Abstract

We demonstrate a 3×3 coupler-based fiber-optic interferometric system to detect the local initial photoacoustic pressure. In contrast with the existing interferometric photoacoustic microscopy (PAM) relying on the measurement of the phase change of the probe light caused by the sample surface vibration, the present method measures the intensity change of the probe light caused by the initial photoacoustic pressure. Compared with the conventional interferometric PAMs, this method has the advantages: (1) it is free from the influence of the rough tissue surface, achieving complete noncontact in vivo imaging; (2) the probe light and the excitation light are focused at a same point below the sample surface, and the confocal configuration makes it more convenient for in vivo imaging; and (3) there is no need for phase stabilization, allowing a high imaging speed. These advantages show that the method will be a promising technique for in vivo imaging. This method is verified by imaging of a resolution test target and in vivo imaging of the blood vessels in a mouse ear.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Large area laser scanning optical resolution photoacoustic microscopy using a fibre optic sensor

Thomas J. Allen, Olumide Ogunlade, Edward Zhang, and Paul C. Beard
Biomed. Opt. Express 9(2) 650-660 (2018)

Non-contact photoacoustic imaging using a fiber based interferometer with optical amplification

Armin Hochreiner, Johannes Bauer-Marschallinger, Peter Burgholzer, Bernhard Jakoby, and Thomas Berer
Biomed. Opt. Express 4(11) 2322-2331 (2013)

Noncontact photoacoustic imaging achieved by using a low-coherence interferometer as the acoustic detector

Yi Wang, Chunhui Li, and Ruikang K. Wang
Opt. Lett. 36(20) 3975-3977 (2011)

References

  • View by:
  • |
  • |
  • |

  1. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
    [Crossref]
  2. P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
    [Crossref]
  3. J. Lu, Y. Gao, Z. Ma, H. Zhou, R. K. Wang, and Y. Wang, “In vivo photoacoustic imaging of blood vessels using a homodyne interferometer with zero-crossing triggering,” J. Biomed. Opt. 22(3), 036002 (2017).
    [Crossref]
  4. J. Yang, C. Favazza, R. Chen, J. Yao, S. Cai, K. Maslov, Q. Zhou, K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
    [Crossref]
  5. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
    [Crossref]
  6. R. J. Paproski, A. Heinmiller, K. Wachowicz, and R. J. Zemp, “Multiwavelength photoacoustic imaging of inducible tyrosinase reporter gene expression in xenograft tumors,” Sci. Rep. 4(1), 5329 (2015).
    [Crossref]
  7. D. Wu, L. Huang, M. S. Jiang, and H. Jiang, “Contrast agents for photoacoustic and thermoacoustic imaging: a review,” Int. J. Mol. Sci. 15(12), 23616–23639 (2014).
    [Crossref]
  8. E. M. Strohm, M. J. Moore, and M. C. Kolios, “Single cell photoacoustic microscopy: a review,” IEEE J. Sel. Top. Quantum Electron. 22(3), 137–151 (2016).
    [Crossref]
  9. G. Rousseau, A. Blouin, and J. P. Monchalin, “Non-contact photoacoustic tomography and ultrasonography for tissue imaging,” Biomed. Opt. Express 3(1), 16–25 (2012).
    [Crossref]
  10. P. Hajireza, J. Sorge, M. Brett, and R. J. Zemp, “In vivo optical resolution photoacoustic microscopy using glancing angle-deposited nanostructured Fabry-Perot etalons,” Opt. Lett. 40(7), 1350–1353 (2015).
    [Crossref]
  11. C. Kim, T. N. Erpelding, L. Jankovic, M. D. Pashley, and L. V. Wang, “Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system,” Biomed. Opt. Express 1(1), 278–284 (2010).
    [Crossref]
  12. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
    [Crossref]
  13. S. Hu, K. Maslov, and L. V. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett. 36(7), 1134–1136 (2011).
    [Crossref]
  14. E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
    [Crossref]
  15. G. Paltauf, R. Nuster, M. Haltmeier, and P. Burgholzer, “Photoacoustic tomography using a Mach-Zehnder interferometer as an acoustic line detector,” Appl. Opt. 46(16), 3352–3358 (2007).
    [Crossref]
  16. T. J. Allen, O. Ogunlade, E. Zhang, and P. C. Beard, “Large area laser scanning optical resolution photoacoustic microscopy using a fibre optic sensor,” Biomed. Opt. Express 9(2), 650 (2018).
    [Crossref]
  17. Z. Xie, S. Chen, T. Ling, L. J. Guo, P. L. Carson, and X. Wang, “Pure optical photoacoustic microscopy,” Opt. Express 19(10), 9027–9034 (2011).
    [Crossref]
  18. J. M. Yang, C. Li, R. Chen, B. Rao, J. Yao, C. H. Yeh, and L. V. Wang, “Optical-resolution photoacoustic endomicroscopy in vivo,” Biomed. Opt. Express 6(3), 918–932 (2015).
    [Crossref]
  19. J. M. Yang, C. Li, R. Chen, Q. Zhou, K. K. Shuang, and L. V. Wang, “Catheter-based photoacoustic endoscope,” J. Biomed. Opt. 19(6), 066001 (2014).
    [Crossref]
  20. Y. Yuan, S. Yang, and D. Xing, “Preclinical photoacoustic imaging endoscope based on acousto-optic coaxial system using ring transducer array,” Opt. Lett. 35(13), 2266 (2010).
    [Crossref]
  21. T. Berer, A. Hochreiner, S. Zamiri, and P. Burgholzer, “Remote photoacoustic imaging on solid material using a two-wave mixing interferometer,” Opt. Lett. 35(24), 4151–4153 (2010).
    [Crossref]
  22. S. A. Carp, A. Guerra, S. Q. Duque, and V. Venugopalan, “Optoacoustic imaging using interferometric measurement of surface displacement,” Appl. Phys. Lett. 85(23), 5772–5774 (2004).
    [Crossref]
  23. S. J. Park, J. Eom, Y. H. Kim, C. S. Lee, and B. H. Lee, “Noncontact photoacoustic imaging based on all-fiber heterodyne interferometer,” Opt. Lett. 39(16), 4903 (2014).
    [Crossref]
  24. G. Rousseau, B. Gauthier, A. Blouin, and J. P. Monchalin, “Non-contact biomedical photoacoustic and ultrasound imaging,” J. Biomed. Opt. 17(6), 061217 (2012).
    [Crossref]
  25. A. Hochreiner, J. Bauer-Marschallinger, P. Burgholzer, B. Jakoby, and T. Berer, “Non-contact photoacoustic imaging using a fiber based interferometer with optical amplification,” Biomed. Opt. Express 4(11), 2322–2331 (2013).
    [Crossref]
  26. T. Berer, E. Leiss-Holzinger, A. Hochreiner, J. Bauer-Marschallinger, and A. Buchsbaum, “Multimodal noncontact photoacoustic and optical coherence tomography imaging using wavelength-division multiplexing,” J. Biomed. Opt. 20(4), 046013 (2015).
    [Crossref]
  27. Y. Wang, C. Li, and R. K. Wang, “Noncontact photoacoustic imaging achieved by using a low-coherence interferometer as the acoustic detector,” Opt. Lett. 36(20), 3975–3977 (2011).
    [Crossref]
  28. Z. Chen, S. Yang, Y. Wang, and D. Xing, “All-optically integrated photo-acoustic microscopy and optical coherence tomography based on a single Michelson detector,” Opt. Lett. 40(12), 2838–2841 (2015).
    [Crossref]
  29. J. Liu, Z. Tang, Y. Wu, and Y. Wang, “Rapid and noncontact photoacoustic tomography imaging system using an interferometer with high-speed phase modulation technique,” Rev. Sci. Instrum. 86(4), 044904 (2015).
    [Crossref]
  30. Z. Ma, S. Luo, M. Yu, and Y. Wang, “Assessment of microvasculature flow state with a high speed all-optic dual-modal system of optical coherence tomography and photoacoustic imaging,” Biomed. Opt. Express 9(12), 6103–6115 (2018).
    [Crossref]
  31. Z. Chen, S. Yang, Y. Wang, and D. Xing, “Noncontact broadband all-optical photoacoustic microscopy based on a low-coherence interferometer,” Appl. Phys. Lett. 106(4), 043701 (2015).
    [Crossref]
  32. S. Park, S. Rim, Y. Kim, and B. H. Lee, “Noncontact photoacoustic imaging based on optical quadrature detection with a multiport interferometer,” Opt. Lett. 44(10), 2590–2593 (2019).
    [Crossref]
  33. P. Hajireza, W. Shi, K. Bell, R. J. Paproski, and R. J. Zemp, “Non-interferometric photoacoustic remote sensing microscopy,” Light: Sci. Appl. 6(6), e16278 (2017).
    [Crossref]
  34. P. Hajireza, K. Bell, W. Shi, J. Shapiro, and R. J. Zemp, “Deep non-contact photoacoustic initial pressure imaging,” Optica 5(7), 814 (2018).
    [Crossref]
  35. K. Bell, P. Hajireza, W. Shi, and R. Zemp, “Temporal evolution of low-coherence reflectrometry signals in photoacoustic remote sensing microscopy,” Appl. Opt. 56(18), 5172 (2017).
    [Crossref]
  36. K. Bell, P. Hajireza, and R. Zemp, “Real-time functional photoacoustic remote sensing microscopy,” Opt. Lett. 44(14), 3466–3469 (2019).
    [Crossref]
  37. P. S. Huang and S. Zhang, “Fast three-step phase-shifting algorithm,” Appl. Opt. 45(21), 5086–5091 (2006).
    [Crossref]
  38. Laser Institute of America, American National Standard for Safe Use of Lasers ANSI Z136.1–2007 (American National Standards Institute, 2007).
  39. W. Choi and R. Wang, “Volumetric cutaneous microangiography of human skin in vivo by VCSEL swept-source optical coherence tomography,” Quantum Electron. 44(8), 740–745 (2014).
    [Crossref]
  40. X. Jun, J. Yao, and L. V. Wang, “Photoacoustic Tomography: Principles and Advances,” Prog. Electromagn. Res. 147, 1–22 (2014).
    [Crossref]
  41. I. G. Calasso, “Photoacoustic Point Source,” Phys. Rev. Lett. 86(16), 3550–3553 (2001).
    [Crossref]
  42. Y. Wang, D. Xing, Y. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol. 49(14), 3117–3124 (2004).
    [Crossref]
  43. M. A. Choma, C. Yang, and J. A. Izatt, “Instantaneous quadrature low-coherence interferometry with 3×3 fiber-optic couplers,” Opt. Lett. 28(22), 2162–2164 (2003).
    [Crossref]
  44. J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Med. 12(5), 407–410 (2015).
    [Crossref]

2019 (2)

2018 (3)

2017 (3)

P. Hajireza, W. Shi, K. Bell, R. J. Paproski, and R. J. Zemp, “Non-interferometric photoacoustic remote sensing microscopy,” Light: Sci. Appl. 6(6), e16278 (2017).
[Crossref]

K. Bell, P. Hajireza, W. Shi, and R. Zemp, “Temporal evolution of low-coherence reflectrometry signals in photoacoustic remote sensing microscopy,” Appl. Opt. 56(18), 5172 (2017).
[Crossref]

J. Lu, Y. Gao, Z. Ma, H. Zhou, R. K. Wang, and Y. Wang, “In vivo photoacoustic imaging of blood vessels using a homodyne interferometer with zero-crossing triggering,” J. Biomed. Opt. 22(3), 036002 (2017).
[Crossref]

2016 (1)

E. M. Strohm, M. J. Moore, and M. C. Kolios, “Single cell photoacoustic microscopy: a review,” IEEE J. Sel. Top. Quantum Electron. 22(3), 137–151 (2016).
[Crossref]

2015 (8)

R. J. Paproski, A. Heinmiller, K. Wachowicz, and R. J. Zemp, “Multiwavelength photoacoustic imaging of inducible tyrosinase reporter gene expression in xenograft tumors,” Sci. Rep. 4(1), 5329 (2015).
[Crossref]

P. Hajireza, J. Sorge, M. Brett, and R. J. Zemp, “In vivo optical resolution photoacoustic microscopy using glancing angle-deposited nanostructured Fabry-Perot etalons,” Opt. Lett. 40(7), 1350–1353 (2015).
[Crossref]

J. M. Yang, C. Li, R. Chen, B. Rao, J. Yao, C. H. Yeh, and L. V. Wang, “Optical-resolution photoacoustic endomicroscopy in vivo,” Biomed. Opt. Express 6(3), 918–932 (2015).
[Crossref]

Z. Chen, S. Yang, Y. Wang, and D. Xing, “Noncontact broadband all-optical photoacoustic microscopy based on a low-coherence interferometer,” Appl. Phys. Lett. 106(4), 043701 (2015).
[Crossref]

T. Berer, E. Leiss-Holzinger, A. Hochreiner, J. Bauer-Marschallinger, and A. Buchsbaum, “Multimodal noncontact photoacoustic and optical coherence tomography imaging using wavelength-division multiplexing,” J. Biomed. Opt. 20(4), 046013 (2015).
[Crossref]

Z. Chen, S. Yang, Y. Wang, and D. Xing, “All-optically integrated photo-acoustic microscopy and optical coherence tomography based on a single Michelson detector,” Opt. Lett. 40(12), 2838–2841 (2015).
[Crossref]

J. Liu, Z. Tang, Y. Wu, and Y. Wang, “Rapid and noncontact photoacoustic tomography imaging system using an interferometer with high-speed phase modulation technique,” Rev. Sci. Instrum. 86(4), 044904 (2015).
[Crossref]

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Med. 12(5), 407–410 (2015).
[Crossref]

2014 (5)

W. Choi and R. Wang, “Volumetric cutaneous microangiography of human skin in vivo by VCSEL swept-source optical coherence tomography,” Quantum Electron. 44(8), 740–745 (2014).
[Crossref]

X. Jun, J. Yao, and L. V. Wang, “Photoacoustic Tomography: Principles and Advances,” Prog. Electromagn. Res. 147, 1–22 (2014).
[Crossref]

S. J. Park, J. Eom, Y. H. Kim, C. S. Lee, and B. H. Lee, “Noncontact photoacoustic imaging based on all-fiber heterodyne interferometer,” Opt. Lett. 39(16), 4903 (2014).
[Crossref]

J. M. Yang, C. Li, R. Chen, Q. Zhou, K. K. Shuang, and L. V. Wang, “Catheter-based photoacoustic endoscope,” J. Biomed. Opt. 19(6), 066001 (2014).
[Crossref]

D. Wu, L. Huang, M. S. Jiang, and H. Jiang, “Contrast agents for photoacoustic and thermoacoustic imaging: a review,” Int. J. Mol. Sci. 15(12), 23616–23639 (2014).
[Crossref]

2013 (1)

2012 (3)

G. Rousseau, A. Blouin, and J. P. Monchalin, “Non-contact photoacoustic tomography and ultrasonography for tissue imaging,” Biomed. Opt. Express 3(1), 16–25 (2012).
[Crossref]

J. Yang, C. Favazza, R. Chen, J. Yao, S. Cai, K. Maslov, Q. Zhou, K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref]

G. Rousseau, B. Gauthier, A. Blouin, and J. P. Monchalin, “Non-contact biomedical photoacoustic and ultrasound imaging,” J. Biomed. Opt. 17(6), 061217 (2012).
[Crossref]

2011 (4)

2010 (3)

2009 (1)

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[Crossref]

2008 (2)

2007 (1)

2006 (2)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref]

P. S. Huang and S. Zhang, “Fast three-step phase-shifting algorithm,” Appl. Opt. 45(21), 5086–5091 (2006).
[Crossref]

2004 (2)

S. A. Carp, A. Guerra, S. Q. Duque, and V. Venugopalan, “Optoacoustic imaging using interferometric measurement of surface displacement,” Appl. Phys. Lett. 85(23), 5772–5774 (2004).
[Crossref]

Y. Wang, D. Xing, Y. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol. 49(14), 3117–3124 (2004).
[Crossref]

2003 (1)

2001 (1)

I. G. Calasso, “Photoacoustic Point Source,” Phys. Rev. Lett. 86(16), 3550–3553 (2001).
[Crossref]

Allen, T. J.

Bauer-Marschallinger, J.

T. Berer, E. Leiss-Holzinger, A. Hochreiner, J. Bauer-Marschallinger, and A. Buchsbaum, “Multimodal noncontact photoacoustic and optical coherence tomography imaging using wavelength-division multiplexing,” J. Biomed. Opt. 20(4), 046013 (2015).
[Crossref]

A. Hochreiner, J. Bauer-Marschallinger, P. Burgholzer, B. Jakoby, and T. Berer, “Non-contact photoacoustic imaging using a fiber based interferometer with optical amplification,” Biomed. Opt. Express 4(11), 2322–2331 (2013).
[Crossref]

Beard, P.

Beard, P. C.

Bell, K.

Berer, T.

Blouin, A.

G. Rousseau, B. Gauthier, A. Blouin, and J. P. Monchalin, “Non-contact biomedical photoacoustic and ultrasound imaging,” J. Biomed. Opt. 17(6), 061217 (2012).
[Crossref]

G. Rousseau, A. Blouin, and J. P. Monchalin, “Non-contact photoacoustic tomography and ultrasonography for tissue imaging,” Biomed. Opt. Express 3(1), 16–25 (2012).
[Crossref]

Brett, M.

Buchsbaum, A.

T. Berer, E. Leiss-Holzinger, A. Hochreiner, J. Bauer-Marschallinger, and A. Buchsbaum, “Multimodal noncontact photoacoustic and optical coherence tomography imaging using wavelength-division multiplexing,” J. Biomed. Opt. 20(4), 046013 (2015).
[Crossref]

Burgholzer, P.

Cai, S.

J. Yang, C. Favazza, R. Chen, J. Yao, S. Cai, K. Maslov, Q. Zhou, K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref]

Calasso, I. G.

I. G. Calasso, “Photoacoustic Point Source,” Phys. Rev. Lett. 86(16), 3550–3553 (2001).
[Crossref]

Carp, S. A.

S. A. Carp, A. Guerra, S. Q. Duque, and V. Venugopalan, “Optoacoustic imaging using interferometric measurement of surface displacement,” Appl. Phys. Lett. 85(23), 5772–5774 (2004).
[Crossref]

Carson, P. L.

Chen, Q.

Y. Wang, D. Xing, Y. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol. 49(14), 3117–3124 (2004).
[Crossref]

Chen, R.

J. M. Yang, C. Li, R. Chen, B. Rao, J. Yao, C. H. Yeh, and L. V. Wang, “Optical-resolution photoacoustic endomicroscopy in vivo,” Biomed. Opt. Express 6(3), 918–932 (2015).
[Crossref]

J. M. Yang, C. Li, R. Chen, Q. Zhou, K. K. Shuang, and L. V. Wang, “Catheter-based photoacoustic endoscope,” J. Biomed. Opt. 19(6), 066001 (2014).
[Crossref]

J. Yang, C. Favazza, R. Chen, J. Yao, S. Cai, K. Maslov, Q. Zhou, K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref]

Chen, S.

Chen, Z.

Z. Chen, S. Yang, Y. Wang, and D. Xing, “All-optically integrated photo-acoustic microscopy and optical coherence tomography based on a single Michelson detector,” Opt. Lett. 40(12), 2838–2841 (2015).
[Crossref]

Z. Chen, S. Yang, Y. Wang, and D. Xing, “Noncontact broadband all-optical photoacoustic microscopy based on a low-coherence interferometer,” Appl. Phys. Lett. 106(4), 043701 (2015).
[Crossref]

Choi, W.

W. Choi and R. Wang, “Volumetric cutaneous microangiography of human skin in vivo by VCSEL swept-source optical coherence tomography,” Quantum Electron. 44(8), 740–745 (2014).
[Crossref]

Choma, M. A.

Duque, S. Q.

S. A. Carp, A. Guerra, S. Q. Duque, and V. Venugopalan, “Optoacoustic imaging using interferometric measurement of surface displacement,” Appl. Phys. Lett. 85(23), 5772–5774 (2004).
[Crossref]

Eom, J.

Erpelding, T. N.

Favazza, C.

J. Yang, C. Favazza, R. Chen, J. Yao, S. Cai, K. Maslov, Q. Zhou, K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref]

Gao, Y.

J. Lu, Y. Gao, Z. Ma, H. Zhou, R. K. Wang, and Y. Wang, “In vivo photoacoustic imaging of blood vessels using a homodyne interferometer with zero-crossing triggering,” J. Biomed. Opt. 22(3), 036002 (2017).
[Crossref]

Gauthier, B.

G. Rousseau, B. Gauthier, A. Blouin, and J. P. Monchalin, “Non-contact biomedical photoacoustic and ultrasound imaging,” J. Biomed. Opt. 17(6), 061217 (2012).
[Crossref]

Guerra, A.

S. A. Carp, A. Guerra, S. Q. Duque, and V. Venugopalan, “Optoacoustic imaging using interferometric measurement of surface displacement,” Appl. Phys. Lett. 85(23), 5772–5774 (2004).
[Crossref]

Guo, L. J.

Hajireza, P.

Haltmeier, M.

Heinmiller, A.

R. J. Paproski, A. Heinmiller, K. Wachowicz, and R. J. Zemp, “Multiwavelength photoacoustic imaging of inducible tyrosinase reporter gene expression in xenograft tumors,” Sci. Rep. 4(1), 5329 (2015).
[Crossref]

Hochreiner, A.

Hu, S.

Huang, C. H.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Med. 12(5), 407–410 (2015).
[Crossref]

Huang, L.

D. Wu, L. Huang, M. S. Jiang, and H. Jiang, “Contrast agents for photoacoustic and thermoacoustic imaging: a review,” Int. J. Mol. Sci. 15(12), 23616–23639 (2014).
[Crossref]

Huang, P. S.

Izatt, J. A.

Jakoby, B.

Jankovic, L.

Jiang, H.

D. Wu, L. Huang, M. S. Jiang, and H. Jiang, “Contrast agents for photoacoustic and thermoacoustic imaging: a review,” Int. J. Mol. Sci. 15(12), 23616–23639 (2014).
[Crossref]

Jiang, M. S.

D. Wu, L. Huang, M. S. Jiang, and H. Jiang, “Contrast agents for photoacoustic and thermoacoustic imaging: a review,” Int. J. Mol. Sci. 15(12), 23616–23639 (2014).
[Crossref]

Jun, X.

X. Jun, J. Yao, and L. V. Wang, “Photoacoustic Tomography: Principles and Advances,” Prog. Electromagn. Res. 147, 1–22 (2014).
[Crossref]

Kim, C.

Kim, Y.

Kim, Y. H.

Kolios, M. C.

E. M. Strohm, M. J. Moore, and M. C. Kolios, “Single cell photoacoustic microscopy: a review,” IEEE J. Sel. Top. Quantum Electron. 22(3), 137–151 (2016).
[Crossref]

Laufer, J.

Lee, B. H.

Lee, C. S.

Leiss-Holzinger, E.

T. Berer, E. Leiss-Holzinger, A. Hochreiner, J. Bauer-Marschallinger, and A. Buchsbaum, “Multimodal noncontact photoacoustic and optical coherence tomography imaging using wavelength-division multiplexing,” J. Biomed. Opt. 20(4), 046013 (2015).
[Crossref]

Li, C.

Li, L.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Med. 12(5), 407–410 (2015).
[Crossref]

Ling, T.

Liu, J.

J. Liu, Z. Tang, Y. Wu, and Y. Wang, “Rapid and noncontact photoacoustic tomography imaging system using an interferometer with high-speed phase modulation technique,” Rev. Sci. Instrum. 86(4), 044904 (2015).
[Crossref]

Lu, J.

J. Lu, Y. Gao, Z. Ma, H. Zhou, R. K. Wang, and Y. Wang, “In vivo photoacoustic imaging of blood vessels using a homodyne interferometer with zero-crossing triggering,” J. Biomed. Opt. 22(3), 036002 (2017).
[Crossref]

Luo, S.

Ma, Z.

Z. Ma, S. Luo, M. Yu, and Y. Wang, “Assessment of microvasculature flow state with a high speed all-optic dual-modal system of optical coherence tomography and photoacoustic imaging,” Biomed. Opt. Express 9(12), 6103–6115 (2018).
[Crossref]

J. Lu, Y. Gao, Z. Ma, H. Zhou, R. K. Wang, and Y. Wang, “In vivo photoacoustic imaging of blood vessels using a homodyne interferometer with zero-crossing triggering,” J. Biomed. Opt. 22(3), 036002 (2017).
[Crossref]

Maslov, K.

J. Yang, C. Favazza, R. Chen, J. Yao, S. Cai, K. Maslov, Q. Zhou, K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref]

S. Hu, K. Maslov, and L. V. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett. 36(7), 1134–1136 (2011).
[Crossref]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
[Crossref]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref]

Maslov, K. I.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Med. 12(5), 407–410 (2015).
[Crossref]

Monchalin, J. P.

G. Rousseau, A. Blouin, and J. P. Monchalin, “Non-contact photoacoustic tomography and ultrasonography for tissue imaging,” Biomed. Opt. Express 3(1), 16–25 (2012).
[Crossref]

G. Rousseau, B. Gauthier, A. Blouin, and J. P. Monchalin, “Non-contact biomedical photoacoustic and ultrasound imaging,” J. Biomed. Opt. 17(6), 061217 (2012).
[Crossref]

Moore, M. J.

E. M. Strohm, M. J. Moore, and M. C. Kolios, “Single cell photoacoustic microscopy: a review,” IEEE J. Sel. Top. Quantum Electron. 22(3), 137–151 (2016).
[Crossref]

Nuster, R.

Ogunlade, O.

Paltauf, G.

Paproski, R. J.

P. Hajireza, W. Shi, K. Bell, R. J. Paproski, and R. J. Zemp, “Non-interferometric photoacoustic remote sensing microscopy,” Light: Sci. Appl. 6(6), e16278 (2017).
[Crossref]

R. J. Paproski, A. Heinmiller, K. Wachowicz, and R. J. Zemp, “Multiwavelength photoacoustic imaging of inducible tyrosinase reporter gene expression in xenograft tumors,” Sci. Rep. 4(1), 5329 (2015).
[Crossref]

Park, S.

Park, S. J.

Pashley, M. D.

Rao, B.

Rim, S.

Rousseau, G.

G. Rousseau, B. Gauthier, A. Blouin, and J. P. Monchalin, “Non-contact biomedical photoacoustic and ultrasound imaging,” J. Biomed. Opt. 17(6), 061217 (2012).
[Crossref]

G. Rousseau, A. Blouin, and J. P. Monchalin, “Non-contact photoacoustic tomography and ultrasonography for tissue imaging,” Biomed. Opt. Express 3(1), 16–25 (2012).
[Crossref]

Shapiro, J.

Shi, W.

Shuang, K. K.

J. M. Yang, C. Li, R. Chen, Q. Zhou, K. K. Shuang, and L. V. Wang, “Catheter-based photoacoustic endoscope,” J. Biomed. Opt. 19(6), 066001 (2014).
[Crossref]

Shung, K.

J. Yang, C. Favazza, R. Chen, J. Yao, S. Cai, K. Maslov, Q. Zhou, K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref]

Sorge, J.

Stoica, G.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref]

Strohm, E. M.

E. M. Strohm, M. J. Moore, and M. C. Kolios, “Single cell photoacoustic microscopy: a review,” IEEE J. Sel. Top. Quantum Electron. 22(3), 137–151 (2016).
[Crossref]

Tang, Z.

J. Liu, Z. Tang, Y. Wu, and Y. Wang, “Rapid and noncontact photoacoustic tomography imaging system using an interferometer with high-speed phase modulation technique,” Rev. Sci. Instrum. 86(4), 044904 (2015).
[Crossref]

Venugopalan, V.

S. A. Carp, A. Guerra, S. Q. Duque, and V. Venugopalan, “Optoacoustic imaging using interferometric measurement of surface displacement,” Appl. Phys. Lett. 85(23), 5772–5774 (2004).
[Crossref]

Wachowicz, K.

R. J. Paproski, A. Heinmiller, K. Wachowicz, and R. J. Zemp, “Multiwavelength photoacoustic imaging of inducible tyrosinase reporter gene expression in xenograft tumors,” Sci. Rep. 4(1), 5329 (2015).
[Crossref]

Wang, L.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Med. 12(5), 407–410 (2015).
[Crossref]

Wang, L. V.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Med. 12(5), 407–410 (2015).
[Crossref]

J. M. Yang, C. Li, R. Chen, B. Rao, J. Yao, C. H. Yeh, and L. V. Wang, “Optical-resolution photoacoustic endomicroscopy in vivo,” Biomed. Opt. Express 6(3), 918–932 (2015).
[Crossref]

J. M. Yang, C. Li, R. Chen, Q. Zhou, K. K. Shuang, and L. V. Wang, “Catheter-based photoacoustic endoscope,” J. Biomed. Opt. 19(6), 066001 (2014).
[Crossref]

X. Jun, J. Yao, and L. V. Wang, “Photoacoustic Tomography: Principles and Advances,” Prog. Electromagn. Res. 147, 1–22 (2014).
[Crossref]

J. Yang, C. Favazza, R. Chen, J. Yao, S. Cai, K. Maslov, Q. Zhou, K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref]

S. Hu, K. Maslov, and L. V. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett. 36(7), 1134–1136 (2011).
[Crossref]

C. Kim, T. N. Erpelding, L. Jankovic, M. D. Pashley, and L. V. Wang, “Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system,” Biomed. Opt. Express 1(1), 278–284 (2010).
[Crossref]

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[Crossref]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
[Crossref]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref]

Wang, R.

W. Choi and R. Wang, “Volumetric cutaneous microangiography of human skin in vivo by VCSEL swept-source optical coherence tomography,” Quantum Electron. 44(8), 740–745 (2014).
[Crossref]

Wang, R. K.

J. Lu, Y. Gao, Z. Ma, H. Zhou, R. K. Wang, and Y. Wang, “In vivo photoacoustic imaging of blood vessels using a homodyne interferometer with zero-crossing triggering,” J. Biomed. Opt. 22(3), 036002 (2017).
[Crossref]

Y. Wang, C. Li, and R. K. Wang, “Noncontact photoacoustic imaging achieved by using a low-coherence interferometer as the acoustic detector,” Opt. Lett. 36(20), 3975–3977 (2011).
[Crossref]

Wang, X.

Wang, Y.

Z. Ma, S. Luo, M. Yu, and Y. Wang, “Assessment of microvasculature flow state with a high speed all-optic dual-modal system of optical coherence tomography and photoacoustic imaging,” Biomed. Opt. Express 9(12), 6103–6115 (2018).
[Crossref]

J. Lu, Y. Gao, Z. Ma, H. Zhou, R. K. Wang, and Y. Wang, “In vivo photoacoustic imaging of blood vessels using a homodyne interferometer with zero-crossing triggering,” J. Biomed. Opt. 22(3), 036002 (2017).
[Crossref]

Z. Chen, S. Yang, Y. Wang, and D. Xing, “All-optically integrated photo-acoustic microscopy and optical coherence tomography based on a single Michelson detector,” Opt. Lett. 40(12), 2838–2841 (2015).
[Crossref]

J. Liu, Z. Tang, Y. Wu, and Y. Wang, “Rapid and noncontact photoacoustic tomography imaging system using an interferometer with high-speed phase modulation technique,” Rev. Sci. Instrum. 86(4), 044904 (2015).
[Crossref]

Z. Chen, S. Yang, Y. Wang, and D. Xing, “Noncontact broadband all-optical photoacoustic microscopy based on a low-coherence interferometer,” Appl. Phys. Lett. 106(4), 043701 (2015).
[Crossref]

Y. Wang, C. Li, and R. K. Wang, “Noncontact photoacoustic imaging achieved by using a low-coherence interferometer as the acoustic detector,” Opt. Lett. 36(20), 3975–3977 (2011).
[Crossref]

Y. Wang, D. Xing, Y. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol. 49(14), 3117–3124 (2004).
[Crossref]

Wong, T. T. W.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Med. 12(5), 407–410 (2015).
[Crossref]

Wu, D.

D. Wu, L. Huang, M. S. Jiang, and H. Jiang, “Contrast agents for photoacoustic and thermoacoustic imaging: a review,” Int. J. Mol. Sci. 15(12), 23616–23639 (2014).
[Crossref]

Wu, Y.

J. Liu, Z. Tang, Y. Wu, and Y. Wang, “Rapid and noncontact photoacoustic tomography imaging system using an interferometer with high-speed phase modulation technique,” Rev. Sci. Instrum. 86(4), 044904 (2015).
[Crossref]

Xie, Z.

Xing, D.

Z. Chen, S. Yang, Y. Wang, and D. Xing, “All-optically integrated photo-acoustic microscopy and optical coherence tomography based on a single Michelson detector,” Opt. Lett. 40(12), 2838–2841 (2015).
[Crossref]

Z. Chen, S. Yang, Y. Wang, and D. Xing, “Noncontact broadband all-optical photoacoustic microscopy based on a low-coherence interferometer,” Appl. Phys. Lett. 106(4), 043701 (2015).
[Crossref]

Y. Yuan, S. Yang, and D. Xing, “Preclinical photoacoustic imaging endoscope based on acousto-optic coaxial system using ring transducer array,” Opt. Lett. 35(13), 2266 (2010).
[Crossref]

Y. Wang, D. Xing, Y. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol. 49(14), 3117–3124 (2004).
[Crossref]

Yang, C.

Yang, J.

J. Yang, C. Favazza, R. Chen, J. Yao, S. Cai, K. Maslov, Q. Zhou, K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref]

Yang, J. M.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Med. 12(5), 407–410 (2015).
[Crossref]

J. M. Yang, C. Li, R. Chen, B. Rao, J. Yao, C. H. Yeh, and L. V. Wang, “Optical-resolution photoacoustic endomicroscopy in vivo,” Biomed. Opt. Express 6(3), 918–932 (2015).
[Crossref]

J. M. Yang, C. Li, R. Chen, Q. Zhou, K. K. Shuang, and L. V. Wang, “Catheter-based photoacoustic endoscope,” J. Biomed. Opt. 19(6), 066001 (2014).
[Crossref]

Yang, S.

Yao, J.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Med. 12(5), 407–410 (2015).
[Crossref]

J. M. Yang, C. Li, R. Chen, B. Rao, J. Yao, C. H. Yeh, and L. V. Wang, “Optical-resolution photoacoustic endomicroscopy in vivo,” Biomed. Opt. Express 6(3), 918–932 (2015).
[Crossref]

X. Jun, J. Yao, and L. V. Wang, “Photoacoustic Tomography: Principles and Advances,” Prog. Electromagn. Res. 147, 1–22 (2014).
[Crossref]

J. Yang, C. Favazza, R. Chen, J. Yao, S. Cai, K. Maslov, Q. Zhou, K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref]

Yeh, C. H.

Yu, M.

Yuan, Y.

Zamiri, S.

Zemp, R.

Zemp, R. J.

P. Hajireza, K. Bell, W. Shi, J. Shapiro, and R. J. Zemp, “Deep non-contact photoacoustic initial pressure imaging,” Optica 5(7), 814 (2018).
[Crossref]

P. Hajireza, W. Shi, K. Bell, R. J. Paproski, and R. J. Zemp, “Non-interferometric photoacoustic remote sensing microscopy,” Light: Sci. Appl. 6(6), e16278 (2017).
[Crossref]

P. Hajireza, J. Sorge, M. Brett, and R. J. Zemp, “In vivo optical resolution photoacoustic microscopy using glancing angle-deposited nanostructured Fabry-Perot etalons,” Opt. Lett. 40(7), 1350–1353 (2015).
[Crossref]

R. J. Paproski, A. Heinmiller, K. Wachowicz, and R. J. Zemp, “Multiwavelength photoacoustic imaging of inducible tyrosinase reporter gene expression in xenograft tumors,” Sci. Rep. 4(1), 5329 (2015).
[Crossref]

Zeng, Y.

Y. Wang, D. Xing, Y. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol. 49(14), 3117–3124 (2004).
[Crossref]

Zhang, E.

Zhang, H. F.

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
[Crossref]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref]

Zhang, S.

Zhou, H.

J. Lu, Y. Gao, Z. Ma, H. Zhou, R. K. Wang, and Y. Wang, “In vivo photoacoustic imaging of blood vessels using a homodyne interferometer with zero-crossing triggering,” J. Biomed. Opt. 22(3), 036002 (2017).
[Crossref]

Zhou, Q.

J. M. Yang, C. Li, R. Chen, Q. Zhou, K. K. Shuang, and L. V. Wang, “Catheter-based photoacoustic endoscope,” J. Biomed. Opt. 19(6), 066001 (2014).
[Crossref]

J. Yang, C. Favazza, R. Chen, J. Yao, S. Cai, K. Maslov, Q. Zhou, K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref]

Zou, J.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Med. 12(5), 407–410 (2015).
[Crossref]

Appl. Opt. (4)

Appl. Phys. Lett. (2)

S. A. Carp, A. Guerra, S. Q. Duque, and V. Venugopalan, “Optoacoustic imaging using interferometric measurement of surface displacement,” Appl. Phys. Lett. 85(23), 5772–5774 (2004).
[Crossref]

Z. Chen, S. Yang, Y. Wang, and D. Xing, “Noncontact broadband all-optical photoacoustic microscopy based on a low-coherence interferometer,” Appl. Phys. Lett. 106(4), 043701 (2015).
[Crossref]

Biomed. Opt. Express (6)

IEEE J. Sel. Top. Quantum Electron. (1)

E. M. Strohm, M. J. Moore, and M. C. Kolios, “Single cell photoacoustic microscopy: a review,” IEEE J. Sel. Top. Quantum Electron. 22(3), 137–151 (2016).
[Crossref]

Int. J. Mol. Sci. (1)

D. Wu, L. Huang, M. S. Jiang, and H. Jiang, “Contrast agents for photoacoustic and thermoacoustic imaging: a review,” Int. J. Mol. Sci. 15(12), 23616–23639 (2014).
[Crossref]

Interface Focus (1)

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref]

J. Biomed. Opt. (4)

J. Lu, Y. Gao, Z. Ma, H. Zhou, R. K. Wang, and Y. Wang, “In vivo photoacoustic imaging of blood vessels using a homodyne interferometer with zero-crossing triggering,” J. Biomed. Opt. 22(3), 036002 (2017).
[Crossref]

J. M. Yang, C. Li, R. Chen, Q. Zhou, K. K. Shuang, and L. V. Wang, “Catheter-based photoacoustic endoscope,” J. Biomed. Opt. 19(6), 066001 (2014).
[Crossref]

G. Rousseau, B. Gauthier, A. Blouin, and J. P. Monchalin, “Non-contact biomedical photoacoustic and ultrasound imaging,” J. Biomed. Opt. 17(6), 061217 (2012).
[Crossref]

T. Berer, E. Leiss-Holzinger, A. Hochreiner, J. Bauer-Marschallinger, and A. Buchsbaum, “Multimodal noncontact photoacoustic and optical coherence tomography imaging using wavelength-division multiplexing,” J. Biomed. Opt. 20(4), 046013 (2015).
[Crossref]

Light: Sci. Appl. (1)

P. Hajireza, W. Shi, K. Bell, R. J. Paproski, and R. J. Zemp, “Non-interferometric photoacoustic remote sensing microscopy,” Light: Sci. Appl. 6(6), e16278 (2017).
[Crossref]

Nat. Biotechnol. (1)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref]

Nat. Med. (2)

J. Yang, C. Favazza, R. Chen, J. Yao, S. Cai, K. Maslov, Q. Zhou, K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref]

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Med. 12(5), 407–410 (2015).
[Crossref]

Nat. Photonics (1)

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[Crossref]

Opt. Express (1)

Opt. Lett. (11)

S. Park, S. Rim, Y. Kim, and B. H. Lee, “Noncontact photoacoustic imaging based on optical quadrature detection with a multiport interferometer,” Opt. Lett. 44(10), 2590–2593 (2019).
[Crossref]

K. Bell, P. Hajireza, and R. Zemp, “Real-time functional photoacoustic remote sensing microscopy,” Opt. Lett. 44(14), 3466–3469 (2019).
[Crossref]

T. Berer, A. Hochreiner, S. Zamiri, and P. Burgholzer, “Remote photoacoustic imaging on solid material using a two-wave mixing interferometer,” Opt. Lett. 35(24), 4151–4153 (2010).
[Crossref]

Z. Chen, S. Yang, Y. Wang, and D. Xing, “All-optically integrated photo-acoustic microscopy and optical coherence tomography based on a single Michelson detector,” Opt. Lett. 40(12), 2838–2841 (2015).
[Crossref]

M. A. Choma, C. Yang, and J. A. Izatt, “Instantaneous quadrature low-coherence interferometry with 3×3 fiber-optic couplers,” Opt. Lett. 28(22), 2162–2164 (2003).
[Crossref]

S. Hu, K. Maslov, and L. V. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett. 36(7), 1134–1136 (2011).
[Crossref]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
[Crossref]

Y. Yuan, S. Yang, and D. Xing, “Preclinical photoacoustic imaging endoscope based on acousto-optic coaxial system using ring transducer array,” Opt. Lett. 35(13), 2266 (2010).
[Crossref]

Y. Wang, C. Li, and R. K. Wang, “Noncontact photoacoustic imaging achieved by using a low-coherence interferometer as the acoustic detector,” Opt. Lett. 36(20), 3975–3977 (2011).
[Crossref]

S. J. Park, J. Eom, Y. H. Kim, C. S. Lee, and B. H. Lee, “Noncontact photoacoustic imaging based on all-fiber heterodyne interferometer,” Opt. Lett. 39(16), 4903 (2014).
[Crossref]

P. Hajireza, J. Sorge, M. Brett, and R. J. Zemp, “In vivo optical resolution photoacoustic microscopy using glancing angle-deposited nanostructured Fabry-Perot etalons,” Opt. Lett. 40(7), 1350–1353 (2015).
[Crossref]

Optica (1)

Phys. Med. Biol. (1)

Y. Wang, D. Xing, Y. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol. 49(14), 3117–3124 (2004).
[Crossref]

Phys. Rev. Lett. (1)

I. G. Calasso, “Photoacoustic Point Source,” Phys. Rev. Lett. 86(16), 3550–3553 (2001).
[Crossref]

Prog. Electromagn. Res. (1)

X. Jun, J. Yao, and L. V. Wang, “Photoacoustic Tomography: Principles and Advances,” Prog. Electromagn. Res. 147, 1–22 (2014).
[Crossref]

Quantum Electron. (1)

W. Choi and R. Wang, “Volumetric cutaneous microangiography of human skin in vivo by VCSEL swept-source optical coherence tomography,” Quantum Electron. 44(8), 740–745 (2014).
[Crossref]

Rev. Sci. Instrum. (1)

J. Liu, Z. Tang, Y. Wu, and Y. Wang, “Rapid and noncontact photoacoustic tomography imaging system using an interferometer with high-speed phase modulation technique,” Rev. Sci. Instrum. 86(4), 044904 (2015).
[Crossref]

Sci. Rep. (1)

R. J. Paproski, A. Heinmiller, K. Wachowicz, and R. J. Zemp, “Multiwavelength photoacoustic imaging of inducible tyrosinase reporter gene expression in xenograft tumors,” Sci. Rep. 4(1), 5329 (2015).
[Crossref]

Other (1)

Laser Institute of America, American National Standard for Safe Use of Lasers ANSI Z136.1–2007 (American National Standards Institute, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic of cnccPAM. GS, two-dimensional galvanometer scanner; CIR1-2, circulator; CO1-2, coupler; L, lens; M1−3, mirror; DM, dichroic mirror; IS, isolator; HPF, high-pass filter; PD, photodetectors; S, sample; C, collimator.
Fig. 2.
Fig. 2. Demodulation of the phase change and intensity change of the probe light by the present method: (a) measured interference signals; (b) demodulated intensity change and (c) phase change; (d) measured photoacoustic signal by the zero-crossing trigger method.
Fig. 3.
Fig. 3. Results of a chrome-on-glass 1951 USAF resolution target and a tissue-mimicking phantom: (a) photoacoustic MAP image of a resolution target; (b) raw interference signals measured from the chrome coating and (c) the calculated intensity change; (d) raw interference signals measured from the non-chrome part; (e) photoacoustic MAP image of a thick tissue-mimicking phantom; (f) representative signals generated by a hair.
Fig. 4.
Fig. 4. Measured photoacoustic signals at a point of the resolution target when manually disturbing the water surface: (a) and (c) measured raw signals, and the corresponding calculated intensity changes of the probe light are plotted in (b) and (d), respectively.
Fig. 5.
Fig. 5. In vivo photoacoustic imaging of the blood vessels in a mouse ear. (a) Photograph of the mouse ear. Photoacoustic MAP images of the regions inside the red boxes are plotted in (b) and (c), respectively.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I ( t ) = I R + i = 1 n I s , i + Δ I s ( t ) + 2 Δ I s ( t ) I R cos ( Δ φ s ( t ) + φ s ( t ) ) + 2 i = 1 n I s , i I R cos ( φ 1 , i ( t ) ) + 2 i = 1 n I s , i Δ I s ( t ) cos ( φ 2 , i ( t ) ) ,
I ( t ) = Δ I s ( t ) + 2 Δ I s ( t ) I R cos ( Δ φ s ( t ) + φ s ( t ) ) + 2 i = 1 n I s , i Δ I s ( t ) cos ( φ 2 , i ( t ) ) .
I ( t ) = Δ I s ( t ) + 2 Δ I s ( t ) I R cos ( Δ φ s ( t ) + φ s ( t ) ) .
I i ( t ) = Δ I s ( t ) + 2 Δ I s ( t ) I R cos ( φ ( t ) + Δ φ i ) i = 1 , 2 , 3 ,
2 Δ I s ( t ) I R sin φ ( t ) = I 3 ( t )  -  I 2 ( t ) 3 ,
2 Δ I s ( t ) I R cos φ ( t ) = 2 I 1 ( t ) I 2 ( t ) I 3 ( t ) 3 .
Δ I s ( t ) = 1 4 I R ( ( 2 I 1 ( t ) I 2 ( t ) I 3 ( t ) ) 2 9 + ( I 3 ( t )  -  I 2 ( t ) ) 2 3 ) ,
φ ( t ) = a tan ( 3 × ( I 3 ( t )  -  I 2 ( t ) ) 2 I 1 ( t ) I 2 ( t ) I 3 ( t ) ) .

Metrics