Abstract

Allograft is the current gold standard for treating critical-sized bone defects. However, allograft healing is usually compromised partially due to poor host-mediated vascularization. In the efforts towards developing new methods to enhance allograft healing, a non-terminal technique for monitoring the vascularization is needed in pre-clinical mouse models. In this study, we developed a non-invasive instrument based on spatial frequency domain imaging (SFDI) for longitudinal monitoring of the mouse femoral graft healing. SFDI technique provided total hemoglobin concentration (THC) and oxygen saturation (StO2) of the graft and the surrounding soft tissues. SFDI measurements were performed from 1 day before to 44 days after graft transplantation. Autograft, another type of bone graft with higher vascularization potential was also measured as a comparison to allograft. For both grafts, the overall temporal changes of the measured THC agreed with the physiological expectations of vascularization timeline during bone healing. A significantly greater increase in THC was observed in the autograft group compared to the allograft group, which agreed with the expectation that allografts have more compromised vascularization.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. S. Greenwald, S. D. Boden, V. M. Goldberg, Y. Khan, C. T. Laurencin, and R. N. Rosier, “Bone-graft substitutes: facts, fictions, and applications,” J. Bone Jt. Surg., Am. Vol. 83, 98–103 (2001).
    [Crossref]
  2. P. V. Giannoudis, H. Dinopoulos, and E. Tsiridis, “Bone substitutes: an update,” Injury 36(3), S20–S27 (2005).
    [Crossref]
  3. I. Pountos and P. V. Giannoudis, “Is there a role of coral bone substitutes in bone repair?” Injury 47(12), 2606–2613 (2016).
    [Crossref]
  4. H. J. Mankin, F. J. Hornicek, and K. A. Raskin, “Infection in massive bone allografts,” Clin. Orthop. Relat. Res. 432, 210–216 (2005).
    [Crossref]
  5. D. L. Wheeler and W. F. Enneking, “Allograft bone decreases in strength in vivo over time,” Clin. Orthop. Relat. Res. 435, 36–42 (2005).
    [Crossref]
  6. M. D. Hoffman, C. Xie, X. Zhang, and D. S. W. Benoit, “The effect of mesenchymal stem cells delivered via hydrogel- based tissue engineered periosteum on bone allograft healing,” Biomaterials 34(35), 8887–8898 (2013).
    [Crossref]
  7. M. D. Hoffman and D. S. Benoit, “Emulating native periosteum cell population and subsequent paracrine factor production to promote tissue engineered periosteum-mediated allograft healing,” Biomaterials 52, 426–440 (2015).
    [Crossref]
  8. X. Zhang, C. Xie, A. S. Lin, H. Ito, H. Awad, J. R. Lieberman, P. T. Rubery, E. M. Schwarz, R. J. O’Keefe, and R. E. Guldberg, “Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering,” J. Bone Miner. Res. 20(12), 2124–2137 (2005).
    [Crossref]
  9. C. Xie, D. Reynolds, H. Awad, P. T. Rubery, G. Pelled, D. Gazit, R. E. Guldberg, E. M. Schwarz, R. J. O’Keefe, and X. P. Zhang, “Structural bone allograft combined with genetically engineered mesenchymal stem cells as a novel platform for bone tissue engineering,” Tissue Eng. 13(3), 435–445 (2007).
    [Crossref]
  10. H. Ito, M. Koefoed, P. Tiyapatanaputi, K. Gromov, J. J. Goater, J. Carmouche, X. Zhang, P. T. Rubery, J. Rabinowitz, R. J. Samulski, T. Nakamura, K. Soballe, R. J. O’Keefe, B. F. Boyce, and E. M. Schwarz, “Remodeling of cortical bone allografts mediated by adherent rAAV-RANKL and VEGF gene therapy,” Nat. Med. 11(3), 291–297 (2005).
    [Crossref]
  11. R. S. Dhillon, C. Xie, W. Tyler, L. M. Calvi, H. A. Awad, M. J. Zuscik, R. J. O’Keefe, and E. M. Schwarz, “PTH-Enhanced Structural Allograft Healing Is Associated With Decreased Angiopoietin-2–Mediated Arteriogenesis, Mast Cell Accumulation, and Fibrosis,” J. Bone Miner. Res. 28(3), 586–597 (2013).
    [Crossref]
  12. L. C. Gerstenfeld, D. M. Cullinane, G. L. Barnes, D. T. Graves, and T. A. Einhorn, “Fracture healing as a post-natal developmental process: Molecular, spatial, and temporal aspects of its regulation,” J. Cell. Biochem. 88(5), 873–884 (2003).
    [Crossref]
  13. T. A. Einhorn and L. C. Gerstenfeld, “Fracture healing: mechanisms and interventions,” Nat. Rev. Rheumatol. 11(1), 45–54 (2015).
    [Crossref]
  14. J. A. Buza and T. Einhorn, “Bone healing in 2016,” Clin. Cases. Miner. Bone. Metab. 13(2), 101–105 (2016).
    [Crossref]
  15. R. E. Tomlinson and M. J. Silva, “Skeletal Blood Flow in Bone Repair and Maintenance,” Bone Res. 1(4), 311–322 (2013).
    [Crossref]
  16. T. T. Roberts and A. J. Rosenbaum, “Bone grafts, bone substitutes and orthobiologics: The bridge between basic science and clinical advancements in fracture healing,” Organogenesis 8(4), 114–124 (2012).
    [Crossref]
  17. J. K. Hoffman, S. Geraghty, and N. M. Protzman, “Articular cartilage repair using marrow stimulation augmented with a viable chondral allograft: 9-month postoperative histological evaluation,” Case Rep. Orthop. 2015, 617365 (2015).
    [Crossref]
  18. D. G. Reynolds, C. Hock, S. Shaikh, J. Jacobson, X. Zhang, P. T. Rubery, C. A. Beck, R. J. O’Keefe, A. L. Lerner, E. M. Schwarz, and H. A. Awad, “Micro-computed tomography prediction of biomechanical strength in murine structural bone grafts,” J. Biomech. 40(14), 3178–3186 (2007).
    [Crossref]
  19. E. A. Fragogeorgi, M. Rouchota, M. Georgiou, M. Velez, P. Bouziotis, and G. Loudos, “In vivo imaging techniques for bone tissue engineering,” J. Tissue Eng. 10, 204173141985458 (2019).
    [Crossref]
  20. L. V. Wang and J. Yao, “A practical guide to photoacoustic tomography in the life sciences,” Nat. Methods 13(8), 627–638 (2016).
    [Crossref]
  21. N. M. Tole, “Basic physics of ultrasonographic imaging,” (2005).
  22. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30(11), 1354–1356 (2005).
    [Crossref]
  23. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
    [Crossref]
  24. J. P. Angelo, S.-J. Chen, M. Ochoa, U. Sunar, S. Gioux, and X. Intes, “Review of structured light in diffuse optical imaging,” J. Biomed. Opt. 24(07), 1 (2018).
    [Crossref]
  25. S. Tabassum, Y. Zhao, R. Istfan, J. Wu, D. J. Waxman, and D. Roblyer, “Feasibility of spatial frequency domain imaging (SFDI) for optically characterizing a preclinical oncology model,” Biomed. Opt. Express 7(10), 4154 (2016).
    [Crossref]
  26. A. Ponticorvo, D. M. Burmeister, R. Rowland, M. Baldado, G. T. Kennedy, R. Saager, N. Bernal, B. Choi, and A. J. Durkin, “Quantitative long-term measurements of burns in a rat model using Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI),” Lasers Surg. Med. 49(3), 293–304 (2017).
    [Crossref]
  27. A. J. Lin, G. Liu, N. A. Castello, J. J. Yeh, R. Rahimian, G. Lee, V. Tsay, A. J. Durkin, B. Choi, F. M. LaFerla, Z. Chen, K. N. Green, and B. J. Tromberg, “Optical imaging in an Alzheimer’s mouse model reveals amyloid-β-dependent vascular impairment,” Neurophoton 1(1), 011005 (2014).
    [Crossref]
  28. A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. B. Jr, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situusing spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
    [Crossref]
  29. J. B. Travers, C. Poon, D. J. Rohrbach, N. M. Weir, E. Cates, F. Hager, and U. Sunar, “Noninvasive mesoscopic imaging of actinic skin damage using spatial frequency domain imaging,” Biomed. Opt. Express 8(6), 3045–3052 (2017).
    [Crossref]
  30. M. D. Reisman, Z. E. Markow, A. Q. Bauer, and J. P. Culver, “Structured illumination diffuse optical tomography for noninvasive functional neuroimaging in mice,” Neurophotonics 4(2), 021102 (2017).
    [Crossref]
  31. S. Nandy, A. Mostafa, P. D. Kumavor, M. Sanders, M. Brewer, and Q. Zhu, “Characterizing optical properties and spatial heterogeneity of human ovarian tissue using spatial frequency domain imaging,” J. Biomed. Opt. 21(10), 101402 (2016).
    [Crossref]
  32. “SAS Institute Inc., SAS OnlineDoc, Version 8, Cary, NC: SAS Institute Inc.,” (1999).
  33. A. Schindeler, M. M. McDonald, P. Bokko, and D. G. Little, “Bone remodeling during fracture repair: The cellular picture,” Semin. Cell Dev. Biol. 19(5), 459–466 (2008).
    [Crossref]
  34. A. Ozaki, M. Tsunoda, S. Kinoshita, and R. Saura, “Role of fracture hematoma and periosteum during fracture healing in rats: interaction of fracture hematoma and the periosteum in the initial step of the healing process,” J. Orthop. Sci. 5(1), 64–70 (2000).
    [Crossref]
  35. C. Lu, N. Saless, X. Wang, A. Sinha, S. Decker, G. Kazakia, H. Hou, B. Williams, H. M. Swartz, T. K. Hunt, T. Miclau, and R. S. Marcucio, “The role of oxygen during fracture healing,” Bone 52(1), 220–229 (2013).
    [Crossref]
  36. K. Schilling, M. El Khatib, S. Plunkett, J. Xue, Y. Xia, S. A. Vinogradov, E. Brown, and X. Zhang, “Electrospun Fiber Mesh for High-Resolution Measurements of Oxygen Tension in Cranial Bone Defect Repair,” ACS Appl. Mater. Interfaces 11(37), 33548–33558 (2019).
    [Crossref]
  37. C. K. Hayakawa, K. Karrobi, V. Pera, D. Roblyer, and V. Venugopalan, “Optical sampling depth in the spatial frequency domain,” J. Biomed. Opt. 24(07), 1–14 (2018).
    [Crossref]
  38. S. L. Jacques, “Corrigendum: Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(14), 5007–5008 (2013).
    [Crossref]
  39. Y. Zhao, S. Tabassum, S. Piracha, M. S. Nandhu, M. Viapiano, and D. Roblyer, “Angle correction for small animal tumor imaging with spatial frequency domain imaging (SFDI),” Biomed. Opt. Express 7(6), 2373–2384 (2016).
    [Crossref]
  40. S. Han, A. R. Proctor, J. Ren, D. S. W. Benoit, and R. Choe, “Temporal blood flow changes measured by diffuse correlation tomography predict murine femoral graft healing,” PLoS One 13(5), e0197031 (2018).
    [Crossref]
  41. J. Ren, S. Han, A. R. Proctor, D. E. Desa, G. A. Ramirez, V. R. D. Ching-Roa, J. B. Majeski, I. A. Dar, N. E. Barber, A. M. Forti, D. S. W. Benoit, and R. Choe, “Longitudinal 3D Blood Flow Distribution Provided by Diffuse Correlation Tomography during Bone Healing in a Murine Fracture Model,” Photochem. Photobiol. 96(2), 380–387 (2020).
    [Crossref]

2020 (1)

J. Ren, S. Han, A. R. Proctor, D. E. Desa, G. A. Ramirez, V. R. D. Ching-Roa, J. B. Majeski, I. A. Dar, N. E. Barber, A. M. Forti, D. S. W. Benoit, and R. Choe, “Longitudinal 3D Blood Flow Distribution Provided by Diffuse Correlation Tomography during Bone Healing in a Murine Fracture Model,” Photochem. Photobiol. 96(2), 380–387 (2020).
[Crossref]

2019 (2)

E. A. Fragogeorgi, M. Rouchota, M. Georgiou, M. Velez, P. Bouziotis, and G. Loudos, “In vivo imaging techniques for bone tissue engineering,” J. Tissue Eng. 10, 204173141985458 (2019).
[Crossref]

K. Schilling, M. El Khatib, S. Plunkett, J. Xue, Y. Xia, S. A. Vinogradov, E. Brown, and X. Zhang, “Electrospun Fiber Mesh for High-Resolution Measurements of Oxygen Tension in Cranial Bone Defect Repair,” ACS Appl. Mater. Interfaces 11(37), 33548–33558 (2019).
[Crossref]

2018 (3)

C. K. Hayakawa, K. Karrobi, V. Pera, D. Roblyer, and V. Venugopalan, “Optical sampling depth in the spatial frequency domain,” J. Biomed. Opt. 24(07), 1–14 (2018).
[Crossref]

S. Han, A. R. Proctor, J. Ren, D. S. W. Benoit, and R. Choe, “Temporal blood flow changes measured by diffuse correlation tomography predict murine femoral graft healing,” PLoS One 13(5), e0197031 (2018).
[Crossref]

J. P. Angelo, S.-J. Chen, M. Ochoa, U. Sunar, S. Gioux, and X. Intes, “Review of structured light in diffuse optical imaging,” J. Biomed. Opt. 24(07), 1 (2018).
[Crossref]

2017 (3)

J. B. Travers, C. Poon, D. J. Rohrbach, N. M. Weir, E. Cates, F. Hager, and U. Sunar, “Noninvasive mesoscopic imaging of actinic skin damage using spatial frequency domain imaging,” Biomed. Opt. Express 8(6), 3045–3052 (2017).
[Crossref]

M. D. Reisman, Z. E. Markow, A. Q. Bauer, and J. P. Culver, “Structured illumination diffuse optical tomography for noninvasive functional neuroimaging in mice,” Neurophotonics 4(2), 021102 (2017).
[Crossref]

A. Ponticorvo, D. M. Burmeister, R. Rowland, M. Baldado, G. T. Kennedy, R. Saager, N. Bernal, B. Choi, and A. J. Durkin, “Quantitative long-term measurements of burns in a rat model using Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI),” Lasers Surg. Med. 49(3), 293–304 (2017).
[Crossref]

2016 (6)

Y. Zhao, S. Tabassum, S. Piracha, M. S. Nandhu, M. Viapiano, and D. Roblyer, “Angle correction for small animal tumor imaging with spatial frequency domain imaging (SFDI),” Biomed. Opt. Express 7(6), 2373–2384 (2016).
[Crossref]

S. Nandy, A. Mostafa, P. D. Kumavor, M. Sanders, M. Brewer, and Q. Zhu, “Characterizing optical properties and spatial heterogeneity of human ovarian tissue using spatial frequency domain imaging,” J. Biomed. Opt. 21(10), 101402 (2016).
[Crossref]

S. Tabassum, Y. Zhao, R. Istfan, J. Wu, D. J. Waxman, and D. Roblyer, “Feasibility of spatial frequency domain imaging (SFDI) for optically characterizing a preclinical oncology model,” Biomed. Opt. Express 7(10), 4154 (2016).
[Crossref]

L. V. Wang and J. Yao, “A practical guide to photoacoustic tomography in the life sciences,” Nat. Methods 13(8), 627–638 (2016).
[Crossref]

I. Pountos and P. V. Giannoudis, “Is there a role of coral bone substitutes in bone repair?” Injury 47(12), 2606–2613 (2016).
[Crossref]

J. A. Buza and T. Einhorn, “Bone healing in 2016,” Clin. Cases. Miner. Bone. Metab. 13(2), 101–105 (2016).
[Crossref]

2015 (3)

J. K. Hoffman, S. Geraghty, and N. M. Protzman, “Articular cartilage repair using marrow stimulation augmented with a viable chondral allograft: 9-month postoperative histological evaluation,” Case Rep. Orthop. 2015, 617365 (2015).
[Crossref]

T. A. Einhorn and L. C. Gerstenfeld, “Fracture healing: mechanisms and interventions,” Nat. Rev. Rheumatol. 11(1), 45–54 (2015).
[Crossref]

M. D. Hoffman and D. S. Benoit, “Emulating native periosteum cell population and subsequent paracrine factor production to promote tissue engineered periosteum-mediated allograft healing,” Biomaterials 52, 426–440 (2015).
[Crossref]

2014 (1)

A. J. Lin, G. Liu, N. A. Castello, J. J. Yeh, R. Rahimian, G. Lee, V. Tsay, A. J. Durkin, B. Choi, F. M. LaFerla, Z. Chen, K. N. Green, and B. J. Tromberg, “Optical imaging in an Alzheimer’s mouse model reveals amyloid-β-dependent vascular impairment,” Neurophoton 1(1), 011005 (2014).
[Crossref]

2013 (6)

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. B. Jr, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situusing spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref]

C. Lu, N. Saless, X. Wang, A. Sinha, S. Decker, G. Kazakia, H. Hou, B. Williams, H. M. Swartz, T. K. Hunt, T. Miclau, and R. S. Marcucio, “The role of oxygen during fracture healing,” Bone 52(1), 220–229 (2013).
[Crossref]

S. L. Jacques, “Corrigendum: Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(14), 5007–5008 (2013).
[Crossref]

M. D. Hoffman, C. Xie, X. Zhang, and D. S. W. Benoit, “The effect of mesenchymal stem cells delivered via hydrogel- based tissue engineered periosteum on bone allograft healing,” Biomaterials 34(35), 8887–8898 (2013).
[Crossref]

R. S. Dhillon, C. Xie, W. Tyler, L. M. Calvi, H. A. Awad, M. J. Zuscik, R. J. O’Keefe, and E. M. Schwarz, “PTH-Enhanced Structural Allograft Healing Is Associated With Decreased Angiopoietin-2–Mediated Arteriogenesis, Mast Cell Accumulation, and Fibrosis,” J. Bone Miner. Res. 28(3), 586–597 (2013).
[Crossref]

R. E. Tomlinson and M. J. Silva, “Skeletal Blood Flow in Bone Repair and Maintenance,” Bone Res. 1(4), 311–322 (2013).
[Crossref]

2012 (1)

T. T. Roberts and A. J. Rosenbaum, “Bone grafts, bone substitutes and orthobiologics: The bridge between basic science and clinical advancements in fracture healing,” Organogenesis 8(4), 114–124 (2012).
[Crossref]

2009 (1)

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref]

2008 (1)

A. Schindeler, M. M. McDonald, P. Bokko, and D. G. Little, “Bone remodeling during fracture repair: The cellular picture,” Semin. Cell Dev. Biol. 19(5), 459–466 (2008).
[Crossref]

2007 (2)

D. G. Reynolds, C. Hock, S. Shaikh, J. Jacobson, X. Zhang, P. T. Rubery, C. A. Beck, R. J. O’Keefe, A. L. Lerner, E. M. Schwarz, and H. A. Awad, “Micro-computed tomography prediction of biomechanical strength in murine structural bone grafts,” J. Biomech. 40(14), 3178–3186 (2007).
[Crossref]

C. Xie, D. Reynolds, H. Awad, P. T. Rubery, G. Pelled, D. Gazit, R. E. Guldberg, E. M. Schwarz, R. J. O’Keefe, and X. P. Zhang, “Structural bone allograft combined with genetically engineered mesenchymal stem cells as a novel platform for bone tissue engineering,” Tissue Eng. 13(3), 435–445 (2007).
[Crossref]

2005 (6)

H. Ito, M. Koefoed, P. Tiyapatanaputi, K. Gromov, J. J. Goater, J. Carmouche, X. Zhang, P. T. Rubery, J. Rabinowitz, R. J. Samulski, T. Nakamura, K. Soballe, R. J. O’Keefe, B. F. Boyce, and E. M. Schwarz, “Remodeling of cortical bone allografts mediated by adherent rAAV-RANKL and VEGF gene therapy,” Nat. Med. 11(3), 291–297 (2005).
[Crossref]

X. Zhang, C. Xie, A. S. Lin, H. Ito, H. Awad, J. R. Lieberman, P. T. Rubery, E. M. Schwarz, R. J. O’Keefe, and R. E. Guldberg, “Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering,” J. Bone Miner. Res. 20(12), 2124–2137 (2005).
[Crossref]

H. J. Mankin, F. J. Hornicek, and K. A. Raskin, “Infection in massive bone allografts,” Clin. Orthop. Relat. Res. 432, 210–216 (2005).
[Crossref]

D. L. Wheeler and W. F. Enneking, “Allograft bone decreases in strength in vivo over time,” Clin. Orthop. Relat. Res. 435, 36–42 (2005).
[Crossref]

P. V. Giannoudis, H. Dinopoulos, and E. Tsiridis, “Bone substitutes: an update,” Injury 36(3), S20–S27 (2005).
[Crossref]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30(11), 1354–1356 (2005).
[Crossref]

2003 (1)

L. C. Gerstenfeld, D. M. Cullinane, G. L. Barnes, D. T. Graves, and T. A. Einhorn, “Fracture healing as a post-natal developmental process: Molecular, spatial, and temporal aspects of its regulation,” J. Cell. Biochem. 88(5), 873–884 (2003).
[Crossref]

2001 (1)

A. S. Greenwald, S. D. Boden, V. M. Goldberg, Y. Khan, C. T. Laurencin, and R. N. Rosier, “Bone-graft substitutes: facts, fictions, and applications,” J. Bone Jt. Surg., Am. Vol. 83, 98–103 (2001).
[Crossref]

2000 (1)

A. Ozaki, M. Tsunoda, S. Kinoshita, and R. Saura, “Role of fracture hematoma and periosteum during fracture healing in rats: interaction of fracture hematoma and the periosteum in the initial step of the healing process,” J. Orthop. Sci. 5(1), 64–70 (2000).
[Crossref]

Angelo, J. P.

J. P. Angelo, S.-J. Chen, M. Ochoa, U. Sunar, S. Gioux, and X. Intes, “Review of structured light in diffuse optical imaging,” J. Biomed. Opt. 24(07), 1 (2018).
[Crossref]

Awad, H.

C. Xie, D. Reynolds, H. Awad, P. T. Rubery, G. Pelled, D. Gazit, R. E. Guldberg, E. M. Schwarz, R. J. O’Keefe, and X. P. Zhang, “Structural bone allograft combined with genetically engineered mesenchymal stem cells as a novel platform for bone tissue engineering,” Tissue Eng. 13(3), 435–445 (2007).
[Crossref]

X. Zhang, C. Xie, A. S. Lin, H. Ito, H. Awad, J. R. Lieberman, P. T. Rubery, E. M. Schwarz, R. J. O’Keefe, and R. E. Guldberg, “Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering,” J. Bone Miner. Res. 20(12), 2124–2137 (2005).
[Crossref]

Awad, H. A.

R. S. Dhillon, C. Xie, W. Tyler, L. M. Calvi, H. A. Awad, M. J. Zuscik, R. J. O’Keefe, and E. M. Schwarz, “PTH-Enhanced Structural Allograft Healing Is Associated With Decreased Angiopoietin-2–Mediated Arteriogenesis, Mast Cell Accumulation, and Fibrosis,” J. Bone Miner. Res. 28(3), 586–597 (2013).
[Crossref]

D. G. Reynolds, C. Hock, S. Shaikh, J. Jacobson, X. Zhang, P. T. Rubery, C. A. Beck, R. J. O’Keefe, A. L. Lerner, E. M. Schwarz, and H. A. Awad, “Micro-computed tomography prediction of biomechanical strength in murine structural bone grafts,” J. Biomech. 40(14), 3178–3186 (2007).
[Crossref]

Ayers, F. R.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref]

Baldado, M.

A. Ponticorvo, D. M. Burmeister, R. Rowland, M. Baldado, G. T. Kennedy, R. Saager, N. Bernal, B. Choi, and A. J. Durkin, “Quantitative long-term measurements of burns in a rat model using Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI),” Lasers Surg. Med. 49(3), 293–304 (2017).
[Crossref]

Barber, N. E.

J. Ren, S. Han, A. R. Proctor, D. E. Desa, G. A. Ramirez, V. R. D. Ching-Roa, J. B. Majeski, I. A. Dar, N. E. Barber, A. M. Forti, D. S. W. Benoit, and R. Choe, “Longitudinal 3D Blood Flow Distribution Provided by Diffuse Correlation Tomography during Bone Healing in a Murine Fracture Model,” Photochem. Photobiol. 96(2), 380–387 (2020).
[Crossref]

Barnes, G. L.

L. C. Gerstenfeld, D. M. Cullinane, G. L. Barnes, D. T. Graves, and T. A. Einhorn, “Fracture healing as a post-natal developmental process: Molecular, spatial, and temporal aspects of its regulation,” J. Cell. Biochem. 88(5), 873–884 (2003).
[Crossref]

Bauer, A. Q.

M. D. Reisman, Z. E. Markow, A. Q. Bauer, and J. P. Culver, “Structured illumination diffuse optical tomography for noninvasive functional neuroimaging in mice,” Neurophotonics 4(2), 021102 (2017).
[Crossref]

Beck, C. A.

D. G. Reynolds, C. Hock, S. Shaikh, J. Jacobson, X. Zhang, P. T. Rubery, C. A. Beck, R. J. O’Keefe, A. L. Lerner, E. M. Schwarz, and H. A. Awad, “Micro-computed tomography prediction of biomechanical strength in murine structural bone grafts,” J. Biomech. 40(14), 3178–3186 (2007).
[Crossref]

Benoit, D. S.

M. D. Hoffman and D. S. Benoit, “Emulating native periosteum cell population and subsequent paracrine factor production to promote tissue engineered periosteum-mediated allograft healing,” Biomaterials 52, 426–440 (2015).
[Crossref]

Benoit, D. S. W.

J. Ren, S. Han, A. R. Proctor, D. E. Desa, G. A. Ramirez, V. R. D. Ching-Roa, J. B. Majeski, I. A. Dar, N. E. Barber, A. M. Forti, D. S. W. Benoit, and R. Choe, “Longitudinal 3D Blood Flow Distribution Provided by Diffuse Correlation Tomography during Bone Healing in a Murine Fracture Model,” Photochem. Photobiol. 96(2), 380–387 (2020).
[Crossref]

S. Han, A. R. Proctor, J. Ren, D. S. W. Benoit, and R. Choe, “Temporal blood flow changes measured by diffuse correlation tomography predict murine femoral graft healing,” PLoS One 13(5), e0197031 (2018).
[Crossref]

M. D. Hoffman, C. Xie, X. Zhang, and D. S. W. Benoit, “The effect of mesenchymal stem cells delivered via hydrogel- based tissue engineered periosteum on bone allograft healing,” Biomaterials 34(35), 8887–8898 (2013).
[Crossref]

Bernal, N.

A. Ponticorvo, D. M. Burmeister, R. Rowland, M. Baldado, G. T. Kennedy, R. Saager, N. Bernal, B. Choi, and A. J. Durkin, “Quantitative long-term measurements of burns in a rat model using Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI),” Lasers Surg. Med. 49(3), 293–304 (2017).
[Crossref]

Bevilacqua, F.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30(11), 1354–1356 (2005).
[Crossref]

Boden, S. D.

A. S. Greenwald, S. D. Boden, V. M. Goldberg, Y. Khan, C. T. Laurencin, and R. N. Rosier, “Bone-graft substitutes: facts, fictions, and applications,” J. Bone Jt. Surg., Am. Vol. 83, 98–103 (2001).
[Crossref]

Bokko, P.

A. Schindeler, M. M. McDonald, P. Bokko, and D. G. Little, “Bone remodeling during fracture repair: The cellular picture,” Semin. Cell Dev. Biol. 19(5), 459–466 (2008).
[Crossref]

Bouziotis, P.

E. A. Fragogeorgi, M. Rouchota, M. Georgiou, M. Velez, P. Bouziotis, and G. Loudos, “In vivo imaging techniques for bone tissue engineering,” J. Tissue Eng. 10, 204173141985458 (2019).
[Crossref]

Boyce, B. F.

H. Ito, M. Koefoed, P. Tiyapatanaputi, K. Gromov, J. J. Goater, J. Carmouche, X. Zhang, P. T. Rubery, J. Rabinowitz, R. J. Samulski, T. Nakamura, K. Soballe, R. J. O’Keefe, B. F. Boyce, and E. M. Schwarz, “Remodeling of cortical bone allografts mediated by adherent rAAV-RANKL and VEGF gene therapy,” Nat. Med. 11(3), 291–297 (2005).
[Crossref]

Brewer, M.

S. Nandy, A. Mostafa, P. D. Kumavor, M. Sanders, M. Brewer, and Q. Zhu, “Characterizing optical properties and spatial heterogeneity of human ovarian tissue using spatial frequency domain imaging,” J. Biomed. Opt. 21(10), 101402 (2016).
[Crossref]

Brown, E.

K. Schilling, M. El Khatib, S. Plunkett, J. Xue, Y. Xia, S. A. Vinogradov, E. Brown, and X. Zhang, “Electrospun Fiber Mesh for High-Resolution Measurements of Oxygen Tension in Cranial Bone Defect Repair,” ACS Appl. Mater. Interfaces 11(37), 33548–33558 (2019).
[Crossref]

Burmeister, D. M.

A. Ponticorvo, D. M. Burmeister, R. Rowland, M. Baldado, G. T. Kennedy, R. Saager, N. Bernal, B. Choi, and A. J. Durkin, “Quantitative long-term measurements of burns in a rat model using Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI),” Lasers Surg. Med. 49(3), 293–304 (2017).
[Crossref]

Buza, J. A.

J. A. Buza and T. Einhorn, “Bone healing in 2016,” Clin. Cases. Miner. Bone. Metab. 13(2), 101–105 (2016).
[Crossref]

Calvi, L. M.

R. S. Dhillon, C. Xie, W. Tyler, L. M. Calvi, H. A. Awad, M. J. Zuscik, R. J. O’Keefe, and E. M. Schwarz, “PTH-Enhanced Structural Allograft Healing Is Associated With Decreased Angiopoietin-2–Mediated Arteriogenesis, Mast Cell Accumulation, and Fibrosis,” J. Bone Miner. Res. 28(3), 586–597 (2013).
[Crossref]

Carmouche, J.

H. Ito, M. Koefoed, P. Tiyapatanaputi, K. Gromov, J. J. Goater, J. Carmouche, X. Zhang, P. T. Rubery, J. Rabinowitz, R. J. Samulski, T. Nakamura, K. Soballe, R. J. O’Keefe, B. F. Boyce, and E. M. Schwarz, “Remodeling of cortical bone allografts mediated by adherent rAAV-RANKL and VEGF gene therapy,” Nat. Med. 11(3), 291–297 (2005).
[Crossref]

Castello, N. A.

A. J. Lin, G. Liu, N. A. Castello, J. J. Yeh, R. Rahimian, G. Lee, V. Tsay, A. J. Durkin, B. Choi, F. M. LaFerla, Z. Chen, K. N. Green, and B. J. Tromberg, “Optical imaging in an Alzheimer’s mouse model reveals amyloid-β-dependent vascular impairment,” Neurophoton 1(1), 011005 (2014).
[Crossref]

Cates, E.

Chen, S.-J.

J. P. Angelo, S.-J. Chen, M. Ochoa, U. Sunar, S. Gioux, and X. Intes, “Review of structured light in diffuse optical imaging,” J. Biomed. Opt. 24(07), 1 (2018).
[Crossref]

Chen, Z.

A. J. Lin, G. Liu, N. A. Castello, J. J. Yeh, R. Rahimian, G. Lee, V. Tsay, A. J. Durkin, B. Choi, F. M. LaFerla, Z. Chen, K. N. Green, and B. J. Tromberg, “Optical imaging in an Alzheimer’s mouse model reveals amyloid-β-dependent vascular impairment,” Neurophoton 1(1), 011005 (2014).
[Crossref]

Ching-Roa, V. R. D.

J. Ren, S. Han, A. R. Proctor, D. E. Desa, G. A. Ramirez, V. R. D. Ching-Roa, J. B. Majeski, I. A. Dar, N. E. Barber, A. M. Forti, D. S. W. Benoit, and R. Choe, “Longitudinal 3D Blood Flow Distribution Provided by Diffuse Correlation Tomography during Bone Healing in a Murine Fracture Model,” Photochem. Photobiol. 96(2), 380–387 (2020).
[Crossref]

Choe, R.

J. Ren, S. Han, A. R. Proctor, D. E. Desa, G. A. Ramirez, V. R. D. Ching-Roa, J. B. Majeski, I. A. Dar, N. E. Barber, A. M. Forti, D. S. W. Benoit, and R. Choe, “Longitudinal 3D Blood Flow Distribution Provided by Diffuse Correlation Tomography during Bone Healing in a Murine Fracture Model,” Photochem. Photobiol. 96(2), 380–387 (2020).
[Crossref]

S. Han, A. R. Proctor, J. Ren, D. S. W. Benoit, and R. Choe, “Temporal blood flow changes measured by diffuse correlation tomography predict murine femoral graft healing,” PLoS One 13(5), e0197031 (2018).
[Crossref]

Choi, B.

A. Ponticorvo, D. M. Burmeister, R. Rowland, M. Baldado, G. T. Kennedy, R. Saager, N. Bernal, B. Choi, and A. J. Durkin, “Quantitative long-term measurements of burns in a rat model using Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI),” Lasers Surg. Med. 49(3), 293–304 (2017).
[Crossref]

A. J. Lin, G. Liu, N. A. Castello, J. J. Yeh, R. Rahimian, G. Lee, V. Tsay, A. J. Durkin, B. Choi, F. M. LaFerla, Z. Chen, K. N. Green, and B. J. Tromberg, “Optical imaging in an Alzheimer’s mouse model reveals amyloid-β-dependent vascular impairment,” Neurophoton 1(1), 011005 (2014).
[Crossref]

Cuccia, D. J.

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. B. Jr, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situusing spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30(11), 1354–1356 (2005).
[Crossref]

Cullinane, D. M.

L. C. Gerstenfeld, D. M. Cullinane, G. L. Barnes, D. T. Graves, and T. A. Einhorn, “Fracture healing as a post-natal developmental process: Molecular, spatial, and temporal aspects of its regulation,” J. Cell. Biochem. 88(5), 873–884 (2003).
[Crossref]

Culver, J. P.

M. D. Reisman, Z. E. Markow, A. Q. Bauer, and J. P. Culver, “Structured illumination diffuse optical tomography for noninvasive functional neuroimaging in mice,” Neurophotonics 4(2), 021102 (2017).
[Crossref]

Dar, I. A.

J. Ren, S. Han, A. R. Proctor, D. E. Desa, G. A. Ramirez, V. R. D. Ching-Roa, J. B. Majeski, I. A. Dar, N. E. Barber, A. M. Forti, D. S. W. Benoit, and R. Choe, “Longitudinal 3D Blood Flow Distribution Provided by Diffuse Correlation Tomography during Bone Healing in a Murine Fracture Model,” Photochem. Photobiol. 96(2), 380–387 (2020).
[Crossref]

Decker, S.

C. Lu, N. Saless, X. Wang, A. Sinha, S. Decker, G. Kazakia, H. Hou, B. Williams, H. M. Swartz, T. K. Hunt, T. Miclau, and R. S. Marcucio, “The role of oxygen during fracture healing,” Bone 52(1), 220–229 (2013).
[Crossref]

Desa, D. E.

J. Ren, S. Han, A. R. Proctor, D. E. Desa, G. A. Ramirez, V. R. D. Ching-Roa, J. B. Majeski, I. A. Dar, N. E. Barber, A. M. Forti, D. S. W. Benoit, and R. Choe, “Longitudinal 3D Blood Flow Distribution Provided by Diffuse Correlation Tomography during Bone Healing in a Murine Fracture Model,” Photochem. Photobiol. 96(2), 380–387 (2020).
[Crossref]

Dhillon, R. S.

R. S. Dhillon, C. Xie, W. Tyler, L. M. Calvi, H. A. Awad, M. J. Zuscik, R. J. O’Keefe, and E. M. Schwarz, “PTH-Enhanced Structural Allograft Healing Is Associated With Decreased Angiopoietin-2–Mediated Arteriogenesis, Mast Cell Accumulation, and Fibrosis,” J. Bone Miner. Res. 28(3), 586–597 (2013).
[Crossref]

Dinopoulos, H.

P. V. Giannoudis, H. Dinopoulos, and E. Tsiridis, “Bone substitutes: an update,” Injury 36(3), S20–S27 (2005).
[Crossref]

Durkin, A. J.

A. Ponticorvo, D. M. Burmeister, R. Rowland, M. Baldado, G. T. Kennedy, R. Saager, N. Bernal, B. Choi, and A. J. Durkin, “Quantitative long-term measurements of burns in a rat model using Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI),” Lasers Surg. Med. 49(3), 293–304 (2017).
[Crossref]

A. J. Lin, G. Liu, N. A. Castello, J. J. Yeh, R. Rahimian, G. Lee, V. Tsay, A. J. Durkin, B. Choi, F. M. LaFerla, Z. Chen, K. N. Green, and B. J. Tromberg, “Optical imaging in an Alzheimer’s mouse model reveals amyloid-β-dependent vascular impairment,” Neurophoton 1(1), 011005 (2014).
[Crossref]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30(11), 1354–1356 (2005).
[Crossref]

Einhorn, T.

J. A. Buza and T. Einhorn, “Bone healing in 2016,” Clin. Cases. Miner. Bone. Metab. 13(2), 101–105 (2016).
[Crossref]

Einhorn, T. A.

T. A. Einhorn and L. C. Gerstenfeld, “Fracture healing: mechanisms and interventions,” Nat. Rev. Rheumatol. 11(1), 45–54 (2015).
[Crossref]

L. C. Gerstenfeld, D. M. Cullinane, G. L. Barnes, D. T. Graves, and T. A. Einhorn, “Fracture healing as a post-natal developmental process: Molecular, spatial, and temporal aspects of its regulation,” J. Cell. Biochem. 88(5), 873–884 (2003).
[Crossref]

El Khatib, M.

K. Schilling, M. El Khatib, S. Plunkett, J. Xue, Y. Xia, S. A. Vinogradov, E. Brown, and X. Zhang, “Electrospun Fiber Mesh for High-Resolution Measurements of Oxygen Tension in Cranial Bone Defect Repair,” ACS Appl. Mater. Interfaces 11(37), 33548–33558 (2019).
[Crossref]

Enneking, W. F.

D. L. Wheeler and W. F. Enneking, “Allograft bone decreases in strength in vivo over time,” Clin. Orthop. Relat. Res. 435, 36–42 (2005).
[Crossref]

Forti, A. M.

J. Ren, S. Han, A. R. Proctor, D. E. Desa, G. A. Ramirez, V. R. D. Ching-Roa, J. B. Majeski, I. A. Dar, N. E. Barber, A. M. Forti, D. S. W. Benoit, and R. Choe, “Longitudinal 3D Blood Flow Distribution Provided by Diffuse Correlation Tomography during Bone Healing in a Murine Fracture Model,” Photochem. Photobiol. 96(2), 380–387 (2020).
[Crossref]

Fragogeorgi, E. A.

E. A. Fragogeorgi, M. Rouchota, M. Georgiou, M. Velez, P. Bouziotis, and G. Loudos, “In vivo imaging techniques for bone tissue engineering,” J. Tissue Eng. 10, 204173141985458 (2019).
[Crossref]

Gazit, D.

C. Xie, D. Reynolds, H. Awad, P. T. Rubery, G. Pelled, D. Gazit, R. E. Guldberg, E. M. Schwarz, R. J. O’Keefe, and X. P. Zhang, “Structural bone allograft combined with genetically engineered mesenchymal stem cells as a novel platform for bone tissue engineering,” Tissue Eng. 13(3), 435–445 (2007).
[Crossref]

Georgiou, M.

E. A. Fragogeorgi, M. Rouchota, M. Georgiou, M. Velez, P. Bouziotis, and G. Loudos, “In vivo imaging techniques for bone tissue engineering,” J. Tissue Eng. 10, 204173141985458 (2019).
[Crossref]

Geraghty, S.

J. K. Hoffman, S. Geraghty, and N. M. Protzman, “Articular cartilage repair using marrow stimulation augmented with a viable chondral allograft: 9-month postoperative histological evaluation,” Case Rep. Orthop. 2015, 617365 (2015).
[Crossref]

Gerstenfeld, L. C.

T. A. Einhorn and L. C. Gerstenfeld, “Fracture healing: mechanisms and interventions,” Nat. Rev. Rheumatol. 11(1), 45–54 (2015).
[Crossref]

L. C. Gerstenfeld, D. M. Cullinane, G. L. Barnes, D. T. Graves, and T. A. Einhorn, “Fracture healing as a post-natal developmental process: Molecular, spatial, and temporal aspects of its regulation,” J. Cell. Biochem. 88(5), 873–884 (2003).
[Crossref]

Giannoudis, P. V.

I. Pountos and P. V. Giannoudis, “Is there a role of coral bone substitutes in bone repair?” Injury 47(12), 2606–2613 (2016).
[Crossref]

P. V. Giannoudis, H. Dinopoulos, and E. Tsiridis, “Bone substitutes: an update,” Injury 36(3), S20–S27 (2005).
[Crossref]

Gioux, S.

J. P. Angelo, S.-J. Chen, M. Ochoa, U. Sunar, S. Gioux, and X. Intes, “Review of structured light in diffuse optical imaging,” J. Biomed. Opt. 24(07), 1 (2018).
[Crossref]

Goater, J. J.

H. Ito, M. Koefoed, P. Tiyapatanaputi, K. Gromov, J. J. Goater, J. Carmouche, X. Zhang, P. T. Rubery, J. Rabinowitz, R. J. Samulski, T. Nakamura, K. Soballe, R. J. O’Keefe, B. F. Boyce, and E. M. Schwarz, “Remodeling of cortical bone allografts mediated by adherent rAAV-RANKL and VEGF gene therapy,” Nat. Med. 11(3), 291–297 (2005).
[Crossref]

Goldberg, V. M.

A. S. Greenwald, S. D. Boden, V. M. Goldberg, Y. Khan, C. T. Laurencin, and R. N. Rosier, “Bone-graft substitutes: facts, fictions, and applications,” J. Bone Jt. Surg., Am. Vol. 83, 98–103 (2001).
[Crossref]

Graves, D. T.

L. C. Gerstenfeld, D. M. Cullinane, G. L. Barnes, D. T. Graves, and T. A. Einhorn, “Fracture healing as a post-natal developmental process: Molecular, spatial, and temporal aspects of its regulation,” J. Cell. Biochem. 88(5), 873–884 (2003).
[Crossref]

Green, K. N.

A. J. Lin, G. Liu, N. A. Castello, J. J. Yeh, R. Rahimian, G. Lee, V. Tsay, A. J. Durkin, B. Choi, F. M. LaFerla, Z. Chen, K. N. Green, and B. J. Tromberg, “Optical imaging in an Alzheimer’s mouse model reveals amyloid-β-dependent vascular impairment,” Neurophoton 1(1), 011005 (2014).
[Crossref]

Greenwald, A. S.

A. S. Greenwald, S. D. Boden, V. M. Goldberg, Y. Khan, C. T. Laurencin, and R. N. Rosier, “Bone-graft substitutes: facts, fictions, and applications,” J. Bone Jt. Surg., Am. Vol. 83, 98–103 (2001).
[Crossref]

Gromov, K.

H. Ito, M. Koefoed, P. Tiyapatanaputi, K. Gromov, J. J. Goater, J. Carmouche, X. Zhang, P. T. Rubery, J. Rabinowitz, R. J. Samulski, T. Nakamura, K. Soballe, R. J. O’Keefe, B. F. Boyce, and E. M. Schwarz, “Remodeling of cortical bone allografts mediated by adherent rAAV-RANKL and VEGF gene therapy,” Nat. Med. 11(3), 291–297 (2005).
[Crossref]

Guldberg, R. E.

C. Xie, D. Reynolds, H. Awad, P. T. Rubery, G. Pelled, D. Gazit, R. E. Guldberg, E. M. Schwarz, R. J. O’Keefe, and X. P. Zhang, “Structural bone allograft combined with genetically engineered mesenchymal stem cells as a novel platform for bone tissue engineering,” Tissue Eng. 13(3), 435–445 (2007).
[Crossref]

X. Zhang, C. Xie, A. S. Lin, H. Ito, H. Awad, J. R. Lieberman, P. T. Rubery, E. M. Schwarz, R. J. O’Keefe, and R. E. Guldberg, “Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering,” J. Bone Miner. Res. 20(12), 2124–2137 (2005).
[Crossref]

Hager, F.

Han, S.

J. Ren, S. Han, A. R. Proctor, D. E. Desa, G. A. Ramirez, V. R. D. Ching-Roa, J. B. Majeski, I. A. Dar, N. E. Barber, A. M. Forti, D. S. W. Benoit, and R. Choe, “Longitudinal 3D Blood Flow Distribution Provided by Diffuse Correlation Tomography during Bone Healing in a Murine Fracture Model,” Photochem. Photobiol. 96(2), 380–387 (2020).
[Crossref]

S. Han, A. R. Proctor, J. Ren, D. S. W. Benoit, and R. Choe, “Temporal blood flow changes measured by diffuse correlation tomography predict murine femoral graft healing,” PLoS One 13(5), e0197031 (2018).
[Crossref]

Hayakawa, C. K.

C. K. Hayakawa, K. Karrobi, V. Pera, D. Roblyer, and V. Venugopalan, “Optical sampling depth in the spatial frequency domain,” J. Biomed. Opt. 24(07), 1–14 (2018).
[Crossref]

Hock, C.

D. G. Reynolds, C. Hock, S. Shaikh, J. Jacobson, X. Zhang, P. T. Rubery, C. A. Beck, R. J. O’Keefe, A. L. Lerner, E. M. Schwarz, and H. A. Awad, “Micro-computed tomography prediction of biomechanical strength in murine structural bone grafts,” J. Biomech. 40(14), 3178–3186 (2007).
[Crossref]

Hoffman, J. K.

J. K. Hoffman, S. Geraghty, and N. M. Protzman, “Articular cartilage repair using marrow stimulation augmented with a viable chondral allograft: 9-month postoperative histological evaluation,” Case Rep. Orthop. 2015, 617365 (2015).
[Crossref]

Hoffman, M. D.

M. D. Hoffman and D. S. Benoit, “Emulating native periosteum cell population and subsequent paracrine factor production to promote tissue engineered periosteum-mediated allograft healing,” Biomaterials 52, 426–440 (2015).
[Crossref]

M. D. Hoffman, C. Xie, X. Zhang, and D. S. W. Benoit, “The effect of mesenchymal stem cells delivered via hydrogel- based tissue engineered periosteum on bone allograft healing,” Biomaterials 34(35), 8887–8898 (2013).
[Crossref]

Hornicek, F. J.

H. J. Mankin, F. J. Hornicek, and K. A. Raskin, “Infection in massive bone allografts,” Clin. Orthop. Relat. Res. 432, 210–216 (2005).
[Crossref]

Hou, H.

C. Lu, N. Saless, X. Wang, A. Sinha, S. Decker, G. Kazakia, H. Hou, B. Williams, H. M. Swartz, T. K. Hunt, T. Miclau, and R. S. Marcucio, “The role of oxygen during fracture healing,” Bone 52(1), 220–229 (2013).
[Crossref]

Hunt, T. K.

C. Lu, N. Saless, X. Wang, A. Sinha, S. Decker, G. Kazakia, H. Hou, B. Williams, H. M. Swartz, T. K. Hunt, T. Miclau, and R. S. Marcucio, “The role of oxygen during fracture healing,” Bone 52(1), 220–229 (2013).
[Crossref]

Intes, X.

J. P. Angelo, S.-J. Chen, M. Ochoa, U. Sunar, S. Gioux, and X. Intes, “Review of structured light in diffuse optical imaging,” J. Biomed. Opt. 24(07), 1 (2018).
[Crossref]

Istfan, R.

Ito, H.

X. Zhang, C. Xie, A. S. Lin, H. Ito, H. Awad, J. R. Lieberman, P. T. Rubery, E. M. Schwarz, R. J. O’Keefe, and R. E. Guldberg, “Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering,” J. Bone Miner. Res. 20(12), 2124–2137 (2005).
[Crossref]

H. Ito, M. Koefoed, P. Tiyapatanaputi, K. Gromov, J. J. Goater, J. Carmouche, X. Zhang, P. T. Rubery, J. Rabinowitz, R. J. Samulski, T. Nakamura, K. Soballe, R. J. O’Keefe, B. F. Boyce, and E. M. Schwarz, “Remodeling of cortical bone allografts mediated by adherent rAAV-RANKL and VEGF gene therapy,” Nat. Med. 11(3), 291–297 (2005).
[Crossref]

Jacobson, J.

D. G. Reynolds, C. Hock, S. Shaikh, J. Jacobson, X. Zhang, P. T. Rubery, C. A. Beck, R. J. O’Keefe, A. L. Lerner, E. M. Schwarz, and H. A. Awad, “Micro-computed tomography prediction of biomechanical strength in murine structural bone grafts,” J. Biomech. 40(14), 3178–3186 (2007).
[Crossref]

Jacques, S. L.

S. L. Jacques, “Corrigendum: Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(14), 5007–5008 (2013).
[Crossref]

Jr, R. J. B.

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. B. Jr, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situusing spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref]

Karrobi, K.

C. K. Hayakawa, K. Karrobi, V. Pera, D. Roblyer, and V. Venugopalan, “Optical sampling depth in the spatial frequency domain,” J. Biomed. Opt. 24(07), 1–14 (2018).
[Crossref]

Kazakia, G.

C. Lu, N. Saless, X. Wang, A. Sinha, S. Decker, G. Kazakia, H. Hou, B. Williams, H. M. Swartz, T. K. Hunt, T. Miclau, and R. S. Marcucio, “The role of oxygen during fracture healing,” Bone 52(1), 220–229 (2013).
[Crossref]

Kennedy, G. T.

A. Ponticorvo, D. M. Burmeister, R. Rowland, M. Baldado, G. T. Kennedy, R. Saager, N. Bernal, B. Choi, and A. J. Durkin, “Quantitative long-term measurements of burns in a rat model using Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI),” Lasers Surg. Med. 49(3), 293–304 (2017).
[Crossref]

Khan, Y.

A. S. Greenwald, S. D. Boden, V. M. Goldberg, Y. Khan, C. T. Laurencin, and R. N. Rosier, “Bone-graft substitutes: facts, fictions, and applications,” J. Bone Jt. Surg., Am. Vol. 83, 98–103 (2001).
[Crossref]

Kinoshita, S.

A. Ozaki, M. Tsunoda, S. Kinoshita, and R. Saura, “Role of fracture hematoma and periosteum during fracture healing in rats: interaction of fracture hematoma and the periosteum in the initial step of the healing process,” J. Orthop. Sci. 5(1), 64–70 (2000).
[Crossref]

Koefoed, M.

H. Ito, M. Koefoed, P. Tiyapatanaputi, K. Gromov, J. J. Goater, J. Carmouche, X. Zhang, P. T. Rubery, J. Rabinowitz, R. J. Samulski, T. Nakamura, K. Soballe, R. J. O’Keefe, B. F. Boyce, and E. M. Schwarz, “Remodeling of cortical bone allografts mediated by adherent rAAV-RANKL and VEGF gene therapy,” Nat. Med. 11(3), 291–297 (2005).
[Crossref]

Krishnaswamy, V.

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. B. Jr, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situusing spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref]

Kumavor, P. D.

S. Nandy, A. Mostafa, P. D. Kumavor, M. Sanders, M. Brewer, and Q. Zhu, “Characterizing optical properties and spatial heterogeneity of human ovarian tissue using spatial frequency domain imaging,” J. Biomed. Opt. 21(10), 101402 (2016).
[Crossref]

LaFerla, F. M.

A. J. Lin, G. Liu, N. A. Castello, J. J. Yeh, R. Rahimian, G. Lee, V. Tsay, A. J. Durkin, B. Choi, F. M. LaFerla, Z. Chen, K. N. Green, and B. J. Tromberg, “Optical imaging in an Alzheimer’s mouse model reveals amyloid-β-dependent vascular impairment,” Neurophoton 1(1), 011005 (2014).
[Crossref]

Laughney, A. M.

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. B. Jr, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situusing spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref]

Laurencin, C. T.

A. S. Greenwald, S. D. Boden, V. M. Goldberg, Y. Khan, C. T. Laurencin, and R. N. Rosier, “Bone-graft substitutes: facts, fictions, and applications,” J. Bone Jt. Surg., Am. Vol. 83, 98–103 (2001).
[Crossref]

Lee, G.

A. J. Lin, G. Liu, N. A. Castello, J. J. Yeh, R. Rahimian, G. Lee, V. Tsay, A. J. Durkin, B. Choi, F. M. LaFerla, Z. Chen, K. N. Green, and B. J. Tromberg, “Optical imaging in an Alzheimer’s mouse model reveals amyloid-β-dependent vascular impairment,” Neurophoton 1(1), 011005 (2014).
[Crossref]

Lerner, A. L.

D. G. Reynolds, C. Hock, S. Shaikh, J. Jacobson, X. Zhang, P. T. Rubery, C. A. Beck, R. J. O’Keefe, A. L. Lerner, E. M. Schwarz, and H. A. Awad, “Micro-computed tomography prediction of biomechanical strength in murine structural bone grafts,” J. Biomech. 40(14), 3178–3186 (2007).
[Crossref]

Lieberman, J. R.

X. Zhang, C. Xie, A. S. Lin, H. Ito, H. Awad, J. R. Lieberman, P. T. Rubery, E. M. Schwarz, R. J. O’Keefe, and R. E. Guldberg, “Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering,” J. Bone Miner. Res. 20(12), 2124–2137 (2005).
[Crossref]

Lin, A. J.

A. J. Lin, G. Liu, N. A. Castello, J. J. Yeh, R. Rahimian, G. Lee, V. Tsay, A. J. Durkin, B. Choi, F. M. LaFerla, Z. Chen, K. N. Green, and B. J. Tromberg, “Optical imaging in an Alzheimer’s mouse model reveals amyloid-β-dependent vascular impairment,” Neurophoton 1(1), 011005 (2014).
[Crossref]

Lin, A. S.

X. Zhang, C. Xie, A. S. Lin, H. Ito, H. Awad, J. R. Lieberman, P. T. Rubery, E. M. Schwarz, R. J. O’Keefe, and R. E. Guldberg, “Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering,” J. Bone Miner. Res. 20(12), 2124–2137 (2005).
[Crossref]

Little, D. G.

A. Schindeler, M. M. McDonald, P. Bokko, and D. G. Little, “Bone remodeling during fracture repair: The cellular picture,” Semin. Cell Dev. Biol. 19(5), 459–466 (2008).
[Crossref]

Liu, G.

A. J. Lin, G. Liu, N. A. Castello, J. J. Yeh, R. Rahimian, G. Lee, V. Tsay, A. J. Durkin, B. Choi, F. M. LaFerla, Z. Chen, K. N. Green, and B. J. Tromberg, “Optical imaging in an Alzheimer’s mouse model reveals amyloid-β-dependent vascular impairment,” Neurophoton 1(1), 011005 (2014).
[Crossref]

Loudos, G.

E. A. Fragogeorgi, M. Rouchota, M. Georgiou, M. Velez, P. Bouziotis, and G. Loudos, “In vivo imaging techniques for bone tissue engineering,” J. Tissue Eng. 10, 204173141985458 (2019).
[Crossref]

Lu, C.

C. Lu, N. Saless, X. Wang, A. Sinha, S. Decker, G. Kazakia, H. Hou, B. Williams, H. M. Swartz, T. K. Hunt, T. Miclau, and R. S. Marcucio, “The role of oxygen during fracture healing,” Bone 52(1), 220–229 (2013).
[Crossref]

Majeski, J. B.

J. Ren, S. Han, A. R. Proctor, D. E. Desa, G. A. Ramirez, V. R. D. Ching-Roa, J. B. Majeski, I. A. Dar, N. E. Barber, A. M. Forti, D. S. W. Benoit, and R. Choe, “Longitudinal 3D Blood Flow Distribution Provided by Diffuse Correlation Tomography during Bone Healing in a Murine Fracture Model,” Photochem. Photobiol. 96(2), 380–387 (2020).
[Crossref]

Mankin, H. J.

H. J. Mankin, F. J. Hornicek, and K. A. Raskin, “Infection in massive bone allografts,” Clin. Orthop. Relat. Res. 432, 210–216 (2005).
[Crossref]

Marcucio, R. S.

C. Lu, N. Saless, X. Wang, A. Sinha, S. Decker, G. Kazakia, H. Hou, B. Williams, H. M. Swartz, T. K. Hunt, T. Miclau, and R. S. Marcucio, “The role of oxygen during fracture healing,” Bone 52(1), 220–229 (2013).
[Crossref]

Markow, Z. E.

M. D. Reisman, Z. E. Markow, A. Q. Bauer, and J. P. Culver, “Structured illumination diffuse optical tomography for noninvasive functional neuroimaging in mice,” Neurophotonics 4(2), 021102 (2017).
[Crossref]

McDonald, M. M.

A. Schindeler, M. M. McDonald, P. Bokko, and D. G. Little, “Bone remodeling during fracture repair: The cellular picture,” Semin. Cell Dev. Biol. 19(5), 459–466 (2008).
[Crossref]

Miclau, T.

C. Lu, N. Saless, X. Wang, A. Sinha, S. Decker, G. Kazakia, H. Hou, B. Williams, H. M. Swartz, T. K. Hunt, T. Miclau, and R. S. Marcucio, “The role of oxygen during fracture healing,” Bone 52(1), 220–229 (2013).
[Crossref]

Mostafa, A.

S. Nandy, A. Mostafa, P. D. Kumavor, M. Sanders, M. Brewer, and Q. Zhu, “Characterizing optical properties and spatial heterogeneity of human ovarian tissue using spatial frequency domain imaging,” J. Biomed. Opt. 21(10), 101402 (2016).
[Crossref]

Nakamura, T.

H. Ito, M. Koefoed, P. Tiyapatanaputi, K. Gromov, J. J. Goater, J. Carmouche, X. Zhang, P. T. Rubery, J. Rabinowitz, R. J. Samulski, T. Nakamura, K. Soballe, R. J. O’Keefe, B. F. Boyce, and E. M. Schwarz, “Remodeling of cortical bone allografts mediated by adherent rAAV-RANKL and VEGF gene therapy,” Nat. Med. 11(3), 291–297 (2005).
[Crossref]

Nandhu, M. S.

Nandy, S.

S. Nandy, A. Mostafa, P. D. Kumavor, M. Sanders, M. Brewer, and Q. Zhu, “Characterizing optical properties and spatial heterogeneity of human ovarian tissue using spatial frequency domain imaging,” J. Biomed. Opt. 21(10), 101402 (2016).
[Crossref]

O’Keefe, R. J.

R. S. Dhillon, C. Xie, W. Tyler, L. M. Calvi, H. A. Awad, M. J. Zuscik, R. J. O’Keefe, and E. M. Schwarz, “PTH-Enhanced Structural Allograft Healing Is Associated With Decreased Angiopoietin-2–Mediated Arteriogenesis, Mast Cell Accumulation, and Fibrosis,” J. Bone Miner. Res. 28(3), 586–597 (2013).
[Crossref]

C. Xie, D. Reynolds, H. Awad, P. T. Rubery, G. Pelled, D. Gazit, R. E. Guldberg, E. M. Schwarz, R. J. O’Keefe, and X. P. Zhang, “Structural bone allograft combined with genetically engineered mesenchymal stem cells as a novel platform for bone tissue engineering,” Tissue Eng. 13(3), 435–445 (2007).
[Crossref]

D. G. Reynolds, C. Hock, S. Shaikh, J. Jacobson, X. Zhang, P. T. Rubery, C. A. Beck, R. J. O’Keefe, A. L. Lerner, E. M. Schwarz, and H. A. Awad, “Micro-computed tomography prediction of biomechanical strength in murine structural bone grafts,” J. Biomech. 40(14), 3178–3186 (2007).
[Crossref]

H. Ito, M. Koefoed, P. Tiyapatanaputi, K. Gromov, J. J. Goater, J. Carmouche, X. Zhang, P. T. Rubery, J. Rabinowitz, R. J. Samulski, T. Nakamura, K. Soballe, R. J. O’Keefe, B. F. Boyce, and E. M. Schwarz, “Remodeling of cortical bone allografts mediated by adherent rAAV-RANKL and VEGF gene therapy,” Nat. Med. 11(3), 291–297 (2005).
[Crossref]

X. Zhang, C. Xie, A. S. Lin, H. Ito, H. Awad, J. R. Lieberman, P. T. Rubery, E. M. Schwarz, R. J. O’Keefe, and R. E. Guldberg, “Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering,” J. Bone Miner. Res. 20(12), 2124–2137 (2005).
[Crossref]

Ochoa, M.

J. P. Angelo, S.-J. Chen, M. Ochoa, U. Sunar, S. Gioux, and X. Intes, “Review of structured light in diffuse optical imaging,” J. Biomed. Opt. 24(07), 1 (2018).
[Crossref]

Ozaki, A.

A. Ozaki, M. Tsunoda, S. Kinoshita, and R. Saura, “Role of fracture hematoma and periosteum during fracture healing in rats: interaction of fracture hematoma and the periosteum in the initial step of the healing process,” J. Orthop. Sci. 5(1), 64–70 (2000).
[Crossref]

Paulsen, K. D.

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. B. Jr, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situusing spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref]

Pelled, G.

C. Xie, D. Reynolds, H. Awad, P. T. Rubery, G. Pelled, D. Gazit, R. E. Guldberg, E. M. Schwarz, R. J. O’Keefe, and X. P. Zhang, “Structural bone allograft combined with genetically engineered mesenchymal stem cells as a novel platform for bone tissue engineering,” Tissue Eng. 13(3), 435–445 (2007).
[Crossref]

Pera, V.

C. K. Hayakawa, K. Karrobi, V. Pera, D. Roblyer, and V. Venugopalan, “Optical sampling depth in the spatial frequency domain,” J. Biomed. Opt. 24(07), 1–14 (2018).
[Crossref]

Piracha, S.

Plunkett, S.

K. Schilling, M. El Khatib, S. Plunkett, J. Xue, Y. Xia, S. A. Vinogradov, E. Brown, and X. Zhang, “Electrospun Fiber Mesh for High-Resolution Measurements of Oxygen Tension in Cranial Bone Defect Repair,” ACS Appl. Mater. Interfaces 11(37), 33548–33558 (2019).
[Crossref]

Pogue, B. W.

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. B. Jr, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situusing spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref]

Ponticorvo, A.

A. Ponticorvo, D. M. Burmeister, R. Rowland, M. Baldado, G. T. Kennedy, R. Saager, N. Bernal, B. Choi, and A. J. Durkin, “Quantitative long-term measurements of burns in a rat model using Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI),” Lasers Surg. Med. 49(3), 293–304 (2017).
[Crossref]

Poon, C.

Pountos, I.

I. Pountos and P. V. Giannoudis, “Is there a role of coral bone substitutes in bone repair?” Injury 47(12), 2606–2613 (2016).
[Crossref]

Proctor, A. R.

J. Ren, S. Han, A. R. Proctor, D. E. Desa, G. A. Ramirez, V. R. D. Ching-Roa, J. B. Majeski, I. A. Dar, N. E. Barber, A. M. Forti, D. S. W. Benoit, and R. Choe, “Longitudinal 3D Blood Flow Distribution Provided by Diffuse Correlation Tomography during Bone Healing in a Murine Fracture Model,” Photochem. Photobiol. 96(2), 380–387 (2020).
[Crossref]

S. Han, A. R. Proctor, J. Ren, D. S. W. Benoit, and R. Choe, “Temporal blood flow changes measured by diffuse correlation tomography predict murine femoral graft healing,” PLoS One 13(5), e0197031 (2018).
[Crossref]

Protzman, N. M.

J. K. Hoffman, S. Geraghty, and N. M. Protzman, “Articular cartilage repair using marrow stimulation augmented with a viable chondral allograft: 9-month postoperative histological evaluation,” Case Rep. Orthop. 2015, 617365 (2015).
[Crossref]

Rabinowitz, J.

H. Ito, M. Koefoed, P. Tiyapatanaputi, K. Gromov, J. J. Goater, J. Carmouche, X. Zhang, P. T. Rubery, J. Rabinowitz, R. J. Samulski, T. Nakamura, K. Soballe, R. J. O’Keefe, B. F. Boyce, and E. M. Schwarz, “Remodeling of cortical bone allografts mediated by adherent rAAV-RANKL and VEGF gene therapy,” Nat. Med. 11(3), 291–297 (2005).
[Crossref]

Rahimian, R.

A. J. Lin, G. Liu, N. A. Castello, J. J. Yeh, R. Rahimian, G. Lee, V. Tsay, A. J. Durkin, B. Choi, F. M. LaFerla, Z. Chen, K. N. Green, and B. J. Tromberg, “Optical imaging in an Alzheimer’s mouse model reveals amyloid-β-dependent vascular impairment,” Neurophoton 1(1), 011005 (2014).
[Crossref]

Ramirez, G. A.

J. Ren, S. Han, A. R. Proctor, D. E. Desa, G. A. Ramirez, V. R. D. Ching-Roa, J. B. Majeski, I. A. Dar, N. E. Barber, A. M. Forti, D. S. W. Benoit, and R. Choe, “Longitudinal 3D Blood Flow Distribution Provided by Diffuse Correlation Tomography during Bone Healing in a Murine Fracture Model,” Photochem. Photobiol. 96(2), 380–387 (2020).
[Crossref]

Raskin, K. A.

H. J. Mankin, F. J. Hornicek, and K. A. Raskin, “Infection in massive bone allografts,” Clin. Orthop. Relat. Res. 432, 210–216 (2005).
[Crossref]

Reisman, M. D.

M. D. Reisman, Z. E. Markow, A. Q. Bauer, and J. P. Culver, “Structured illumination diffuse optical tomography for noninvasive functional neuroimaging in mice,” Neurophotonics 4(2), 021102 (2017).
[Crossref]

Ren, J.

J. Ren, S. Han, A. R. Proctor, D. E. Desa, G. A. Ramirez, V. R. D. Ching-Roa, J. B. Majeski, I. A. Dar, N. E. Barber, A. M. Forti, D. S. W. Benoit, and R. Choe, “Longitudinal 3D Blood Flow Distribution Provided by Diffuse Correlation Tomography during Bone Healing in a Murine Fracture Model,” Photochem. Photobiol. 96(2), 380–387 (2020).
[Crossref]

S. Han, A. R. Proctor, J. Ren, D. S. W. Benoit, and R. Choe, “Temporal blood flow changes measured by diffuse correlation tomography predict murine femoral graft healing,” PLoS One 13(5), e0197031 (2018).
[Crossref]

Reynolds, D.

C. Xie, D. Reynolds, H. Awad, P. T. Rubery, G. Pelled, D. Gazit, R. E. Guldberg, E. M. Schwarz, R. J. O’Keefe, and X. P. Zhang, “Structural bone allograft combined with genetically engineered mesenchymal stem cells as a novel platform for bone tissue engineering,” Tissue Eng. 13(3), 435–445 (2007).
[Crossref]

Reynolds, D. G.

D. G. Reynolds, C. Hock, S. Shaikh, J. Jacobson, X. Zhang, P. T. Rubery, C. A. Beck, R. J. O’Keefe, A. L. Lerner, E. M. Schwarz, and H. A. Awad, “Micro-computed tomography prediction of biomechanical strength in murine structural bone grafts,” J. Biomech. 40(14), 3178–3186 (2007).
[Crossref]

Rizzo, E. J.

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. B. Jr, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situusing spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref]

Roberts, T. T.

T. T. Roberts and A. J. Rosenbaum, “Bone grafts, bone substitutes and orthobiologics: The bridge between basic science and clinical advancements in fracture healing,” Organogenesis 8(4), 114–124 (2012).
[Crossref]

Roblyer, D.

Rohrbach, D. J.

Rosenbaum, A. J.

T. T. Roberts and A. J. Rosenbaum, “Bone grafts, bone substitutes and orthobiologics: The bridge between basic science and clinical advancements in fracture healing,” Organogenesis 8(4), 114–124 (2012).
[Crossref]

Rosier, R. N.

A. S. Greenwald, S. D. Boden, V. M. Goldberg, Y. Khan, C. T. Laurencin, and R. N. Rosier, “Bone-graft substitutes: facts, fictions, and applications,” J. Bone Jt. Surg., Am. Vol. 83, 98–103 (2001).
[Crossref]

Rouchota, M.

E. A. Fragogeorgi, M. Rouchota, M. Georgiou, M. Velez, P. Bouziotis, and G. Loudos, “In vivo imaging techniques for bone tissue engineering,” J. Tissue Eng. 10, 204173141985458 (2019).
[Crossref]

Rowland, R.

A. Ponticorvo, D. M. Burmeister, R. Rowland, M. Baldado, G. T. Kennedy, R. Saager, N. Bernal, B. Choi, and A. J. Durkin, “Quantitative long-term measurements of burns in a rat model using Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI),” Lasers Surg. Med. 49(3), 293–304 (2017).
[Crossref]

Rubery, P. T.

D. G. Reynolds, C. Hock, S. Shaikh, J. Jacobson, X. Zhang, P. T. Rubery, C. A. Beck, R. J. O’Keefe, A. L. Lerner, E. M. Schwarz, and H. A. Awad, “Micro-computed tomography prediction of biomechanical strength in murine structural bone grafts,” J. Biomech. 40(14), 3178–3186 (2007).
[Crossref]

C. Xie, D. Reynolds, H. Awad, P. T. Rubery, G. Pelled, D. Gazit, R. E. Guldberg, E. M. Schwarz, R. J. O’Keefe, and X. P. Zhang, “Structural bone allograft combined with genetically engineered mesenchymal stem cells as a novel platform for bone tissue engineering,” Tissue Eng. 13(3), 435–445 (2007).
[Crossref]

H. Ito, M. Koefoed, P. Tiyapatanaputi, K. Gromov, J. J. Goater, J. Carmouche, X. Zhang, P. T. Rubery, J. Rabinowitz, R. J. Samulski, T. Nakamura, K. Soballe, R. J. O’Keefe, B. F. Boyce, and E. M. Schwarz, “Remodeling of cortical bone allografts mediated by adherent rAAV-RANKL and VEGF gene therapy,” Nat. Med. 11(3), 291–297 (2005).
[Crossref]

X. Zhang, C. Xie, A. S. Lin, H. Ito, H. Awad, J. R. Lieberman, P. T. Rubery, E. M. Schwarz, R. J. O’Keefe, and R. E. Guldberg, “Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering,” J. Bone Miner. Res. 20(12), 2124–2137 (2005).
[Crossref]

Saager, R.

A. Ponticorvo, D. M. Burmeister, R. Rowland, M. Baldado, G. T. Kennedy, R. Saager, N. Bernal, B. Choi, and A. J. Durkin, “Quantitative long-term measurements of burns in a rat model using Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI),” Lasers Surg. Med. 49(3), 293–304 (2017).
[Crossref]

Saless, N.

C. Lu, N. Saless, X. Wang, A. Sinha, S. Decker, G. Kazakia, H. Hou, B. Williams, H. M. Swartz, T. K. Hunt, T. Miclau, and R. S. Marcucio, “The role of oxygen during fracture healing,” Bone 52(1), 220–229 (2013).
[Crossref]

Samulski, R. J.

H. Ito, M. Koefoed, P. Tiyapatanaputi, K. Gromov, J. J. Goater, J. Carmouche, X. Zhang, P. T. Rubery, J. Rabinowitz, R. J. Samulski, T. Nakamura, K. Soballe, R. J. O’Keefe, B. F. Boyce, and E. M. Schwarz, “Remodeling of cortical bone allografts mediated by adherent rAAV-RANKL and VEGF gene therapy,” Nat. Med. 11(3), 291–297 (2005).
[Crossref]

Sanders, M.

S. Nandy, A. Mostafa, P. D. Kumavor, M. Sanders, M. Brewer, and Q. Zhu, “Characterizing optical properties and spatial heterogeneity of human ovarian tissue using spatial frequency domain imaging,” J. Biomed. Opt. 21(10), 101402 (2016).
[Crossref]

Saura, R.

A. Ozaki, M. Tsunoda, S. Kinoshita, and R. Saura, “Role of fracture hematoma and periosteum during fracture healing in rats: interaction of fracture hematoma and the periosteum in the initial step of the healing process,” J. Orthop. Sci. 5(1), 64–70 (2000).
[Crossref]

Schilling, K.

K. Schilling, M. El Khatib, S. Plunkett, J. Xue, Y. Xia, S. A. Vinogradov, E. Brown, and X. Zhang, “Electrospun Fiber Mesh for High-Resolution Measurements of Oxygen Tension in Cranial Bone Defect Repair,” ACS Appl. Mater. Interfaces 11(37), 33548–33558 (2019).
[Crossref]

Schindeler, A.

A. Schindeler, M. M. McDonald, P. Bokko, and D. G. Little, “Bone remodeling during fracture repair: The cellular picture,” Semin. Cell Dev. Biol. 19(5), 459–466 (2008).
[Crossref]

Schwab, M. C.

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. B. Jr, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situusing spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref]

Schwarz, E. M.

R. S. Dhillon, C. Xie, W. Tyler, L. M. Calvi, H. A. Awad, M. J. Zuscik, R. J. O’Keefe, and E. M. Schwarz, “PTH-Enhanced Structural Allograft Healing Is Associated With Decreased Angiopoietin-2–Mediated Arteriogenesis, Mast Cell Accumulation, and Fibrosis,” J. Bone Miner. Res. 28(3), 586–597 (2013).
[Crossref]

C. Xie, D. Reynolds, H. Awad, P. T. Rubery, G. Pelled, D. Gazit, R. E. Guldberg, E. M. Schwarz, R. J. O’Keefe, and X. P. Zhang, “Structural bone allograft combined with genetically engineered mesenchymal stem cells as a novel platform for bone tissue engineering,” Tissue Eng. 13(3), 435–445 (2007).
[Crossref]

D. G. Reynolds, C. Hock, S. Shaikh, J. Jacobson, X. Zhang, P. T. Rubery, C. A. Beck, R. J. O’Keefe, A. L. Lerner, E. M. Schwarz, and H. A. Awad, “Micro-computed tomography prediction of biomechanical strength in murine structural bone grafts,” J. Biomech. 40(14), 3178–3186 (2007).
[Crossref]

H. Ito, M. Koefoed, P. Tiyapatanaputi, K. Gromov, J. J. Goater, J. Carmouche, X. Zhang, P. T. Rubery, J. Rabinowitz, R. J. Samulski, T. Nakamura, K. Soballe, R. J. O’Keefe, B. F. Boyce, and E. M. Schwarz, “Remodeling of cortical bone allografts mediated by adherent rAAV-RANKL and VEGF gene therapy,” Nat. Med. 11(3), 291–297 (2005).
[Crossref]

X. Zhang, C. Xie, A. S. Lin, H. Ito, H. Awad, J. R. Lieberman, P. T. Rubery, E. M. Schwarz, R. J. O’Keefe, and R. E. Guldberg, “Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering,” J. Bone Miner. Res. 20(12), 2124–2137 (2005).
[Crossref]

Shaikh, S.

D. G. Reynolds, C. Hock, S. Shaikh, J. Jacobson, X. Zhang, P. T. Rubery, C. A. Beck, R. J. O’Keefe, A. L. Lerner, E. M. Schwarz, and H. A. Awad, “Micro-computed tomography prediction of biomechanical strength in murine structural bone grafts,” J. Biomech. 40(14), 3178–3186 (2007).
[Crossref]

Silva, M. J.

R. E. Tomlinson and M. J. Silva, “Skeletal Blood Flow in Bone Repair and Maintenance,” Bone Res. 1(4), 311–322 (2013).
[Crossref]

Sinha, A.

C. Lu, N. Saless, X. Wang, A. Sinha, S. Decker, G. Kazakia, H. Hou, B. Williams, H. M. Swartz, T. K. Hunt, T. Miclau, and R. S. Marcucio, “The role of oxygen during fracture healing,” Bone 52(1), 220–229 (2013).
[Crossref]

Soballe, K.

H. Ito, M. Koefoed, P. Tiyapatanaputi, K. Gromov, J. J. Goater, J. Carmouche, X. Zhang, P. T. Rubery, J. Rabinowitz, R. J. Samulski, T. Nakamura, K. Soballe, R. J. O’Keefe, B. F. Boyce, and E. M. Schwarz, “Remodeling of cortical bone allografts mediated by adherent rAAV-RANKL and VEGF gene therapy,” Nat. Med. 11(3), 291–297 (2005).
[Crossref]

Sunar, U.

Swartz, H. M.

C. Lu, N. Saless, X. Wang, A. Sinha, S. Decker, G. Kazakia, H. Hou, B. Williams, H. M. Swartz, T. K. Hunt, T. Miclau, and R. S. Marcucio, “The role of oxygen during fracture healing,” Bone 52(1), 220–229 (2013).
[Crossref]

Tabassum, S.

Tiyapatanaputi, P.

H. Ito, M. Koefoed, P. Tiyapatanaputi, K. Gromov, J. J. Goater, J. Carmouche, X. Zhang, P. T. Rubery, J. Rabinowitz, R. J. Samulski, T. Nakamura, K. Soballe, R. J. O’Keefe, B. F. Boyce, and E. M. Schwarz, “Remodeling of cortical bone allografts mediated by adherent rAAV-RANKL and VEGF gene therapy,” Nat. Med. 11(3), 291–297 (2005).
[Crossref]

Tole, N. M.

N. M. Tole, “Basic physics of ultrasonographic imaging,” (2005).

Tomlinson, R. E.

R. E. Tomlinson and M. J. Silva, “Skeletal Blood Flow in Bone Repair and Maintenance,” Bone Res. 1(4), 311–322 (2013).
[Crossref]

Travers, J. B.

Tromberg, B. J.

A. J. Lin, G. Liu, N. A. Castello, J. J. Yeh, R. Rahimian, G. Lee, V. Tsay, A. J. Durkin, B. Choi, F. M. LaFerla, Z. Chen, K. N. Green, and B. J. Tromberg, “Optical imaging in an Alzheimer’s mouse model reveals amyloid-β-dependent vascular impairment,” Neurophoton 1(1), 011005 (2014).
[Crossref]

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. B. Jr, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situusing spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30(11), 1354–1356 (2005).
[Crossref]

Tsay, V.

A. J. Lin, G. Liu, N. A. Castello, J. J. Yeh, R. Rahimian, G. Lee, V. Tsay, A. J. Durkin, B. Choi, F. M. LaFerla, Z. Chen, K. N. Green, and B. J. Tromberg, “Optical imaging in an Alzheimer’s mouse model reveals amyloid-β-dependent vascular impairment,” Neurophoton 1(1), 011005 (2014).
[Crossref]

Tsiridis, E.

P. V. Giannoudis, H. Dinopoulos, and E. Tsiridis, “Bone substitutes: an update,” Injury 36(3), S20–S27 (2005).
[Crossref]

Tsunoda, M.

A. Ozaki, M. Tsunoda, S. Kinoshita, and R. Saura, “Role of fracture hematoma and periosteum during fracture healing in rats: interaction of fracture hematoma and the periosteum in the initial step of the healing process,” J. Orthop. Sci. 5(1), 64–70 (2000).
[Crossref]

Tyler, W.

R. S. Dhillon, C. Xie, W. Tyler, L. M. Calvi, H. A. Awad, M. J. Zuscik, R. J. O’Keefe, and E. M. Schwarz, “PTH-Enhanced Structural Allograft Healing Is Associated With Decreased Angiopoietin-2–Mediated Arteriogenesis, Mast Cell Accumulation, and Fibrosis,” J. Bone Miner. Res. 28(3), 586–597 (2013).
[Crossref]

Velez, M.

E. A. Fragogeorgi, M. Rouchota, M. Georgiou, M. Velez, P. Bouziotis, and G. Loudos, “In vivo imaging techniques for bone tissue engineering,” J. Tissue Eng. 10, 204173141985458 (2019).
[Crossref]

Venugopalan, V.

C. K. Hayakawa, K. Karrobi, V. Pera, D. Roblyer, and V. Venugopalan, “Optical sampling depth in the spatial frequency domain,” J. Biomed. Opt. 24(07), 1–14 (2018).
[Crossref]

Viapiano, M.

Vinogradov, S. A.

K. Schilling, M. El Khatib, S. Plunkett, J. Xue, Y. Xia, S. A. Vinogradov, E. Brown, and X. Zhang, “Electrospun Fiber Mesh for High-Resolution Measurements of Oxygen Tension in Cranial Bone Defect Repair,” ACS Appl. Mater. Interfaces 11(37), 33548–33558 (2019).
[Crossref]

Wang, L. V.

L. V. Wang and J. Yao, “A practical guide to photoacoustic tomography in the life sciences,” Nat. Methods 13(8), 627–638 (2016).
[Crossref]

Wang, X.

C. Lu, N. Saless, X. Wang, A. Sinha, S. Decker, G. Kazakia, H. Hou, B. Williams, H. M. Swartz, T. K. Hunt, T. Miclau, and R. S. Marcucio, “The role of oxygen during fracture healing,” Bone 52(1), 220–229 (2013).
[Crossref]

Waxman, D. J.

Weir, N. M.

Wells, W. A.

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. B. Jr, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situusing spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref]

Wheeler, D. L.

D. L. Wheeler and W. F. Enneking, “Allograft bone decreases in strength in vivo over time,” Clin. Orthop. Relat. Res. 435, 36–42 (2005).
[Crossref]

Williams, B.

C. Lu, N. Saless, X. Wang, A. Sinha, S. Decker, G. Kazakia, H. Hou, B. Williams, H. M. Swartz, T. K. Hunt, T. Miclau, and R. S. Marcucio, “The role of oxygen during fracture healing,” Bone 52(1), 220–229 (2013).
[Crossref]

Wu, J.

Xia, Y.

K. Schilling, M. El Khatib, S. Plunkett, J. Xue, Y. Xia, S. A. Vinogradov, E. Brown, and X. Zhang, “Electrospun Fiber Mesh for High-Resolution Measurements of Oxygen Tension in Cranial Bone Defect Repair,” ACS Appl. Mater. Interfaces 11(37), 33548–33558 (2019).
[Crossref]

Xie, C.

M. D. Hoffman, C. Xie, X. Zhang, and D. S. W. Benoit, “The effect of mesenchymal stem cells delivered via hydrogel- based tissue engineered periosteum on bone allograft healing,” Biomaterials 34(35), 8887–8898 (2013).
[Crossref]

R. S. Dhillon, C. Xie, W. Tyler, L. M. Calvi, H. A. Awad, M. J. Zuscik, R. J. O’Keefe, and E. M. Schwarz, “PTH-Enhanced Structural Allograft Healing Is Associated With Decreased Angiopoietin-2–Mediated Arteriogenesis, Mast Cell Accumulation, and Fibrosis,” J. Bone Miner. Res. 28(3), 586–597 (2013).
[Crossref]

C. Xie, D. Reynolds, H. Awad, P. T. Rubery, G. Pelled, D. Gazit, R. E. Guldberg, E. M. Schwarz, R. J. O’Keefe, and X. P. Zhang, “Structural bone allograft combined with genetically engineered mesenchymal stem cells as a novel platform for bone tissue engineering,” Tissue Eng. 13(3), 435–445 (2007).
[Crossref]

X. Zhang, C. Xie, A. S. Lin, H. Ito, H. Awad, J. R. Lieberman, P. T. Rubery, E. M. Schwarz, R. J. O’Keefe, and R. E. Guldberg, “Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering,” J. Bone Miner. Res. 20(12), 2124–2137 (2005).
[Crossref]

Xue, J.

K. Schilling, M. El Khatib, S. Plunkett, J. Xue, Y. Xia, S. A. Vinogradov, E. Brown, and X. Zhang, “Electrospun Fiber Mesh for High-Resolution Measurements of Oxygen Tension in Cranial Bone Defect Repair,” ACS Appl. Mater. Interfaces 11(37), 33548–33558 (2019).
[Crossref]

Yao, J.

L. V. Wang and J. Yao, “A practical guide to photoacoustic tomography in the life sciences,” Nat. Methods 13(8), 627–638 (2016).
[Crossref]

Yeh, J. J.

A. J. Lin, G. Liu, N. A. Castello, J. J. Yeh, R. Rahimian, G. Lee, V. Tsay, A. J. Durkin, B. Choi, F. M. LaFerla, Z. Chen, K. N. Green, and B. J. Tromberg, “Optical imaging in an Alzheimer’s mouse model reveals amyloid-β-dependent vascular impairment,” Neurophoton 1(1), 011005 (2014).
[Crossref]

Zhang, X.

K. Schilling, M. El Khatib, S. Plunkett, J. Xue, Y. Xia, S. A. Vinogradov, E. Brown, and X. Zhang, “Electrospun Fiber Mesh for High-Resolution Measurements of Oxygen Tension in Cranial Bone Defect Repair,” ACS Appl. Mater. Interfaces 11(37), 33548–33558 (2019).
[Crossref]

M. D. Hoffman, C. Xie, X. Zhang, and D. S. W. Benoit, “The effect of mesenchymal stem cells delivered via hydrogel- based tissue engineered periosteum on bone allograft healing,” Biomaterials 34(35), 8887–8898 (2013).
[Crossref]

D. G. Reynolds, C. Hock, S. Shaikh, J. Jacobson, X. Zhang, P. T. Rubery, C. A. Beck, R. J. O’Keefe, A. L. Lerner, E. M. Schwarz, and H. A. Awad, “Micro-computed tomography prediction of biomechanical strength in murine structural bone grafts,” J. Biomech. 40(14), 3178–3186 (2007).
[Crossref]

X. Zhang, C. Xie, A. S. Lin, H. Ito, H. Awad, J. R. Lieberman, P. T. Rubery, E. M. Schwarz, R. J. O’Keefe, and R. E. Guldberg, “Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering,” J. Bone Miner. Res. 20(12), 2124–2137 (2005).
[Crossref]

H. Ito, M. Koefoed, P. Tiyapatanaputi, K. Gromov, J. J. Goater, J. Carmouche, X. Zhang, P. T. Rubery, J. Rabinowitz, R. J. Samulski, T. Nakamura, K. Soballe, R. J. O’Keefe, B. F. Boyce, and E. M. Schwarz, “Remodeling of cortical bone allografts mediated by adherent rAAV-RANKL and VEGF gene therapy,” Nat. Med. 11(3), 291–297 (2005).
[Crossref]

Zhang, X. P.

C. Xie, D. Reynolds, H. Awad, P. T. Rubery, G. Pelled, D. Gazit, R. E. Guldberg, E. M. Schwarz, R. J. O’Keefe, and X. P. Zhang, “Structural bone allograft combined with genetically engineered mesenchymal stem cells as a novel platform for bone tissue engineering,” Tissue Eng. 13(3), 435–445 (2007).
[Crossref]

Zhao, Y.

Zhu, Q.

S. Nandy, A. Mostafa, P. D. Kumavor, M. Sanders, M. Brewer, and Q. Zhu, “Characterizing optical properties and spatial heterogeneity of human ovarian tissue using spatial frequency domain imaging,” J. Biomed. Opt. 21(10), 101402 (2016).
[Crossref]

Zuscik, M. J.

R. S. Dhillon, C. Xie, W. Tyler, L. M. Calvi, H. A. Awad, M. J. Zuscik, R. J. O’Keefe, and E. M. Schwarz, “PTH-Enhanced Structural Allograft Healing Is Associated With Decreased Angiopoietin-2–Mediated Arteriogenesis, Mast Cell Accumulation, and Fibrosis,” J. Bone Miner. Res. 28(3), 586–597 (2013).
[Crossref]

ACS Appl. Mater. Interfaces (1)

K. Schilling, M. El Khatib, S. Plunkett, J. Xue, Y. Xia, S. A. Vinogradov, E. Brown, and X. Zhang, “Electrospun Fiber Mesh for High-Resolution Measurements of Oxygen Tension in Cranial Bone Defect Repair,” ACS Appl. Mater. Interfaces 11(37), 33548–33558 (2019).
[Crossref]

Biomaterials (2)

M. D. Hoffman, C. Xie, X. Zhang, and D. S. W. Benoit, “The effect of mesenchymal stem cells delivered via hydrogel- based tissue engineered periosteum on bone allograft healing,” Biomaterials 34(35), 8887–8898 (2013).
[Crossref]

M. D. Hoffman and D. S. Benoit, “Emulating native periosteum cell population and subsequent paracrine factor production to promote tissue engineered periosteum-mediated allograft healing,” Biomaterials 52, 426–440 (2015).
[Crossref]

Biomed. Opt. Express (3)

Bone (1)

C. Lu, N. Saless, X. Wang, A. Sinha, S. Decker, G. Kazakia, H. Hou, B. Williams, H. M. Swartz, T. K. Hunt, T. Miclau, and R. S. Marcucio, “The role of oxygen during fracture healing,” Bone 52(1), 220–229 (2013).
[Crossref]

Bone Res. (1)

R. E. Tomlinson and M. J. Silva, “Skeletal Blood Flow in Bone Repair and Maintenance,” Bone Res. 1(4), 311–322 (2013).
[Crossref]

Breast Cancer Res. (1)

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. B. Jr, D. J. Cuccia, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “Spectral discrimination of breast pathologies in situusing spatial frequency domain imaging,” Breast Cancer Res. 15(4), R61 (2013).
[Crossref]

Case Rep. Orthop. (1)

J. K. Hoffman, S. Geraghty, and N. M. Protzman, “Articular cartilage repair using marrow stimulation augmented with a viable chondral allograft: 9-month postoperative histological evaluation,” Case Rep. Orthop. 2015, 617365 (2015).
[Crossref]

Clin. Cases. Miner. Bone. Metab. (1)

J. A. Buza and T. Einhorn, “Bone healing in 2016,” Clin. Cases. Miner. Bone. Metab. 13(2), 101–105 (2016).
[Crossref]

Clin. Orthop. Relat. Res. (2)

H. J. Mankin, F. J. Hornicek, and K. A. Raskin, “Infection in massive bone allografts,” Clin. Orthop. Relat. Res. 432, 210–216 (2005).
[Crossref]

D. L. Wheeler and W. F. Enneking, “Allograft bone decreases in strength in vivo over time,” Clin. Orthop. Relat. Res. 435, 36–42 (2005).
[Crossref]

Injury (2)

P. V. Giannoudis, H. Dinopoulos, and E. Tsiridis, “Bone substitutes: an update,” Injury 36(3), S20–S27 (2005).
[Crossref]

I. Pountos and P. V. Giannoudis, “Is there a role of coral bone substitutes in bone repair?” Injury 47(12), 2606–2613 (2016).
[Crossref]

J. Biomech. (1)

D. G. Reynolds, C. Hock, S. Shaikh, J. Jacobson, X. Zhang, P. T. Rubery, C. A. Beck, R. J. O’Keefe, A. L. Lerner, E. M. Schwarz, and H. A. Awad, “Micro-computed tomography prediction of biomechanical strength in murine structural bone grafts,” J. Biomech. 40(14), 3178–3186 (2007).
[Crossref]

J. Biomed. Opt. (4)

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref]

J. P. Angelo, S.-J. Chen, M. Ochoa, U. Sunar, S. Gioux, and X. Intes, “Review of structured light in diffuse optical imaging,” J. Biomed. Opt. 24(07), 1 (2018).
[Crossref]

S. Nandy, A. Mostafa, P. D. Kumavor, M. Sanders, M. Brewer, and Q. Zhu, “Characterizing optical properties and spatial heterogeneity of human ovarian tissue using spatial frequency domain imaging,” J. Biomed. Opt. 21(10), 101402 (2016).
[Crossref]

C. K. Hayakawa, K. Karrobi, V. Pera, D. Roblyer, and V. Venugopalan, “Optical sampling depth in the spatial frequency domain,” J. Biomed. Opt. 24(07), 1–14 (2018).
[Crossref]

J. Bone Jt. Surg., Am. Vol. (1)

A. S. Greenwald, S. D. Boden, V. M. Goldberg, Y. Khan, C. T. Laurencin, and R. N. Rosier, “Bone-graft substitutes: facts, fictions, and applications,” J. Bone Jt. Surg., Am. Vol. 83, 98–103 (2001).
[Crossref]

J. Bone Miner. Res. (2)

R. S. Dhillon, C. Xie, W. Tyler, L. M. Calvi, H. A. Awad, M. J. Zuscik, R. J. O’Keefe, and E. M. Schwarz, “PTH-Enhanced Structural Allograft Healing Is Associated With Decreased Angiopoietin-2–Mediated Arteriogenesis, Mast Cell Accumulation, and Fibrosis,” J. Bone Miner. Res. 28(3), 586–597 (2013).
[Crossref]

X. Zhang, C. Xie, A. S. Lin, H. Ito, H. Awad, J. R. Lieberman, P. T. Rubery, E. M. Schwarz, R. J. O’Keefe, and R. E. Guldberg, “Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering,” J. Bone Miner. Res. 20(12), 2124–2137 (2005).
[Crossref]

J. Cell. Biochem. (1)

L. C. Gerstenfeld, D. M. Cullinane, G. L. Barnes, D. T. Graves, and T. A. Einhorn, “Fracture healing as a post-natal developmental process: Molecular, spatial, and temporal aspects of its regulation,” J. Cell. Biochem. 88(5), 873–884 (2003).
[Crossref]

J. Orthop. Sci. (1)

A. Ozaki, M. Tsunoda, S. Kinoshita, and R. Saura, “Role of fracture hematoma and periosteum during fracture healing in rats: interaction of fracture hematoma and the periosteum in the initial step of the healing process,” J. Orthop. Sci. 5(1), 64–70 (2000).
[Crossref]

J. Tissue Eng. (1)

E. A. Fragogeorgi, M. Rouchota, M. Georgiou, M. Velez, P. Bouziotis, and G. Loudos, “In vivo imaging techniques for bone tissue engineering,” J. Tissue Eng. 10, 204173141985458 (2019).
[Crossref]

Lasers Surg. Med. (1)

A. Ponticorvo, D. M. Burmeister, R. Rowland, M. Baldado, G. T. Kennedy, R. Saager, N. Bernal, B. Choi, and A. J. Durkin, “Quantitative long-term measurements of burns in a rat model using Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI),” Lasers Surg. Med. 49(3), 293–304 (2017).
[Crossref]

Nat. Med. (1)

H. Ito, M. Koefoed, P. Tiyapatanaputi, K. Gromov, J. J. Goater, J. Carmouche, X. Zhang, P. T. Rubery, J. Rabinowitz, R. J. Samulski, T. Nakamura, K. Soballe, R. J. O’Keefe, B. F. Boyce, and E. M. Schwarz, “Remodeling of cortical bone allografts mediated by adherent rAAV-RANKL and VEGF gene therapy,” Nat. Med. 11(3), 291–297 (2005).
[Crossref]

Nat. Methods (1)

L. V. Wang and J. Yao, “A practical guide to photoacoustic tomography in the life sciences,” Nat. Methods 13(8), 627–638 (2016).
[Crossref]

Nat. Rev. Rheumatol. (1)

T. A. Einhorn and L. C. Gerstenfeld, “Fracture healing: mechanisms and interventions,” Nat. Rev. Rheumatol. 11(1), 45–54 (2015).
[Crossref]

Neurophoton (1)

A. J. Lin, G. Liu, N. A. Castello, J. J. Yeh, R. Rahimian, G. Lee, V. Tsay, A. J. Durkin, B. Choi, F. M. LaFerla, Z. Chen, K. N. Green, and B. J. Tromberg, “Optical imaging in an Alzheimer’s mouse model reveals amyloid-β-dependent vascular impairment,” Neurophoton 1(1), 011005 (2014).
[Crossref]

Neurophotonics (1)

M. D. Reisman, Z. E. Markow, A. Q. Bauer, and J. P. Culver, “Structured illumination diffuse optical tomography for noninvasive functional neuroimaging in mice,” Neurophotonics 4(2), 021102 (2017).
[Crossref]

Opt. Lett. (1)

Organogenesis (1)

T. T. Roberts and A. J. Rosenbaum, “Bone grafts, bone substitutes and orthobiologics: The bridge between basic science and clinical advancements in fracture healing,” Organogenesis 8(4), 114–124 (2012).
[Crossref]

Photochem. Photobiol. (1)

J. Ren, S. Han, A. R. Proctor, D. E. Desa, G. A. Ramirez, V. R. D. Ching-Roa, J. B. Majeski, I. A. Dar, N. E. Barber, A. M. Forti, D. S. W. Benoit, and R. Choe, “Longitudinal 3D Blood Flow Distribution Provided by Diffuse Correlation Tomography during Bone Healing in a Murine Fracture Model,” Photochem. Photobiol. 96(2), 380–387 (2020).
[Crossref]

Phys. Med. Biol. (1)

S. L. Jacques, “Corrigendum: Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(14), 5007–5008 (2013).
[Crossref]

PLoS One (1)

S. Han, A. R. Proctor, J. Ren, D. S. W. Benoit, and R. Choe, “Temporal blood flow changes measured by diffuse correlation tomography predict murine femoral graft healing,” PLoS One 13(5), e0197031 (2018).
[Crossref]

Semin. Cell Dev. Biol. (1)

A. Schindeler, M. M. McDonald, P. Bokko, and D. G. Little, “Bone remodeling during fracture repair: The cellular picture,” Semin. Cell Dev. Biol. 19(5), 459–466 (2008).
[Crossref]

Tissue Eng. (1)

C. Xie, D. Reynolds, H. Awad, P. T. Rubery, G. Pelled, D. Gazit, R. E. Guldberg, E. M. Schwarz, R. J. O’Keefe, and X. P. Zhang, “Structural bone allograft combined with genetically engineered mesenchymal stem cells as a novel platform for bone tissue engineering,” Tissue Eng. 13(3), 435–445 (2007).
[Crossref]

Other (2)

N. M. Tole, “Basic physics of ultrasonographic imaging,” (2005).

“SAS Institute Inc., SAS OnlineDoc, Version 8, Cary, NC: SAS Institute Inc.,” (1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Schematic of the SFDI instrumentation and the positioning of the mouse in the in vivo measurement. The inlet photo shows the skin markers and the region of interest (ROI) indicating the graft position. LED: light-emitting diodes; DMD: digital micromirror device. (b) A photo of the setup. Light source includes the LEDs and the shortpass dichroic mirror.
Fig. 2.
Fig. 2. Timeline of the longitudinal monitoring. For each mouse, the SFDI measurement started from one day before the graft surgery and stopped at day 44 post-surgery. The measurement frequency decreased after week 2 due to the resistance to anesthesia. The data in the first week was contaminated by black sutures covering the wound site and was not included in the analysis.
Fig. 3.
Fig. 3. Recovered optical properties of the tissue phantoms. The measured average µa and µs are plotted against the expected values for (a) 660 nm and (b) 850 nm illuminations. The error bar indicates the standard deviation among pixels. In all cases, the discrepancy between the measured and expected values were below 6%.
Fig. 4.
Fig. 4. Relative THC and StO2 of the healthy mice (n=5) during 9 days of monitoring. (a, b) Relative mean THC and StO2 within the ROI (defined in section 2.5) for each healthy mouse. The error bar indicates the standard deviation of the quantity (THC or StO2) normalized by the pre-surgery mean of the corresponding mouse. (c, d) Group-averaged relative THC and StO2. The error bar indicates the standard error of the group mean.
Fig. 5.
Fig. 5. Examples of the photo, THC and StO2 images. (a) and (b) show the images of an autograft and an allograft mouse, respectively. In THC and StO2 images, the hair regions are shown in black. The red box indicates the ROI defined in section 2.5, where the graft is approximately located. The femur was between the two skin markers (left: distal, right: proximal) and the skin covering the femur was relatively flat.
Fig. 6.
Fig. 6. Relative THC and StO2 of the graft mice from longitudinal monitoring. (a, b) Relative mean THC and StO2 within the ROI for each mouse. The error bar indicates the standard deviation of the quantify (THC or StO2) normalized by the pre-surgery average of the corresponding mouse. (c, d) The group-averaged relative THC and StO2 for each graft type. The error bar indicates the standard error of the group mean. For THC, the autograft group showed significantly greater change compared to the allograft group.
Fig. 7.
Fig. 7. (a) µa and (b) µs images of a representative mouse from pre-surgery measurement. Images of µs from both wavelengths show higher µs in the femur region, which was identified by the skin markers in the proximal and distal ends of the femur. The ROI (red box) defined in the middle of the skin markers covers the mid-diaphysis region. The femur region was not evident in the µa images.

Tables (1)

Tables Icon

Table 1. Result of the linear mixed-effect fittinga

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T H C = β 0 + β 1 t + β 2 g + β 3 t g + Z γ + ε ,