke, “Sizes of lipid domains: What do we know from artificial lipid membranes? what are the possible shared features with membrane rafts in cells?” Biochim. Biophys. Acta, Biomembr 1859(5), 789–802 (2017).
[Crossref]

Mann, C. J.

Manohar, C.

R. Taribagil, M. Arunagirinathan, C. Manohar, and J. R. Bellare, “Extended time range modeling of myelin growth,” J. Colloid Interface Sci. 289(1), 242–248 (2005).
[Crossref]

Marín, R.

F. Mesa-Herrera, L. Taoro-González, C. Valdés-Baizabal, M. Diaz, and R. Marín, “Lipid and lipid raft alteration in aging and neurodegenerative diseases: A window for the development of new biomarkers,” Int. J. Mol. Sci. 20(15), 3810 (2019).
[Crossref]

Marquet, P.

Marquet, P. P.

F. Yi, I. Moon, B. Javidi, D. Boss, and P. P. Marquet, “Automated segmentation of multiple red blood cells with digital holographic microscopy,” J. Biomed. Opt. 18(2), 026006 (2013).
[Crossref]

Matoba, O.

O. Matoba, X. Quan, P. Xia, Y. Awatsuji, and T. Nomura, “Multimodal imaging based on digital holography,” Proc. IEEE 105(5), 906–923 (2017).
[Crossref]

McIntosh, T. J.

Y. S. Tarahovsky, A. L. Arsenault, R. C. MacDonald, T. J. McIntosh, and R. M. Epand, “Electrostatic control of phospholipid polymorphism,” Biophys. J. 79(6), 3193–3200 (2000).
[Crossref]

McNeil, S. E.

S. Bibi, R. Kaur, M. Henriksen-Lacey, S. E. McNeil, J. Wilkhu, E. Lattmann, D. Christensen, A. R. Mohammed, and Y. Perrie, “Microscopy imaging of liposomes: from coverslips to environmental sem,” Int. J. Pharm. 417(1-2), 138–150 (2011).
[Crossref]

Méléard, P.

H. Bouvrais, T. Pott, L. A. Bagatolli, J. H. Ipsen, and P. Méléard, “Impact of membrane-anchored fluorescent probes on the mechanical properties of lipid bilayers,” Biochim. Biophys. Acta, Biomembr. 1798(7), 1333–1337 (2010).
[Crossref]

Ménétrier, F.

A. Vejux, E. Kahn, F. Ménétrier, T. Montange, J. Lherminier, J.-M. Riedinger, and G. Lizard, “Cytotoxic oxysterols induce caspase-independent myelin figure formation and caspase-dependent polar lipid accumulation,” Histochem. Cell Biol. 127(6), 609–624 (2007).
[Crossref]

Mertins, O.

O. Mertins and R. Dimova, “Insights on the interactions of chitosan with phospholipid vesicles. part II: Membrane stiffening and pore formation,” Langmuir 29(47), 14552–14559 (2013).
[Crossref]

Mesa-Herrera, F.

F. Mesa-Herrera, L. Taoro-González, C. Valdés-Baizabal, M. Diaz, and R. Marín, “Lipid and lipid raft alteration in aging and neurodegenerative diseases: A window for the development of new biomarkers,” Int. J. Mol. Sci. 20(15), 3810 (2019).
[Crossref]

Micó, V.

V. Micó, J. Zheng, J. Garcia, Z. Zalevsky, and P. Gao, “Resolution enhancement in quantitative phase microscopy,” Adv. Opt. Photonics 11(1), 135–214 (2019).
[Crossref]

Min, H.-S.

Y. Jo, H. Cho, S. Y. Lee, G. Choi, G. Kim, H.-S. Min, and Y. Park, “Quantitative phase imaging and artificial intelligence: a review,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–14 (2019).
[Crossref]

Mishima, K.

K. Mishima, T. Ogihara, M. Tomita, and K. Satoh, “Growth rate of myelin figures for phosphatidylcholine and phosphatidylethanolamine,” Chem. Phys. Lipids 62(2), 87–91 (1992).
[Crossref]

K. Mishima, K. Satoh, and T. Ogihara, “The effects of ph and ions on myelin figure formation in phospholipid-water system,” Chem. Phys. Lett. 106(6), 513–516 (1984).
[Crossref]

Mohammed, A. R.

S. Bibi, R. Kaur, M. Henriksen-Lacey, S. E. McNeil, J. Wilkhu, E. Lattmann, D. Christensen, A. R. Mohammed, and Y. Perrie, “Microscopy imaging of liposomes: from coverslips to environmental sem,” Int. J. Pharm. 417(1-2), 138–150 (2011).
[Crossref]

Montange, T.

A. Vejux, E. Kahn, F. Ménétrier, T. Montange, J. Lherminier, J.-M. Riedinger, and G. Lizard, “Cytotoxic oxysterols induce caspase-independent myelin figure formation and caspase-dependent polar lipid accumulation,” Histochem. Cell Biol. 127(6), 609–624 (2007).
[Crossref]

Moon, I.

A. Anand, I. Moon, and B. Javidi, “Automated disease identification with 3-d optical imaging: a medical diagnostic tool,” Proc. IEEE 105(5), 924–946 (2017).
[Crossref]

F. Yi, I. Moon, B. Javidi, D. Boss, and P. P. Marquet, “Automated segmentation of multiple red blood cells with digital holographic microscopy,” J. Biomed. Opt. 18(2), 026006 (2013).
[Crossref]

Moore, B. M.

R. Nallamothu, G. C. Wood, C. B. Pattillo, R. C. Scott, M. F. Kiani, B. M. Moore, and L. A. Thoma, “A tumor vasculature targeted liposome delivery system for combretastatin a4: design, characterization, and in vitro evaluation,” AAPS PharmSciTech 7(2), E7–E16 (2006).
[Crossref]

Moradi, A.-R.

V. Abbasian, S. Rasouli, and A.-R. Moradi, “Microsphere-assisted self-referencing digital holographic microscopy in transmission mode,” J. Opt. 21(4), 045301 (2019).
[Crossref]

V. Abbasian, Y. Ganjkhani, E. A. Akhlaghi, A. Anand, B. Javidi, and A.-R. Moradi, “Super-resolved microsphere-assisted mirau digital holography by oblique illumination,” J. Opt. 20(6), 065301 (2018).
[Crossref]

V. Farzam Rad, R. Tavakkoli, A.-R. Moradi, A. Anand, and B. Javidi, “Calcium effect on membrane of an optically trapped erythrocyte studied by digital holographic microscopy,” Appl. Phys. Lett. 111(8), 083701 (2017).
[Crossref]

P. Vora, V. Trivedi, S. Mahajan, N. R. Patel, M. Joglekar, V. Chhaniwal, A.-R. Moradi, B. Javidi, and A. Anand, “Wide field of view common-path lateral-shearing digital holographic interference microscope,” J. Biomed. Opt. 22(12), 126001 (2017).
[Crossref]

V. Farzamrad, A.-R. Moradi, A. Darudi, and L. Tayebi, “Digital holographic microscopy of phase separation in multicomponent lipid membranes,” J. Biomed. Opt. 21(12), 126016 (2016).
[Crossref]

R. Mosaviani, A.-R. Moradi, and L. Tayebi, “Effect of humidity on liquid-crystalline myelin figure growth using digital holographic microscopy,” Mater. Lett. 173, 162–166 (2016).
[Crossref]

N. Fathi, A.-R. Moradi, M. Habibi, D. Vashaee, and L. Tayebi, “Digital holographic microscopy of the myelin figure structural dynamics and the effect of thermal gradient,” Biomed. Opt. Express 4(6), 950–957 (2013).
[Crossref]

Moreira, D.

J. Peretó, P. López-García, and D. Moreira, “Ancestral lipid biosynthesis and early membrane evolution,” Trends Biochem. Sci. 29(9), 469–477 (2004).
[Crossref]

Mosaviani, R.

R. Mosaviani, A.-R. Moradi, and L. Tayebi, “Effect of humidity on liquid-crystalline myelin figure growth using digital holographic microscopy,” Mater. Lett. 173, 162–166 (2016).
[Crossref]

Mount, A. R.

L. Reissig, D. J. Fairhurst, J. Leng, M. E. Cates, A. R. Mount, and S. U. Egelhaaf, “Three-dimensional structure and growth of myelins,” Langmuir 26(19), 15192–15199 (2010).
[Crossref]

Mozafari, M.

L. Tayebi, M. Mozafari, D. Vashaee, and A. N. Parikh, “Structural configuration of myelin figures using fluorescence microscopy,” Int. J. Photoenergy 2012, 1–7 (2012).
[Crossref]

Murphy, D.

D. Murphy and M. Davidson, “Confocal laser scanning microscopy,” Fundamentals of Light Microscopy and Electronic Imaging pp. 265–305 (2012).

Murphy, D. B.

D. B. Murphy, Fundamentals of Light Microscopy and Electronic Imaging (John Wiley & Sons, 2002).

Nagel, S. R.

L.-N. Zou and S. R. Nagel, “Stability and growth of single myelin figures,” Phys. Rev. Lett. 96(13), 138301 (2006).
[Crossref]

Nallamothu, R.

R. Nallamothu, G. C. Wood, C. B. Pattillo, R. C. Scott, M. F. Kiani, B. M. Moore, and L. A. Thoma, “A tumor vasculature targeted liposome delivery system for combretastatin a4: design, characterization, and in vitro evaluation,” AAPS PharmSciTech 7(2), E7–E16 (2006).
[Crossref]

Needham, D.

E. Evans, H. Bowman, A. Leung, D. Needham, and D. Tirrell, “Biomembrane templates for nanoscale conduits and networks,” Science 273(5277), 933–935 (1996).
[Crossref]

Nomura, T.

O. Matoba, X. Quan, P. Xia, Y. Awatsuji, and T. Nomura, “Multimodal imaging based on digital holography,” Proc. IEEE 105(5), 906–923 (2017).
[Crossref]

O’Connor, T.

Ogihara, T.

K. Mishima, T. Ogihara, M. Tomita, and K. Satoh, “Growth rate of myelin figures for phosphatidylcholine and phosphatidylethanolamine,” Chem. Phys. Lipids 62(2), 87–91 (1992).
[Crossref]

K. Mishima, K. Satoh, and T. Ogihara, “The effects of ph and ions on myelin figure formation in phospholipid-water system,” Chem. Phys. Lett. 106(6), 513–516 (1984).
[Crossref]

Paredes-Quijada, G.

G. Paredes-Quijada, H. Aranda-Espinoza, and A. Maldonado, “Shapes of mixed phospholipid vesicles,” J. Biol. Phys. 32(2), 177–181 (2006).
[Crossref]

Parikh, A. N.

L. Tayebi, M. Mozafari, D. Vashaee, and A. N. Parikh, “Structural configuration of myelin figures using fluorescence microscopy,” Int. J. Photoenergy 2012, 1–7 (2012).
[Crossref]

Park, Y.

Y. Jo, H. Cho, S. Y. Lee, G. Choi, G. Kim, H.-S. Min, and Y. Park, “Quantitative phase imaging and artificial intelligence: a review,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–14 (2019).
[Crossref]

Patel, N. R.

P. Vora, V. Trivedi, S. Mahajan, N. R. Patel, M. Joglekar, V. Chhaniwal, A.-R. Moradi, B. Javidi, and A. Anand, “Wide field of view common-path lateral-shearing digital holographic interference microscope,” J. Biomed. Opt. 22(12), 126001 (2017).
[Crossref]

Pattillo, C. B.

R. Nallamothu, G. C. Wood, C. B. Pattillo, R. C. Scott, M. F. Kiani, B. M. Moore, and L. A. Thoma, “A tumor vasculature targeted liposome delivery system for combretastatin a4: design, characterization, and in vitro evaluation,” AAPS PharmSciTech 7(2), E7–E16 (2006).
[Crossref]

Peretó, J.

J. Peretó, P. López-García, and D. Moreira, “Ancestral lipid biosynthesis and early membrane evolution,” Trends Biochem. Sci. 29(9), 469–477 (2004).
[Crossref]

Perrie, Y.

S. Bibi, R. Kaur, M. Henriksen-Lacey, S. E. McNeil, J. Wilkhu, E. Lattmann, D. Christensen, A. R. Mohammed, and Y. Perrie, “Microscopy imaging of liposomes: from coverslips to environmental sem,” Int. J. Pharm. 417(1-2), 138–150 (2011).
[Crossref]

Petelska, A. D.

A. D. Petelska and Z. A. Figaszewski, “Effect of pH on the interfacial tension of lipid bilayer membrane,” Biophys. J. 78(2), 812–817 (2000).
[Crossref]

Pincus, P.

C. Santangelo and P. Pincus, “Coiling instabilities of multilamellar tubes,” Phys. Rev. E 66(6), 061501 (2002).
[Crossref]

Pott, T.

H. Bouvrais, T. Pott, L. A. Bagatolli, J. H. Ipsen, and P. Méléard, “Impact of membrane-anchored fluorescent probes on the mechanical properties of lipid bilayers,” Biochim. Biophys. Acta, Biomembr. 1798(7), 1333–1337 (2010).
[Crossref]

Quan, X.

O. Matoba, X. Quan, P. Xia, Y. Awatsuji, and T. Nomura, “Multimodal imaging based on digital holography,” Proc. IEEE 105(5), 906–923 (2017).
[Crossref]

Rappaz, B.

Rasouli, S.

V. Abbasian, S. Rasouli, and A.-R. Moradi, “Microsphere-assisted self-referencing digital holographic microscopy in transmission mode,” J. Opt. 21(4), 045301 (2019).
[Crossref]

Reissig, L.

L. Reissig, D. J. Fairhurst, J. Leng, M. E. Cates, A. R. Mount, and S. U. Egelhaaf, “Three-dimensional structure and growth of myelins,” Langmuir 26(19), 15192–15199 (2010).
[Crossref]

Riedinger, J.-M.

A. Vejux, E. Kahn, F. Ménétrier, T. Montange, J. Lherminier, J.-M. Riedinger, and G. Lizard, “Cytotoxic oxysterols induce caspase-independent myelin figure formation and caspase-dependent polar lipid accumulation,” Histochem. Cell Biol. 127(6), 609–624 (2007).
[Crossref]

Rosetti, C. M.

C. M. Rosetti, A. Mangiarotti, and N. Wilke, “Sizes of lipid domains: What do we know from artificial lipid membranes? what are the possible shared features with membrane rafts in cells?” Biochim. Biophys. Acta, Biomembr 1859(5), 789–802 (2017).
[Crossref]

Ruozi, B.

B. Ruozi, D. Belletti, A. Tombesi, G. Tosi, L. Bondioli, F. Forni, and M. A. Vandelli, “AFM, ESEM, TEM, and CLSM in liposomal characterization: a comparative study,” Int. J. Nanomed. 6, 557 (2011).
[Crossref]

Sakurai, I.

I. Sakurai, T. Suzuki, and S. Sakurai, “Cross-sectional view of myelin figures,” Biochim. Biophys. Acta, Biomembr 985(1), 101–105 (1989).
[Crossref]

I. Sakurai, “Concentration gradient along the long axis of myelin figures of phosphatidylcholine,” Biochim. Biophys. Acta, Biomembr. 815(1), 149–152 (1985).
[Crossref]

I. Sakurai and Y. Kawamura, “Growth mechanism of myelin figures of phosphatidylcholine,” Biochim. Biophys. Acta, Biomembr. 777(2), 347–351 (1984).
[Crossref]

Sakurai, S.

I. Sakurai, T. Suzuki, and S. Sakurai, “Cross-sectional view of myelin figures,” Biochim. Biophys. Acta, Biomembr 985(1), 101–105 (1989).
[Crossref]

Santangelo, C.

C. Santangelo and P. Pincus, “Coiling instabilities of multilamellar tubes,” Phys. Rev. E 66(6), 061501 (2002).
[Crossref]

Satoh, K.

K. Mishima, T. Ogihara, M. Tomita, and K. Satoh, “Growth rate of myelin figures for phosphatidylcholine and phosphatidylethanolamine,” Chem. Phys. Lipids 62(2), 87–91 (1992).
[Crossref]

K. Mishima, K. Satoh, and T. Ogihara, “The effects of ph and ions on myelin figure formation in phospholipid-water system,” Chem. Phys. Lett. 106(6), 513–516 (1984).
[Crossref]

Schwille, P.

L. Kalvodova, N. Kahya, P. Schwille, R. Ehehalt, P. Verkade, D. Drechsel, and K. Simons, “Lipids as modulators of proteolytic activity of bace involvement of cholesterol, glycosphingolipids, and anionic phospholipids in vitro,” J. Biol. Chem. 280(44), 36815–36823 (2005).
[Crossref]

Scott, R. C.

R. Nallamothu, G. C. Wood, C. B. Pattillo, R. C. Scott, M. F. Kiani, B. M. Moore, and L. A. Thoma, “A tumor vasculature targeted liposome delivery system for combretastatin a4: design, characterization, and in vitro evaluation,” AAPS PharmSciTech 7(2), E7–E16 (2006).
[Crossref]

Sharma, A.

A. Sharma and U. S. Sharma, “Liposomes in drug delivery: progress and limitations,” Int. J. Pharm. 154(2), 123–140 (1997).
[Crossref]

Sharma, U. S.

A. Sharma and U. S. Sharma, “Liposomes in drug delivery: progress and limitations,” Int. J. Pharm. 154(2), 123–140 (1997).
[Crossref]

Simons, K.

L. Kalvodova, N. Kahya, P. Schwille, R. Ehehalt, P. Verkade, D. Drechsel, and K. Simons, “Lipids as modulators of proteolytic activity of bace involvement of cholesterol, glycosphingolipids, and anionic phospholipids in vitro,” J. Biol. Chem. 280(44), 36815–36823 (2005).
[Crossref]

Singh, A. S.

Stoeckenius, W.

W. Stoeckenius, “An electron microscope study of myelin figures,” The J. Cell Biol. 5(3), 491–500 (1959).
[Crossref]

Sutcliffe, J.

A. P. Kennedy, J. Sutcliffe, and J.-X. Cheng, “Molecular composition and orientation in myelin figures characterized by coherent anti-stokes Raman scattering microscopy,” Langmuir 21(14), 6478–6486 (2005).
[Crossref]

Suzuki, A.

Y. Honda, K. Tsunematsu, A. Suzuki, and T. Akino, “Changes in phospholipids in bronchoalveolar lavage fluid of patients with interstitial lung diseases,” Lung 166(1), 293–301 (1988).
[Crossref]

Suzuki, T.

I. Sakurai, T. Suzuki, and S. Sakurai, “Cross-sectional view of myelin figures,” Biochim. Biophys. Acta, Biomembr 985(1), 101–105 (1989).
[Crossref]

Taoro-González, L.

F. Mesa-Herrera, L. Taoro-González, C. Valdés-Baizabal, M. Diaz, and R. Marín, “Lipid and lipid raft alteration in aging and neurodegenerative diseases: A window for the development of new biomarkers,” Int. J. Mol. Sci. 20(15), 3810 (2019).
[Crossref]

Tarahovsky, Y. S.

Y. S. Tarahovsky, A. L. Arsenault, R. C. MacDonald, T. J. McIntosh, and R. M. Epand, “Electrostatic control of phospholipid polymorphism,” Biophys. J. 79(6), 3193–3200 (2000).
[Crossref]

Taribagil, R.

R. Taribagil, M. Arunagirinathan, C. Manohar, and J. R. Bellare, “Extended time range modeling of myelin growth,” J. Colloid Interface Sci. 289(1), 242–248 (2005).
[Crossref]

Tavakkoli, R.

V. Farzam Rad, R. Tavakkoli, A.-R. Moradi, A. Anand, and B. Javidi, “Calcium effect on membrane of an optically trapped erythrocyte studied by digital holographic microscopy,” Appl. Phys. Lett. 111(8), 083701 (2017).
[Crossref]

Tayebi, L.

V. Farzamrad, A.-R. Moradi, A. Darudi, and L. Tayebi, “Digital holographic microscopy of phase separation in multicomponent lipid membranes,” J. Biomed. Opt. 21(12), 126016 (2016).
[Crossref]

R. Mosaviani, A.-R. Moradi, and L. Tayebi, “Effect of humidity on liquid-crystalline myelin figure growth using digital holographic microscopy,” Mater. Lett. 173, 162–166 (2016).
[Crossref]

N. Fathi, A.-R. Moradi, M. Habibi, D. Vashaee, and L. Tayebi, “Digital holographic microscopy of the myelin figure structural dynamics and the effect of thermal gradient,” Biomed. Opt. Express 4(6), 950–957 (2013).
[Crossref]

L. Tayebi, M. Mozafari, D. Vashaee, and A. N. Parikh, “Structural configuration of myelin figures using fluorescence microscopy,” Int. J. Photoenergy 2012, 1–7 (2012).
[Crossref]

Thiesing, B. P.

Thinakaran, G.

K. S. Vetrivel and G. Thinakaran, “Membrane rafts in Alzheimer’s disease beta-amyloid production,” Biochim. Biophys. Acta, Biomembr 1801(8), 860–867 (2010).
[Crossref]

Thoma, L. A.

R. Nallamothu, G. C. Wood, C. B. Pattillo, R. C. Scott, M. F. Kiani, B. M. Moore, and L. A. Thoma, “A tumor vasculature targeted liposome delivery system for combretastatin a4: design, characterization, and in vitro evaluation,” AAPS PharmSciTech 7(2), E7–E16 (2006).
[Crossref]

Tirrell, D.

E. Evans, H. Bowman, A. Leung, D. Needham, and D. Tirrell, “Biomembrane templates for nanoscale conduits and networks,” Science 273(5277), 933–935 (1996).
[Crossref]

Tombesi, A.

B. Ruozi, D. Belletti, A. Tombesi, G. Tosi, L. Bondioli, F. Forni, and M. A. Vandelli, “AFM, ESEM, TEM, and CLSM in liposomal characterization: a comparative study,” Int. J. Nanomed. 6, 557 (2011).
[Crossref]

Tomita, M.

K. Mishima, T. Ogihara, M. Tomita, and K. Satoh, “Growth rate of myelin figures for phosphatidylcholine and phosphatidylethanolamine,” Chem. Phys. Lipids 62(2), 87–91 (1992).
[Crossref]

Tosi, G.

B. Ruozi, D. Belletti, A. Tombesi, G. Tosi, L. Bondioli, F. Forni, and M. A. Vandelli, “AFM, ESEM, TEM, and CLSM in liposomal characterization: a comparative study,” Int. J. Nanomed. 6, 557 (2011).
[Crossref]

Trivedi, V.

P. Vora, V. Trivedi, S. Mahajan, N. R. Patel, M. Joglekar, V. Chhaniwal, A.-R. Moradi, B. Javidi, and A. Anand, “Wide field of view common-path lateral-shearing digital holographic interference microscope,” J. Biomed. Opt. 22(12), 126001 (2017).
[Crossref]

Tsunematsu, K.

Y. Honda, K. Tsunematsu, A. Suzuki, and T. Akino, “Changes in phospholipids in bronchoalveolar lavage fluid of patients with interstitial lung diseases,” Lung 166(1), 293–301 (1988).
[Crossref]

Valdés-Baizabal, C.

F. Mesa-Herrera, L. Taoro-González, C. Valdés-Baizabal, M. Diaz, and R. Marín, “Lipid and lipid raft alteration in aging and neurodegenerative diseases: A window for the development of new biomarkers,” Int. J. Mol. Sci. 20(15), 3810 (2019).
[Crossref]

Vandelli, M. A.

B. Ruozi, D. Belletti, A. Tombesi, G. Tosi, L. Bondioli, F. Forni, and M. A. Vandelli, “AFM, ESEM, TEM, and CLSM in liposomal characterization: a comparative study,” Int. J. Nanomed. 6, 557 (2011).
[Crossref]

Vashaee, D.

N. Fathi, A.-R. Moradi, M. Habibi, D. Vashaee, and L. Tayebi, “Digital holographic microscopy of the myelin figure structural dynamics and the effect of thermal gradient,” Biomed. Opt. Express 4(6), 950–957 (2013).
[Crossref]

L. Tayebi, M. Mozafari, D. Vashaee, and A. N. Parikh, “Structural configuration of myelin figures using fluorescence microscopy,” Int. J. Photoenergy 2012, 1–7 (2012).
[Crossref]

Vejux, A.

A. Vejux, E. Kahn, F. Ménétrier, T. Montange, J. Lherminier, J.-M. Riedinger, and G. Lizard, “Cytotoxic oxysterols induce caspase-independent myelin figure formation and caspase-dependent polar lipid accumulation,” Histochem. Cell Biol. 127(6), 609–624 (2007).
[Crossref]

Verkade, P.

L. Kalvodova, N. Kahya, P. Schwille, R. Ehehalt, P. Verkade, D. Drechsel, and K. Simons, “Lipids as modulators of proteolytic activity of bace involvement of cholesterol, glycosphingolipids, and anionic phospholipids in vitro,” J. Biol. Chem. 280(44), 36815–36823 (2005).
[Crossref]

Vetrivel, K. S.

K. S. Vetrivel and G. Thinakaran, “Membrane rafts in Alzheimer’s disease beta-amyloid production,” Biochim. Biophys. Acta, Biomembr 1801(8), 860–867 (2010).
[Crossref]

Vora, P.

P. Vora, V. Trivedi, S. Mahajan, N. R. Patel, M. Joglekar, V. Chhaniwal, A.-R. Moradi, B. Javidi, and A. Anand, “Wide field of view common-path lateral-shearing digital holographic interference microscope,” J. Biomed. Opt. 22(12), 126001 (2017).
[Crossref]

Wachtel, E.

D. Bach and E. Wachtel, “Phospholipid/cholesterol model membranes: formation of cholesterol crystallites,” Biochim. Biophys. Acta, Biomembr 1610(2), 187–197 (2003).
[Crossref]

Wax, A.

P. Ferraro, A. Wax, and Z. Zalevsky, Coherent Light Microscopy: Imaging and Quantitative Phase Analysis, vol. 46 (Springer Science & Business Media, 2011).

Weber, H.

Wilke, N.

C. M. Rosetti, A. Mangiarotti, and N. Wilke, “Sizes of lipid domains: What do we know from artificial lipid membranes? what are the possible shared features with membrane rafts in cells?” Biochim. Biophys. Acta, Biomembr 1859(5), 789–802 (2017).
[Crossref]

Wilkhu, J.

S. Bibi, R. Kaur, M. Henriksen-Lacey, S. E. McNeil, J. Wilkhu, E. Lattmann, D. Christensen, A. R. Mohammed, and Y. Perrie, “Microscopy imaging of liposomes: from coverslips to environmental sem,” Int. J. Pharm. 417(1-2), 138–150 (2011).
[Crossref]

Witten, T. A.

J.-R. Huang, L.-N. Zou, and T. A. Witten, “Confined multilamellae prefer cylindrical morphology,” Eur. Phys. J. E 18(3), 279–285 (2005).
[Crossref]

Wood, G. C.

R. Nallamothu, G. C. Wood, C. B. Pattillo, R. C. Scott, M. F. Kiani, B. M. Moore, and L. A. Thoma, “A tumor vasculature targeted liposome delivery system for combretastatin a4: design, characterization, and in vitro evaluation,” AAPS PharmSciTech 7(2), E7–E16 (2006).
[Crossref]

Xia, P.

O. Matoba, X. Quan, P. Xia, Y. Awatsuji, and T. Nomura, “Multimodal imaging based on digital holography,” Proc. IEEE 105(5), 906–923 (2017).
[Crossref]

Yi, F.

F. Yi, I. Moon, B. Javidi, D. Boss, and P. P. Marquet, “Automated segmentation of multiple red blood cells with digital holographic microscopy,” J. Biomed. Opt. 18(2), 026006 (2013).
[Crossref]

Zalevsky, Z.

V. Micó, J. Zheng, J. Garcia, Z. Zalevsky, and P. Gao, “Resolution enhancement in quantitative phase microscopy,” Adv. Opt. Photonics 11(1), 135–214 (2019).
[Crossref]

P. Ferraro, A. Wax, and Z. Zalevsky, Coherent Light Microscopy: Imaging and Quantitative Phase Analysis, vol. 46 (Springer Science & Business Media, 2011).

Zheng, J.

V. Micó, J. Zheng, J. Garcia, Z. Zalevsky, and P. Gao, “Resolution enhancement in quantitative phase microscopy,” Adv. Opt. Photonics 11(1), 135–214 (2019).
[Crossref]

Zou, L.-N.

L.-N. Zou, “Myelin figures: the buckling and flow of wet soap,” Phys. Rev. E 79(6), 061502 (2009).
[Crossref]

L.-N. Zou and S. R. Nagel, “Stability and growth of single myelin figures,” Phys. Rev. Lett. 96(13), 138301 (2006).
[Crossref]

J.-R. Huang, L.-N. Zou, and T. A. Witten, “Confined multilamellae prefer cylindrical morphology,” Eur. Phys. J. E 18(3), 279–285 (2005).
[Crossref]

AAPS PharmSciTech (1)

R. Nallamothu, G. C. Wood, C. B. Pattillo, R. C. Scott, M. F. Kiani, B. M. Moore, and L. A. Thoma, “A tumor vasculature targeted liposome delivery system for combretastatin a4: design, characterization, and in vitro evaluation,” AAPS PharmSciTech 7(2), E7–E16 (2006).
[Crossref]

Adv. Opt. Photonics (1)

V. Micó, J. Zheng, J. Garcia, Z. Zalevsky, and P. Gao, “Resolution enhancement in quantitative phase microscopy,” Adv. Opt. Photonics 11(1), 135–214 (2019).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

V. Farzam Rad, R. Tavakkoli, A.-R. Moradi, A. Anand, and B. Javidi, “Calcium effect on membrane of an optically trapped erythrocyte studied by digital holographic microscopy,” Appl. Phys. Lett. 111(8), 083701 (2017).
[Crossref]

Biochim. Biophys. Acta, Biomembr (4)

D. Bach and E. Wachtel, “Phospholipid/cholesterol model membranes: formation of cholesterol crystallites,” Biochim. Biophys. Acta, Biomembr 1610(2), 187–197 (2003).
[Crossref]

C. M. Rosetti, A. Mangiarotti, and N. Wilke, “Sizes of lipid domains: What do we know from artificial lipid membranes? what are the possible shared features with membrane rafts in cells?” Biochim. Biophys. Acta, Biomembr 1859(5), 789–802 (2017).
[Crossref]

K. S. Vetrivel and G. Thinakaran, “Membrane rafts in Alzheimer’s disease beta-amyloid production,” Biochim. Biophys. Acta, Biomembr 1801(8), 860–867 (2010).
[Crossref]

I. Sakurai, T. Suzuki, and S. Sakurai, “Cross-sectional view of myelin figures,” Biochim. Biophys. Acta, Biomembr 985(1), 101–105 (1989).
[Crossref]

Biochim. Biophys. Acta, Biomembr. (3)

H. Bouvrais, T. Pott, L. A. Bagatolli, J. H. Ipsen, and P. Méléard, “Impact of membrane-anchored fluorescent probes on the mechanical properties of lipid bilayers,” Biochim. Biophys. Acta, Biomembr. 1798(7), 1333–1337 (2010).
[Crossref]

I. Sakurai and Y. Kawamura, “Growth mechanism of myelin figures of phosphatidylcholine,” Biochim. Biophys. Acta, Biomembr. 777(2), 347–351 (1984).
[Crossref]

I. Sakurai, “Concentration gradient along the long axis of myelin figures of phosphatidylcholine,” Biochim. Biophys. Acta, Biomembr. 815(1), 149–152 (1985).
[Crossref]

Biomed. Opt. Express (2)

Biophys. J. (2)

Y. S. Tarahovsky, A. L. Arsenault, R. C. MacDonald, T. J. McIntosh, and R. M. Epand, “Electrostatic control of phospholipid polymorphism,” Biophys. J. 79(6), 3193–3200 (2000).
[Crossref]

A. D. Petelska and Z. A. Figaszewski, “Effect of pH on the interfacial tension of lipid bilayer membrane,” Biophys. J. 78(2), 812–817 (2000).
[Crossref]

Chem. Phys. Lett. (1)

K. Mishima, K. Satoh, and T. Ogihara, “The effects of ph and ions on myelin figure formation in phospholipid-water system,” Chem. Phys. Lett. 106(6), 513–516 (1984).
[Crossref]

Chem. Phys. Lipids (1)

K. Mishima, T. Ogihara, M. Tomita, and K. Satoh, “Growth rate of myelin figures for phosphatidylcholine and phosphatidylethanolamine,” Chem. Phys. Lipids 62(2), 87–91 (1992).
[Crossref]

Eur. Phys. J. E (1)

J.-R. Huang, L.-N. Zou, and T. A. Witten, “Confined multilamellae prefer cylindrical morphology,” Eur. Phys. J. E 18(3), 279–285 (2005).
[Crossref]

Histochem. Cell Biol. (1)

A. Vejux, E. Kahn, F. Ménétrier, T. Montange, J. Lherminier, J.-M. Riedinger, and G. Lizard, “Cytotoxic oxysterols induce caspase-independent myelin figure formation and caspase-dependent polar lipid accumulation,” Histochem. Cell Biol. 127(6), 609–624 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Jo, H. Cho, S. Y. Lee, G. Choi, G. Kim, H.-S. Min, and Y. Park, “Quantitative phase imaging and artificial intelligence: a review,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–14 (2019).
[Crossref]

Int. J. Mol. Sci. (1)

F. Mesa-Herrera, L. Taoro-González, C. Valdés-Baizabal, M. Diaz, and R. Marín, “Lipid and lipid raft alteration in aging and neurodegenerative diseases: A window for the development of new biomarkers,” Int. J. Mol. Sci. 20(15), 3810 (2019).
[Crossref]

Int. J. Nanomed. (1)

B. Ruozi, D. Belletti, A. Tombesi, G. Tosi, L. Bondioli, F. Forni, and M. A. Vandelli, “AFM, ESEM, TEM, and CLSM in liposomal characterization: a comparative study,” Int. J. Nanomed. 6, 557 (2011).
[Crossref]

Int. J. Pharm. (2)

S. Bibi, R. Kaur, M. Henriksen-Lacey, S. E. McNeil, J. Wilkhu, E. Lattmann, D. Christensen, A. R. Mohammed, and Y. Perrie, “Microscopy imaging of liposomes: from coverslips to environmental sem,” Int. J. Pharm. 417(1-2), 138–150 (2011).
[Crossref]

A. Sharma and U. S. Sharma, “Liposomes in drug delivery: progress and limitations,” Int. J. Pharm. 154(2), 123–140 (1997).
[Crossref]

Int. J. Photoenergy (1)

L. Tayebi, M. Mozafari, D. Vashaee, and A. N. Parikh, “Structural configuration of myelin figures using fluorescence microscopy,” Int. J. Photoenergy 2012, 1–7 (2012).
[Crossref]

J. Biol. Chem. (1)

L. Kalvodova, N. Kahya, P. Schwille, R. Ehehalt, P. Verkade, D. Drechsel, and K. Simons, “Lipids as modulators of proteolytic activity of bace involvement of cholesterol, glycosphingolipids, and anionic phospholipids in vitro,” J. Biol. Chem. 280(44), 36815–36823 (2005).
[Crossref]

J. Biol. Phys. (1)

G. Paredes-Quijada, H. Aranda-Espinoza, and A. Maldonado, “Shapes of mixed phospholipid vesicles,” J. Biol. Phys. 32(2), 177–181 (2006).
[Crossref]

J. Biomed. Opt. (3)

F. Yi, I. Moon, B. Javidi, D. Boss, and P. P. Marquet, “Automated segmentation of multiple red blood cells with digital holographic microscopy,” J. Biomed. Opt. 18(2), 026006 (2013).
[Crossref]

V. Farzamrad, A.-R. Moradi, A. Darudi, and L. Tayebi, “Digital holographic microscopy of phase separation in multicomponent lipid membranes,” J. Biomed. Opt. 21(12), 126016 (2016).
[Crossref]

P. Vora, V. Trivedi, S. Mahajan, N. R. Patel, M. Joglekar, V. Chhaniwal, A.-R. Moradi, B. Javidi, and A. Anand, “Wide field of view common-path lateral-shearing digital holographic interference microscope,” J. Biomed. Opt. 22(12), 126001 (2017).
[Crossref]

J. Colloid Interface Sci. (1)

R. Taribagil, M. Arunagirinathan, C. Manohar, and J. R. Bellare, “Extended time range modeling of myelin growth,” J. Colloid Interface Sci. 289(1), 242–248 (2005).
[Crossref]

J. Disp. Technol. (1)

A. Anand, V. K. Chhaniwal, and B. Javidi, “Real-time digital holographic microscopy for phase contrast 3D imaging of dynamic phenomena,” J. Disp. Technol. 6(10), 500–505 (2010).

J. Opt. (2)

V. Abbasian, Y. Ganjkhani, E. A. Akhlaghi, A. Anand, B. Javidi, and A.-R. Moradi, “Super-resolved microsphere-assisted mirau digital holography by oblique illumination,” J. Opt. 20(6), 065301 (2018).
[Crossref]

V. Abbasian, S. Rasouli, and A.-R. Moradi, “Microsphere-assisted self-referencing digital holographic microscopy in transmission mode,” J. Opt. 21(4), 045301 (2019).
[Crossref]

Langmuir (5)

M. Buchanan, S. U. Egelhaaf, and M. E. Cates, “Dynamics of interface instabilities in nonionic lamellar phases,” Langmuir 16(8), 3718–3726 (2000).
[Crossref]

M. Buchanan, J. Arrault, and M. Cates, “Swelling and dissolution of lamellar phases: role of bilayer organization,” Langmuir 14(26), 7371–7377 (1998).
[Crossref]

A. P. Kennedy, J. Sutcliffe, and J.-X. Cheng, “Molecular composition and orientation in myelin figures characterized by coherent anti-stokes Raman scattering microscopy,” Langmuir 21(14), 6478–6486 (2005).
[Crossref]

L. Reissig, D. J. Fairhurst, J. Leng, M. E. Cates, A. R. Mount, and S. U. Egelhaaf, “Three-dimensional structure and growth of myelins,” Langmuir 26(19), 15192–15199 (2010).
[Crossref]

O. Mertins and R. Dimova, “Insights on the interactions of chitosan with phospholipid vesicles. part II: Membrane stiffening and pore formation,” Langmuir 29(47), 14552–14559 (2013).
[Crossref]

Lung (1)

Y. Honda, K. Tsunematsu, A. Suzuki, and T. Akino, “Changes in phospholipids in bronchoalveolar lavage fluid of patients with interstitial lung diseases,” Lung 166(1), 293–301 (1988).
[Crossref]

Mater. Lett. (1)

R. Mosaviani, A.-R. Moradi, and L. Tayebi, “Effect of humidity on liquid-crystalline myelin figure growth using digital holographic microscopy,” Mater. Lett. 173, 162–166 (2016).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. A (1)

M. Kummrow and W. Helfrich, “Deformation of giant lipid vesicles by electric fields,” Phys. Rev. A 44(12), 8356–8360 (1991).
[Crossref]

Phys. Rev. E (2)

C. Santangelo and P. Pincus, “Coiling instabilities of multilamellar tubes,” Phys. Rev. E 66(6), 061501 (2002).
[Crossref]

L.-N. Zou, “Myelin figures: the buckling and flow of wet soap,” Phys. Rev. E 79(6), 061502 (2009).
[Crossref]

Phys. Rev. Lett. (1)

L.-N. Zou and S. R. Nagel, “Stability and growth of single myelin figures,” Phys. Rev. Lett. 96(13), 138301 (2006).
[Crossref]

Proc. IEEE (2)

A. Anand, I. Moon, and B. Javidi, “Automated disease identification with 3-d optical imaging: a medical diagnostic tool,” Proc. IEEE 105(5), 924–946 (2017).
[Crossref]

O. Matoba, X. Quan, P. Xia, Y. Awatsuji, and T. Nomura, “Multimodal imaging based on digital holography,” Proc. IEEE 105(5), 906–923 (2017).
[Crossref]

Science (1)

E. Evans, H. Bowman, A. Leung, D. Needham, and D. Tirrell, “Biomembrane templates for nanoscale conduits and networks,” Science 273(5277), 933–935 (1996).
[Crossref]

The J. Cell Biol. (1)

W. Stoeckenius, “An electron microscope study of myelin figures,” The J. Cell Biol. 5(3), 491–500 (1959).
[Crossref]

Trends Biochem. Sci. (1)

J. Peretó, P. López-García, and D. Moreira, “Ancestral lipid biosynthesis and early membrane evolution,” Trends Biochem. Sci. 29(9), 469–477 (2004).
[Crossref]

Other (5)

K. Larsson, Lipids: Molecular Organization, Physical Functions and Technical Applications, vol. 5 (The Oily Press, 1994).

D. B. Murphy, Fundamentals of Light Microscopy and Electronic Imaging (John Wiley & Sons, 2002).

D. Murphy and M. Davidson, “Confocal laser scanning microscopy,” Fundamentals of Light Microscopy and Electronic Imaging pp. 265–305 (2012).

P. Ferraro, A. Wax, and Z. Zalevsky, Coherent Light Microscopy: Imaging and Quantitative Phase Analysis, vol. 46 (Springer Science & Business Media, 2011).

M. K. Kim, “Digital holographic microscopy,” in Digital Holographic Microscopy, (Springer, 2011), pp. 149–190.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Schematic self-referencing DHM setup; (a) Detailed sketch of the hologram formation in the self-referencing module (SRM). (b) Bright-field image of MFs produced upon the contact of lipid plaque to excess water.
Fig. 2.
Fig. 2. (a) Relative length, and (b) volume changes of MFs in acidic, alkaline and neutral environment of different pHs as a function of time, obtained by hologram processing. Inset: holograms of typical MFs in acidic (pH=2) and alkaline (pH=12) environments, 20 s after their formation starts. Scale bar indicates 30 $\mu$m.
Fig. 3.
Fig. 3. (a) Dependence of growth power ($\alpha$) of MFs on pH degree of their surrounding medium. Inset: volume changes in log-log plot to obtain $\alpha$. (b) Dependence of crossover time ($t_c$) of MFs on pH degree of their surrounding medium. Inset: relative volume change for pH=4 and definition of $t_c$.