Abstract

The retinal nerve fiber layer (RNFL) is a fibrous tissue that shows form birefringence. This optical tissue property is related to the microstructure of the nerve fiber axons that carry electrical signals from the retina to the brain. Ocular diseases that are known to cause neurologic changes, like glaucoma or diabetic retinopathy (DR), might alter the birefringence of the RNFL, which could be used for diagnostic purposes. In this pilot study, we used a state-of-the-art polarization sensitive optical coherence tomography (PS-OCT) system with an integrated retinal tracker to analyze the RNFL birefringence in patients with glaucoma, DR, and in age-matched healthy controls. We recorded 3D PS-OCT raster scans of the optic nerve head area and high-quality averaged circumpapillary PS-OCT scans, from which RNFL thickness, retardation and birefringence were derived. The precision of birefringence measurements was 0.005°/µm. As compared to healthy controls, glaucoma patients showed a slightly reduced birefringence (0.129 vs. 0.135°/µm), although not statistically significant. The DR patients, however, showed a stronger reduction of RNFL birefringence (0.103 vs. 0.135°/µm) which was highly significant. This result might open new avenues into early diagnosis of DR and related neurologic changes.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Quigley and A. T. Broman, “The number of people with glaucoma worldwide in 2010 and 2020,” Br. J. Ophthalmol. 90(3), 262–267 (2006).
    [Crossref]
  2. C. Sabanayagam, R. Banu, M. L. Chee, R. Lee, Y. X. Wang, G. Tan, J. B. Jonas, E. L. Lamoureux, C.-Y. Cheng, B. E. K. Klein, P. Mitchell, R. Klein, C. M. G. Cheung, and T. Y. Wong, “Incidence and progression of diabetic retinopathy: a systematic review,” Lancet Diabetes Endocrinol. 7(2), 140–149 (2019).
    [Crossref]
  3. R. N. Weinreb, T. Aung, and F. A. Medeiros, “The pathophysiology and treatment of glaucoma: a review,” JAMA 311(18), 1901–1911 (2014).
    [Crossref]
  4. E. J. Duh, J. K. Sun, and A. W. Stitt, “Diabetic retinopathy: current understanding, mechanisms, and treatment strategies,” JCI Insight 2(14), e93751 (2017).
    [Crossref]
  5. B. Corcóstegui, S. Durán, M. O. González-Albarrán, C. Hernández, J. M. Ruiz-Moreno, J. Salvador, P. Udaondo, and R. Simó, “Update on Diagnosis and Treatment of Diabetic Retinopathy: A Consensus Guideline of the Working Group of Ocular Health (Spanish Society of Diabetes and Spanish Vitreous and Retina Society),” J. Ophthalmol. 2017, 1–10 (2017).
    [Crossref]
  6. M. Adhi and J. S. Duker, “Optical coherence tomography–current and future applications,” Curr. Opinion Ophthalmol. 24(3), 213–221 (2013).
    [Crossref]
  7. I. I. Bussel, G. Wollstein, and J. S. Schuman, “OCT for glaucoma diagnosis, screening and detection of glaucoma progression,” Br. J. Ophthalmol. 98(Suppl 2), ii15–ii19 (2014).
    [Crossref]
  8. J. Kotowski, G. Wollstein, L. S. Folio, H. Ishikawa, and J. S. Schuman, “Clinical use of OCT in assessing glaucoma progression,” Ophthalmic Surg Lasers Imaging 42(4), S6–S14 (2011).
    [Crossref]
  9. C. K.-S. Leung, C. Y. L. Cheung, R. N. Weinreb, K. Qiu, S. Liu, H. Li, G. Xu, N. Fan, C. P. Pang, K. K. Tse, and D. S. C. Lam, “Evaluation of Retinal Nerve Fiber Layer Progression in Glaucoma: A Study on Optical Coherence Tomography Guided Progression Analysis,” Invest. Ophthalmol. Visual Sci. 51(1), 217–222 (2010).
    [Crossref]
  10. Z. Khoueir, F. Jassim, L. Y.-C. Poon, E. Tsikata, G. S. Ben-David, Y. Liu, E. Shieh, R. Lee, R. Guo, G. Papadogeorgou, B. Braaf, H. Simavli, C. Que, B. J. Vakoc, B. E. Bouma, J. F. de Boer, and T. C. Chen, “Diagnostic Capability of Peripapillary Three-dimensional Retinal Nerve Fiber Layer Volume for Glaucoma Using Optical Coherence Tomography Volume Scans,” Am. J. Ophthalmol. 182, 180–193 (2017).
    [Crossref]
  11. J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113(5), 586–596 (1995).
    [Crossref]
  12. F. A. Medeiros, L. M. Zangwill, L. M. Alencar, C. Bowd, P. A. Sample, R. Susanna, and R. N. Weinreb, “Detection of Glaucoma Progression with Stratus OCT Retinal Nerve Fiber Layer, Optic Nerve Head, and Macular Thickness Measurements,” Invest. Ophthalmol. Visual Sci. 50(12), 5741–5748 (2009).
    [Crossref]
  13. A. Miki, F. A. Medeiros, R. N. Weinreb, S. Jain, F. He, L. Sharpsten, N. Khachatryan, N. Hammel, J. M. Liebmann, C. A. Girkin, P. A. Sample, and L. M. Zangwill, “Rates of retinal nerve fiber layer thinning in glaucoma suspect eyes,” Ophthalmology 121(7), 1350–1358 (2014).
    [Crossref]
  14. Q. Ghadiali, D. C. Hood, C. Lee, J. Manns, A. Llinas, L. K. Grover, V. C. Greenstein, J. M. Liebmann, J. G. Odel, and R. Ritch, “An analysis of normal variations in retinal nerve fiber layer thickness profiles measured with optical coherence tomography,” J. Glaucoma 17(5), 333–340 (2008).
    [Crossref]
  15. G. Savini, M. Zanini, V. Carelli, A. A. Sadun, F. N. Ross-Cisneros, and P. Barboni, “Correlation between retinal nerve fibre layer thickness and optic nerve head size: an optical coherence tomography study,” Br. J. Ophthalmol. 89(4), 489–492 (2005).
    [Crossref]
  16. G. Trichonas and P. K. Kaiser, “Optical coherence tomography imaging of macular oedema,” Br. J. Ophthalmol. 98(Suppl 2), ii24–ii29 (2014).
    [Crossref]
  17. T. Granström, H. Forsman, J. Leksell, S. Jani, A. M. Raghib, and E. Granstam, “Visual functioning and health-related quality of life in diabetic patients about to undergo anti-vascular endothelial growth factor treatment for sight-threatening macular edema,” J. Diabetes Complicat. 29(8), 1183–1190 (2015).
    [Crossref]
  18. J. Khadamy, K. Abri Aghdam, and K. G. Falavarjani, “An Update on Optical Coherence Tomography Angiography in Diabetic Retinopathy,” J. Ophthalmic Vis. Res. 13(4), 487–497 (2018).
    [Crossref]
  19. M. Sugimoto, M. Sasoh, M. Ido, Y. Wakitani, C. Takahashi, and Y. Uji, “Detection of early diabetic change with optical coherence tomography in type 2 diabetes mellitus patients without retinopathy,” Ophthalmologica 219(6), 379–385 (2005).
    [Crossref]
  20. H. W. V. Dijk, P. H. B. Kok, M. Garvin, M. Sonka, R. O. Schlingemann, F. D. Verbraak, and M. D. Abramoff, “Selective Loss of Inner Retinal Layer Thickness in Type 1 Diabetic Patients With Minimal Diabetic Retinopathy,” Invest. Ophthalmol. Visual Sci. 50(7), 3404–3409 (2009).
    [Crossref]
  21. S. J. Jeon, H.-Y. L. Park, J. H. Lee, and C. K. Park, “Relationship between Systemic Vascular Characteristics and Retinal Nerve Fiber Layer Loss in Patients with Type 2 Diabetes,” Sci. Rep. 8(1), 10510 (2018).
    [Crossref]
  22. R. N. Weinreb, L. Zangwill, C. C. Berry, R. Bathija, and P. A. Sample, “Detection of Glaucoma With Scanning Laser Polarimetry,” Arch. Ophthalmol. 116(12), 1583–1589 (1998).
    [Crossref]
  23. S. Özdek, Y. H. Lonneville, M. Önol, I. Yetkin, and B. B. Hasanreisoğlu, “Assessment of nerve fiber layer in diabetic patients with scanning laser polarimetry,” Eye 16(6), 761–765 (2002).
    [Crossref]
  24. J. M. Lopes de Faria, H. Russ, and V. P. Costa, “Retinal nerve fibre layer loss in patients with type 1 diabetes mellitus without retinopathy,” Br. J. Ophthalmol. 86(7), 725–728 (2002).
    [Crossref]
  25. C. Bowd, I. Tavares, F. Medeiros, L. Zangwill, P. Sample, and R. Weinreb, “Retinal Nerve Fiber Layer Thickness and Visual Sensitivity Using Scanning Laser Polarimetry with Variable and Enhanced Corneal Compensation,” Ophthalmology 114(7), 1259–1265 (2007).
    [Crossref]
  26. Q. Zhou, J. Reed, R. Betts, P. Trost, P. W. Lo, C. Wallace, R. Bienias, G. Li, R. Winnick, W. Papworth, and M. Sinai, “Detection of glaucomatous retinal nerve fiber layer damage by scanning laser polarimetry with variable corneal compensation,” Proc. SPIE 4951, 32–41 (2003).
    [Crossref]
  27. E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Analysis of the origin of atypical scanning laser polarimetry patterns by polarization sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 49(12), 5366–5372 (2008).
    [Crossref]
  28. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and Birefringence of Healthy Retinal Nerve Fiber Layer Tissue Measured with Polarization-Sensitive Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 45(8), 2606–2612 (2004).
    [Crossref]
  29. S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurt, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Visual Sci. 54(1), 72–84 (2013).
    [Crossref]
  30. M. Sugita, M. Pircher, S. Zotter, B. Baumann, P. Roberts, T. Makihira, N. Tomatsu, M. Sato, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber bundle tracing and analysis in human eye by polarization sensitive OCT,” Biomed. Opt. Express 6(3), 1030–1054 (2015).
    [Crossref]
  31. B. Fortune, C. F. Burgoyne, G. Cull, J. Reynaud, and L. Wang, “Onset and Progression of Peripapillary Retinal Nerve Fiber Layer (RNFL) Retardance Changes Occur Earlier Than RNFL Thickness Changes in Experimental Glaucoma,” Invest. Ophthalmol. Visual Sci. 54(8), 5653–5660 (2013).
    [Crossref]
  32. X. R. Huang, H. Bagga, D. S. Greenfield, and R. W. Knighton, “Variation of peripapillary retinal nerve fiber layer birefringence in normal human subjects,” Invest. Ophthalmol. Visual Sci. 45(9), 3073–3080 (2004).
    [Crossref]
  33. X.-R. Huang, R. W. Knighton, Y. Z. Spector, and W. J. Feuer, “Cytoskeletal Alteration and Change of Retinal Nerve Fiber Layer Birefringence in Hypertensive Retina,” Curr. Eye Res. 42(6), 936–947 (2017).
    [Crossref]
  34. J. F. de Boer, C. K. Hitzenberger, and Y. Yasuno, “Polarization sensitive optical coherence tomography - a review [Invited],” Biomed. Opt. Express 8(3), 1838–1873 (2017).
    [Crossref]
  35. B. Baumann, “Polarization Sensitive Optical Coherence Tomography: A Review of Technology and Applications,” Appl. Sci. 7(5), 474 (2017).
    [Crossref]
  36. M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retinal Eye Res. 30(6), 431–451 (2011).
    [Crossref]
  37. M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
    [Crossref]
  38. J. Willemse, M. G. O. Grafe, J. A. van de Kreeke, F. Feroldi, F. D. Verbraak, and J. F. de Boer, “Optic axis uniformity as a metric to improve the contrast of birefringent structures and analyze the retinal nerve fiber layer in polarization-sensitive optical coherence tomography,” Opt. Lett. 44(15), 3893–3896 (2019).
    [Crossref]
  39. E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: A comparison,” J. Biophotonics 1(2), 129–139 (2008).
    [Crossref]
  40. M. Sugita, S. Zotter, M. Pircher, T. Makihira, K. Saito, N. Tomatsu, M. Sato, P. Roberts, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Motion artifact and speckle noise reduction in polarization sensitive optical coherence tomography by retinal tracking,” Biomed. Opt. Express 5(1), 106–122 (2014).
    [Crossref]
  41. M. Sugita, M. Pircher, S. Zotter, B. Baumann, K. Saito, T. Makihira, N. Tomatsu, M. Sato, and C. K. Hitzenberger, “Analysis of optimum conditions of depolarization imaging by polarization-sensitive optical coherence tomography in the human retina,” J. Biomed. Opt. 20(1), 016011 (2015).
    [Crossref]
  42. E. Gotzinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography,” Opt. Express 17(25), 22704–22717 (2009).
    [Crossref]
  43. M. Pircher, E. Götzinger, B. Baumann, and C. Hitzenberger, “Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina,” J. Biomed. Opt. 12(4), 041210 (2007).
    [Crossref]
  44. E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008).
    [Crossref]
  45. S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
    [Crossref]
  46. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27(18), 1610–1612 (2002).
    [Crossref]
  47. B. Cense, T. Chen, B. Park, M. Pierce, and J. de Boer, “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 121–125 (2004).
    [Crossref]
  48. D. Xin, C. L. Talamini, A. S. Raza, C. G. V. de Moraes, V. C. Greenstein, J. M. Liebmann, R. Ritch, and D. C. Hood, “Hypodense regions (holes) in the retinal nerve fiber layer in frequency-domain OCT scans of glaucoma patients and suspects,” Invest. Ophthalmol. Visual Sci. 52(10), 7180–7186 (2011).
    [Crossref]
  49. B. Cense, Q. Wang, S. Lee, L. Zhao, A. E. Elsner, C. K. Hitzenberger, and D. T. Miller, “Henle fiber layer phase retardation measured with polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 4(11), 2296–2306 (2013).
    [Crossref]
  50. D. L. Budenz, D. R. Anderson, R. Varma, J. Schuman, L. Cantor, J. Savell, D. S. Greenfield, V. M. Patella, H. A. Quigley, and J. Tielsch, “Determinants of normal retinal nerve fiber layer thickness measured by Stratus OCT,” Ophthalmology 114(6), 1046–1052 (2007).
    [Crossref]
  51. D. Bendschneider, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal nerve fiber layer thickness in normals measured by spectral domain OCT,” J. Glaucoma 19(7), 475–482 (2010).
    [Crossref]
  52. L. K. Seibold, N. Mandava, and M. Y. Kahook, “Comparison of retinal nerve fiber layer thickness in normal eyes using time-domain and spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 150(6), 807–814.e1 (2010).
    [Crossref]
  53. B. Fortune, G. Cull, J. Reynaud, L. Wang, and C. F. Burgoyne, “Relating Retinal Ganglion Cell Function and Retinal Nerve Fiber Layer (RNFL) Retardance to Progressive Loss of RNFL Thickness and Optic Nerve Axons in Experimental Glaucoma,” Invest. Ophthalmol. Visual Sci. 56(6), 3936–3944 (2015).
    [Crossref]

2019 (2)

C. Sabanayagam, R. Banu, M. L. Chee, R. Lee, Y. X. Wang, G. Tan, J. B. Jonas, E. L. Lamoureux, C.-Y. Cheng, B. E. K. Klein, P. Mitchell, R. Klein, C. M. G. Cheung, and T. Y. Wong, “Incidence and progression of diabetic retinopathy: a systematic review,” Lancet Diabetes Endocrinol. 7(2), 140–149 (2019).
[Crossref]

J. Willemse, M. G. O. Grafe, J. A. van de Kreeke, F. Feroldi, F. D. Verbraak, and J. F. de Boer, “Optic axis uniformity as a metric to improve the contrast of birefringent structures and analyze the retinal nerve fiber layer in polarization-sensitive optical coherence tomography,” Opt. Lett. 44(15), 3893–3896 (2019).
[Crossref]

2018 (2)

J. Khadamy, K. Abri Aghdam, and K. G. Falavarjani, “An Update on Optical Coherence Tomography Angiography in Diabetic Retinopathy,” J. Ophthalmic Vis. Res. 13(4), 487–497 (2018).
[Crossref]

S. J. Jeon, H.-Y. L. Park, J. H. Lee, and C. K. Park, “Relationship between Systemic Vascular Characteristics and Retinal Nerve Fiber Layer Loss in Patients with Type 2 Diabetes,” Sci. Rep. 8(1), 10510 (2018).
[Crossref]

2017 (6)

X.-R. Huang, R. W. Knighton, Y. Z. Spector, and W. J. Feuer, “Cytoskeletal Alteration and Change of Retinal Nerve Fiber Layer Birefringence in Hypertensive Retina,” Curr. Eye Res. 42(6), 936–947 (2017).
[Crossref]

J. F. de Boer, C. K. Hitzenberger, and Y. Yasuno, “Polarization sensitive optical coherence tomography - a review [Invited],” Biomed. Opt. Express 8(3), 1838–1873 (2017).
[Crossref]

B. Baumann, “Polarization Sensitive Optical Coherence Tomography: A Review of Technology and Applications,” Appl. Sci. 7(5), 474 (2017).
[Crossref]

E. J. Duh, J. K. Sun, and A. W. Stitt, “Diabetic retinopathy: current understanding, mechanisms, and treatment strategies,” JCI Insight 2(14), e93751 (2017).
[Crossref]

B. Corcóstegui, S. Durán, M. O. González-Albarrán, C. Hernández, J. M. Ruiz-Moreno, J. Salvador, P. Udaondo, and R. Simó, “Update on Diagnosis and Treatment of Diabetic Retinopathy: A Consensus Guideline of the Working Group of Ocular Health (Spanish Society of Diabetes and Spanish Vitreous and Retina Society),” J. Ophthalmol. 2017, 1–10 (2017).
[Crossref]

Z. Khoueir, F. Jassim, L. Y.-C. Poon, E. Tsikata, G. S. Ben-David, Y. Liu, E. Shieh, R. Lee, R. Guo, G. Papadogeorgou, B. Braaf, H. Simavli, C. Que, B. J. Vakoc, B. E. Bouma, J. F. de Boer, and T. C. Chen, “Diagnostic Capability of Peripapillary Three-dimensional Retinal Nerve Fiber Layer Volume for Glaucoma Using Optical Coherence Tomography Volume Scans,” Am. J. Ophthalmol. 182, 180–193 (2017).
[Crossref]

2015 (4)

T. Granström, H. Forsman, J. Leksell, S. Jani, A. M. Raghib, and E. Granstam, “Visual functioning and health-related quality of life in diabetic patients about to undergo anti-vascular endothelial growth factor treatment for sight-threatening macular edema,” J. Diabetes Complicat. 29(8), 1183–1190 (2015).
[Crossref]

M. Sugita, M. Pircher, S. Zotter, B. Baumann, P. Roberts, T. Makihira, N. Tomatsu, M. Sato, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber bundle tracing and analysis in human eye by polarization sensitive OCT,” Biomed. Opt. Express 6(3), 1030–1054 (2015).
[Crossref]

M. Sugita, M. Pircher, S. Zotter, B. Baumann, K. Saito, T. Makihira, N. Tomatsu, M. Sato, and C. K. Hitzenberger, “Analysis of optimum conditions of depolarization imaging by polarization-sensitive optical coherence tomography in the human retina,” J. Biomed. Opt. 20(1), 016011 (2015).
[Crossref]

B. Fortune, G. Cull, J. Reynaud, L. Wang, and C. F. Burgoyne, “Relating Retinal Ganglion Cell Function and Retinal Nerve Fiber Layer (RNFL) Retardance to Progressive Loss of RNFL Thickness and Optic Nerve Axons in Experimental Glaucoma,” Invest. Ophthalmol. Visual Sci. 56(6), 3936–3944 (2015).
[Crossref]

2014 (5)

M. Sugita, S. Zotter, M. Pircher, T. Makihira, K. Saito, N. Tomatsu, M. Sato, P. Roberts, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Motion artifact and speckle noise reduction in polarization sensitive optical coherence tomography by retinal tracking,” Biomed. Opt. Express 5(1), 106–122 (2014).
[Crossref]

G. Trichonas and P. K. Kaiser, “Optical coherence tomography imaging of macular oedema,” Br. J. Ophthalmol. 98(Suppl 2), ii24–ii29 (2014).
[Crossref]

A. Miki, F. A. Medeiros, R. N. Weinreb, S. Jain, F. He, L. Sharpsten, N. Khachatryan, N. Hammel, J. M. Liebmann, C. A. Girkin, P. A. Sample, and L. M. Zangwill, “Rates of retinal nerve fiber layer thinning in glaucoma suspect eyes,” Ophthalmology 121(7), 1350–1358 (2014).
[Crossref]

I. I. Bussel, G. Wollstein, and J. S. Schuman, “OCT for glaucoma diagnosis, screening and detection of glaucoma progression,” Br. J. Ophthalmol. 98(Suppl 2), ii15–ii19 (2014).
[Crossref]

R. N. Weinreb, T. Aung, and F. A. Medeiros, “The pathophysiology and treatment of glaucoma: a review,” JAMA 311(18), 1901–1911 (2014).
[Crossref]

2013 (4)

M. Adhi and J. S. Duker, “Optical coherence tomography–current and future applications,” Curr. Opinion Ophthalmol. 24(3), 213–221 (2013).
[Crossref]

B. Fortune, C. F. Burgoyne, G. Cull, J. Reynaud, and L. Wang, “Onset and Progression of Peripapillary Retinal Nerve Fiber Layer (RNFL) Retardance Changes Occur Earlier Than RNFL Thickness Changes in Experimental Glaucoma,” Invest. Ophthalmol. Visual Sci. 54(8), 5653–5660 (2013).
[Crossref]

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurt, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Visual Sci. 54(1), 72–84 (2013).
[Crossref]

B. Cense, Q. Wang, S. Lee, L. Zhao, A. E. Elsner, C. K. Hitzenberger, and D. T. Miller, “Henle fiber layer phase retardation measured with polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 4(11), 2296–2306 (2013).
[Crossref]

2011 (3)

D. Xin, C. L. Talamini, A. S. Raza, C. G. V. de Moraes, V. C. Greenstein, J. M. Liebmann, R. Ritch, and D. C. Hood, “Hypodense regions (holes) in the retinal nerve fiber layer in frequency-domain OCT scans of glaucoma patients and suspects,” Invest. Ophthalmol. Visual Sci. 52(10), 7180–7186 (2011).
[Crossref]

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retinal Eye Res. 30(6), 431–451 (2011).
[Crossref]

J. Kotowski, G. Wollstein, L. S. Folio, H. Ishikawa, and J. S. Schuman, “Clinical use of OCT in assessing glaucoma progression,” Ophthalmic Surg Lasers Imaging 42(4), S6–S14 (2011).
[Crossref]

2010 (4)

C. K.-S. Leung, C. Y. L. Cheung, R. N. Weinreb, K. Qiu, S. Liu, H. Li, G. Xu, N. Fan, C. P. Pang, K. K. Tse, and D. S. C. Lam, “Evaluation of Retinal Nerve Fiber Layer Progression in Glaucoma: A Study on Optical Coherence Tomography Guided Progression Analysis,” Invest. Ophthalmol. Visual Sci. 51(1), 217–222 (2010).
[Crossref]

D. Bendschneider, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal nerve fiber layer thickness in normals measured by spectral domain OCT,” J. Glaucoma 19(7), 475–482 (2010).
[Crossref]

L. K. Seibold, N. Mandava, and M. Y. Kahook, “Comparison of retinal nerve fiber layer thickness in normal eyes using time-domain and spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 150(6), 807–814.e1 (2010).
[Crossref]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[Crossref]

2009 (3)

E. Gotzinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography,” Opt. Express 17(25), 22704–22717 (2009).
[Crossref]

F. A. Medeiros, L. M. Zangwill, L. M. Alencar, C. Bowd, P. A. Sample, R. Susanna, and R. N. Weinreb, “Detection of Glaucoma Progression with Stratus OCT Retinal Nerve Fiber Layer, Optic Nerve Head, and Macular Thickness Measurements,” Invest. Ophthalmol. Visual Sci. 50(12), 5741–5748 (2009).
[Crossref]

H. W. V. Dijk, P. H. B. Kok, M. Garvin, M. Sonka, R. O. Schlingemann, F. D. Verbraak, and M. D. Abramoff, “Selective Loss of Inner Retinal Layer Thickness in Type 1 Diabetic Patients With Minimal Diabetic Retinopathy,” Invest. Ophthalmol. Visual Sci. 50(7), 3404–3409 (2009).
[Crossref]

2008 (5)

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[Crossref]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Analysis of the origin of atypical scanning laser polarimetry patterns by polarization sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 49(12), 5366–5372 (2008).
[Crossref]

Q. Ghadiali, D. C. Hood, C. Lee, J. Manns, A. Llinas, L. K. Grover, V. C. Greenstein, J. M. Liebmann, J. G. Odel, and R. Ritch, “An analysis of normal variations in retinal nerve fiber layer thickness profiles measured with optical coherence tomography,” J. Glaucoma 17(5), 333–340 (2008).
[Crossref]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: A comparison,” J. Biophotonics 1(2), 129–139 (2008).
[Crossref]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008).
[Crossref]

2007 (3)

M. Pircher, E. Götzinger, B. Baumann, and C. Hitzenberger, “Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina,” J. Biomed. Opt. 12(4), 041210 (2007).
[Crossref]

D. L. Budenz, D. R. Anderson, R. Varma, J. Schuman, L. Cantor, J. Savell, D. S. Greenfield, V. M. Patella, H. A. Quigley, and J. Tielsch, “Determinants of normal retinal nerve fiber layer thickness measured by Stratus OCT,” Ophthalmology 114(6), 1046–1052 (2007).
[Crossref]

C. Bowd, I. Tavares, F. Medeiros, L. Zangwill, P. Sample, and R. Weinreb, “Retinal Nerve Fiber Layer Thickness and Visual Sensitivity Using Scanning Laser Polarimetry with Variable and Enhanced Corneal Compensation,” Ophthalmology 114(7), 1259–1265 (2007).
[Crossref]

2006 (1)

H. A. Quigley and A. T. Broman, “The number of people with glaucoma worldwide in 2010 and 2020,” Br. J. Ophthalmol. 90(3), 262–267 (2006).
[Crossref]

2005 (2)

G. Savini, M. Zanini, V. Carelli, A. A. Sadun, F. N. Ross-Cisneros, and P. Barboni, “Correlation between retinal nerve fibre layer thickness and optic nerve head size: an optical coherence tomography study,” Br. J. Ophthalmol. 89(4), 489–492 (2005).
[Crossref]

M. Sugimoto, M. Sasoh, M. Ido, Y. Wakitani, C. Takahashi, and Y. Uji, “Detection of early diabetic change with optical coherence tomography in type 2 diabetes mellitus patients without retinopathy,” Ophthalmologica 219(6), 379–385 (2005).
[Crossref]

2004 (3)

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and Birefringence of Healthy Retinal Nerve Fiber Layer Tissue Measured with Polarization-Sensitive Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 45(8), 2606–2612 (2004).
[Crossref]

X. R. Huang, H. Bagga, D. S. Greenfield, and R. W. Knighton, “Variation of peripapillary retinal nerve fiber layer birefringence in normal human subjects,” Invest. Ophthalmol. Visual Sci. 45(9), 3073–3080 (2004).
[Crossref]

B. Cense, T. Chen, B. Park, M. Pierce, and J. de Boer, “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 121–125 (2004).
[Crossref]

2003 (1)

Q. Zhou, J. Reed, R. Betts, P. Trost, P. W. Lo, C. Wallace, R. Bienias, G. Li, R. Winnick, W. Papworth, and M. Sinai, “Detection of glaucomatous retinal nerve fiber layer damage by scanning laser polarimetry with variable corneal compensation,” Proc. SPIE 4951, 32–41 (2003).
[Crossref]

2002 (3)

S. Özdek, Y. H. Lonneville, M. Önol, I. Yetkin, and B. B. Hasanreisoğlu, “Assessment of nerve fiber layer in diabetic patients with scanning laser polarimetry,” Eye 16(6), 761–765 (2002).
[Crossref]

J. M. Lopes de Faria, H. Russ, and V. P. Costa, “Retinal nerve fibre layer loss in patients with type 1 diabetes mellitus without retinopathy,” Br. J. Ophthalmol. 86(7), 725–728 (2002).
[Crossref]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27(18), 1610–1612 (2002).
[Crossref]

1998 (1)

R. N. Weinreb, L. Zangwill, C. C. Berry, R. Bathija, and P. A. Sample, “Detection of Glaucoma With Scanning Laser Polarimetry,” Arch. Ophthalmol. 116(12), 1583–1589 (1998).
[Crossref]

1995 (1)

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113(5), 586–596 (1995).
[Crossref]

Abramoff, M. D.

H. W. V. Dijk, P. H. B. Kok, M. Garvin, M. Sonka, R. O. Schlingemann, F. D. Verbraak, and M. D. Abramoff, “Selective Loss of Inner Retinal Layer Thickness in Type 1 Diabetic Patients With Minimal Diabetic Retinopathy,” Invest. Ophthalmol. Visual Sci. 50(7), 3404–3409 (2009).
[Crossref]

Abri Aghdam, K.

J. Khadamy, K. Abri Aghdam, and K. G. Falavarjani, “An Update on Optical Coherence Tomography Angiography in Diabetic Retinopathy,” J. Ophthalmic Vis. Res. 13(4), 487–497 (2018).
[Crossref]

Adhi, M.

M. Adhi and J. S. Duker, “Optical coherence tomography–current and future applications,” Curr. Opinion Ophthalmol. 24(3), 213–221 (2013).
[Crossref]

Ahlers, C.

Alencar, L. M.

F. A. Medeiros, L. M. Zangwill, L. M. Alencar, C. Bowd, P. A. Sample, R. Susanna, and R. N. Weinreb, “Detection of Glaucoma Progression with Stratus OCT Retinal Nerve Fiber Layer, Optic Nerve Head, and Macular Thickness Measurements,” Invest. Ophthalmol. Visual Sci. 50(12), 5741–5748 (2009).
[Crossref]

Anderson, D. R.

D. L. Budenz, D. R. Anderson, R. Varma, J. Schuman, L. Cantor, J. Savell, D. S. Greenfield, V. M. Patella, H. A. Quigley, and J. Tielsch, “Determinants of normal retinal nerve fiber layer thickness measured by Stratus OCT,” Ophthalmology 114(6), 1046–1052 (2007).
[Crossref]

Aung, T.

R. N. Weinreb, T. Aung, and F. A. Medeiros, “The pathophysiology and treatment of glaucoma: a review,” JAMA 311(18), 1901–1911 (2014).
[Crossref]

Bagga, H.

X. R. Huang, H. Bagga, D. S. Greenfield, and R. W. Knighton, “Variation of peripapillary retinal nerve fiber layer birefringence in normal human subjects,” Invest. Ophthalmol. Visual Sci. 45(9), 3073–3080 (2004).
[Crossref]

Banu, R.

C. Sabanayagam, R. Banu, M. L. Chee, R. Lee, Y. X. Wang, G. Tan, J. B. Jonas, E. L. Lamoureux, C.-Y. Cheng, B. E. K. Klein, P. Mitchell, R. Klein, C. M. G. Cheung, and T. Y. Wong, “Incidence and progression of diabetic retinopathy: a systematic review,” Lancet Diabetes Endocrinol. 7(2), 140–149 (2019).
[Crossref]

Barboni, P.

G. Savini, M. Zanini, V. Carelli, A. A. Sadun, F. N. Ross-Cisneros, and P. Barboni, “Correlation between retinal nerve fibre layer thickness and optic nerve head size: an optical coherence tomography study,” Br. J. Ophthalmol. 89(4), 489–492 (2005).
[Crossref]

Bathija, R.

R. N. Weinreb, L. Zangwill, C. C. Berry, R. Bathija, and P. A. Sample, “Detection of Glaucoma With Scanning Laser Polarimetry,” Arch. Ophthalmol. 116(12), 1583–1589 (1998).
[Crossref]

Baumann, B.

B. Baumann, “Polarization Sensitive Optical Coherence Tomography: A Review of Technology and Applications,” Appl. Sci. 7(5), 474 (2017).
[Crossref]

M. Sugita, M. Pircher, S. Zotter, B. Baumann, K. Saito, T. Makihira, N. Tomatsu, M. Sato, and C. K. Hitzenberger, “Analysis of optimum conditions of depolarization imaging by polarization-sensitive optical coherence tomography in the human retina,” J. Biomed. Opt. 20(1), 016011 (2015).
[Crossref]

M. Sugita, M. Pircher, S. Zotter, B. Baumann, P. Roberts, T. Makihira, N. Tomatsu, M. Sato, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber bundle tracing and analysis in human eye by polarization sensitive OCT,” Biomed. Opt. Express 6(3), 1030–1054 (2015).
[Crossref]

E. Gotzinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography,” Opt. Express 17(25), 22704–22717 (2009).
[Crossref]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008).
[Crossref]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: A comparison,” J. Biophotonics 1(2), 129–139 (2008).
[Crossref]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Analysis of the origin of atypical scanning laser polarimetry patterns by polarization sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 49(12), 5366–5372 (2008).
[Crossref]

M. Pircher, E. Götzinger, B. Baumann, and C. Hitzenberger, “Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina,” J. Biomed. Opt. 12(4), 041210 (2007).
[Crossref]

Ben-David, G. S.

Z. Khoueir, F. Jassim, L. Y.-C. Poon, E. Tsikata, G. S. Ben-David, Y. Liu, E. Shieh, R. Lee, R. Guo, G. Papadogeorgou, B. Braaf, H. Simavli, C. Que, B. J. Vakoc, B. E. Bouma, J. F. de Boer, and T. C. Chen, “Diagnostic Capability of Peripapillary Three-dimensional Retinal Nerve Fiber Layer Volume for Glaucoma Using Optical Coherence Tomography Volume Scans,” Am. J. Ophthalmol. 182, 180–193 (2017).
[Crossref]

Bendschneider, D.

D. Bendschneider, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal nerve fiber layer thickness in normals measured by spectral domain OCT,” J. Glaucoma 19(7), 475–482 (2010).
[Crossref]

Berry, C. C.

R. N. Weinreb, L. Zangwill, C. C. Berry, R. Bathija, and P. A. Sample, “Detection of Glaucoma With Scanning Laser Polarimetry,” Arch. Ophthalmol. 116(12), 1583–1589 (1998).
[Crossref]

Betts, R.

Q. Zhou, J. Reed, R. Betts, P. Trost, P. W. Lo, C. Wallace, R. Bienias, G. Li, R. Winnick, W. Papworth, and M. Sinai, “Detection of glaucomatous retinal nerve fiber layer damage by scanning laser polarimetry with variable corneal compensation,” Proc. SPIE 4951, 32–41 (2003).
[Crossref]

Bienias, R.

Q. Zhou, J. Reed, R. Betts, P. Trost, P. W. Lo, C. Wallace, R. Bienias, G. Li, R. Winnick, W. Papworth, and M. Sinai, “Detection of glaucomatous retinal nerve fiber layer damage by scanning laser polarimetry with variable corneal compensation,” Proc. SPIE 4951, 32–41 (2003).
[Crossref]

Bouma, B. E.

Z. Khoueir, F. Jassim, L. Y.-C. Poon, E. Tsikata, G. S. Ben-David, Y. Liu, E. Shieh, R. Lee, R. Guo, G. Papadogeorgou, B. Braaf, H. Simavli, C. Que, B. J. Vakoc, B. E. Bouma, J. F. de Boer, and T. C. Chen, “Diagnostic Capability of Peripapillary Three-dimensional Retinal Nerve Fiber Layer Volume for Glaucoma Using Optical Coherence Tomography Volume Scans,” Am. J. Ophthalmol. 182, 180–193 (2017).
[Crossref]

Bowd, C.

F. A. Medeiros, L. M. Zangwill, L. M. Alencar, C. Bowd, P. A. Sample, R. Susanna, and R. N. Weinreb, “Detection of Glaucoma Progression with Stratus OCT Retinal Nerve Fiber Layer, Optic Nerve Head, and Macular Thickness Measurements,” Invest. Ophthalmol. Visual Sci. 50(12), 5741–5748 (2009).
[Crossref]

C. Bowd, I. Tavares, F. Medeiros, L. Zangwill, P. Sample, and R. Weinreb, “Retinal Nerve Fiber Layer Thickness and Visual Sensitivity Using Scanning Laser Polarimetry with Variable and Enhanced Corneal Compensation,” Ophthalmology 114(7), 1259–1265 (2007).
[Crossref]

Braaf, B.

Z. Khoueir, F. Jassim, L. Y.-C. Poon, E. Tsikata, G. S. Ben-David, Y. Liu, E. Shieh, R. Lee, R. Guo, G. Papadogeorgou, B. Braaf, H. Simavli, C. Que, B. J. Vakoc, B. E. Bouma, J. F. de Boer, and T. C. Chen, “Diagnostic Capability of Peripapillary Three-dimensional Retinal Nerve Fiber Layer Volume for Glaucoma Using Optical Coherence Tomography Volume Scans,” Am. J. Ophthalmol. 182, 180–193 (2017).
[Crossref]

Broman, A. T.

H. A. Quigley and A. T. Broman, “The number of people with glaucoma worldwide in 2010 and 2020,” Br. J. Ophthalmol. 90(3), 262–267 (2006).
[Crossref]

Budenz, D. L.

D. L. Budenz, D. R. Anderson, R. Varma, J. Schuman, L. Cantor, J. Savell, D. S. Greenfield, V. M. Patella, H. A. Quigley, and J. Tielsch, “Determinants of normal retinal nerve fiber layer thickness measured by Stratus OCT,” Ophthalmology 114(6), 1046–1052 (2007).
[Crossref]

Burgoyne, C. F.

B. Fortune, G. Cull, J. Reynaud, L. Wang, and C. F. Burgoyne, “Relating Retinal Ganglion Cell Function and Retinal Nerve Fiber Layer (RNFL) Retardance to Progressive Loss of RNFL Thickness and Optic Nerve Axons in Experimental Glaucoma,” Invest. Ophthalmol. Visual Sci. 56(6), 3936–3944 (2015).
[Crossref]

B. Fortune, C. F. Burgoyne, G. Cull, J. Reynaud, and L. Wang, “Onset and Progression of Peripapillary Retinal Nerve Fiber Layer (RNFL) Retardance Changes Occur Earlier Than RNFL Thickness Changes in Experimental Glaucoma,” Invest. Ophthalmol. Visual Sci. 54(8), 5653–5660 (2013).
[Crossref]

Bussel, I. I.

I. I. Bussel, G. Wollstein, and J. S. Schuman, “OCT for glaucoma diagnosis, screening and detection of glaucoma progression,” Br. J. Ophthalmol. 98(Suppl 2), ii15–ii19 (2014).
[Crossref]

Cantor, L.

D. L. Budenz, D. R. Anderson, R. Varma, J. Schuman, L. Cantor, J. Savell, D. S. Greenfield, V. M. Patella, H. A. Quigley, and J. Tielsch, “Determinants of normal retinal nerve fiber layer thickness measured by Stratus OCT,” Ophthalmology 114(6), 1046–1052 (2007).
[Crossref]

Carelli, V.

G. Savini, M. Zanini, V. Carelli, A. A. Sadun, F. N. Ross-Cisneros, and P. Barboni, “Correlation between retinal nerve fibre layer thickness and optic nerve head size: an optical coherence tomography study,” Br. J. Ophthalmol. 89(4), 489–492 (2005).
[Crossref]

Cense, B.

B. Cense, Q. Wang, S. Lee, L. Zhao, A. E. Elsner, C. K. Hitzenberger, and D. T. Miller, “Henle fiber layer phase retardation measured with polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 4(11), 2296–2306 (2013).
[Crossref]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and Birefringence of Healthy Retinal Nerve Fiber Layer Tissue Measured with Polarization-Sensitive Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 45(8), 2606–2612 (2004).
[Crossref]

B. Cense, T. Chen, B. Park, M. Pierce, and J. de Boer, “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 121–125 (2004).
[Crossref]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27(18), 1610–1612 (2002).
[Crossref]

Chee, M. L.

C. Sabanayagam, R. Banu, M. L. Chee, R. Lee, Y. X. Wang, G. Tan, J. B. Jonas, E. L. Lamoureux, C.-Y. Cheng, B. E. K. Klein, P. Mitchell, R. Klein, C. M. G. Cheung, and T. Y. Wong, “Incidence and progression of diabetic retinopathy: a systematic review,” Lancet Diabetes Endocrinol. 7(2), 140–149 (2019).
[Crossref]

Chen, T.

B. Cense, T. Chen, B. Park, M. Pierce, and J. de Boer, “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 121–125 (2004).
[Crossref]

Chen, T. C.

Z. Khoueir, F. Jassim, L. Y.-C. Poon, E. Tsikata, G. S. Ben-David, Y. Liu, E. Shieh, R. Lee, R. Guo, G. Papadogeorgou, B. Braaf, H. Simavli, C. Que, B. J. Vakoc, B. E. Bouma, J. F. de Boer, and T. C. Chen, “Diagnostic Capability of Peripapillary Three-dimensional Retinal Nerve Fiber Layer Volume for Glaucoma Using Optical Coherence Tomography Volume Scans,” Am. J. Ophthalmol. 182, 180–193 (2017).
[Crossref]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and Birefringence of Healthy Retinal Nerve Fiber Layer Tissue Measured with Polarization-Sensitive Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 45(8), 2606–2612 (2004).
[Crossref]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27(18), 1610–1612 (2002).
[Crossref]

Cheng, C.-Y.

C. Sabanayagam, R. Banu, M. L. Chee, R. Lee, Y. X. Wang, G. Tan, J. B. Jonas, E. L. Lamoureux, C.-Y. Cheng, B. E. K. Klein, P. Mitchell, R. Klein, C. M. G. Cheung, and T. Y. Wong, “Incidence and progression of diabetic retinopathy: a systematic review,” Lancet Diabetes Endocrinol. 7(2), 140–149 (2019).
[Crossref]

Cheung, C. M. G.

C. Sabanayagam, R. Banu, M. L. Chee, R. Lee, Y. X. Wang, G. Tan, J. B. Jonas, E. L. Lamoureux, C.-Y. Cheng, B. E. K. Klein, P. Mitchell, R. Klein, C. M. G. Cheung, and T. Y. Wong, “Incidence and progression of diabetic retinopathy: a systematic review,” Lancet Diabetes Endocrinol. 7(2), 140–149 (2019).
[Crossref]

Cheung, C. Y. L.

C. K.-S. Leung, C. Y. L. Cheung, R. N. Weinreb, K. Qiu, S. Liu, H. Li, G. Xu, N. Fan, C. P. Pang, K. K. Tse, and D. S. C. Lam, “Evaluation of Retinal Nerve Fiber Layer Progression in Glaucoma: A Study on Optical Coherence Tomography Guided Progression Analysis,” Invest. Ophthalmol. Visual Sci. 51(1), 217–222 (2010).
[Crossref]

Chiu, S. J.

Corcóstegui, B.

B. Corcóstegui, S. Durán, M. O. González-Albarrán, C. Hernández, J. M. Ruiz-Moreno, J. Salvador, P. Udaondo, and R. Simó, “Update on Diagnosis and Treatment of Diabetic Retinopathy: A Consensus Guideline of the Working Group of Ocular Health (Spanish Society of Diabetes and Spanish Vitreous and Retina Society),” J. Ophthalmol. 2017, 1–10 (2017).
[Crossref]

Costa, V. P.

J. M. Lopes de Faria, H. Russ, and V. P. Costa, “Retinal nerve fibre layer loss in patients with type 1 diabetes mellitus without retinopathy,” Br. J. Ophthalmol. 86(7), 725–728 (2002).
[Crossref]

Cull, G.

B. Fortune, G. Cull, J. Reynaud, L. Wang, and C. F. Burgoyne, “Relating Retinal Ganglion Cell Function and Retinal Nerve Fiber Layer (RNFL) Retardance to Progressive Loss of RNFL Thickness and Optic Nerve Axons in Experimental Glaucoma,” Invest. Ophthalmol. Visual Sci. 56(6), 3936–3944 (2015).
[Crossref]

B. Fortune, C. F. Burgoyne, G. Cull, J. Reynaud, and L. Wang, “Onset and Progression of Peripapillary Retinal Nerve Fiber Layer (RNFL) Retardance Changes Occur Earlier Than RNFL Thickness Changes in Experimental Glaucoma,” Invest. Ophthalmol. Visual Sci. 54(8), 5653–5660 (2013).
[Crossref]

de Boer, J.

B. Cense, T. Chen, B. Park, M. Pierce, and J. de Boer, “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 121–125 (2004).
[Crossref]

de Boer, J. F.

J. Willemse, M. G. O. Grafe, J. A. van de Kreeke, F. Feroldi, F. D. Verbraak, and J. F. de Boer, “Optic axis uniformity as a metric to improve the contrast of birefringent structures and analyze the retinal nerve fiber layer in polarization-sensitive optical coherence tomography,” Opt. Lett. 44(15), 3893–3896 (2019).
[Crossref]

J. F. de Boer, C. K. Hitzenberger, and Y. Yasuno, “Polarization sensitive optical coherence tomography - a review [Invited],” Biomed. Opt. Express 8(3), 1838–1873 (2017).
[Crossref]

Z. Khoueir, F. Jassim, L. Y.-C. Poon, E. Tsikata, G. S. Ben-David, Y. Liu, E. Shieh, R. Lee, R. Guo, G. Papadogeorgou, B. Braaf, H. Simavli, C. Que, B. J. Vakoc, B. E. Bouma, J. F. de Boer, and T. C. Chen, “Diagnostic Capability of Peripapillary Three-dimensional Retinal Nerve Fiber Layer Volume for Glaucoma Using Optical Coherence Tomography Volume Scans,” Am. J. Ophthalmol. 182, 180–193 (2017).
[Crossref]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and Birefringence of Healthy Retinal Nerve Fiber Layer Tissue Measured with Polarization-Sensitive Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 45(8), 2606–2612 (2004).
[Crossref]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27(18), 1610–1612 (2002).
[Crossref]

de Moraes, C. G. V.

D. Xin, C. L. Talamini, A. S. Raza, C. G. V. de Moraes, V. C. Greenstein, J. M. Liebmann, R. Ritch, and D. C. Hood, “Hypodense regions (holes) in the retinal nerve fiber layer in frequency-domain OCT scans of glaucoma patients and suspects,” Invest. Ophthalmol. Visual Sci. 52(10), 7180–7186 (2011).
[Crossref]

Dijk, H. W. V.

H. W. V. Dijk, P. H. B. Kok, M. Garvin, M. Sonka, R. O. Schlingemann, F. D. Verbraak, and M. D. Abramoff, “Selective Loss of Inner Retinal Layer Thickness in Type 1 Diabetic Patients With Minimal Diabetic Retinopathy,” Invest. Ophthalmol. Visual Sci. 50(7), 3404–3409 (2009).
[Crossref]

Duh, E. J.

E. J. Duh, J. K. Sun, and A. W. Stitt, “Diabetic retinopathy: current understanding, mechanisms, and treatment strategies,” JCI Insight 2(14), e93751 (2017).
[Crossref]

Duker, J. S.

M. Adhi and J. S. Duker, “Optical coherence tomography–current and future applications,” Curr. Opinion Ophthalmol. 24(3), 213–221 (2013).
[Crossref]

Durán, S.

B. Corcóstegui, S. Durán, M. O. González-Albarrán, C. Hernández, J. M. Ruiz-Moreno, J. Salvador, P. Udaondo, and R. Simó, “Update on Diagnosis and Treatment of Diabetic Retinopathy: A Consensus Guideline of the Working Group of Ocular Health (Spanish Society of Diabetes and Spanish Vitreous and Retina Society),” J. Ophthalmol. 2017, 1–10 (2017).
[Crossref]

Elsner, A. E.

Falavarjani, K. G.

J. Khadamy, K. Abri Aghdam, and K. G. Falavarjani, “An Update on Optical Coherence Tomography Angiography in Diabetic Retinopathy,” J. Ophthalmic Vis. Res. 13(4), 487–497 (2018).
[Crossref]

Fan, N.

C. K.-S. Leung, C. Y. L. Cheung, R. N. Weinreb, K. Qiu, S. Liu, H. Li, G. Xu, N. Fan, C. P. Pang, K. K. Tse, and D. S. C. Lam, “Evaluation of Retinal Nerve Fiber Layer Progression in Glaucoma: A Study on Optical Coherence Tomography Guided Progression Analysis,” Invest. Ophthalmol. Visual Sci. 51(1), 217–222 (2010).
[Crossref]

Farsiu, S.

Feroldi, F.

Feuer, W. J.

X.-R. Huang, R. W. Knighton, Y. Z. Spector, and W. J. Feuer, “Cytoskeletal Alteration and Change of Retinal Nerve Fiber Layer Birefringence in Hypertensive Retina,” Curr. Eye Res. 42(6), 936–947 (2017).
[Crossref]

Folio, L. S.

J. Kotowski, G. Wollstein, L. S. Folio, H. Ishikawa, and J. S. Schuman, “Clinical use of OCT in assessing glaucoma progression,” Ophthalmic Surg Lasers Imaging 42(4), S6–S14 (2011).
[Crossref]

Forsman, H.

T. Granström, H. Forsman, J. Leksell, S. Jani, A. M. Raghib, and E. Granstam, “Visual functioning and health-related quality of life in diabetic patients about to undergo anti-vascular endothelial growth factor treatment for sight-threatening macular edema,” J. Diabetes Complicat. 29(8), 1183–1190 (2015).
[Crossref]

Fortune, B.

B. Fortune, G. Cull, J. Reynaud, L. Wang, and C. F. Burgoyne, “Relating Retinal Ganglion Cell Function and Retinal Nerve Fiber Layer (RNFL) Retardance to Progressive Loss of RNFL Thickness and Optic Nerve Axons in Experimental Glaucoma,” Invest. Ophthalmol. Visual Sci. 56(6), 3936–3944 (2015).
[Crossref]

B. Fortune, C. F. Burgoyne, G. Cull, J. Reynaud, and L. Wang, “Onset and Progression of Peripapillary Retinal Nerve Fiber Layer (RNFL) Retardance Changes Occur Earlier Than RNFL Thickness Changes in Experimental Glaucoma,” Invest. Ophthalmol. Visual Sci. 54(8), 5653–5660 (2013).
[Crossref]

Fujimoto, J. G.

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113(5), 586–596 (1995).
[Crossref]

Garvin, M.

H. W. V. Dijk, P. H. B. Kok, M. Garvin, M. Sonka, R. O. Schlingemann, F. D. Verbraak, and M. D. Abramoff, “Selective Loss of Inner Retinal Layer Thickness in Type 1 Diabetic Patients With Minimal Diabetic Retinopathy,” Invest. Ophthalmol. Visual Sci. 50(7), 3404–3409 (2009).
[Crossref]

Geitzenauer, W.

Ghadiali, Q.

Q. Ghadiali, D. C. Hood, C. Lee, J. Manns, A. Llinas, L. K. Grover, V. C. Greenstein, J. M. Liebmann, J. G. Odel, and R. Ritch, “An analysis of normal variations in retinal nerve fiber layer thickness profiles measured with optical coherence tomography,” J. Glaucoma 17(5), 333–340 (2008).
[Crossref]

Girkin, C. A.

A. Miki, F. A. Medeiros, R. N. Weinreb, S. Jain, F. He, L. Sharpsten, N. Khachatryan, N. Hammel, J. M. Liebmann, C. A. Girkin, P. A. Sample, and L. M. Zangwill, “Rates of retinal nerve fiber layer thinning in glaucoma suspect eyes,” Ophthalmology 121(7), 1350–1358 (2014).
[Crossref]

González-Albarrán, M. O.

B. Corcóstegui, S. Durán, M. O. González-Albarrán, C. Hernández, J. M. Ruiz-Moreno, J. Salvador, P. Udaondo, and R. Simó, “Update on Diagnosis and Treatment of Diabetic Retinopathy: A Consensus Guideline of the Working Group of Ocular Health (Spanish Society of Diabetes and Spanish Vitreous and Retina Society),” J. Ophthalmol. 2017, 1–10 (2017).
[Crossref]

Gotzinger, E.

Götzinger, E.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurt, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Visual Sci. 54(1), 72–84 (2013).
[Crossref]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Analysis of the origin of atypical scanning laser polarimetry patterns by polarization sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 49(12), 5366–5372 (2008).
[Crossref]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008).
[Crossref]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: A comparison,” J. Biophotonics 1(2), 129–139 (2008).
[Crossref]

M. Pircher, E. Götzinger, B. Baumann, and C. Hitzenberger, “Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina,” J. Biomed. Opt. 12(4), 041210 (2007).
[Crossref]

Grafe, M. G. O.

Granstam, E.

T. Granström, H. Forsman, J. Leksell, S. Jani, A. M. Raghib, and E. Granstam, “Visual functioning and health-related quality of life in diabetic patients about to undergo anti-vascular endothelial growth factor treatment for sight-threatening macular edema,” J. Diabetes Complicat. 29(8), 1183–1190 (2015).
[Crossref]

Granström, T.

T. Granström, H. Forsman, J. Leksell, S. Jani, A. M. Raghib, and E. Granstam, “Visual functioning and health-related quality of life in diabetic patients about to undergo anti-vascular endothelial growth factor treatment for sight-threatening macular edema,” J. Diabetes Complicat. 29(8), 1183–1190 (2015).
[Crossref]

Greenfield, D. S.

D. L. Budenz, D. R. Anderson, R. Varma, J. Schuman, L. Cantor, J. Savell, D. S. Greenfield, V. M. Patella, H. A. Quigley, and J. Tielsch, “Determinants of normal retinal nerve fiber layer thickness measured by Stratus OCT,” Ophthalmology 114(6), 1046–1052 (2007).
[Crossref]

X. R. Huang, H. Bagga, D. S. Greenfield, and R. W. Knighton, “Variation of peripapillary retinal nerve fiber layer birefringence in normal human subjects,” Invest. Ophthalmol. Visual Sci. 45(9), 3073–3080 (2004).
[Crossref]

Greenstein, V. C.

D. Xin, C. L. Talamini, A. S. Raza, C. G. V. de Moraes, V. C. Greenstein, J. M. Liebmann, R. Ritch, and D. C. Hood, “Hypodense regions (holes) in the retinal nerve fiber layer in frequency-domain OCT scans of glaucoma patients and suspects,” Invest. Ophthalmol. Visual Sci. 52(10), 7180–7186 (2011).
[Crossref]

Q. Ghadiali, D. C. Hood, C. Lee, J. Manns, A. Llinas, L. K. Grover, V. C. Greenstein, J. M. Liebmann, J. G. Odel, and R. Ritch, “An analysis of normal variations in retinal nerve fiber layer thickness profiles measured with optical coherence tomography,” J. Glaucoma 17(5), 333–340 (2008).
[Crossref]

Grover, L. K.

Q. Ghadiali, D. C. Hood, C. Lee, J. Manns, A. Llinas, L. K. Grover, V. C. Greenstein, J. M. Liebmann, J. G. Odel, and R. Ritch, “An analysis of normal variations in retinal nerve fiber layer thickness profiles measured with optical coherence tomography,” J. Glaucoma 17(5), 333–340 (2008).
[Crossref]

Guo, R.

Z. Khoueir, F. Jassim, L. Y.-C. Poon, E. Tsikata, G. S. Ben-David, Y. Liu, E. Shieh, R. Lee, R. Guo, G. Papadogeorgou, B. Braaf, H. Simavli, C. Que, B. J. Vakoc, B. E. Bouma, J. F. de Boer, and T. C. Chen, “Diagnostic Capability of Peripapillary Three-dimensional Retinal Nerve Fiber Layer Volume for Glaucoma Using Optical Coherence Tomography Volume Scans,” Am. J. Ophthalmol. 182, 180–193 (2017).
[Crossref]

Hammel, N.

A. Miki, F. A. Medeiros, R. N. Weinreb, S. Jain, F. He, L. Sharpsten, N. Khachatryan, N. Hammel, J. M. Liebmann, C. A. Girkin, P. A. Sample, and L. M. Zangwill, “Rates of retinal nerve fiber layer thinning in glaucoma suspect eyes,” Ophthalmology 121(7), 1350–1358 (2014).
[Crossref]

Hasanreisoglu, B. B.

S. Özdek, Y. H. Lonneville, M. Önol, I. Yetkin, and B. B. Hasanreisoğlu, “Assessment of nerve fiber layer in diabetic patients with scanning laser polarimetry,” Eye 16(6), 761–765 (2002).
[Crossref]

He, F.

A. Miki, F. A. Medeiros, R. N. Weinreb, S. Jain, F. He, L. Sharpsten, N. Khachatryan, N. Hammel, J. M. Liebmann, C. A. Girkin, P. A. Sample, and L. M. Zangwill, “Rates of retinal nerve fiber layer thinning in glaucoma suspect eyes,” Ophthalmology 121(7), 1350–1358 (2014).
[Crossref]

Hee, M. R.

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113(5), 586–596 (1995).
[Crossref]

Hernández, C.

B. Corcóstegui, S. Durán, M. O. González-Albarrán, C. Hernández, J. M. Ruiz-Moreno, J. Salvador, P. Udaondo, and R. Simó, “Update on Diagnosis and Treatment of Diabetic Retinopathy: A Consensus Guideline of the Working Group of Ocular Health (Spanish Society of Diabetes and Spanish Vitreous and Retina Society),” J. Ophthalmol. 2017, 1–10 (2017).
[Crossref]

Hertzmark, E.

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113(5), 586–596 (1995).
[Crossref]

Hirn, C.

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Analysis of the origin of atypical scanning laser polarimetry patterns by polarization sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 49(12), 5366–5372 (2008).
[Crossref]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: A comparison,” J. Biophotonics 1(2), 129–139 (2008).
[Crossref]

Hirose, F.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurt, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Visual Sci. 54(1), 72–84 (2013).
[Crossref]

Hitzenberger, C.

M. Pircher, E. Götzinger, B. Baumann, and C. Hitzenberger, “Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina,” J. Biomed. Opt. 12(4), 041210 (2007).
[Crossref]

Hitzenberger, C. K.

J. F. de Boer, C. K. Hitzenberger, and Y. Yasuno, “Polarization sensitive optical coherence tomography - a review [Invited],” Biomed. Opt. Express 8(3), 1838–1873 (2017).
[Crossref]

M. Sugita, M. Pircher, S. Zotter, B. Baumann, P. Roberts, T. Makihira, N. Tomatsu, M. Sato, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber bundle tracing and analysis in human eye by polarization sensitive OCT,” Biomed. Opt. Express 6(3), 1030–1054 (2015).
[Crossref]

M. Sugita, M. Pircher, S. Zotter, B. Baumann, K. Saito, T. Makihira, N. Tomatsu, M. Sato, and C. K. Hitzenberger, “Analysis of optimum conditions of depolarization imaging by polarization-sensitive optical coherence tomography in the human retina,” J. Biomed. Opt. 20(1), 016011 (2015).
[Crossref]

M. Sugita, S. Zotter, M. Pircher, T. Makihira, K. Saito, N. Tomatsu, M. Sato, P. Roberts, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Motion artifact and speckle noise reduction in polarization sensitive optical coherence tomography by retinal tracking,” Biomed. Opt. Express 5(1), 106–122 (2014).
[Crossref]

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurt, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Visual Sci. 54(1), 72–84 (2013).
[Crossref]

B. Cense, Q. Wang, S. Lee, L. Zhao, A. E. Elsner, C. K. Hitzenberger, and D. T. Miller, “Henle fiber layer phase retardation measured with polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 4(11), 2296–2306 (2013).
[Crossref]

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retinal Eye Res. 30(6), 431–451 (2011).
[Crossref]

E. Gotzinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography,” Opt. Express 17(25), 22704–22717 (2009).
[Crossref]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008).
[Crossref]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: A comparison,” J. Biophotonics 1(2), 129–139 (2008).
[Crossref]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Analysis of the origin of atypical scanning laser polarimetry patterns by polarization sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 49(12), 5366–5372 (2008).
[Crossref]

Holzer, S.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurt, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Visual Sci. 54(1), 72–84 (2013).
[Crossref]

Hood, D. C.

D. Xin, C. L. Talamini, A. S. Raza, C. G. V. de Moraes, V. C. Greenstein, J. M. Liebmann, R. Ritch, and D. C. Hood, “Hypodense regions (holes) in the retinal nerve fiber layer in frequency-domain OCT scans of glaucoma patients and suspects,” Invest. Ophthalmol. Visual Sci. 52(10), 7180–7186 (2011).
[Crossref]

Q. Ghadiali, D. C. Hood, C. Lee, J. Manns, A. Llinas, L. K. Grover, V. C. Greenstein, J. M. Liebmann, J. G. Odel, and R. Ritch, “An analysis of normal variations in retinal nerve fiber layer thickness profiles measured with optical coherence tomography,” J. Glaucoma 17(5), 333–340 (2008).
[Crossref]

Horn, F. K.

D. Bendschneider, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal nerve fiber layer thickness in normals measured by spectral domain OCT,” J. Glaucoma 19(7), 475–482 (2010).
[Crossref]

Huang, X. R.

X. R. Huang, H. Bagga, D. S. Greenfield, and R. W. Knighton, “Variation of peripapillary retinal nerve fiber layer birefringence in normal human subjects,” Invest. Ophthalmol. Visual Sci. 45(9), 3073–3080 (2004).
[Crossref]

Huang, X.-R.

X.-R. Huang, R. W. Knighton, Y. Z. Spector, and W. J. Feuer, “Cytoskeletal Alteration and Change of Retinal Nerve Fiber Layer Birefringence in Hypertensive Retina,” Curr. Eye Res. 42(6), 936–947 (2017).
[Crossref]

Ido, M.

M. Sugimoto, M. Sasoh, M. Ido, Y. Wakitani, C. Takahashi, and Y. Uji, “Detection of early diabetic change with optical coherence tomography in type 2 diabetes mellitus patients without retinopathy,” Ophthalmologica 219(6), 379–385 (2005).
[Crossref]

Ishikawa, H.

J. Kotowski, G. Wollstein, L. S. Folio, H. Ishikawa, and J. S. Schuman, “Clinical use of OCT in assessing glaucoma progression,” Ophthalmic Surg Lasers Imaging 42(4), S6–S14 (2011).
[Crossref]

Izatt, J. A.

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[Crossref]

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113(5), 586–596 (1995).
[Crossref]

Jain, S.

A. Miki, F. A. Medeiros, R. N. Weinreb, S. Jain, F. He, L. Sharpsten, N. Khachatryan, N. Hammel, J. M. Liebmann, C. A. Girkin, P. A. Sample, and L. M. Zangwill, “Rates of retinal nerve fiber layer thinning in glaucoma suspect eyes,” Ophthalmology 121(7), 1350–1358 (2014).
[Crossref]

Jani, S.

T. Granström, H. Forsman, J. Leksell, S. Jani, A. M. Raghib, and E. Granstam, “Visual functioning and health-related quality of life in diabetic patients about to undergo anti-vascular endothelial growth factor treatment for sight-threatening macular edema,” J. Diabetes Complicat. 29(8), 1183–1190 (2015).
[Crossref]

Jassim, F.

Z. Khoueir, F. Jassim, L. Y.-C. Poon, E. Tsikata, G. S. Ben-David, Y. Liu, E. Shieh, R. Lee, R. Guo, G. Papadogeorgou, B. Braaf, H. Simavli, C. Que, B. J. Vakoc, B. E. Bouma, J. F. de Boer, and T. C. Chen, “Diagnostic Capability of Peripapillary Three-dimensional Retinal Nerve Fiber Layer Volume for Glaucoma Using Optical Coherence Tomography Volume Scans,” Am. J. Ophthalmol. 182, 180–193 (2017).
[Crossref]

Jeon, S. J.

S. J. Jeon, H.-Y. L. Park, J. H. Lee, and C. K. Park, “Relationship between Systemic Vascular Characteristics and Retinal Nerve Fiber Layer Loss in Patients with Type 2 Diabetes,” Sci. Rep. 8(1), 10510 (2018).
[Crossref]

Jonas, J. B.

C. Sabanayagam, R. Banu, M. L. Chee, R. Lee, Y. X. Wang, G. Tan, J. B. Jonas, E. L. Lamoureux, C.-Y. Cheng, B. E. K. Klein, P. Mitchell, R. Klein, C. M. G. Cheung, and T. Y. Wong, “Incidence and progression of diabetic retinopathy: a systematic review,” Lancet Diabetes Endocrinol. 7(2), 140–149 (2019).
[Crossref]

Juenemann, A. G.

D. Bendschneider, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal nerve fiber layer thickness in normals measured by spectral domain OCT,” J. Glaucoma 19(7), 475–482 (2010).
[Crossref]

Kahook, M. Y.

L. K. Seibold, N. Mandava, and M. Y. Kahook, “Comparison of retinal nerve fiber layer thickness in normal eyes using time-domain and spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 150(6), 807–814.e1 (2010).
[Crossref]

Kaiser, P. K.

G. Trichonas and P. K. Kaiser, “Optical coherence tomography imaging of macular oedema,” Br. J. Ophthalmol. 98(Suppl 2), ii24–ii29 (2014).
[Crossref]

Khachatryan, N.

A. Miki, F. A. Medeiros, R. N. Weinreb, S. Jain, F. He, L. Sharpsten, N. Khachatryan, N. Hammel, J. M. Liebmann, C. A. Girkin, P. A. Sample, and L. M. Zangwill, “Rates of retinal nerve fiber layer thinning in glaucoma suspect eyes,” Ophthalmology 121(7), 1350–1358 (2014).
[Crossref]

Khadamy, J.

J. Khadamy, K. Abri Aghdam, and K. G. Falavarjani, “An Update on Optical Coherence Tomography Angiography in Diabetic Retinopathy,” J. Ophthalmic Vis. Res. 13(4), 487–497 (2018).
[Crossref]

Khoueir, Z.

Z. Khoueir, F. Jassim, L. Y.-C. Poon, E. Tsikata, G. S. Ben-David, Y. Liu, E. Shieh, R. Lee, R. Guo, G. Papadogeorgou, B. Braaf, H. Simavli, C. Que, B. J. Vakoc, B. E. Bouma, J. F. de Boer, and T. C. Chen, “Diagnostic Capability of Peripapillary Three-dimensional Retinal Nerve Fiber Layer Volume for Glaucoma Using Optical Coherence Tomography Volume Scans,” Am. J. Ophthalmol. 182, 180–193 (2017).
[Crossref]

Klein, B. E. K.

C. Sabanayagam, R. Banu, M. L. Chee, R. Lee, Y. X. Wang, G. Tan, J. B. Jonas, E. L. Lamoureux, C.-Y. Cheng, B. E. K. Klein, P. Mitchell, R. Klein, C. M. G. Cheung, and T. Y. Wong, “Incidence and progression of diabetic retinopathy: a systematic review,” Lancet Diabetes Endocrinol. 7(2), 140–149 (2019).
[Crossref]

Klein, R.

C. Sabanayagam, R. Banu, M. L. Chee, R. Lee, Y. X. Wang, G. Tan, J. B. Jonas, E. L. Lamoureux, C.-Y. Cheng, B. E. K. Klein, P. Mitchell, R. Klein, C. M. G. Cheung, and T. Y. Wong, “Incidence and progression of diabetic retinopathy: a systematic review,” Lancet Diabetes Endocrinol. 7(2), 140–149 (2019).
[Crossref]

Knighton, R. W.

X.-R. Huang, R. W. Knighton, Y. Z. Spector, and W. J. Feuer, “Cytoskeletal Alteration and Change of Retinal Nerve Fiber Layer Birefringence in Hypertensive Retina,” Curr. Eye Res. 42(6), 936–947 (2017).
[Crossref]

X. R. Huang, H. Bagga, D. S. Greenfield, and R. W. Knighton, “Variation of peripapillary retinal nerve fiber layer birefringence in normal human subjects,” Invest. Ophthalmol. Visual Sci. 45(9), 3073–3080 (2004).
[Crossref]

Kok, P. H. B.

H. W. V. Dijk, P. H. B. Kok, M. Garvin, M. Sonka, R. O. Schlingemann, F. D. Verbraak, and M. D. Abramoff, “Selective Loss of Inner Retinal Layer Thickness in Type 1 Diabetic Patients With Minimal Diabetic Retinopathy,” Invest. Ophthalmol. Visual Sci. 50(7), 3404–3409 (2009).
[Crossref]

Kotowski, J.

J. Kotowski, G. Wollstein, L. S. Folio, H. Ishikawa, and J. S. Schuman, “Clinical use of OCT in assessing glaucoma progression,” Ophthalmic Surg Lasers Imaging 42(4), S6–S14 (2011).
[Crossref]

Kroisamer, J.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurt, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Visual Sci. 54(1), 72–84 (2013).
[Crossref]

Kruse, F. E.

D. Bendschneider, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal nerve fiber layer thickness in normals measured by spectral domain OCT,” J. Glaucoma 19(7), 475–482 (2010).
[Crossref]

Laemmer, R.

D. Bendschneider, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal nerve fiber layer thickness in normals measured by spectral domain OCT,” J. Glaucoma 19(7), 475–482 (2010).
[Crossref]

Lam, D. S. C.

C. K.-S. Leung, C. Y. L. Cheung, R. N. Weinreb, K. Qiu, S. Liu, H. Li, G. Xu, N. Fan, C. P. Pang, K. K. Tse, and D. S. C. Lam, “Evaluation of Retinal Nerve Fiber Layer Progression in Glaucoma: A Study on Optical Coherence Tomography Guided Progression Analysis,” Invest. Ophthalmol. Visual Sci. 51(1), 217–222 (2010).
[Crossref]

Lamoureux, E. L.

C. Sabanayagam, R. Banu, M. L. Chee, R. Lee, Y. X. Wang, G. Tan, J. B. Jonas, E. L. Lamoureux, C.-Y. Cheng, B. E. K. Klein, P. Mitchell, R. Klein, C. M. G. Cheung, and T. Y. Wong, “Incidence and progression of diabetic retinopathy: a systematic review,” Lancet Diabetes Endocrinol. 7(2), 140–149 (2019).
[Crossref]

Lee, C.

Q. Ghadiali, D. C. Hood, C. Lee, J. Manns, A. Llinas, L. K. Grover, V. C. Greenstein, J. M. Liebmann, J. G. Odel, and R. Ritch, “An analysis of normal variations in retinal nerve fiber layer thickness profiles measured with optical coherence tomography,” J. Glaucoma 17(5), 333–340 (2008).
[Crossref]

Lee, J. H.

S. J. Jeon, H.-Y. L. Park, J. H. Lee, and C. K. Park, “Relationship between Systemic Vascular Characteristics and Retinal Nerve Fiber Layer Loss in Patients with Type 2 Diabetes,” Sci. Rep. 8(1), 10510 (2018).
[Crossref]

Lee, R.

C. Sabanayagam, R. Banu, M. L. Chee, R. Lee, Y. X. Wang, G. Tan, J. B. Jonas, E. L. Lamoureux, C.-Y. Cheng, B. E. K. Klein, P. Mitchell, R. Klein, C. M. G. Cheung, and T. Y. Wong, “Incidence and progression of diabetic retinopathy: a systematic review,” Lancet Diabetes Endocrinol. 7(2), 140–149 (2019).
[Crossref]

Z. Khoueir, F. Jassim, L. Y.-C. Poon, E. Tsikata, G. S. Ben-David, Y. Liu, E. Shieh, R. Lee, R. Guo, G. Papadogeorgou, B. Braaf, H. Simavli, C. Que, B. J. Vakoc, B. E. Bouma, J. F. de Boer, and T. C. Chen, “Diagnostic Capability of Peripapillary Three-dimensional Retinal Nerve Fiber Layer Volume for Glaucoma Using Optical Coherence Tomography Volume Scans,” Am. J. Ophthalmol. 182, 180–193 (2017).
[Crossref]

Lee, S.

Leksell, J.

T. Granström, H. Forsman, J. Leksell, S. Jani, A. M. Raghib, and E. Granstam, “Visual functioning and health-related quality of life in diabetic patients about to undergo anti-vascular endothelial growth factor treatment for sight-threatening macular edema,” J. Diabetes Complicat. 29(8), 1183–1190 (2015).
[Crossref]

Leung, C. K.-S.

C. K.-S. Leung, C. Y. L. Cheung, R. N. Weinreb, K. Qiu, S. Liu, H. Li, G. Xu, N. Fan, C. P. Pang, K. K. Tse, and D. S. C. Lam, “Evaluation of Retinal Nerve Fiber Layer Progression in Glaucoma: A Study on Optical Coherence Tomography Guided Progression Analysis,” Invest. Ophthalmol. Visual Sci. 51(1), 217–222 (2010).
[Crossref]

Li, G.

Q. Zhou, J. Reed, R. Betts, P. Trost, P. W. Lo, C. Wallace, R. Bienias, G. Li, R. Winnick, W. Papworth, and M. Sinai, “Detection of glaucomatous retinal nerve fiber layer damage by scanning laser polarimetry with variable corneal compensation,” Proc. SPIE 4951, 32–41 (2003).
[Crossref]

Li, H.

C. K.-S. Leung, C. Y. L. Cheung, R. N. Weinreb, K. Qiu, S. Liu, H. Li, G. Xu, N. Fan, C. P. Pang, K. K. Tse, and D. S. C. Lam, “Evaluation of Retinal Nerve Fiber Layer Progression in Glaucoma: A Study on Optical Coherence Tomography Guided Progression Analysis,” Invest. Ophthalmol. Visual Sci. 51(1), 217–222 (2010).
[Crossref]

Li, X. T.

Liebmann, J. M.

A. Miki, F. A. Medeiros, R. N. Weinreb, S. Jain, F. He, L. Sharpsten, N. Khachatryan, N. Hammel, J. M. Liebmann, C. A. Girkin, P. A. Sample, and L. M. Zangwill, “Rates of retinal nerve fiber layer thinning in glaucoma suspect eyes,” Ophthalmology 121(7), 1350–1358 (2014).
[Crossref]

D. Xin, C. L. Talamini, A. S. Raza, C. G. V. de Moraes, V. C. Greenstein, J. M. Liebmann, R. Ritch, and D. C. Hood, “Hypodense regions (holes) in the retinal nerve fiber layer in frequency-domain OCT scans of glaucoma patients and suspects,” Invest. Ophthalmol. Visual Sci. 52(10), 7180–7186 (2011).
[Crossref]

Q. Ghadiali, D. C. Hood, C. Lee, J. Manns, A. Llinas, L. K. Grover, V. C. Greenstein, J. M. Liebmann, J. G. Odel, and R. Ritch, “An analysis of normal variations in retinal nerve fiber layer thickness profiles measured with optical coherence tomography,” J. Glaucoma 17(5), 333–340 (2008).
[Crossref]

Lin, C. P.

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113(5), 586–596 (1995).
[Crossref]

Liu, S.

C. K.-S. Leung, C. Y. L. Cheung, R. N. Weinreb, K. Qiu, S. Liu, H. Li, G. Xu, N. Fan, C. P. Pang, K. K. Tse, and D. S. C. Lam, “Evaluation of Retinal Nerve Fiber Layer Progression in Glaucoma: A Study on Optical Coherence Tomography Guided Progression Analysis,” Invest. Ophthalmol. Visual Sci. 51(1), 217–222 (2010).
[Crossref]

Liu, Y.

Z. Khoueir, F. Jassim, L. Y.-C. Poon, E. Tsikata, G. S. Ben-David, Y. Liu, E. Shieh, R. Lee, R. Guo, G. Papadogeorgou, B. Braaf, H. Simavli, C. Que, B. J. Vakoc, B. E. Bouma, J. F. de Boer, and T. C. Chen, “Diagnostic Capability of Peripapillary Three-dimensional Retinal Nerve Fiber Layer Volume for Glaucoma Using Optical Coherence Tomography Volume Scans,” Am. J. Ophthalmol. 182, 180–193 (2017).
[Crossref]

Llinas, A.

Q. Ghadiali, D. C. Hood, C. Lee, J. Manns, A. Llinas, L. K. Grover, V. C. Greenstein, J. M. Liebmann, J. G. Odel, and R. Ritch, “An analysis of normal variations in retinal nerve fiber layer thickness profiles measured with optical coherence tomography,” J. Glaucoma 17(5), 333–340 (2008).
[Crossref]

Lo, P. W.

Q. Zhou, J. Reed, R. Betts, P. Trost, P. W. Lo, C. Wallace, R. Bienias, G. Li, R. Winnick, W. Papworth, and M. Sinai, “Detection of glaucomatous retinal nerve fiber layer damage by scanning laser polarimetry with variable corneal compensation,” Proc. SPIE 4951, 32–41 (2003).
[Crossref]

Lonneville, Y. H.

S. Özdek, Y. H. Lonneville, M. Önol, I. Yetkin, and B. B. Hasanreisoğlu, “Assessment of nerve fiber layer in diabetic patients with scanning laser polarimetry,” Eye 16(6), 761–765 (2002).
[Crossref]

Lopes de Faria, J. M.

J. M. Lopes de Faria, H. Russ, and V. P. Costa, “Retinal nerve fibre layer loss in patients with type 1 diabetes mellitus without retinopathy,” Br. J. Ophthalmol. 86(7), 725–728 (2002).
[Crossref]

Makihira, T.

Makita, S.

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[Crossref]

Mandava, N.

L. K. Seibold, N. Mandava, and M. Y. Kahook, “Comparison of retinal nerve fiber layer thickness in normal eyes using time-domain and spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 150(6), 807–814.e1 (2010).
[Crossref]

Manns, J.

Q. Ghadiali, D. C. Hood, C. Lee, J. Manns, A. Llinas, L. K. Grover, V. C. Greenstein, J. M. Liebmann, J. G. Odel, and R. Ritch, “An analysis of normal variations in retinal nerve fiber layer thickness profiles measured with optical coherence tomography,” J. Glaucoma 17(5), 333–340 (2008).
[Crossref]

Mardin, C. Y.

D. Bendschneider, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal nerve fiber layer thickness in normals measured by spectral domain OCT,” J. Glaucoma 19(7), 475–482 (2010).
[Crossref]

Medeiros, F.

C. Bowd, I. Tavares, F. Medeiros, L. Zangwill, P. Sample, and R. Weinreb, “Retinal Nerve Fiber Layer Thickness and Visual Sensitivity Using Scanning Laser Polarimetry with Variable and Enhanced Corneal Compensation,” Ophthalmology 114(7), 1259–1265 (2007).
[Crossref]

Medeiros, F. A.

A. Miki, F. A. Medeiros, R. N. Weinreb, S. Jain, F. He, L. Sharpsten, N. Khachatryan, N. Hammel, J. M. Liebmann, C. A. Girkin, P. A. Sample, and L. M. Zangwill, “Rates of retinal nerve fiber layer thinning in glaucoma suspect eyes,” Ophthalmology 121(7), 1350–1358 (2014).
[Crossref]

R. N. Weinreb, T. Aung, and F. A. Medeiros, “The pathophysiology and treatment of glaucoma: a review,” JAMA 311(18), 1901–1911 (2014).
[Crossref]

F. A. Medeiros, L. M. Zangwill, L. M. Alencar, C. Bowd, P. A. Sample, R. Susanna, and R. N. Weinreb, “Detection of Glaucoma Progression with Stratus OCT Retinal Nerve Fiber Layer, Optic Nerve Head, and Macular Thickness Measurements,” Invest. Ophthalmol. Visual Sci. 50(12), 5741–5748 (2009).
[Crossref]

Michels, S.

Miki, A.

A. Miki, F. A. Medeiros, R. N. Weinreb, S. Jain, F. He, L. Sharpsten, N. Khachatryan, N. Hammel, J. M. Liebmann, C. A. Girkin, P. A. Sample, and L. M. Zangwill, “Rates of retinal nerve fiber layer thinning in glaucoma suspect eyes,” Ophthalmology 121(7), 1350–1358 (2014).
[Crossref]

Miller, D. T.

Mitchell, P.

C. Sabanayagam, R. Banu, M. L. Chee, R. Lee, Y. X. Wang, G. Tan, J. B. Jonas, E. L. Lamoureux, C.-Y. Cheng, B. E. K. Klein, P. Mitchell, R. Klein, C. M. G. Cheung, and T. Y. Wong, “Incidence and progression of diabetic retinopathy: a systematic review,” Lancet Diabetes Endocrinol. 7(2), 140–149 (2019).
[Crossref]

Miura, M.

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[Crossref]

Nicholas, P.

Odel, J. G.

Q. Ghadiali, D. C. Hood, C. Lee, J. Manns, A. Llinas, L. K. Grover, V. C. Greenstein, J. M. Liebmann, J. G. Odel, and R. Ritch, “An analysis of normal variations in retinal nerve fiber layer thickness profiles measured with optical coherence tomography,” J. Glaucoma 17(5), 333–340 (2008).
[Crossref]

Önol, M.

S. Özdek, Y. H. Lonneville, M. Önol, I. Yetkin, and B. B. Hasanreisoğlu, “Assessment of nerve fiber layer in diabetic patients with scanning laser polarimetry,” Eye 16(6), 761–765 (2002).
[Crossref]

Özdek, S.

S. Özdek, Y. H. Lonneville, M. Önol, I. Yetkin, and B. B. Hasanreisoğlu, “Assessment of nerve fiber layer in diabetic patients with scanning laser polarimetry,” Eye 16(6), 761–765 (2002).
[Crossref]

Pang, C. P.

C. K.-S. Leung, C. Y. L. Cheung, R. N. Weinreb, K. Qiu, S. Liu, H. Li, G. Xu, N. Fan, C. P. Pang, K. K. Tse, and D. S. C. Lam, “Evaluation of Retinal Nerve Fiber Layer Progression in Glaucoma: A Study on Optical Coherence Tomography Guided Progression Analysis,” Invest. Ophthalmol. Visual Sci. 51(1), 217–222 (2010).
[Crossref]

Papadogeorgou, G.

Z. Khoueir, F. Jassim, L. Y.-C. Poon, E. Tsikata, G. S. Ben-David, Y. Liu, E. Shieh, R. Lee, R. Guo, G. Papadogeorgou, B. Braaf, H. Simavli, C. Que, B. J. Vakoc, B. E. Bouma, J. F. de Boer, and T. C. Chen, “Diagnostic Capability of Peripapillary Three-dimensional Retinal Nerve Fiber Layer Volume for Glaucoma Using Optical Coherence Tomography Volume Scans,” Am. J. Ophthalmol. 182, 180–193 (2017).
[Crossref]

Papworth, W.

Q. Zhou, J. Reed, R. Betts, P. Trost, P. W. Lo, C. Wallace, R. Bienias, G. Li, R. Winnick, W. Papworth, and M. Sinai, “Detection of glaucomatous retinal nerve fiber layer damage by scanning laser polarimetry with variable corneal compensation,” Proc. SPIE 4951, 32–41 (2003).
[Crossref]

Park, B.

B. Cense, T. Chen, B. Park, M. Pierce, and J. de Boer, “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 121–125 (2004).
[Crossref]

Park, B. H.

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and Birefringence of Healthy Retinal Nerve Fiber Layer Tissue Measured with Polarization-Sensitive Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 45(8), 2606–2612 (2004).
[Crossref]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27(18), 1610–1612 (2002).
[Crossref]

Park, C. K.

S. J. Jeon, H.-Y. L. Park, J. H. Lee, and C. K. Park, “Relationship between Systemic Vascular Characteristics and Retinal Nerve Fiber Layer Loss in Patients with Type 2 Diabetes,” Sci. Rep. 8(1), 10510 (2018).
[Crossref]

Park, H.-Y. L.

S. J. Jeon, H.-Y. L. Park, J. H. Lee, and C. K. Park, “Relationship between Systemic Vascular Characteristics and Retinal Nerve Fiber Layer Loss in Patients with Type 2 Diabetes,” Sci. Rep. 8(1), 10510 (2018).
[Crossref]

Patella, V. M.

D. L. Budenz, D. R. Anderson, R. Varma, J. Schuman, L. Cantor, J. Savell, D. S. Greenfield, V. M. Patella, H. A. Quigley, and J. Tielsch, “Determinants of normal retinal nerve fiber layer thickness measured by Stratus OCT,” Ophthalmology 114(6), 1046–1052 (2007).
[Crossref]

Pedut-Kloizman, T.

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113(5), 586–596 (1995).
[Crossref]

Pierce, M.

B. Cense, T. Chen, B. Park, M. Pierce, and J. de Boer, “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 121–125 (2004).
[Crossref]

Pierce, M. C.

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and Birefringence of Healthy Retinal Nerve Fiber Layer Tissue Measured with Polarization-Sensitive Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 45(8), 2606–2612 (2004).
[Crossref]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27(18), 1610–1612 (2002).
[Crossref]

Pircher, M.

M. Sugita, M. Pircher, S. Zotter, B. Baumann, K. Saito, T. Makihira, N. Tomatsu, M. Sato, and C. K. Hitzenberger, “Analysis of optimum conditions of depolarization imaging by polarization-sensitive optical coherence tomography in the human retina,” J. Biomed. Opt. 20(1), 016011 (2015).
[Crossref]

M. Sugita, M. Pircher, S. Zotter, B. Baumann, P. Roberts, T. Makihira, N. Tomatsu, M. Sato, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber bundle tracing and analysis in human eye by polarization sensitive OCT,” Biomed. Opt. Express 6(3), 1030–1054 (2015).
[Crossref]

M. Sugita, S. Zotter, M. Pircher, T. Makihira, K. Saito, N. Tomatsu, M. Sato, P. Roberts, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Motion artifact and speckle noise reduction in polarization sensitive optical coherence tomography by retinal tracking,” Biomed. Opt. Express 5(1), 106–122 (2014).
[Crossref]

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurt, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Visual Sci. 54(1), 72–84 (2013).
[Crossref]

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retinal Eye Res. 30(6), 431–451 (2011).
[Crossref]

E. Gotzinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography,” Opt. Express 17(25), 22704–22717 (2009).
[Crossref]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008).
[Crossref]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: A comparison,” J. Biophotonics 1(2), 129–139 (2008).
[Crossref]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Analysis of the origin of atypical scanning laser polarimetry patterns by polarization sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 49(12), 5366–5372 (2008).
[Crossref]

M. Pircher, E. Götzinger, B. Baumann, and C. Hitzenberger, “Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina,” J. Biomed. Opt. 12(4), 041210 (2007).
[Crossref]

Poon, L. Y.-C.

Z. Khoueir, F. Jassim, L. Y.-C. Poon, E. Tsikata, G. S. Ben-David, Y. Liu, E. Shieh, R. Lee, R. Guo, G. Papadogeorgou, B. Braaf, H. Simavli, C. Que, B. J. Vakoc, B. E. Bouma, J. F. de Boer, and T. C. Chen, “Diagnostic Capability of Peripapillary Three-dimensional Retinal Nerve Fiber Layer Volume for Glaucoma Using Optical Coherence Tomography Volume Scans,” Am. J. Ophthalmol. 182, 180–193 (2017).
[Crossref]

Puliafito, C. A.

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113(5), 586–596 (1995).
[Crossref]

Qiu, K.

C. K.-S. Leung, C. Y. L. Cheung, R. N. Weinreb, K. Qiu, S. Liu, H. Li, G. Xu, N. Fan, C. P. Pang, K. K. Tse, and D. S. C. Lam, “Evaluation of Retinal Nerve Fiber Layer Progression in Glaucoma: A Study on Optical Coherence Tomography Guided Progression Analysis,” Invest. Ophthalmol. Visual Sci. 51(1), 217–222 (2010).
[Crossref]

Que, C.

Z. Khoueir, F. Jassim, L. Y.-C. Poon, E. Tsikata, G. S. Ben-David, Y. Liu, E. Shieh, R. Lee, R. Guo, G. Papadogeorgou, B. Braaf, H. Simavli, C. Que, B. J. Vakoc, B. E. Bouma, J. F. de Boer, and T. C. Chen, “Diagnostic Capability of Peripapillary Three-dimensional Retinal Nerve Fiber Layer Volume for Glaucoma Using Optical Coherence Tomography Volume Scans,” Am. J. Ophthalmol. 182, 180–193 (2017).
[Crossref]

Quigley, H. A.

D. L. Budenz, D. R. Anderson, R. Varma, J. Schuman, L. Cantor, J. Savell, D. S. Greenfield, V. M. Patella, H. A. Quigley, and J. Tielsch, “Determinants of normal retinal nerve fiber layer thickness measured by Stratus OCT,” Ophthalmology 114(6), 1046–1052 (2007).
[Crossref]

H. A. Quigley and A. T. Broman, “The number of people with glaucoma worldwide in 2010 and 2020,” Br. J. Ophthalmol. 90(3), 262–267 (2006).
[Crossref]

Raghib, A. M.

T. Granström, H. Forsman, J. Leksell, S. Jani, A. M. Raghib, and E. Granstam, “Visual functioning and health-related quality of life in diabetic patients about to undergo anti-vascular endothelial growth factor treatment for sight-threatening macular edema,” J. Diabetes Complicat. 29(8), 1183–1190 (2015).
[Crossref]

Raza, A. S.

D. Xin, C. L. Talamini, A. S. Raza, C. G. V. de Moraes, V. C. Greenstein, J. M. Liebmann, R. Ritch, and D. C. Hood, “Hypodense regions (holes) in the retinal nerve fiber layer in frequency-domain OCT scans of glaucoma patients and suspects,” Invest. Ophthalmol. Visual Sci. 52(10), 7180–7186 (2011).
[Crossref]

Reed, J.

Q. Zhou, J. Reed, R. Betts, P. Trost, P. W. Lo, C. Wallace, R. Bienias, G. Li, R. Winnick, W. Papworth, and M. Sinai, “Detection of glaucomatous retinal nerve fiber layer damage by scanning laser polarimetry with variable corneal compensation,” Proc. SPIE 4951, 32–41 (2003).
[Crossref]

Reynaud, J.

B. Fortune, G. Cull, J. Reynaud, L. Wang, and C. F. Burgoyne, “Relating Retinal Ganglion Cell Function and Retinal Nerve Fiber Layer (RNFL) Retardance to Progressive Loss of RNFL Thickness and Optic Nerve Axons in Experimental Glaucoma,” Invest. Ophthalmol. Visual Sci. 56(6), 3936–3944 (2015).
[Crossref]

B. Fortune, C. F. Burgoyne, G. Cull, J. Reynaud, and L. Wang, “Onset and Progression of Peripapillary Retinal Nerve Fiber Layer (RNFL) Retardance Changes Occur Earlier Than RNFL Thickness Changes in Experimental Glaucoma,” Invest. Ophthalmol. Visual Sci. 54(8), 5653–5660 (2013).
[Crossref]

Ritch, R.

D. Xin, C. L. Talamini, A. S. Raza, C. G. V. de Moraes, V. C. Greenstein, J. M. Liebmann, R. Ritch, and D. C. Hood, “Hypodense regions (holes) in the retinal nerve fiber layer in frequency-domain OCT scans of glaucoma patients and suspects,” Invest. Ophthalmol. Visual Sci. 52(10), 7180–7186 (2011).
[Crossref]

Q. Ghadiali, D. C. Hood, C. Lee, J. Manns, A. Llinas, L. K. Grover, V. C. Greenstein, J. M. Liebmann, J. G. Odel, and R. Ritch, “An analysis of normal variations in retinal nerve fiber layer thickness profiles measured with optical coherence tomography,” J. Glaucoma 17(5), 333–340 (2008).
[Crossref]

Roberts, P.

Roessler, C. W.

D. Bendschneider, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal nerve fiber layer thickness in normals measured by spectral domain OCT,” J. Glaucoma 19(7), 475–482 (2010).
[Crossref]

Ross-Cisneros, F. N.

G. Savini, M. Zanini, V. Carelli, A. A. Sadun, F. N. Ross-Cisneros, and P. Barboni, “Correlation between retinal nerve fibre layer thickness and optic nerve head size: an optical coherence tomography study,” Br. J. Ophthalmol. 89(4), 489–492 (2005).
[Crossref]

Ruiz-Moreno, J. M.

B. Corcóstegui, S. Durán, M. O. González-Albarrán, C. Hernández, J. M. Ruiz-Moreno, J. Salvador, P. Udaondo, and R. Simó, “Update on Diagnosis and Treatment of Diabetic Retinopathy: A Consensus Guideline of the Working Group of Ocular Health (Spanish Society of Diabetes and Spanish Vitreous and Retina Society),” J. Ophthalmol. 2017, 1–10 (2017).
[Crossref]

Russ, H.

J. M. Lopes de Faria, H. Russ, and V. P. Costa, “Retinal nerve fibre layer loss in patients with type 1 diabetes mellitus without retinopathy,” Br. J. Ophthalmol. 86(7), 725–728 (2002).
[Crossref]

Sabanayagam, C.

C. Sabanayagam, R. Banu, M. L. Chee, R. Lee, Y. X. Wang, G. Tan, J. B. Jonas, E. L. Lamoureux, C.-Y. Cheng, B. E. K. Klein, P. Mitchell, R. Klein, C. M. G. Cheung, and T. Y. Wong, “Incidence and progression of diabetic retinopathy: a systematic review,” Lancet Diabetes Endocrinol. 7(2), 140–149 (2019).
[Crossref]

Sadun, A. A.

G. Savini, M. Zanini, V. Carelli, A. A. Sadun, F. N. Ross-Cisneros, and P. Barboni, “Correlation between retinal nerve fibre layer thickness and optic nerve head size: an optical coherence tomography study,” Br. J. Ophthalmol. 89(4), 489–492 (2005).
[Crossref]

Saito, K.

M. Sugita, M. Pircher, S. Zotter, B. Baumann, K. Saito, T. Makihira, N. Tomatsu, M. Sato, and C. K. Hitzenberger, “Analysis of optimum conditions of depolarization imaging by polarization-sensitive optical coherence tomography in the human retina,” J. Biomed. Opt. 20(1), 016011 (2015).
[Crossref]

M. Sugita, S. Zotter, M. Pircher, T. Makihira, K. Saito, N. Tomatsu, M. Sato, P. Roberts, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Motion artifact and speckle noise reduction in polarization sensitive optical coherence tomography by retinal tracking,” Biomed. Opt. Express 5(1), 106–122 (2014).
[Crossref]

Salvador, J.

B. Corcóstegui, S. Durán, M. O. González-Albarrán, C. Hernández, J. M. Ruiz-Moreno, J. Salvador, P. Udaondo, and R. Simó, “Update on Diagnosis and Treatment of Diabetic Retinopathy: A Consensus Guideline of the Working Group of Ocular Health (Spanish Society of Diabetes and Spanish Vitreous and Retina Society),” J. Ophthalmol. 2017, 1–10 (2017).
[Crossref]

Sample, P.

C. Bowd, I. Tavares, F. Medeiros, L. Zangwill, P. Sample, and R. Weinreb, “Retinal Nerve Fiber Layer Thickness and Visual Sensitivity Using Scanning Laser Polarimetry with Variable and Enhanced Corneal Compensation,” Ophthalmology 114(7), 1259–1265 (2007).
[Crossref]

Sample, P. A.

A. Miki, F. A. Medeiros, R. N. Weinreb, S. Jain, F. He, L. Sharpsten, N. Khachatryan, N. Hammel, J. M. Liebmann, C. A. Girkin, P. A. Sample, and L. M. Zangwill, “Rates of retinal nerve fiber layer thinning in glaucoma suspect eyes,” Ophthalmology 121(7), 1350–1358 (2014).
[Crossref]

F. A. Medeiros, L. M. Zangwill, L. M. Alencar, C. Bowd, P. A. Sample, R. Susanna, and R. N. Weinreb, “Detection of Glaucoma Progression with Stratus OCT Retinal Nerve Fiber Layer, Optic Nerve Head, and Macular Thickness Measurements,” Invest. Ophthalmol. Visual Sci. 50(12), 5741–5748 (2009).
[Crossref]

R. N. Weinreb, L. Zangwill, C. C. Berry, R. Bathija, and P. A. Sample, “Detection of Glaucoma With Scanning Laser Polarimetry,” Arch. Ophthalmol. 116(12), 1583–1589 (1998).
[Crossref]

Sasoh, M.

M. Sugimoto, M. Sasoh, M. Ido, Y. Wakitani, C. Takahashi, and Y. Uji, “Detection of early diabetic change with optical coherence tomography in type 2 diabetes mellitus patients without retinopathy,” Ophthalmologica 219(6), 379–385 (2005).
[Crossref]

Sato, M.

Savell, J.

D. L. Budenz, D. R. Anderson, R. Varma, J. Schuman, L. Cantor, J. Savell, D. S. Greenfield, V. M. Patella, H. A. Quigley, and J. Tielsch, “Determinants of normal retinal nerve fiber layer thickness measured by Stratus OCT,” Ophthalmology 114(6), 1046–1052 (2007).
[Crossref]

Savini, G.

G. Savini, M. Zanini, V. Carelli, A. A. Sadun, F. N. Ross-Cisneros, and P. Barboni, “Correlation between retinal nerve fibre layer thickness and optic nerve head size: an optical coherence tomography study,” Br. J. Ophthalmol. 89(4), 489–492 (2005).
[Crossref]

Schlingemann, R. O.

H. W. V. Dijk, P. H. B. Kok, M. Garvin, M. Sonka, R. O. Schlingemann, F. D. Verbraak, and M. D. Abramoff, “Selective Loss of Inner Retinal Layer Thickness in Type 1 Diabetic Patients With Minimal Diabetic Retinopathy,” Invest. Ophthalmol. Visual Sci. 50(7), 3404–3409 (2009).
[Crossref]

Schmidt-Erfurt, U.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurt, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Visual Sci. 54(1), 72–84 (2013).
[Crossref]

Schmidt-Erfurth, U.

Schuman, J.

D. L. Budenz, D. R. Anderson, R. Varma, J. Schuman, L. Cantor, J. Savell, D. S. Greenfield, V. M. Patella, H. A. Quigley, and J. Tielsch, “Determinants of normal retinal nerve fiber layer thickness measured by Stratus OCT,” Ophthalmology 114(6), 1046–1052 (2007).
[Crossref]

Schuman, J. S.

I. I. Bussel, G. Wollstein, and J. S. Schuman, “OCT for glaucoma diagnosis, screening and detection of glaucoma progression,” Br. J. Ophthalmol. 98(Suppl 2), ii15–ii19 (2014).
[Crossref]

J. Kotowski, G. Wollstein, L. S. Folio, H. Ishikawa, and J. S. Schuman, “Clinical use of OCT in assessing glaucoma progression,” Ophthalmic Surg Lasers Imaging 42(4), S6–S14 (2011).
[Crossref]

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113(5), 586–596 (1995).
[Crossref]

Seibold, L. K.

L. K. Seibold, N. Mandava, and M. Y. Kahook, “Comparison of retinal nerve fiber layer thickness in normal eyes using time-domain and spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 150(6), 807–814.e1 (2010).
[Crossref]

Sharpsten, L.

A. Miki, F. A. Medeiros, R. N. Weinreb, S. Jain, F. He, L. Sharpsten, N. Khachatryan, N. Hammel, J. M. Liebmann, C. A. Girkin, P. A. Sample, and L. M. Zangwill, “Rates of retinal nerve fiber layer thinning in glaucoma suspect eyes,” Ophthalmology 121(7), 1350–1358 (2014).
[Crossref]

Shieh, E.

Z. Khoueir, F. Jassim, L. Y.-C. Poon, E. Tsikata, G. S. Ben-David, Y. Liu, E. Shieh, R. Lee, R. Guo, G. Papadogeorgou, B. Braaf, H. Simavli, C. Que, B. J. Vakoc, B. E. Bouma, J. F. de Boer, and T. C. Chen, “Diagnostic Capability of Peripapillary Three-dimensional Retinal Nerve Fiber Layer Volume for Glaucoma Using Optical Coherence Tomography Volume Scans,” Am. J. Ophthalmol. 182, 180–193 (2017).
[Crossref]

Simavli, H.

Z. Khoueir, F. Jassim, L. Y.-C. Poon, E. Tsikata, G. S. Ben-David, Y. Liu, E. Shieh, R. Lee, R. Guo, G. Papadogeorgou, B. Braaf, H. Simavli, C. Que, B. J. Vakoc, B. E. Bouma, J. F. de Boer, and T. C. Chen, “Diagnostic Capability of Peripapillary Three-dimensional Retinal Nerve Fiber Layer Volume for Glaucoma Using Optical Coherence Tomography Volume Scans,” Am. J. Ophthalmol. 182, 180–193 (2017).
[Crossref]

Simó, R.

B. Corcóstegui, S. Durán, M. O. González-Albarrán, C. Hernández, J. M. Ruiz-Moreno, J. Salvador, P. Udaondo, and R. Simó, “Update on Diagnosis and Treatment of Diabetic Retinopathy: A Consensus Guideline of the Working Group of Ocular Health (Spanish Society of Diabetes and Spanish Vitreous and Retina Society),” J. Ophthalmol. 2017, 1–10 (2017).
[Crossref]

Sinai, M.

Q. Zhou, J. Reed, R. Betts, P. Trost, P. W. Lo, C. Wallace, R. Bienias, G. Li, R. Winnick, W. Papworth, and M. Sinai, “Detection of glaucomatous retinal nerve fiber layer damage by scanning laser polarimetry with variable corneal compensation,” Proc. SPIE 4951, 32–41 (2003).
[Crossref]

Sonka, M.

H. W. V. Dijk, P. H. B. Kok, M. Garvin, M. Sonka, R. O. Schlingemann, F. D. Verbraak, and M. D. Abramoff, “Selective Loss of Inner Retinal Layer Thickness in Type 1 Diabetic Patients With Minimal Diabetic Retinopathy,” Invest. Ophthalmol. Visual Sci. 50(7), 3404–3409 (2009).
[Crossref]

Spector, Y. Z.

X.-R. Huang, R. W. Knighton, Y. Z. Spector, and W. J. Feuer, “Cytoskeletal Alteration and Change of Retinal Nerve Fiber Layer Birefringence in Hypertensive Retina,” Curr. Eye Res. 42(6), 936–947 (2017).
[Crossref]

Stitt, A. W.

E. J. Duh, J. K. Sun, and A. W. Stitt, “Diabetic retinopathy: current understanding, mechanisms, and treatment strategies,” JCI Insight 2(14), e93751 (2017).
[Crossref]

Sugimoto, M.

M. Sugimoto, M. Sasoh, M. Ido, Y. Wakitani, C. Takahashi, and Y. Uji, “Detection of early diabetic change with optical coherence tomography in type 2 diabetes mellitus patients without retinopathy,” Ophthalmologica 219(6), 379–385 (2005).
[Crossref]

Sugita, M.

Sun, J. K.

E. J. Duh, J. K. Sun, and A. W. Stitt, “Diabetic retinopathy: current understanding, mechanisms, and treatment strategies,” JCI Insight 2(14), e93751 (2017).
[Crossref]

Susanna, R.

F. A. Medeiros, L. M. Zangwill, L. M. Alencar, C. Bowd, P. A. Sample, R. Susanna, and R. N. Weinreb, “Detection of Glaucoma Progression with Stratus OCT Retinal Nerve Fiber Layer, Optic Nerve Head, and Macular Thickness Measurements,” Invest. Ophthalmol. Visual Sci. 50(12), 5741–5748 (2009).
[Crossref]

Swanson, E. A.

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113(5), 586–596 (1995).
[Crossref]

Takahashi, C.

M. Sugimoto, M. Sasoh, M. Ido, Y. Wakitani, C. Takahashi, and Y. Uji, “Detection of early diabetic change with optical coherence tomography in type 2 diabetes mellitus patients without retinopathy,” Ophthalmologica 219(6), 379–385 (2005).
[Crossref]

Talamini, C. L.

D. Xin, C. L. Talamini, A. S. Raza, C. G. V. de Moraes, V. C. Greenstein, J. M. Liebmann, R. Ritch, and D. C. Hood, “Hypodense regions (holes) in the retinal nerve fiber layer in frequency-domain OCT scans of glaucoma patients and suspects,” Invest. Ophthalmol. Visual Sci. 52(10), 7180–7186 (2011).
[Crossref]

Tan, G.

C. Sabanayagam, R. Banu, M. L. Chee, R. Lee, Y. X. Wang, G. Tan, J. B. Jonas, E. L. Lamoureux, C.-Y. Cheng, B. E. K. Klein, P. Mitchell, R. Klein, C. M. G. Cheung, and T. Y. Wong, “Incidence and progression of diabetic retinopathy: a systematic review,” Lancet Diabetes Endocrinol. 7(2), 140–149 (2019).
[Crossref]

Tavares, I.

C. Bowd, I. Tavares, F. Medeiros, L. Zangwill, P. Sample, and R. Weinreb, “Retinal Nerve Fiber Layer Thickness and Visual Sensitivity Using Scanning Laser Polarimetry with Variable and Enhanced Corneal Compensation,” Ophthalmology 114(7), 1259–1265 (2007).
[Crossref]

Tielsch, J.

D. L. Budenz, D. R. Anderson, R. Varma, J. Schuman, L. Cantor, J. Savell, D. S. Greenfield, V. M. Patella, H. A. Quigley, and J. Tielsch, “Determinants of normal retinal nerve fiber layer thickness measured by Stratus OCT,” Ophthalmology 114(6), 1046–1052 (2007).
[Crossref]

Tomatsu, N.

Tornow, R. P.

D. Bendschneider, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal nerve fiber layer thickness in normals measured by spectral domain OCT,” J. Glaucoma 19(7), 475–482 (2010).
[Crossref]

Torzicky, T.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurt, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Visual Sci. 54(1), 72–84 (2013).
[Crossref]

Toth, C. A.

Trichonas, G.

G. Trichonas and P. K. Kaiser, “Optical coherence tomography imaging of macular oedema,” Br. J. Ophthalmol. 98(Suppl 2), ii24–ii29 (2014).
[Crossref]

Trost, P.

Q. Zhou, J. Reed, R. Betts, P. Trost, P. W. Lo, C. Wallace, R. Bienias, G. Li, R. Winnick, W. Papworth, and M. Sinai, “Detection of glaucomatous retinal nerve fiber layer damage by scanning laser polarimetry with variable corneal compensation,” Proc. SPIE 4951, 32–41 (2003).
[Crossref]

Tse, K. K.

C. K.-S. Leung, C. Y. L. Cheung, R. N. Weinreb, K. Qiu, S. Liu, H. Li, G. Xu, N. Fan, C. P. Pang, K. K. Tse, and D. S. C. Lam, “Evaluation of Retinal Nerve Fiber Layer Progression in Glaucoma: A Study on Optical Coherence Tomography Guided Progression Analysis,” Invest. Ophthalmol. Visual Sci. 51(1), 217–222 (2010).
[Crossref]

Tsikata, E.

Z. Khoueir, F. Jassim, L. Y.-C. Poon, E. Tsikata, G. S. Ben-David, Y. Liu, E. Shieh, R. Lee, R. Guo, G. Papadogeorgou, B. Braaf, H. Simavli, C. Que, B. J. Vakoc, B. E. Bouma, J. F. de Boer, and T. C. Chen, “Diagnostic Capability of Peripapillary Three-dimensional Retinal Nerve Fiber Layer Volume for Glaucoma Using Optical Coherence Tomography Volume Scans,” Am. J. Ophthalmol. 182, 180–193 (2017).
[Crossref]

Udaondo, P.

B. Corcóstegui, S. Durán, M. O. González-Albarrán, C. Hernández, J. M. Ruiz-Moreno, J. Salvador, P. Udaondo, and R. Simó, “Update on Diagnosis and Treatment of Diabetic Retinopathy: A Consensus Guideline of the Working Group of Ocular Health (Spanish Society of Diabetes and Spanish Vitreous and Retina Society),” J. Ophthalmol. 2017, 1–10 (2017).
[Crossref]

Uji, Y.

M. Sugimoto, M. Sasoh, M. Ido, Y. Wakitani, C. Takahashi, and Y. Uji, “Detection of early diabetic change with optical coherence tomography in type 2 diabetes mellitus patients without retinopathy,” Ophthalmologica 219(6), 379–385 (2005).
[Crossref]

Vakoc, B. J.

Z. Khoueir, F. Jassim, L. Y.-C. Poon, E. Tsikata, G. S. Ben-David, Y. Liu, E. Shieh, R. Lee, R. Guo, G. Papadogeorgou, B. Braaf, H. Simavli, C. Que, B. J. Vakoc, B. E. Bouma, J. F. de Boer, and T. C. Chen, “Diagnostic Capability of Peripapillary Three-dimensional Retinal Nerve Fiber Layer Volume for Glaucoma Using Optical Coherence Tomography Volume Scans,” Am. J. Ophthalmol. 182, 180–193 (2017).
[Crossref]

van de Kreeke, J. A.

Varma, R.

D. L. Budenz, D. R. Anderson, R. Varma, J. Schuman, L. Cantor, J. Savell, D. S. Greenfield, V. M. Patella, H. A. Quigley, and J. Tielsch, “Determinants of normal retinal nerve fiber layer thickness measured by Stratus OCT,” Ophthalmology 114(6), 1046–1052 (2007).
[Crossref]

Vass, C.

M. Sugita, M. Pircher, S. Zotter, B. Baumann, P. Roberts, T. Makihira, N. Tomatsu, M. Sato, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber bundle tracing and analysis in human eye by polarization sensitive OCT,” Biomed. Opt. Express 6(3), 1030–1054 (2015).
[Crossref]

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurt, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Visual Sci. 54(1), 72–84 (2013).
[Crossref]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Analysis of the origin of atypical scanning laser polarimetry patterns by polarization sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 49(12), 5366–5372 (2008).
[Crossref]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: A comparison,” J. Biophotonics 1(2), 129–139 (2008).
[Crossref]

Verbraak, F. D.

J. Willemse, M. G. O. Grafe, J. A. van de Kreeke, F. Feroldi, F. D. Verbraak, and J. F. de Boer, “Optic axis uniformity as a metric to improve the contrast of birefringent structures and analyze the retinal nerve fiber layer in polarization-sensitive optical coherence tomography,” Opt. Lett. 44(15), 3893–3896 (2019).
[Crossref]

H. W. V. Dijk, P. H. B. Kok, M. Garvin, M. Sonka, R. O. Schlingemann, F. D. Verbraak, and M. D. Abramoff, “Selective Loss of Inner Retinal Layer Thickness in Type 1 Diabetic Patients With Minimal Diabetic Retinopathy,” Invest. Ophthalmol. Visual Sci. 50(7), 3404–3409 (2009).
[Crossref]

Wakitani, Y.

M. Sugimoto, M. Sasoh, M. Ido, Y. Wakitani, C. Takahashi, and Y. Uji, “Detection of early diabetic change with optical coherence tomography in type 2 diabetes mellitus patients without retinopathy,” Ophthalmologica 219(6), 379–385 (2005).
[Crossref]

Wallace, C.

Q. Zhou, J. Reed, R. Betts, P. Trost, P. W. Lo, C. Wallace, R. Bienias, G. Li, R. Winnick, W. Papworth, and M. Sinai, “Detection of glaucomatous retinal nerve fiber layer damage by scanning laser polarimetry with variable corneal compensation,” Proc. SPIE 4951, 32–41 (2003).
[Crossref]

Wang, L.

B. Fortune, G. Cull, J. Reynaud, L. Wang, and C. F. Burgoyne, “Relating Retinal Ganglion Cell Function and Retinal Nerve Fiber Layer (RNFL) Retardance to Progressive Loss of RNFL Thickness and Optic Nerve Axons in Experimental Glaucoma,” Invest. Ophthalmol. Visual Sci. 56(6), 3936–3944 (2015).
[Crossref]

B. Fortune, C. F. Burgoyne, G. Cull, J. Reynaud, and L. Wang, “Onset and Progression of Peripapillary Retinal Nerve Fiber Layer (RNFL) Retardance Changes Occur Earlier Than RNFL Thickness Changes in Experimental Glaucoma,” Invest. Ophthalmol. Visual Sci. 54(8), 5653–5660 (2013).
[Crossref]

Wang, Q.

Wang, Y. X.

C. Sabanayagam, R. Banu, M. L. Chee, R. Lee, Y. X. Wang, G. Tan, J. B. Jonas, E. L. Lamoureux, C.-Y. Cheng, B. E. K. Klein, P. Mitchell, R. Klein, C. M. G. Cheung, and T. Y. Wong, “Incidence and progression of diabetic retinopathy: a systematic review,” Lancet Diabetes Endocrinol. 7(2), 140–149 (2019).
[Crossref]

Weinreb, R.

C. Bowd, I. Tavares, F. Medeiros, L. Zangwill, P. Sample, and R. Weinreb, “Retinal Nerve Fiber Layer Thickness and Visual Sensitivity Using Scanning Laser Polarimetry with Variable and Enhanced Corneal Compensation,” Ophthalmology 114(7), 1259–1265 (2007).
[Crossref]

Weinreb, R. N.

R. N. Weinreb, T. Aung, and F. A. Medeiros, “The pathophysiology and treatment of glaucoma: a review,” JAMA 311(18), 1901–1911 (2014).
[Crossref]

A. Miki, F. A. Medeiros, R. N. Weinreb, S. Jain, F. He, L. Sharpsten, N. Khachatryan, N. Hammel, J. M. Liebmann, C. A. Girkin, P. A. Sample, and L. M. Zangwill, “Rates of retinal nerve fiber layer thinning in glaucoma suspect eyes,” Ophthalmology 121(7), 1350–1358 (2014).
[Crossref]

C. K.-S. Leung, C. Y. L. Cheung, R. N. Weinreb, K. Qiu, S. Liu, H. Li, G. Xu, N. Fan, C. P. Pang, K. K. Tse, and D. S. C. Lam, “Evaluation of Retinal Nerve Fiber Layer Progression in Glaucoma: A Study on Optical Coherence Tomography Guided Progression Analysis,” Invest. Ophthalmol. Visual Sci. 51(1), 217–222 (2010).
[Crossref]

F. A. Medeiros, L. M. Zangwill, L. M. Alencar, C. Bowd, P. A. Sample, R. Susanna, and R. N. Weinreb, “Detection of Glaucoma Progression with Stratus OCT Retinal Nerve Fiber Layer, Optic Nerve Head, and Macular Thickness Measurements,” Invest. Ophthalmol. Visual Sci. 50(12), 5741–5748 (2009).
[Crossref]

R. N. Weinreb, L. Zangwill, C. C. Berry, R. Bathija, and P. A. Sample, “Detection of Glaucoma With Scanning Laser Polarimetry,” Arch. Ophthalmol. 116(12), 1583–1589 (1998).
[Crossref]

Willemse, J.

Winnick, R.

Q. Zhou, J. Reed, R. Betts, P. Trost, P. W. Lo, C. Wallace, R. Bienias, G. Li, R. Winnick, W. Papworth, and M. Sinai, “Detection of glaucomatous retinal nerve fiber layer damage by scanning laser polarimetry with variable corneal compensation,” Proc. SPIE 4951, 32–41 (2003).
[Crossref]

Wollstein, G.

I. I. Bussel, G. Wollstein, and J. S. Schuman, “OCT for glaucoma diagnosis, screening and detection of glaucoma progression,” Br. J. Ophthalmol. 98(Suppl 2), ii15–ii19 (2014).
[Crossref]

J. Kotowski, G. Wollstein, L. S. Folio, H. Ishikawa, and J. S. Schuman, “Clinical use of OCT in assessing glaucoma progression,” Ophthalmic Surg Lasers Imaging 42(4), S6–S14 (2011).
[Crossref]

Wong, C.

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113(5), 586–596 (1995).
[Crossref]

Wong, T. Y.

C. Sabanayagam, R. Banu, M. L. Chee, R. Lee, Y. X. Wang, G. Tan, J. B. Jonas, E. L. Lamoureux, C.-Y. Cheng, B. E. K. Klein, P. Mitchell, R. Klein, C. M. G. Cheung, and T. Y. Wong, “Incidence and progression of diabetic retinopathy: a systematic review,” Lancet Diabetes Endocrinol. 7(2), 140–149 (2019).
[Crossref]

Xin, D.

D. Xin, C. L. Talamini, A. S. Raza, C. G. V. de Moraes, V. C. Greenstein, J. M. Liebmann, R. Ritch, and D. C. Hood, “Hypodense regions (holes) in the retinal nerve fiber layer in frequency-domain OCT scans of glaucoma patients and suspects,” Invest. Ophthalmol. Visual Sci. 52(10), 7180–7186 (2011).
[Crossref]

Xu, G.

C. K.-S. Leung, C. Y. L. Cheung, R. N. Weinreb, K. Qiu, S. Liu, H. Li, G. Xu, N. Fan, C. P. Pang, K. K. Tse, and D. S. C. Lam, “Evaluation of Retinal Nerve Fiber Layer Progression in Glaucoma: A Study on Optical Coherence Tomography Guided Progression Analysis,” Invest. Ophthalmol. Visual Sci. 51(1), 217–222 (2010).
[Crossref]

Yamanari, M.

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[Crossref]

Yasuno, Y.

J. F. de Boer, C. K. Hitzenberger, and Y. Yasuno, “Polarization sensitive optical coherence tomography - a review [Invited],” Biomed. Opt. Express 8(3), 1838–1873 (2017).
[Crossref]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[Crossref]

Yatagai, T.

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[Crossref]

Yetkin, I.

S. Özdek, Y. H. Lonneville, M. Önol, I. Yetkin, and B. B. Hasanreisoğlu, “Assessment of nerve fiber layer in diabetic patients with scanning laser polarimetry,” Eye 16(6), 761–765 (2002).
[Crossref]

Yoshida, H.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurt, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Visual Sci. 54(1), 72–84 (2013).
[Crossref]

Zangwill, L.

C. Bowd, I. Tavares, F. Medeiros, L. Zangwill, P. Sample, and R. Weinreb, “Retinal Nerve Fiber Layer Thickness and Visual Sensitivity Using Scanning Laser Polarimetry with Variable and Enhanced Corneal Compensation,” Ophthalmology 114(7), 1259–1265 (2007).
[Crossref]

R. N. Weinreb, L. Zangwill, C. C. Berry, R. Bathija, and P. A. Sample, “Detection of Glaucoma With Scanning Laser Polarimetry,” Arch. Ophthalmol. 116(12), 1583–1589 (1998).
[Crossref]

Zangwill, L. M.

A. Miki, F. A. Medeiros, R. N. Weinreb, S. Jain, F. He, L. Sharpsten, N. Khachatryan, N. Hammel, J. M. Liebmann, C. A. Girkin, P. A. Sample, and L. M. Zangwill, “Rates of retinal nerve fiber layer thinning in glaucoma suspect eyes,” Ophthalmology 121(7), 1350–1358 (2014).
[Crossref]

F. A. Medeiros, L. M. Zangwill, L. M. Alencar, C. Bowd, P. A. Sample, R. Susanna, and R. N. Weinreb, “Detection of Glaucoma Progression with Stratus OCT Retinal Nerve Fiber Layer, Optic Nerve Head, and Macular Thickness Measurements,” Invest. Ophthalmol. Visual Sci. 50(12), 5741–5748 (2009).
[Crossref]

Zanini, M.

G. Savini, M. Zanini, V. Carelli, A. A. Sadun, F. N. Ross-Cisneros, and P. Barboni, “Correlation between retinal nerve fibre layer thickness and optic nerve head size: an optical coherence tomography study,” Br. J. Ophthalmol. 89(4), 489–492 (2005).
[Crossref]

Zhao, L.

Zhou, Q.

Q. Zhou, J. Reed, R. Betts, P. Trost, P. W. Lo, C. Wallace, R. Bienias, G. Li, R. Winnick, W. Papworth, and M. Sinai, “Detection of glaucomatous retinal nerve fiber layer damage by scanning laser polarimetry with variable corneal compensation,” Proc. SPIE 4951, 32–41 (2003).
[Crossref]

Zotter, S.

M. Sugita, M. Pircher, S. Zotter, B. Baumann, P. Roberts, T. Makihira, N. Tomatsu, M. Sato, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber bundle tracing and analysis in human eye by polarization sensitive OCT,” Biomed. Opt. Express 6(3), 1030–1054 (2015).
[Crossref]

M. Sugita, M. Pircher, S. Zotter, B. Baumann, K. Saito, T. Makihira, N. Tomatsu, M. Sato, and C. K. Hitzenberger, “Analysis of optimum conditions of depolarization imaging by polarization-sensitive optical coherence tomography in the human retina,” J. Biomed. Opt. 20(1), 016011 (2015).
[Crossref]

M. Sugita, S. Zotter, M. Pircher, T. Makihira, K. Saito, N. Tomatsu, M. Sato, P. Roberts, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Motion artifact and speckle noise reduction in polarization sensitive optical coherence tomography by retinal tracking,” Biomed. Opt. Express 5(1), 106–122 (2014).
[Crossref]

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurt, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Visual Sci. 54(1), 72–84 (2013).
[Crossref]

Am. J. Ophthalmol. (2)

Z. Khoueir, F. Jassim, L. Y.-C. Poon, E. Tsikata, G. S. Ben-David, Y. Liu, E. Shieh, R. Lee, R. Guo, G. Papadogeorgou, B. Braaf, H. Simavli, C. Que, B. J. Vakoc, B. E. Bouma, J. F. de Boer, and T. C. Chen, “Diagnostic Capability of Peripapillary Three-dimensional Retinal Nerve Fiber Layer Volume for Glaucoma Using Optical Coherence Tomography Volume Scans,” Am. J. Ophthalmol. 182, 180–193 (2017).
[Crossref]

L. K. Seibold, N. Mandava, and M. Y. Kahook, “Comparison of retinal nerve fiber layer thickness in normal eyes using time-domain and spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 150(6), 807–814.e1 (2010).
[Crossref]

Appl. Sci. (1)

B. Baumann, “Polarization Sensitive Optical Coherence Tomography: A Review of Technology and Applications,” Appl. Sci. 7(5), 474 (2017).
[Crossref]

Arch. Ophthalmol. (2)

R. N. Weinreb, L. Zangwill, C. C. Berry, R. Bathija, and P. A. Sample, “Detection of Glaucoma With Scanning Laser Polarimetry,” Arch. Ophthalmol. 116(12), 1583–1589 (1998).
[Crossref]

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113(5), 586–596 (1995).
[Crossref]

Biomed. Opt. Express (4)

Br. J. Ophthalmol. (5)

J. M. Lopes de Faria, H. Russ, and V. P. Costa, “Retinal nerve fibre layer loss in patients with type 1 diabetes mellitus without retinopathy,” Br. J. Ophthalmol. 86(7), 725–728 (2002).
[Crossref]

G. Savini, M. Zanini, V. Carelli, A. A. Sadun, F. N. Ross-Cisneros, and P. Barboni, “Correlation between retinal nerve fibre layer thickness and optic nerve head size: an optical coherence tomography study,” Br. J. Ophthalmol. 89(4), 489–492 (2005).
[Crossref]

G. Trichonas and P. K. Kaiser, “Optical coherence tomography imaging of macular oedema,” Br. J. Ophthalmol. 98(Suppl 2), ii24–ii29 (2014).
[Crossref]

H. A. Quigley and A. T. Broman, “The number of people with glaucoma worldwide in 2010 and 2020,” Br. J. Ophthalmol. 90(3), 262–267 (2006).
[Crossref]

I. I. Bussel, G. Wollstein, and J. S. Schuman, “OCT for glaucoma diagnosis, screening and detection of glaucoma progression,” Br. J. Ophthalmol. 98(Suppl 2), ii15–ii19 (2014).
[Crossref]

Curr. Eye Res. (1)

X.-R. Huang, R. W. Knighton, Y. Z. Spector, and W. J. Feuer, “Cytoskeletal Alteration and Change of Retinal Nerve Fiber Layer Birefringence in Hypertensive Retina,” Curr. Eye Res. 42(6), 936–947 (2017).
[Crossref]

Curr. Opinion Ophthalmol. (1)

M. Adhi and J. S. Duker, “Optical coherence tomography–current and future applications,” Curr. Opinion Ophthalmol. 24(3), 213–221 (2013).
[Crossref]

Eye (1)

S. Özdek, Y. H. Lonneville, M. Önol, I. Yetkin, and B. B. Hasanreisoğlu, “Assessment of nerve fiber layer in diabetic patients with scanning laser polarimetry,” Eye 16(6), 761–765 (2002).
[Crossref]

Invest. Ophthalmol. Visual Sci. (10)

C. K.-S. Leung, C. Y. L. Cheung, R. N. Weinreb, K. Qiu, S. Liu, H. Li, G. Xu, N. Fan, C. P. Pang, K. K. Tse, and D. S. C. Lam, “Evaluation of Retinal Nerve Fiber Layer Progression in Glaucoma: A Study on Optical Coherence Tomography Guided Progression Analysis,” Invest. Ophthalmol. Visual Sci. 51(1), 217–222 (2010).
[Crossref]

H. W. V. Dijk, P. H. B. Kok, M. Garvin, M. Sonka, R. O. Schlingemann, F. D. Verbraak, and M. D. Abramoff, “Selective Loss of Inner Retinal Layer Thickness in Type 1 Diabetic Patients With Minimal Diabetic Retinopathy,” Invest. Ophthalmol. Visual Sci. 50(7), 3404–3409 (2009).
[Crossref]

B. Fortune, C. F. Burgoyne, G. Cull, J. Reynaud, and L. Wang, “Onset and Progression of Peripapillary Retinal Nerve Fiber Layer (RNFL) Retardance Changes Occur Earlier Than RNFL Thickness Changes in Experimental Glaucoma,” Invest. Ophthalmol. Visual Sci. 54(8), 5653–5660 (2013).
[Crossref]

X. R. Huang, H. Bagga, D. S. Greenfield, and R. W. Knighton, “Variation of peripapillary retinal nerve fiber layer birefringence in normal human subjects,” Invest. Ophthalmol. Visual Sci. 45(9), 3073–3080 (2004).
[Crossref]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Analysis of the origin of atypical scanning laser polarimetry patterns by polarization sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 49(12), 5366–5372 (2008).
[Crossref]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and Birefringence of Healthy Retinal Nerve Fiber Layer Tissue Measured with Polarization-Sensitive Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 45(8), 2606–2612 (2004).
[Crossref]

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurt, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Visual Sci. 54(1), 72–84 (2013).
[Crossref]

F. A. Medeiros, L. M. Zangwill, L. M. Alencar, C. Bowd, P. A. Sample, R. Susanna, and R. N. Weinreb, “Detection of Glaucoma Progression with Stratus OCT Retinal Nerve Fiber Layer, Optic Nerve Head, and Macular Thickness Measurements,” Invest. Ophthalmol. Visual Sci. 50(12), 5741–5748 (2009).
[Crossref]

B. Fortune, G. Cull, J. Reynaud, L. Wang, and C. F. Burgoyne, “Relating Retinal Ganglion Cell Function and Retinal Nerve Fiber Layer (RNFL) Retardance to Progressive Loss of RNFL Thickness and Optic Nerve Axons in Experimental Glaucoma,” Invest. Ophthalmol. Visual Sci. 56(6), 3936–3944 (2015).
[Crossref]

D. Xin, C. L. Talamini, A. S. Raza, C. G. V. de Moraes, V. C. Greenstein, J. M. Liebmann, R. Ritch, and D. C. Hood, “Hypodense regions (holes) in the retinal nerve fiber layer in frequency-domain OCT scans of glaucoma patients and suspects,” Invest. Ophthalmol. Visual Sci. 52(10), 7180–7186 (2011).
[Crossref]

J. Biomed. Opt. (4)

B. Cense, T. Chen, B. Park, M. Pierce, and J. de Boer, “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 121–125 (2004).
[Crossref]

M. Sugita, M. Pircher, S. Zotter, B. Baumann, K. Saito, T. Makihira, N. Tomatsu, M. Sato, and C. K. Hitzenberger, “Analysis of optimum conditions of depolarization imaging by polarization-sensitive optical coherence tomography in the human retina,” J. Biomed. Opt. 20(1), 016011 (2015).
[Crossref]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[Crossref]

M. Pircher, E. Götzinger, B. Baumann, and C. Hitzenberger, “Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina,” J. Biomed. Opt. 12(4), 041210 (2007).
[Crossref]

J. Biophotonics (1)

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: A comparison,” J. Biophotonics 1(2), 129–139 (2008).
[Crossref]

J. Diabetes Complicat. (1)

T. Granström, H. Forsman, J. Leksell, S. Jani, A. M. Raghib, and E. Granstam, “Visual functioning and health-related quality of life in diabetic patients about to undergo anti-vascular endothelial growth factor treatment for sight-threatening macular edema,” J. Diabetes Complicat. 29(8), 1183–1190 (2015).
[Crossref]

J. Glaucoma (2)

Q. Ghadiali, D. C. Hood, C. Lee, J. Manns, A. Llinas, L. K. Grover, V. C. Greenstein, J. M. Liebmann, J. G. Odel, and R. Ritch, “An analysis of normal variations in retinal nerve fiber layer thickness profiles measured with optical coherence tomography,” J. Glaucoma 17(5), 333–340 (2008).
[Crossref]

D. Bendschneider, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal nerve fiber layer thickness in normals measured by spectral domain OCT,” J. Glaucoma 19(7), 475–482 (2010).
[Crossref]

J. Ophthalmic Vis. Res. (1)

J. Khadamy, K. Abri Aghdam, and K. G. Falavarjani, “An Update on Optical Coherence Tomography Angiography in Diabetic Retinopathy,” J. Ophthalmic Vis. Res. 13(4), 487–497 (2018).
[Crossref]

J. Ophthalmol. (1)

B. Corcóstegui, S. Durán, M. O. González-Albarrán, C. Hernández, J. M. Ruiz-Moreno, J. Salvador, P. Udaondo, and R. Simó, “Update on Diagnosis and Treatment of Diabetic Retinopathy: A Consensus Guideline of the Working Group of Ocular Health (Spanish Society of Diabetes and Spanish Vitreous and Retina Society),” J. Ophthalmol. 2017, 1–10 (2017).
[Crossref]

JAMA (1)

R. N. Weinreb, T. Aung, and F. A. Medeiros, “The pathophysiology and treatment of glaucoma: a review,” JAMA 311(18), 1901–1911 (2014).
[Crossref]

JCI Insight (1)

E. J. Duh, J. K. Sun, and A. W. Stitt, “Diabetic retinopathy: current understanding, mechanisms, and treatment strategies,” JCI Insight 2(14), e93751 (2017).
[Crossref]

Lancet Diabetes Endocrinol. (1)

C. Sabanayagam, R. Banu, M. L. Chee, R. Lee, Y. X. Wang, G. Tan, J. B. Jonas, E. L. Lamoureux, C.-Y. Cheng, B. E. K. Klein, P. Mitchell, R. Klein, C. M. G. Cheung, and T. Y. Wong, “Incidence and progression of diabetic retinopathy: a systematic review,” Lancet Diabetes Endocrinol. 7(2), 140–149 (2019).
[Crossref]

Ophthalmic Surg Lasers Imaging (1)

J. Kotowski, G. Wollstein, L. S. Folio, H. Ishikawa, and J. S. Schuman, “Clinical use of OCT in assessing glaucoma progression,” Ophthalmic Surg Lasers Imaging 42(4), S6–S14 (2011).
[Crossref]

Ophthalmologica (1)

M. Sugimoto, M. Sasoh, M. Ido, Y. Wakitani, C. Takahashi, and Y. Uji, “Detection of early diabetic change with optical coherence tomography in type 2 diabetes mellitus patients without retinopathy,” Ophthalmologica 219(6), 379–385 (2005).
[Crossref]

Ophthalmology (3)

A. Miki, F. A. Medeiros, R. N. Weinreb, S. Jain, F. He, L. Sharpsten, N. Khachatryan, N. Hammel, J. M. Liebmann, C. A. Girkin, P. A. Sample, and L. M. Zangwill, “Rates of retinal nerve fiber layer thinning in glaucoma suspect eyes,” Ophthalmology 121(7), 1350–1358 (2014).
[Crossref]

C. Bowd, I. Tavares, F. Medeiros, L. Zangwill, P. Sample, and R. Weinreb, “Retinal Nerve Fiber Layer Thickness and Visual Sensitivity Using Scanning Laser Polarimetry with Variable and Enhanced Corneal Compensation,” Ophthalmology 114(7), 1259–1265 (2007).
[Crossref]

D. L. Budenz, D. R. Anderson, R. Varma, J. Schuman, L. Cantor, J. Savell, D. S. Greenfield, V. M. Patella, H. A. Quigley, and J. Tielsch, “Determinants of normal retinal nerve fiber layer thickness measured by Stratus OCT,” Ophthalmology 114(6), 1046–1052 (2007).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Proc. SPIE (1)

Q. Zhou, J. Reed, R. Betts, P. Trost, P. W. Lo, C. Wallace, R. Bienias, G. Li, R. Winnick, W. Papworth, and M. Sinai, “Detection of glaucomatous retinal nerve fiber layer damage by scanning laser polarimetry with variable corneal compensation,” Proc. SPIE 4951, 32–41 (2003).
[Crossref]

Prog. Retinal Eye Res. (1)

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retinal Eye Res. 30(6), 431–451 (2011).
[Crossref]

Sci. Rep. (1)

S. J. Jeon, H.-Y. L. Park, J. H. Lee, and C. K. Park, “Relationship between Systemic Vascular Characteristics and Retinal Nerve Fiber Layer Loss in Patients with Type 2 Diabetes,” Sci. Rep. 8(1), 10510 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Representative circular B-scans associated with the analysis of RNFL birefringence. Averaged intensity scan (b) is obtained by registration and averaging of 50 individual B-scans (a). RNFL thickness is obtained from the segmented upper (blue) and lower (green) boundaries of the RNFL layer as shown in (c). After segmentation of the RPE, the retardation values at the photoreceptor layer (boundaries in red in (c)) are obtained from the averaged retardation scan (d) for the RNFL birefringence calculation using the quotient method. In the case of the linear regression method, the linear fit at each A-scan location, whose slope corresponds to the RNFL birefringence, also uses the averaged retardation scan (d).
Fig. 2.
Fig. 2. Comparison between the intensity and retardation averaged circular scan of the left eye of a healthy subject (b)-(c), a diabetic patient (e)-(f) and a glaucoma patient (h)-(i). Lower retardation is observed in the RNFL of the diseased retina as compared to the healthy one. Location of the circular scan is indicated on the corresponding en-face intensity maps, (a), (d) and (g). The framed area in the averaged intensity scan of the glaucoma subject (h) point out holes in the RNFL of this patient.
Fig. 3.
Fig. 3. RNFL thickness (a,d,g), retardation (b, e, h) and birefringence (c, f, i) maps of the healthy, diabetic and glaucoma subjects shown in Fig. 2. Reduced retardation is seen in both the diabetic and glaucoma cases as compared to the healthy one. Reduced birefringence is particularly seen in the diabetic case, even in areas of thick NFL. A RNFL thickness threshold of 75 µm was used for visualization of the birefringence maps.
Fig. 4.
Fig. 4. Graphs of the RNFL thickness (a), retardation (b) and birefringence (c) along a circle around the ONH for the healthy (H), diabetic (D) and glaucoma (G) subjects shown in Fig. 2. A sliding average over 10 A-scans was applied for all plots. The retardation and birefringence data were smoothen based on a local regression method. The gaps in the plots indicate vessel positions. The known double hump patterns of the RNFL are recognizable in the different graphs. The retardation and birefringence plots of the diabetic patient appear clearly lower compared to the ones of the healthy subject. While all values along the circumpapillary scan are shown here, only locations of RNFL thickness > 100 µm are used for the quantitative analysis. The values at RNFL thickness < 100 µm are displayed in gray. (T: temporal, S: superior, N: nasal, I: inferior, defined according to the GDx-VCC quadrant division).
Fig. 5.
Fig. 5. Averaged RNFL birefringence along the circular scan for the three groups of volunteers, respectively, for the healthy subjects (a), the diabetic patients (b) and the glaucoma patients (c). The central line shows the mean value over the subjects of each group. The other lines show ± one standard deviation. To ease the comparison, the mean plots of each group are overlapped in (d). The averaged values are lower for the diabetic and glaucoma patients as compared to the healthy subjects. While all values along the circumpapillary scan are shown here, only locations of RNFL thickness > 100 µm are used for the quantitative analysis. Similarly to Fig. 4, (a) sliding average over 10 A-scans and smoothing of the data were applied for all plots.
Fig. 6.
Fig. 6. Comparison between the directly recorded (averaged over 50 B-scans) circumpapillary scans - intensity (a) and retardation (b) – and images reconstructed from a 3D data set along the same circle as for the circular scan – intensity (c) and retardation (d) – of a healthy subject.

Tables (3)

Tables Icon

Table 1. Results of the repeatability study for circumpapillary scans of the RNFL. For each of the five healthy subjects, five measurements were repeated after realignment. The thickness values are calculated from the entire circumpapillary scan while the retardation and birefringence values only consider areas of RNFL thickness > 100 µm. (Note that the birefringence values can therefore not directly be calculated from the thickness and retardation values given in the table). The results of the quotient method are given in blue boxes, the ones of the linear regression in orange boxes.

Tables Icon

Table 2. Averaged RNFL thickness, retardation and birefringence values for the set of heathy volunteers (n = 7), diabetic (n = 7) and glaucoma patients (n = 6). The thickness values are calculated from the entire circumpapillary scan while the retardation and birefringence values only consider areas of RNFL thickness > 100 µm (excluding, for example, areas of possible RNFL thinning in patients). For each parameter, the p-values of the t-test between healthy and diabetic and healthy and glaucoma are given. A statistically significantly reduced birefringence is seen in the RNFL of diabetic patients as compared to the heathy subjects (p=7·10−4).

Tables Icon

Table 3. Averaged RNFL birefringence values using different RNFL thickness thresholds for the same set of healthy volunteers, diabetic and glaucoma patients as used in Table 2. Areas of RNFL thickness > 75 µm, RNFL thickness > 100 µm (values of Table 2) and RNFL thickness > 125 µm are considered, respectively, in the three different columns. The statistically significantly reduced birefringence in the RNFL of diabetic patients as compared to the heathy subjects is seen for all of the three threshold values tested.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

B i r e f r i n g e n c e ( / μ m ) = δ P R ( ) T h i c k n e s s R N F L ( μ m )