Abstract

An optical fiber interferometer-based ballistocardiography (BCG) monitoring system aided with the IJK complex detection algorithm is proposed in this paper. A new phase modulation method based on a moving-coil transducer is developed to address the problem of signal fading in the optical fiber interferometer and keep the system in quadrature by the closed loop controller. As a result, a stable BCG signal without baseline drift can be obtained. This BCG monitor based on optical fiber interferometer using phase modulation method owns the advantages of compact, low-cost, portable, and user-friendly. In addition, an end-to-end modified U-net is developed to conduct pixel-wise classification in the BCG signal. This network can achieve high accuracy and shows its capability to segment IJK complex and body movement in the BCG signal. In conclusion, the proposed BCG monitoring system with IJK complex segmentation algorithm is potential and promising in healthcare applications.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Namara, H. Alzubaidi, and J. K. Jackson, “Cardiovascular Disease as a Leading Cause of Death: How Are Pharmacists Getting Involved?” IPRP 8, 1–11 (2019).
    [Crossref]
  2. P. Kligfield, L. S. Gettes, J. J. Bailey, R. Childers, B. J. Deal, E. W. Hancock, G. V. Herpen, J. A. Kors, P. Macfarlane, D. M. Mirvis, O. Pahlm, P. Rautaharju, and G. S. Wagner, “Recommendations for the standardization and interpretation of the electrocardiogram: part I: the electrocardiogram and its technology a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society endorsed by the International Society for Computerized Electrocardiology,” J. Am. Coll. Cardiol. 49(10), 1109–1127 (2007).
    [Crossref]
  3. S. A. Mascaro and H. H. Asada, “Photoplethysmograph fingernail sensors for measuring finger forces without haptic obstruction,” IEEE Trans. Robot. Automat. 17(5), 698–708 (2001).
    [Crossref]
  4. C. S. Kim, S. L. Ober, M. S. Mcmurtry, B. A. Finegan, O. T. Inan, R. Mukkamala, and J. O. Hahn, “Ballistocardiogram: Mechanism and Potential for Unobtrusive Cardiovascular Health Monitoring,” Sci. Rep. 6(1), 31297 (2016).
    [Crossref]
  5. J. W. Gordon, “Certain molar movements of the human body produced by the circulation of the blood,” J. Appl. Physiol. 11(Pt 3), 533–536 (1877).
  6. I. Starr, A. J. Rawson, H. A. Schroeder, and N. R. Joseph, “Studies on the estimation of cardiac output in man, and of abnormalities in cardiac function, from the heart’s recoil and the blood’s impacts; the ballistocardiogram,” Am. J. Physiol. 127(1), 1–28 (1939).
    [Crossref]
  7. O. T. Inan, M. Etemadi, A. Paloma, L. Giovangrandi, and G. T. A. Kovacs, “Non-invasive cardiac output trending during exercise recovery on a bathroom-scale-based ballistocardiograph,” Physiol. Meas. 30(3), 261–274 (2009).
    [Crossref]
  8. J. Alametsäa, A. Värri, J. Viik, J. Hyttinen, and A. Palomäki, “Ballistocardiogaphic studies with acceleration and electromechanical film sensors,” J. Biomed. Eng. 31(9), 1154–1165 (2009).
    [Crossref]
  9. M. Liu, F. Jiang, H. Jiang, S. Ye, and H. Chen, “Low-power, noninvasive measurement system for wearable ballistocardiography in sitting and standing positions,” Comput. Ind. 91, 24–32 (2017).
    [Crossref]
  10. Ł. Dziuda, M. Krej, and F. W. Skibniewski, “Fiber Bragg grating strain sensor incorporated to monitor patient vital signs during MRI,” IEEE Sens. J. 13(12), 4986–4991 (2013).
    [Crossref]
  11. Z. Chen, J. Hu, and C. Yu, “Fiber senor for long-range and biomedical measurements,” in 2013 12th International Conference on Optical Communications and Networks (ICOCN), 1–4, (2013).
  12. F. Tan, S. Chen, W. Lyu, Z. Liu, C. Yu, C. Lu, and H. Y. Tam, “Non-invasive human vital signs monitoring based on twin-core optical fiber sensors,” Biomed. Opt. Express 10(11), 5940–5952 (2019).
    [Crossref]
  13. S. Chen, F. Tan, Z. Huang, T. Yang, J. Tu, and C. Yu, “Non-invasive smart monitoring system based on multi-core fiber optic interferometers,” in 2018 Asia Communications and Photonics Conference (ACP), 1–3, (2018).
  14. W. Lyu, F. Tan, S. Chen, and C. Yu, “Myocardial Contractility Assessment using Fiber Optic Sensors,” 2019 Asia Communications and Photonics Conference (ACP), (2019).
  15. R. G. Priest, “Analysis of Fiber Interferometer Utilizing 3×3 Fiber Coupler,” IEEE Trans. Microwave Theory Tech. 30(10), 1589–1591 (1982).
    [Crossref]
  16. D. A. Jackson, R. Priest, A. Dandridge, and A. B. Tveten, “Elimination of drift in a single-mode optical fiber interferometer using a piezoelectrically stretched coiled fiber,” Appl. Opt. 19(17), 2926–2929 (1980).
    [Crossref]
  17. J. H. Shin, B. H. Choi, Y. G. Lim, D. U. Jeong, and K. S. Park, “Automatic ballistocardiogram (BCG) beat detection using a template matching approach,” in 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1144–1146 (2008).
  18. S.-T. Choe and W.-D. Cho, “Simplified real-time heartbeat detection in ballistocardiography using a dispersion-maximum method,” Biomed. Res. 28(9), 1 (2017).
  19. C. Brüser, K. Stadlthanner, S. D. Waele, and S. Leonhardt, “Adaptive Beat-to-Beat Heart Rate Estimation in Ballistocardiograms,” IEEE Trans. Inform. Technol. Biomed. 15(5), 778–786 (2011).
    [Crossref]
  20. C. Brüser, M. D. H. Zink, S. Winter, P. Schauerte, and S. Leonhardt, “A feasibility study on the automatic detection of atrial fibrillation using an unobtrusive bed-mounted sensor,” in 2011 Computing in Cardiology, 13–16 (2011).
  21. H. Lu, H. Zhang, Z. Lin, and N. S. Huat, (2018, July). “A Novel Deep Learning based Neural Network for Heartbeat Detection in Ballistocardiograph,” In 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2563–2566 (2018).
  22. K. H. Ang, G. Chong, and Y. Li, “PID control system analysis, design, and technology,” IEEE Trans. Contr. Syst. Technol. 13(4), 559–576 (2005).
    [Crossref]
  23. O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation,” arXiv, In International Conference on Medical image computing and computer-assisted intervention, 234–241 (2015).
  24. V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,” in Proceedings of the 27th international conference on machine learning (ICML-10), 807–814 (2010).
  25. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv, 1412.6980 (2014).
  26. E. Shelhamer, J. Long, and T. Darrell, “Fully Convolutional Networks for Semantic Segmentation,” IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017).
    [Crossref]

2019 (2)

K. M. Namara, H. Alzubaidi, and J. K. Jackson, “Cardiovascular Disease as a Leading Cause of Death: How Are Pharmacists Getting Involved?” IPRP 8, 1–11 (2019).
[Crossref]

F. Tan, S. Chen, W. Lyu, Z. Liu, C. Yu, C. Lu, and H. Y. Tam, “Non-invasive human vital signs monitoring based on twin-core optical fiber sensors,” Biomed. Opt. Express 10(11), 5940–5952 (2019).
[Crossref]

2017 (3)

S.-T. Choe and W.-D. Cho, “Simplified real-time heartbeat detection in ballistocardiography using a dispersion-maximum method,” Biomed. Res. 28(9), 1 (2017).

E. Shelhamer, J. Long, and T. Darrell, “Fully Convolutional Networks for Semantic Segmentation,” IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017).
[Crossref]

M. Liu, F. Jiang, H. Jiang, S. Ye, and H. Chen, “Low-power, noninvasive measurement system for wearable ballistocardiography in sitting and standing positions,” Comput. Ind. 91, 24–32 (2017).
[Crossref]

2016 (1)

C. S. Kim, S. L. Ober, M. S. Mcmurtry, B. A. Finegan, O. T. Inan, R. Mukkamala, and J. O. Hahn, “Ballistocardiogram: Mechanism and Potential for Unobtrusive Cardiovascular Health Monitoring,” Sci. Rep. 6(1), 31297 (2016).
[Crossref]

2013 (1)

Ł. Dziuda, M. Krej, and F. W. Skibniewski, “Fiber Bragg grating strain sensor incorporated to monitor patient vital signs during MRI,” IEEE Sens. J. 13(12), 4986–4991 (2013).
[Crossref]

2011 (1)

C. Brüser, K. Stadlthanner, S. D. Waele, and S. Leonhardt, “Adaptive Beat-to-Beat Heart Rate Estimation in Ballistocardiograms,” IEEE Trans. Inform. Technol. Biomed. 15(5), 778–786 (2011).
[Crossref]

2009 (2)

O. T. Inan, M. Etemadi, A. Paloma, L. Giovangrandi, and G. T. A. Kovacs, “Non-invasive cardiac output trending during exercise recovery on a bathroom-scale-based ballistocardiograph,” Physiol. Meas. 30(3), 261–274 (2009).
[Crossref]

J. Alametsäa, A. Värri, J. Viik, J. Hyttinen, and A. Palomäki, “Ballistocardiogaphic studies with acceleration and electromechanical film sensors,” J. Biomed. Eng. 31(9), 1154–1165 (2009).
[Crossref]

2007 (1)

P. Kligfield, L. S. Gettes, J. J. Bailey, R. Childers, B. J. Deal, E. W. Hancock, G. V. Herpen, J. A. Kors, P. Macfarlane, D. M. Mirvis, O. Pahlm, P. Rautaharju, and G. S. Wagner, “Recommendations for the standardization and interpretation of the electrocardiogram: part I: the electrocardiogram and its technology a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society endorsed by the International Society for Computerized Electrocardiology,” J. Am. Coll. Cardiol. 49(10), 1109–1127 (2007).
[Crossref]

2005 (1)

K. H. Ang, G. Chong, and Y. Li, “PID control system analysis, design, and technology,” IEEE Trans. Contr. Syst. Technol. 13(4), 559–576 (2005).
[Crossref]

2001 (1)

S. A. Mascaro and H. H. Asada, “Photoplethysmograph fingernail sensors for measuring finger forces without haptic obstruction,” IEEE Trans. Robot. Automat. 17(5), 698–708 (2001).
[Crossref]

1982 (1)

R. G. Priest, “Analysis of Fiber Interferometer Utilizing 3×3 Fiber Coupler,” IEEE Trans. Microwave Theory Tech. 30(10), 1589–1591 (1982).
[Crossref]

1980 (1)

1939 (1)

I. Starr, A. J. Rawson, H. A. Schroeder, and N. R. Joseph, “Studies on the estimation of cardiac output in man, and of abnormalities in cardiac function, from the heart’s recoil and the blood’s impacts; the ballistocardiogram,” Am. J. Physiol. 127(1), 1–28 (1939).
[Crossref]

1877 (1)

J. W. Gordon, “Certain molar movements of the human body produced by the circulation of the blood,” J. Appl. Physiol. 11(Pt 3), 533–536 (1877).

Alametsäa, J.

J. Alametsäa, A. Värri, J. Viik, J. Hyttinen, and A. Palomäki, “Ballistocardiogaphic studies with acceleration and electromechanical film sensors,” J. Biomed. Eng. 31(9), 1154–1165 (2009).
[Crossref]

Alzubaidi, H.

K. M. Namara, H. Alzubaidi, and J. K. Jackson, “Cardiovascular Disease as a Leading Cause of Death: How Are Pharmacists Getting Involved?” IPRP 8, 1–11 (2019).
[Crossref]

Ang, K. H.

K. H. Ang, G. Chong, and Y. Li, “PID control system analysis, design, and technology,” IEEE Trans. Contr. Syst. Technol. 13(4), 559–576 (2005).
[Crossref]

Asada, H. H.

S. A. Mascaro and H. H. Asada, “Photoplethysmograph fingernail sensors for measuring finger forces without haptic obstruction,” IEEE Trans. Robot. Automat. 17(5), 698–708 (2001).
[Crossref]

Ba, J.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv, 1412.6980 (2014).

Bailey, J. J.

P. Kligfield, L. S. Gettes, J. J. Bailey, R. Childers, B. J. Deal, E. W. Hancock, G. V. Herpen, J. A. Kors, P. Macfarlane, D. M. Mirvis, O. Pahlm, P. Rautaharju, and G. S. Wagner, “Recommendations for the standardization and interpretation of the electrocardiogram: part I: the electrocardiogram and its technology a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society endorsed by the International Society for Computerized Electrocardiology,” J. Am. Coll. Cardiol. 49(10), 1109–1127 (2007).
[Crossref]

Brox, T.

O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation,” arXiv, In International Conference on Medical image computing and computer-assisted intervention, 234–241 (2015).

Brüser, C.

C. Brüser, K. Stadlthanner, S. D. Waele, and S. Leonhardt, “Adaptive Beat-to-Beat Heart Rate Estimation in Ballistocardiograms,” IEEE Trans. Inform. Technol. Biomed. 15(5), 778–786 (2011).
[Crossref]

C. Brüser, M. D. H. Zink, S. Winter, P. Schauerte, and S. Leonhardt, “A feasibility study on the automatic detection of atrial fibrillation using an unobtrusive bed-mounted sensor,” in 2011 Computing in Cardiology, 13–16 (2011).

Chen, H.

M. Liu, F. Jiang, H. Jiang, S. Ye, and H. Chen, “Low-power, noninvasive measurement system for wearable ballistocardiography in sitting and standing positions,” Comput. Ind. 91, 24–32 (2017).
[Crossref]

Chen, S.

F. Tan, S. Chen, W. Lyu, Z. Liu, C. Yu, C. Lu, and H. Y. Tam, “Non-invasive human vital signs monitoring based on twin-core optical fiber sensors,” Biomed. Opt. Express 10(11), 5940–5952 (2019).
[Crossref]

S. Chen, F. Tan, Z. Huang, T. Yang, J. Tu, and C. Yu, “Non-invasive smart monitoring system based on multi-core fiber optic interferometers,” in 2018 Asia Communications and Photonics Conference (ACP), 1–3, (2018).

W. Lyu, F. Tan, S. Chen, and C. Yu, “Myocardial Contractility Assessment using Fiber Optic Sensors,” 2019 Asia Communications and Photonics Conference (ACP), (2019).

Chen, Z.

Z. Chen, J. Hu, and C. Yu, “Fiber senor for long-range and biomedical measurements,” in 2013 12th International Conference on Optical Communications and Networks (ICOCN), 1–4, (2013).

Childers, R.

P. Kligfield, L. S. Gettes, J. J. Bailey, R. Childers, B. J. Deal, E. W. Hancock, G. V. Herpen, J. A. Kors, P. Macfarlane, D. M. Mirvis, O. Pahlm, P. Rautaharju, and G. S. Wagner, “Recommendations for the standardization and interpretation of the electrocardiogram: part I: the electrocardiogram and its technology a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society endorsed by the International Society for Computerized Electrocardiology,” J. Am. Coll. Cardiol. 49(10), 1109–1127 (2007).
[Crossref]

Cho, W.-D.

S.-T. Choe and W.-D. Cho, “Simplified real-time heartbeat detection in ballistocardiography using a dispersion-maximum method,” Biomed. Res. 28(9), 1 (2017).

Choe, S.-T.

S.-T. Choe and W.-D. Cho, “Simplified real-time heartbeat detection in ballistocardiography using a dispersion-maximum method,” Biomed. Res. 28(9), 1 (2017).

Choi, B. H.

J. H. Shin, B. H. Choi, Y. G. Lim, D. U. Jeong, and K. S. Park, “Automatic ballistocardiogram (BCG) beat detection using a template matching approach,” in 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1144–1146 (2008).

Chong, G.

K. H. Ang, G. Chong, and Y. Li, “PID control system analysis, design, and technology,” IEEE Trans. Contr. Syst. Technol. 13(4), 559–576 (2005).
[Crossref]

Dandridge, A.

Darrell, T.

E. Shelhamer, J. Long, and T. Darrell, “Fully Convolutional Networks for Semantic Segmentation,” IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017).
[Crossref]

Deal, B. J.

P. Kligfield, L. S. Gettes, J. J. Bailey, R. Childers, B. J. Deal, E. W. Hancock, G. V. Herpen, J. A. Kors, P. Macfarlane, D. M. Mirvis, O. Pahlm, P. Rautaharju, and G. S. Wagner, “Recommendations for the standardization and interpretation of the electrocardiogram: part I: the electrocardiogram and its technology a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society endorsed by the International Society for Computerized Electrocardiology,” J. Am. Coll. Cardiol. 49(10), 1109–1127 (2007).
[Crossref]

Dziuda, L.

Ł. Dziuda, M. Krej, and F. W. Skibniewski, “Fiber Bragg grating strain sensor incorporated to monitor patient vital signs during MRI,” IEEE Sens. J. 13(12), 4986–4991 (2013).
[Crossref]

Etemadi, M.

O. T. Inan, M. Etemadi, A. Paloma, L. Giovangrandi, and G. T. A. Kovacs, “Non-invasive cardiac output trending during exercise recovery on a bathroom-scale-based ballistocardiograph,” Physiol. Meas. 30(3), 261–274 (2009).
[Crossref]

Finegan, B. A.

C. S. Kim, S. L. Ober, M. S. Mcmurtry, B. A. Finegan, O. T. Inan, R. Mukkamala, and J. O. Hahn, “Ballistocardiogram: Mechanism and Potential for Unobtrusive Cardiovascular Health Monitoring,” Sci. Rep. 6(1), 31297 (2016).
[Crossref]

Fischer, P.

O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation,” arXiv, In International Conference on Medical image computing and computer-assisted intervention, 234–241 (2015).

Gettes, L. S.

P. Kligfield, L. S. Gettes, J. J. Bailey, R. Childers, B. J. Deal, E. W. Hancock, G. V. Herpen, J. A. Kors, P. Macfarlane, D. M. Mirvis, O. Pahlm, P. Rautaharju, and G. S. Wagner, “Recommendations for the standardization and interpretation of the electrocardiogram: part I: the electrocardiogram and its technology a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society endorsed by the International Society for Computerized Electrocardiology,” J. Am. Coll. Cardiol. 49(10), 1109–1127 (2007).
[Crossref]

Giovangrandi, L.

O. T. Inan, M. Etemadi, A. Paloma, L. Giovangrandi, and G. T. A. Kovacs, “Non-invasive cardiac output trending during exercise recovery on a bathroom-scale-based ballistocardiograph,” Physiol. Meas. 30(3), 261–274 (2009).
[Crossref]

Gordon, J. W.

J. W. Gordon, “Certain molar movements of the human body produced by the circulation of the blood,” J. Appl. Physiol. 11(Pt 3), 533–536 (1877).

Hahn, J. O.

C. S. Kim, S. L. Ober, M. S. Mcmurtry, B. A. Finegan, O. T. Inan, R. Mukkamala, and J. O. Hahn, “Ballistocardiogram: Mechanism and Potential for Unobtrusive Cardiovascular Health Monitoring,” Sci. Rep. 6(1), 31297 (2016).
[Crossref]

Hancock, E. W.

P. Kligfield, L. S. Gettes, J. J. Bailey, R. Childers, B. J. Deal, E. W. Hancock, G. V. Herpen, J. A. Kors, P. Macfarlane, D. M. Mirvis, O. Pahlm, P. Rautaharju, and G. S. Wagner, “Recommendations for the standardization and interpretation of the electrocardiogram: part I: the electrocardiogram and its technology a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society endorsed by the International Society for Computerized Electrocardiology,” J. Am. Coll. Cardiol. 49(10), 1109–1127 (2007).
[Crossref]

Herpen, G. V.

P. Kligfield, L. S. Gettes, J. J. Bailey, R. Childers, B. J. Deal, E. W. Hancock, G. V. Herpen, J. A. Kors, P. Macfarlane, D. M. Mirvis, O. Pahlm, P. Rautaharju, and G. S. Wagner, “Recommendations for the standardization and interpretation of the electrocardiogram: part I: the electrocardiogram and its technology a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society endorsed by the International Society for Computerized Electrocardiology,” J. Am. Coll. Cardiol. 49(10), 1109–1127 (2007).
[Crossref]

Hinton, G. E.

V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,” in Proceedings of the 27th international conference on machine learning (ICML-10), 807–814 (2010).

Hu, J.

Z. Chen, J. Hu, and C. Yu, “Fiber senor for long-range and biomedical measurements,” in 2013 12th International Conference on Optical Communications and Networks (ICOCN), 1–4, (2013).

Huang, Z.

S. Chen, F. Tan, Z. Huang, T. Yang, J. Tu, and C. Yu, “Non-invasive smart monitoring system based on multi-core fiber optic interferometers,” in 2018 Asia Communications and Photonics Conference (ACP), 1–3, (2018).

Huat, N. S.

H. Lu, H. Zhang, Z. Lin, and N. S. Huat, (2018, July). “A Novel Deep Learning based Neural Network for Heartbeat Detection in Ballistocardiograph,” In 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2563–2566 (2018).

Hyttinen, J.

J. Alametsäa, A. Värri, J. Viik, J. Hyttinen, and A. Palomäki, “Ballistocardiogaphic studies with acceleration and electromechanical film sensors,” J. Biomed. Eng. 31(9), 1154–1165 (2009).
[Crossref]

Inan, O. T.

C. S. Kim, S. L. Ober, M. S. Mcmurtry, B. A. Finegan, O. T. Inan, R. Mukkamala, and J. O. Hahn, “Ballistocardiogram: Mechanism and Potential for Unobtrusive Cardiovascular Health Monitoring,” Sci. Rep. 6(1), 31297 (2016).
[Crossref]

O. T. Inan, M. Etemadi, A. Paloma, L. Giovangrandi, and G. T. A. Kovacs, “Non-invasive cardiac output trending during exercise recovery on a bathroom-scale-based ballistocardiograph,” Physiol. Meas. 30(3), 261–274 (2009).
[Crossref]

Jackson, D. A.

Jackson, J. K.

K. M. Namara, H. Alzubaidi, and J. K. Jackson, “Cardiovascular Disease as a Leading Cause of Death: How Are Pharmacists Getting Involved?” IPRP 8, 1–11 (2019).
[Crossref]

Jeong, D. U.

J. H. Shin, B. H. Choi, Y. G. Lim, D. U. Jeong, and K. S. Park, “Automatic ballistocardiogram (BCG) beat detection using a template matching approach,” in 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1144–1146 (2008).

Jiang, F.

M. Liu, F. Jiang, H. Jiang, S. Ye, and H. Chen, “Low-power, noninvasive measurement system for wearable ballistocardiography in sitting and standing positions,” Comput. Ind. 91, 24–32 (2017).
[Crossref]

Jiang, H.

M. Liu, F. Jiang, H. Jiang, S. Ye, and H. Chen, “Low-power, noninvasive measurement system for wearable ballistocardiography in sitting and standing positions,” Comput. Ind. 91, 24–32 (2017).
[Crossref]

Joseph, N. R.

I. Starr, A. J. Rawson, H. A. Schroeder, and N. R. Joseph, “Studies on the estimation of cardiac output in man, and of abnormalities in cardiac function, from the heart’s recoil and the blood’s impacts; the ballistocardiogram,” Am. J. Physiol. 127(1), 1–28 (1939).
[Crossref]

Kim, C. S.

C. S. Kim, S. L. Ober, M. S. Mcmurtry, B. A. Finegan, O. T. Inan, R. Mukkamala, and J. O. Hahn, “Ballistocardiogram: Mechanism and Potential for Unobtrusive Cardiovascular Health Monitoring,” Sci. Rep. 6(1), 31297 (2016).
[Crossref]

Kingma, D. P.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv, 1412.6980 (2014).

Kligfield, P.

P. Kligfield, L. S. Gettes, J. J. Bailey, R. Childers, B. J. Deal, E. W. Hancock, G. V. Herpen, J. A. Kors, P. Macfarlane, D. M. Mirvis, O. Pahlm, P. Rautaharju, and G. S. Wagner, “Recommendations for the standardization and interpretation of the electrocardiogram: part I: the electrocardiogram and its technology a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society endorsed by the International Society for Computerized Electrocardiology,” J. Am. Coll. Cardiol. 49(10), 1109–1127 (2007).
[Crossref]

Kors, J. A.

P. Kligfield, L. S. Gettes, J. J. Bailey, R. Childers, B. J. Deal, E. W. Hancock, G. V. Herpen, J. A. Kors, P. Macfarlane, D. M. Mirvis, O. Pahlm, P. Rautaharju, and G. S. Wagner, “Recommendations for the standardization and interpretation of the electrocardiogram: part I: the electrocardiogram and its technology a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society endorsed by the International Society for Computerized Electrocardiology,” J. Am. Coll. Cardiol. 49(10), 1109–1127 (2007).
[Crossref]

Kovacs, G. T. A.

O. T. Inan, M. Etemadi, A. Paloma, L. Giovangrandi, and G. T. A. Kovacs, “Non-invasive cardiac output trending during exercise recovery on a bathroom-scale-based ballistocardiograph,” Physiol. Meas. 30(3), 261–274 (2009).
[Crossref]

Krej, M.

Ł. Dziuda, M. Krej, and F. W. Skibniewski, “Fiber Bragg grating strain sensor incorporated to monitor patient vital signs during MRI,” IEEE Sens. J. 13(12), 4986–4991 (2013).
[Crossref]

Leonhardt, S.

C. Brüser, K. Stadlthanner, S. D. Waele, and S. Leonhardt, “Adaptive Beat-to-Beat Heart Rate Estimation in Ballistocardiograms,” IEEE Trans. Inform. Technol. Biomed. 15(5), 778–786 (2011).
[Crossref]

C. Brüser, M. D. H. Zink, S. Winter, P. Schauerte, and S. Leonhardt, “A feasibility study on the automatic detection of atrial fibrillation using an unobtrusive bed-mounted sensor,” in 2011 Computing in Cardiology, 13–16 (2011).

Li, Y.

K. H. Ang, G. Chong, and Y. Li, “PID control system analysis, design, and technology,” IEEE Trans. Contr. Syst. Technol. 13(4), 559–576 (2005).
[Crossref]

Lim, Y. G.

J. H. Shin, B. H. Choi, Y. G. Lim, D. U. Jeong, and K. S. Park, “Automatic ballistocardiogram (BCG) beat detection using a template matching approach,” in 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1144–1146 (2008).

Lin, Z.

H. Lu, H. Zhang, Z. Lin, and N. S. Huat, (2018, July). “A Novel Deep Learning based Neural Network for Heartbeat Detection in Ballistocardiograph,” In 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2563–2566 (2018).

Liu, M.

M. Liu, F. Jiang, H. Jiang, S. Ye, and H. Chen, “Low-power, noninvasive measurement system for wearable ballistocardiography in sitting and standing positions,” Comput. Ind. 91, 24–32 (2017).
[Crossref]

Liu, Z.

Long, J.

E. Shelhamer, J. Long, and T. Darrell, “Fully Convolutional Networks for Semantic Segmentation,” IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017).
[Crossref]

Lu, C.

Lu, H.

H. Lu, H. Zhang, Z. Lin, and N. S. Huat, (2018, July). “A Novel Deep Learning based Neural Network for Heartbeat Detection in Ballistocardiograph,” In 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2563–2566 (2018).

Lyu, W.

F. Tan, S. Chen, W. Lyu, Z. Liu, C. Yu, C. Lu, and H. Y. Tam, “Non-invasive human vital signs monitoring based on twin-core optical fiber sensors,” Biomed. Opt. Express 10(11), 5940–5952 (2019).
[Crossref]

W. Lyu, F. Tan, S. Chen, and C. Yu, “Myocardial Contractility Assessment using Fiber Optic Sensors,” 2019 Asia Communications and Photonics Conference (ACP), (2019).

Macfarlane, P.

P. Kligfield, L. S. Gettes, J. J. Bailey, R. Childers, B. J. Deal, E. W. Hancock, G. V. Herpen, J. A. Kors, P. Macfarlane, D. M. Mirvis, O. Pahlm, P. Rautaharju, and G. S. Wagner, “Recommendations for the standardization and interpretation of the electrocardiogram: part I: the electrocardiogram and its technology a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society endorsed by the International Society for Computerized Electrocardiology,” J. Am. Coll. Cardiol. 49(10), 1109–1127 (2007).
[Crossref]

Mascaro, S. A.

S. A. Mascaro and H. H. Asada, “Photoplethysmograph fingernail sensors for measuring finger forces without haptic obstruction,” IEEE Trans. Robot. Automat. 17(5), 698–708 (2001).
[Crossref]

Mcmurtry, M. S.

C. S. Kim, S. L. Ober, M. S. Mcmurtry, B. A. Finegan, O. T. Inan, R. Mukkamala, and J. O. Hahn, “Ballistocardiogram: Mechanism and Potential for Unobtrusive Cardiovascular Health Monitoring,” Sci. Rep. 6(1), 31297 (2016).
[Crossref]

Mirvis, D. M.

P. Kligfield, L. S. Gettes, J. J. Bailey, R. Childers, B. J. Deal, E. W. Hancock, G. V. Herpen, J. A. Kors, P. Macfarlane, D. M. Mirvis, O. Pahlm, P. Rautaharju, and G. S. Wagner, “Recommendations for the standardization and interpretation of the electrocardiogram: part I: the electrocardiogram and its technology a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society endorsed by the International Society for Computerized Electrocardiology,” J. Am. Coll. Cardiol. 49(10), 1109–1127 (2007).
[Crossref]

Mukkamala, R.

C. S. Kim, S. L. Ober, M. S. Mcmurtry, B. A. Finegan, O. T. Inan, R. Mukkamala, and J. O. Hahn, “Ballistocardiogram: Mechanism and Potential for Unobtrusive Cardiovascular Health Monitoring,” Sci. Rep. 6(1), 31297 (2016).
[Crossref]

Nair, V.

V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,” in Proceedings of the 27th international conference on machine learning (ICML-10), 807–814 (2010).

Namara, K. M.

K. M. Namara, H. Alzubaidi, and J. K. Jackson, “Cardiovascular Disease as a Leading Cause of Death: How Are Pharmacists Getting Involved?” IPRP 8, 1–11 (2019).
[Crossref]

Ober, S. L.

C. S. Kim, S. L. Ober, M. S. Mcmurtry, B. A. Finegan, O. T. Inan, R. Mukkamala, and J. O. Hahn, “Ballistocardiogram: Mechanism and Potential for Unobtrusive Cardiovascular Health Monitoring,” Sci. Rep. 6(1), 31297 (2016).
[Crossref]

Pahlm, O.

P. Kligfield, L. S. Gettes, J. J. Bailey, R. Childers, B. J. Deal, E. W. Hancock, G. V. Herpen, J. A. Kors, P. Macfarlane, D. M. Mirvis, O. Pahlm, P. Rautaharju, and G. S. Wagner, “Recommendations for the standardization and interpretation of the electrocardiogram: part I: the electrocardiogram and its technology a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society endorsed by the International Society for Computerized Electrocardiology,” J. Am. Coll. Cardiol. 49(10), 1109–1127 (2007).
[Crossref]

Paloma, A.

O. T. Inan, M. Etemadi, A. Paloma, L. Giovangrandi, and G. T. A. Kovacs, “Non-invasive cardiac output trending during exercise recovery on a bathroom-scale-based ballistocardiograph,” Physiol. Meas. 30(3), 261–274 (2009).
[Crossref]

Palomäki, A.

J. Alametsäa, A. Värri, J. Viik, J. Hyttinen, and A. Palomäki, “Ballistocardiogaphic studies with acceleration and electromechanical film sensors,” J. Biomed. Eng. 31(9), 1154–1165 (2009).
[Crossref]

Park, K. S.

J. H. Shin, B. H. Choi, Y. G. Lim, D. U. Jeong, and K. S. Park, “Automatic ballistocardiogram (BCG) beat detection using a template matching approach,” in 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1144–1146 (2008).

Priest, R.

Priest, R. G.

R. G. Priest, “Analysis of Fiber Interferometer Utilizing 3×3 Fiber Coupler,” IEEE Trans. Microwave Theory Tech. 30(10), 1589–1591 (1982).
[Crossref]

Rautaharju, P.

P. Kligfield, L. S. Gettes, J. J. Bailey, R. Childers, B. J. Deal, E. W. Hancock, G. V. Herpen, J. A. Kors, P. Macfarlane, D. M. Mirvis, O. Pahlm, P. Rautaharju, and G. S. Wagner, “Recommendations for the standardization and interpretation of the electrocardiogram: part I: the electrocardiogram and its technology a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society endorsed by the International Society for Computerized Electrocardiology,” J. Am. Coll. Cardiol. 49(10), 1109–1127 (2007).
[Crossref]

Rawson, A. J.

I. Starr, A. J. Rawson, H. A. Schroeder, and N. R. Joseph, “Studies on the estimation of cardiac output in man, and of abnormalities in cardiac function, from the heart’s recoil and the blood’s impacts; the ballistocardiogram,” Am. J. Physiol. 127(1), 1–28 (1939).
[Crossref]

Ronneberger, O.

O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation,” arXiv, In International Conference on Medical image computing and computer-assisted intervention, 234–241 (2015).

Schauerte, P.

C. Brüser, M. D. H. Zink, S. Winter, P. Schauerte, and S. Leonhardt, “A feasibility study on the automatic detection of atrial fibrillation using an unobtrusive bed-mounted sensor,” in 2011 Computing in Cardiology, 13–16 (2011).

Schroeder, H. A.

I. Starr, A. J. Rawson, H. A. Schroeder, and N. R. Joseph, “Studies on the estimation of cardiac output in man, and of abnormalities in cardiac function, from the heart’s recoil and the blood’s impacts; the ballistocardiogram,” Am. J. Physiol. 127(1), 1–28 (1939).
[Crossref]

Shelhamer, E.

E. Shelhamer, J. Long, and T. Darrell, “Fully Convolutional Networks for Semantic Segmentation,” IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017).
[Crossref]

Shin, J. H.

J. H. Shin, B. H. Choi, Y. G. Lim, D. U. Jeong, and K. S. Park, “Automatic ballistocardiogram (BCG) beat detection using a template matching approach,” in 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1144–1146 (2008).

Skibniewski, F. W.

Ł. Dziuda, M. Krej, and F. W. Skibniewski, “Fiber Bragg grating strain sensor incorporated to monitor patient vital signs during MRI,” IEEE Sens. J. 13(12), 4986–4991 (2013).
[Crossref]

Stadlthanner, K.

C. Brüser, K. Stadlthanner, S. D. Waele, and S. Leonhardt, “Adaptive Beat-to-Beat Heart Rate Estimation in Ballistocardiograms,” IEEE Trans. Inform. Technol. Biomed. 15(5), 778–786 (2011).
[Crossref]

Starr, I.

I. Starr, A. J. Rawson, H. A. Schroeder, and N. R. Joseph, “Studies on the estimation of cardiac output in man, and of abnormalities in cardiac function, from the heart’s recoil and the blood’s impacts; the ballistocardiogram,” Am. J. Physiol. 127(1), 1–28 (1939).
[Crossref]

Tam, H. Y.

Tan, F.

F. Tan, S. Chen, W. Lyu, Z. Liu, C. Yu, C. Lu, and H. Y. Tam, “Non-invasive human vital signs monitoring based on twin-core optical fiber sensors,” Biomed. Opt. Express 10(11), 5940–5952 (2019).
[Crossref]

W. Lyu, F. Tan, S. Chen, and C. Yu, “Myocardial Contractility Assessment using Fiber Optic Sensors,” 2019 Asia Communications and Photonics Conference (ACP), (2019).

S. Chen, F. Tan, Z. Huang, T. Yang, J. Tu, and C. Yu, “Non-invasive smart monitoring system based on multi-core fiber optic interferometers,” in 2018 Asia Communications and Photonics Conference (ACP), 1–3, (2018).

Tu, J.

S. Chen, F. Tan, Z. Huang, T. Yang, J. Tu, and C. Yu, “Non-invasive smart monitoring system based on multi-core fiber optic interferometers,” in 2018 Asia Communications and Photonics Conference (ACP), 1–3, (2018).

Tveten, A. B.

Värri, A.

J. Alametsäa, A. Värri, J. Viik, J. Hyttinen, and A. Palomäki, “Ballistocardiogaphic studies with acceleration and electromechanical film sensors,” J. Biomed. Eng. 31(9), 1154–1165 (2009).
[Crossref]

Viik, J.

J. Alametsäa, A. Värri, J. Viik, J. Hyttinen, and A. Palomäki, “Ballistocardiogaphic studies with acceleration and electromechanical film sensors,” J. Biomed. Eng. 31(9), 1154–1165 (2009).
[Crossref]

Waele, S. D.

C. Brüser, K. Stadlthanner, S. D. Waele, and S. Leonhardt, “Adaptive Beat-to-Beat Heart Rate Estimation in Ballistocardiograms,” IEEE Trans. Inform. Technol. Biomed. 15(5), 778–786 (2011).
[Crossref]

Wagner, G. S.

P. Kligfield, L. S. Gettes, J. J. Bailey, R. Childers, B. J. Deal, E. W. Hancock, G. V. Herpen, J. A. Kors, P. Macfarlane, D. M. Mirvis, O. Pahlm, P. Rautaharju, and G. S. Wagner, “Recommendations for the standardization and interpretation of the electrocardiogram: part I: the electrocardiogram and its technology a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society endorsed by the International Society for Computerized Electrocardiology,” J. Am. Coll. Cardiol. 49(10), 1109–1127 (2007).
[Crossref]

Winter, S.

C. Brüser, M. D. H. Zink, S. Winter, P. Schauerte, and S. Leonhardt, “A feasibility study on the automatic detection of atrial fibrillation using an unobtrusive bed-mounted sensor,” in 2011 Computing in Cardiology, 13–16 (2011).

Yang, T.

S. Chen, F. Tan, Z. Huang, T. Yang, J. Tu, and C. Yu, “Non-invasive smart monitoring system based on multi-core fiber optic interferometers,” in 2018 Asia Communications and Photonics Conference (ACP), 1–3, (2018).

Ye, S.

M. Liu, F. Jiang, H. Jiang, S. Ye, and H. Chen, “Low-power, noninvasive measurement system for wearable ballistocardiography in sitting and standing positions,” Comput. Ind. 91, 24–32 (2017).
[Crossref]

Yu, C.

F. Tan, S. Chen, W. Lyu, Z. Liu, C. Yu, C. Lu, and H. Y. Tam, “Non-invasive human vital signs monitoring based on twin-core optical fiber sensors,” Biomed. Opt. Express 10(11), 5940–5952 (2019).
[Crossref]

Z. Chen, J. Hu, and C. Yu, “Fiber senor for long-range and biomedical measurements,” in 2013 12th International Conference on Optical Communications and Networks (ICOCN), 1–4, (2013).

S. Chen, F. Tan, Z. Huang, T. Yang, J. Tu, and C. Yu, “Non-invasive smart monitoring system based on multi-core fiber optic interferometers,” in 2018 Asia Communications and Photonics Conference (ACP), 1–3, (2018).

W. Lyu, F. Tan, S. Chen, and C. Yu, “Myocardial Contractility Assessment using Fiber Optic Sensors,” 2019 Asia Communications and Photonics Conference (ACP), (2019).

Zhang, H.

H. Lu, H. Zhang, Z. Lin, and N. S. Huat, (2018, July). “A Novel Deep Learning based Neural Network for Heartbeat Detection in Ballistocardiograph,” In 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2563–2566 (2018).

Zink, M. D. H.

C. Brüser, M. D. H. Zink, S. Winter, P. Schauerte, and S. Leonhardt, “A feasibility study on the automatic detection of atrial fibrillation using an unobtrusive bed-mounted sensor,” in 2011 Computing in Cardiology, 13–16 (2011).

Am. J. Physiol. (1)

I. Starr, A. J. Rawson, H. A. Schroeder, and N. R. Joseph, “Studies on the estimation of cardiac output in man, and of abnormalities in cardiac function, from the heart’s recoil and the blood’s impacts; the ballistocardiogram,” Am. J. Physiol. 127(1), 1–28 (1939).
[Crossref]

Appl. Opt. (1)

Biomed. Opt. Express (1)

Biomed. Res. (1)

S.-T. Choe and W.-D. Cho, “Simplified real-time heartbeat detection in ballistocardiography using a dispersion-maximum method,” Biomed. Res. 28(9), 1 (2017).

Comput. Ind. (1)

M. Liu, F. Jiang, H. Jiang, S. Ye, and H. Chen, “Low-power, noninvasive measurement system for wearable ballistocardiography in sitting and standing positions,” Comput. Ind. 91, 24–32 (2017).
[Crossref]

IEEE Sens. J. (1)

Ł. Dziuda, M. Krej, and F. W. Skibniewski, “Fiber Bragg grating strain sensor incorporated to monitor patient vital signs during MRI,” IEEE Sens. J. 13(12), 4986–4991 (2013).
[Crossref]

IEEE Trans. Contr. Syst. Technol. (1)

K. H. Ang, G. Chong, and Y. Li, “PID control system analysis, design, and technology,” IEEE Trans. Contr. Syst. Technol. 13(4), 559–576 (2005).
[Crossref]

IEEE Trans. Inform. Technol. Biomed. (1)

C. Brüser, K. Stadlthanner, S. D. Waele, and S. Leonhardt, “Adaptive Beat-to-Beat Heart Rate Estimation in Ballistocardiograms,” IEEE Trans. Inform. Technol. Biomed. 15(5), 778–786 (2011).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

R. G. Priest, “Analysis of Fiber Interferometer Utilizing 3×3 Fiber Coupler,” IEEE Trans. Microwave Theory Tech. 30(10), 1589–1591 (1982).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

E. Shelhamer, J. Long, and T. Darrell, “Fully Convolutional Networks for Semantic Segmentation,” IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017).
[Crossref]

IEEE Trans. Robot. Automat. (1)

S. A. Mascaro and H. H. Asada, “Photoplethysmograph fingernail sensors for measuring finger forces without haptic obstruction,” IEEE Trans. Robot. Automat. 17(5), 698–708 (2001).
[Crossref]

IPRP (1)

K. M. Namara, H. Alzubaidi, and J. K. Jackson, “Cardiovascular Disease as a Leading Cause of Death: How Are Pharmacists Getting Involved?” IPRP 8, 1–11 (2019).
[Crossref]

J. Am. Coll. Cardiol. (1)

P. Kligfield, L. S. Gettes, J. J. Bailey, R. Childers, B. J. Deal, E. W. Hancock, G. V. Herpen, J. A. Kors, P. Macfarlane, D. M. Mirvis, O. Pahlm, P. Rautaharju, and G. S. Wagner, “Recommendations for the standardization and interpretation of the electrocardiogram: part I: the electrocardiogram and its technology a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society endorsed by the International Society for Computerized Electrocardiology,” J. Am. Coll. Cardiol. 49(10), 1109–1127 (2007).
[Crossref]

J. Appl. Physiol. (1)

J. W. Gordon, “Certain molar movements of the human body produced by the circulation of the blood,” J. Appl. Physiol. 11(Pt 3), 533–536 (1877).

J. Biomed. Eng. (1)

J. Alametsäa, A. Värri, J. Viik, J. Hyttinen, and A. Palomäki, “Ballistocardiogaphic studies with acceleration and electromechanical film sensors,” J. Biomed. Eng. 31(9), 1154–1165 (2009).
[Crossref]

Physiol. Meas. (1)

O. T. Inan, M. Etemadi, A. Paloma, L. Giovangrandi, and G. T. A. Kovacs, “Non-invasive cardiac output trending during exercise recovery on a bathroom-scale-based ballistocardiograph,” Physiol. Meas. 30(3), 261–274 (2009).
[Crossref]

Sci. Rep. (1)

C. S. Kim, S. L. Ober, M. S. Mcmurtry, B. A. Finegan, O. T. Inan, R. Mukkamala, and J. O. Hahn, “Ballistocardiogram: Mechanism and Potential for Unobtrusive Cardiovascular Health Monitoring,” Sci. Rep. 6(1), 31297 (2016).
[Crossref]

Other (9)

C. Brüser, M. D. H. Zink, S. Winter, P. Schauerte, and S. Leonhardt, “A feasibility study on the automatic detection of atrial fibrillation using an unobtrusive bed-mounted sensor,” in 2011 Computing in Cardiology, 13–16 (2011).

H. Lu, H. Zhang, Z. Lin, and N. S. Huat, (2018, July). “A Novel Deep Learning based Neural Network for Heartbeat Detection in Ballistocardiograph,” In 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2563–2566 (2018).

Z. Chen, J. Hu, and C. Yu, “Fiber senor for long-range and biomedical measurements,” in 2013 12th International Conference on Optical Communications and Networks (ICOCN), 1–4, (2013).

S. Chen, F. Tan, Z. Huang, T. Yang, J. Tu, and C. Yu, “Non-invasive smart monitoring system based on multi-core fiber optic interferometers,” in 2018 Asia Communications and Photonics Conference (ACP), 1–3, (2018).

W. Lyu, F. Tan, S. Chen, and C. Yu, “Myocardial Contractility Assessment using Fiber Optic Sensors,” 2019 Asia Communications and Photonics Conference (ACP), (2019).

J. H. Shin, B. H. Choi, Y. G. Lim, D. U. Jeong, and K. S. Park, “Automatic ballistocardiogram (BCG) beat detection using a template matching approach,” in 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1144–1146 (2008).

O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation,” arXiv, In International Conference on Medical image computing and computer-assisted intervention, 234–241 (2015).

V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,” in Proceedings of the 27th international conference on machine learning (ICML-10), 807–814 (2010).

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv, 1412.6980 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. The BCG monitoring system.
Fig. 2.
Fig. 2. (a) Integrated MZI with transducer. (b) Sketch of moving-coil transducer.
Fig. 3.
Fig. 3. The relationship between resultant output cosine signal in the MZI (a) and driven current (b).
Fig. 4.
Fig. 4. (a) Principle of the closed loop control system with PID controller. (b) Variation of optical intensity toward driven current. (c) Electrical signals in the time domain.
Fig. 5.
Fig. 5. Raw data of BCG signals.
Fig. 6.
Fig. 6. The architecture of modified U-net. nf is the number of filters in 1-D convolution layer.
Fig. 7.
Fig. 7. A BCG segment (a) with corresponding label (b).
Fig. 8.
Fig. 8. (a) Confusion matrix of test set. (b) The scatterplot of predicted versus actual I-K interval.
Fig. 9.
Fig. 9. BCG segmentation results based on modified U-net: (a) BCG signal with HR of 82 bpm; (b) BCG signal with HR of 67 bpm; (c) BCG signal with HR of 97 bpm; (d) BCG signal with occasional sinus arrhythmia; (e) BCG signal with body movement.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I = I 1 + I 2 + 2 I 1 I 2 cos ( φ ) ,
φ = 2 π n λ ( L 1 L 2 ) = 2 π n λ δ L ,
x = B I L N k ,
U ( t ) = K P ( e ( t ) + 1 T I e ( t ) d t + T D d e ( t ) d t ) ,
P A = i n i i i j n i j ,
M P A = 1 n c l i n i i j n i j ,
M I O U = 1 n c l i n i i j n i j + j n j i n i i .