Abstract

Time-domain full-field OCT (FF-OCT) represents an imaging modality capable of recording high-speed en-face sections of a sample at a given depth. One of the biggest challenges to transfer this technique to image in-vivo human retina is the presence of continuous involuntary head and eye axial motion during image acquisition. In this paper, we demonstrate a solution to this problem by implementing an optical stabilization in an FF-OCT system. This was made possible by combining an FF-OCT system, an SD-OCT system, and a high-speed voice-coil translation stage. B-scans generated by the SD-OCT were used to measure the retina axial position and to drive the position of the high-speed voice coil translation stage, where the FF-OCT reference arm is mounted. Closed-loop optical stabilization reduced the RMS error by a factor of 7, significantly increasing the FF-OCT image acquisition efficiency. By these means, we demonstrate the capacity of the FF-OCT to resolve cone mosaic as close as 1.5o from the fovea center with high consistency and without using adaptive optics.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction

Michael Pircher, Bernhard Baumann, Erich Götzinger, Harald Sattmann, and Christoph K. Hitzenberger
Opt. Express 15(25) 16922-16932 (2007)

Adaptive optics SLO/OCT for 3D imaging of human photoreceptors in vivo

Franz Felberer, Julia-Sophie Kroisamer, Bernhard Baumann, Stefan Zotter, Ursula Schmidt-Erfurth, Christoph K. Hitzenberger, and Michael Pircher
Biomed. Opt. Express 5(2) 439-456 (2014)

In vivo high-resolution human retinal imaging with wavefront-correctionless full-field OCT

Peng Xiao, Viacheslav Mazlin, Kate Grieve, Jose-Alain Sahel, Mathias Fink, and A. Claude Boccara
Optica 5(4) 409-412 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref]
  2. W. Drexler and J. G. Fujimoto eds., Optical Coherence Tomography: Technology and Applications (Springer, 2015), 2nd ed.
  3. E. Gofas-Salas, P. Mecê, C. Petit, J. Jarosz, L. M. Mugnier, A. M. Bonnefois, K. Grieve, J. Sahel, M. Paques, and S. Meimon, “High loop rate adaptive optics flood illumination ophthalmoscope with structured illumination capability,” Appl. Opt. 57(20), 5635–5642 (2018).
    [Crossref]
  4. J. Jarosz, P. Mecê, J.-M. Conan, C. Petit, M. Paques, and S. Meimon, “High temporal resolution aberrometry in a 50-eye population and implications for adaptive optics error budget,” Biomed. Opt. Express 8(4), 2088–2105 (2017).
    [Crossref]
  5. P. Mecê, E. Gofas-Salas, C. Petit, F. Cassaing, J. Sahel, M. Paques, K. Grieve, and S. Meimon, “Higher adaptive optics loop rate enhances axial resolution in nonconfocal ophthalmoscopes,” Opt. Lett. 44(9), 2208–2211 (2019).
    [Crossref]
  6. R. S. Jonnal, O. P. Kocaoglu, R. J. Zawadzki, Z. Liu, D. T. Miller, and J. S. Werner, “A review of adaptive optics optical coherence tomography: technical advances, scientific applications, and the future,” Invest. Ophthalmol. Visual Sci. 57(9), OCT51–OCT68 (2016).
    [Crossref]
  7. M. Pircher and R. J. Zawadzki, “Review of adaptive optics oct (AO-OCT): principles and applications for retinal imaging,” Biomed. Opt. Express 8(5), 2536–2562 (2017).
    [Crossref]
  8. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43(14), 2874–2883 (2004).
    [Crossref]
  9. O. Thouvenin, K. Grieve, P. Xiao, C. Apelian, and A. C. Boccara, “En face coherence microscopy,” Biomed. Opt. Express 8(2), 622–639 (2017).
    [Crossref]
  10. P. Mecê, P. Xiao, V. Mazlin, J. Scholler, K. Grieve, J.-A. Sahel, M. Fink, and C. Boccara, “Towards lens-based wavefront sensorless adaptive optics full-field oct for in-vivo retinal imaging (conference presentation),” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIII, vol. 10867 (International Society for Optics and Photonics, 2019), p. 1086722.
  11. P. Xiao, V. Mazlin, K. Grieve, J.-A. Sahel, M. Fink, and A. C. Boccara, “In vivo high-resolution human retinal imaging with wavefront-correctionless full-field oct,” Optica 5(4), 409–412 (2018).
    [Crossref]
  12. L. Ginner, A. Kumar, D. Fechtig, L. M. Wurster, M. Salas, M. Pircher, and R. A. Leitgeb, “Noniterative digital aberration correction for cellular resolution retinal optical coherence tomography in vivo,” Optica 4(8), 924–931 (2017).
    [Crossref]
  13. D. T. Miller, J. Qu, R. S. Jonnal, and K. E. Thorn, “Coherence gating and adaptive optics in the eye,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, vol. 4956 (International Society for Optics and Photonics, 2003), pp. 65–72.
  14. M. Pircher, E. Götzinger, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “In vivo investigation of human cone photoreceptors with slo/oct in combination with 3d motion correction on a cellular level,” Opt. Express 18(13), 13935–13944 (2010).
    [Crossref]
  15. P. Mecê, J. Jarosz, J.-M. Conan, C. Petit, K. Grieve, M. Paques, and S. Meimon, “Fixational eye movement: a negligible source of dynamic aberration,” Biomed. Opt. Express 9(2), 717–727 (2018).
    [Crossref]
  16. E. Auksorius and A. C. Boccara, “Dark-field full-field optical coherence tomography,” Opt. Lett. 40(14), 3272–3275 (2015).
    [Crossref]
  17. J. Scholler, “FFOCT control and acquisition software,” (2019). https://doi.org/10.5281/zenodo.3137245 .
  18. J. Scholler, V. Mazlin, O. Thouvenin, K. Groux, P. Xiao, J.-A. Sahel, M. Fink, C. Boccara, and K. Grieve, “Probing dynamic processes in the eye at multiple spatial and temporal scales with multimodal full field oct,” Biomed. Opt. Express 10(2), 731–746 (2019).
    [Crossref]
  19. F. Roddier, Adaptive Optics in Astronomy (Cambridge University Press, 1999).
  20. S. Meimon, C. Petit, T. Fusco, and C. Kulcsar, “Tip–tilt disturbance model identification for kalman-based control scheme: application to xao and elt systems,” J. Opt. Soc. Am. A 27(11), A122–A132 (2010).
    [Crossref]
  21. S. Duke-Elder, “The anatomy of the visual system,” A System of Ophthalmology 2, 363–382 (1961).
  22. R. F. Cooper, C. S. Langlo, A. Dubra, and J. Carroll, “Automatic detection of modal spacing (yellott’s ring) in adaptive optics scanning light ophthalmoscope images,” Ophthalmic Physiol. Opt. 33(4), 540–549 (2013).
    [Crossref]
  23. L. Sawides, A. de Castro, and S. A. Burns, “The organization of the cone photoreceptor mosaic measured in the living human retina,” Vision Res. 132, 34–44 (2017).
    [Crossref]
  24. M. Pircher, B. Baumann, E. Götzinger, H. Sattmann, and C. K. Hitzenberger, “Simultaneous slo/oct imaging of the human retina with axial eye motion correction,” Opt. Express 15(25), 16922–16932 (2007).
    [Crossref]
  25. R. J. Zawadzki, S. M. Jones, S. Pilli, S. Balderas-Mata, D. Y. Kim, S. S. Olivier, and J. S. Werner, “Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging,” Biomed. Opt. Express 2(6), 1674–1686 (2011).
    [Crossref]
  26. Z. Liu, J. Tam, O. Saeedi, and D. X. Hammer, “Trans-retinal cellular imaging with multimodal adaptive optics,” Biomed. Opt. Express 9(9), 4246–4262 (2018).
    [Crossref]
  27. N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
    [Crossref]
  28. P. Bedggood and A. Metha, “De-warping of images and improved eye tracking for the scanning laser ophthalmoscope,” PLoS One 12(4), e0174617 (2017).
    [Crossref]
  29. Z. Liu, K. Kurokawa, F. Zhang, J. J. Lee, and D. T. Miller, “Imaging and quantifying ganglion cells and other transparent neurons in the living human retina,” Proc. Natl. Acad. Sci. 114(48), 12803–12808 (2017).
    [Crossref]
  30. S. Bonora, Y. Jian, P. Zhang, A. Zam, E. N. Pugh, R. J. Zawadzki, and M. V. Sarunic, “Wavefront correction and high-resolution in vivo oct imaging with an objective integrated multi-actuator adaptive lens,” Opt. Express 23(17), 21931–21941 (2015).
    [Crossref]
  31. C. Apelian, F. Harms, O. Thouvenin, and A. C. Boccara, “Dynamic full field optical coherence tomography: subcellular metabolic contrast revealed in tissues by interferometric signals temporal analysis,” Biomed. Opt. Express 7(4), 1511–1524 (2016).
    [Crossref]
  32. J. Scholler, “Motion artifact removal and signal enhancement to achieve in vivo dynamic full field OCT,” Opt. Express 27(14), 19562–19572 (2019).
    [Crossref]

2019 (3)

2018 (4)

2017 (7)

2016 (2)

C. Apelian, F. Harms, O. Thouvenin, and A. C. Boccara, “Dynamic full field optical coherence tomography: subcellular metabolic contrast revealed in tissues by interferometric signals temporal analysis,” Biomed. Opt. Express 7(4), 1511–1524 (2016).
[Crossref]

R. S. Jonnal, O. P. Kocaoglu, R. J. Zawadzki, Z. Liu, D. T. Miller, and J. S. Werner, “A review of adaptive optics optical coherence tomography: technical advances, scientific applications, and the future,” Invest. Ophthalmol. Visual Sci. 57(9), OCT51–OCT68 (2016).
[Crossref]

2015 (3)

2013 (1)

R. F. Cooper, C. S. Langlo, A. Dubra, and J. Carroll, “Automatic detection of modal spacing (yellott’s ring) in adaptive optics scanning light ophthalmoscope images,” Ophthalmic Physiol. Opt. 33(4), 540–549 (2013).
[Crossref]

2011 (1)

2010 (2)

2007 (1)

2004 (1)

1991 (1)

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

1961 (1)

S. Duke-Elder, “The anatomy of the visual system,” A System of Ophthalmology 2, 363–382 (1961).

Adie, S. G.

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref]

Apelian, C.

Auksorius, E.

Balderas-Mata, S.

Baumann, B.

Bedggood, P.

P. Bedggood and A. Metha, “De-warping of images and improved eye tracking for the scanning laser ophthalmoscope,” PLoS One 12(4), e0174617 (2017).
[Crossref]

Boccara, A. C.

Boccara, C.

J. Scholler, V. Mazlin, O. Thouvenin, K. Groux, P. Xiao, J.-A. Sahel, M. Fink, C. Boccara, and K. Grieve, “Probing dynamic processes in the eye at multiple spatial and temporal scales with multimodal full field oct,” Biomed. Opt. Express 10(2), 731–746 (2019).
[Crossref]

A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43(14), 2874–2883 (2004).
[Crossref]

P. Mecê, P. Xiao, V. Mazlin, J. Scholler, K. Grieve, J.-A. Sahel, M. Fink, and C. Boccara, “Towards lens-based wavefront sensorless adaptive optics full-field oct for in-vivo retinal imaging (conference presentation),” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIII, vol. 10867 (International Society for Optics and Photonics, 2019), p. 1086722.

Bonnefois, A. M.

Bonora, S.

Boppart, S. A.

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref]

Burns, S. A.

L. Sawides, A. de Castro, and S. A. Burns, “The organization of the cone photoreceptor mosaic measured in the living human retina,” Vision Res. 132, 34–44 (2017).
[Crossref]

Carney, P. S.

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref]

Carroll, J.

R. F. Cooper, C. S. Langlo, A. Dubra, and J. Carroll, “Automatic detection of modal spacing (yellott’s ring) in adaptive optics scanning light ophthalmoscope images,” Ophthalmic Physiol. Opt. 33(4), 540–549 (2013).
[Crossref]

Cassaing, F.

Chang, W.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Conan, J.-M.

Cooper, R. F.

R. F. Cooper, C. S. Langlo, A. Dubra, and J. Carroll, “Automatic detection of modal spacing (yellott’s ring) in adaptive optics scanning light ophthalmoscope images,” Ophthalmic Physiol. Opt. 33(4), 540–549 (2013).
[Crossref]

de Castro, A.

L. Sawides, A. de Castro, and S. A. Burns, “The organization of the cone photoreceptor mosaic measured in the living human retina,” Vision Res. 132, 34–44 (2017).
[Crossref]

Dubois, A.

Dubra, A.

R. F. Cooper, C. S. Langlo, A. Dubra, and J. Carroll, “Automatic detection of modal spacing (yellott’s ring) in adaptive optics scanning light ophthalmoscope images,” Ophthalmic Physiol. Opt. 33(4), 540–549 (2013).
[Crossref]

Duke-Elder, S.

S. Duke-Elder, “The anatomy of the visual system,” A System of Ophthalmology 2, 363–382 (1961).

Fechtig, D.

Fink, M.

J. Scholler, V. Mazlin, O. Thouvenin, K. Groux, P. Xiao, J.-A. Sahel, M. Fink, C. Boccara, and K. Grieve, “Probing dynamic processes in the eye at multiple spatial and temporal scales with multimodal full field oct,” Biomed. Opt. Express 10(2), 731–746 (2019).
[Crossref]

P. Xiao, V. Mazlin, K. Grieve, J.-A. Sahel, M. Fink, and A. C. Boccara, “In vivo high-resolution human retinal imaging with wavefront-correctionless full-field oct,” Optica 5(4), 409–412 (2018).
[Crossref]

P. Mecê, P. Xiao, V. Mazlin, J. Scholler, K. Grieve, J.-A. Sahel, M. Fink, and C. Boccara, “Towards lens-based wavefront sensorless adaptive optics full-field oct for in-vivo retinal imaging (conference presentation),” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIII, vol. 10867 (International Society for Optics and Photonics, 2019), p. 1086722.

Flotte, T.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Fujimoto, J. G.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Fusco, T.

Ginner, L.

Gofas-Salas, E.

Götzinger, E.

Gregory, K.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Grieve, K.

P. Mecê, E. Gofas-Salas, C. Petit, F. Cassaing, J. Sahel, M. Paques, K. Grieve, and S. Meimon, “Higher adaptive optics loop rate enhances axial resolution in nonconfocal ophthalmoscopes,” Opt. Lett. 44(9), 2208–2211 (2019).
[Crossref]

J. Scholler, V. Mazlin, O. Thouvenin, K. Groux, P. Xiao, J.-A. Sahel, M. Fink, C. Boccara, and K. Grieve, “Probing dynamic processes in the eye at multiple spatial and temporal scales with multimodal full field oct,” Biomed. Opt. Express 10(2), 731–746 (2019).
[Crossref]

P. Mecê, J. Jarosz, J.-M. Conan, C. Petit, K. Grieve, M. Paques, and S. Meimon, “Fixational eye movement: a negligible source of dynamic aberration,” Biomed. Opt. Express 9(2), 717–727 (2018).
[Crossref]

E. Gofas-Salas, P. Mecê, C. Petit, J. Jarosz, L. M. Mugnier, A. M. Bonnefois, K. Grieve, J. Sahel, M. Paques, and S. Meimon, “High loop rate adaptive optics flood illumination ophthalmoscope with structured illumination capability,” Appl. Opt. 57(20), 5635–5642 (2018).
[Crossref]

P. Xiao, V. Mazlin, K. Grieve, J.-A. Sahel, M. Fink, and A. C. Boccara, “In vivo high-resolution human retinal imaging with wavefront-correctionless full-field oct,” Optica 5(4), 409–412 (2018).
[Crossref]

O. Thouvenin, K. Grieve, P. Xiao, C. Apelian, and A. C. Boccara, “En face coherence microscopy,” Biomed. Opt. Express 8(2), 622–639 (2017).
[Crossref]

A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43(14), 2874–2883 (2004).
[Crossref]

P. Mecê, P. Xiao, V. Mazlin, J. Scholler, K. Grieve, J.-A. Sahel, M. Fink, and C. Boccara, “Towards lens-based wavefront sensorless adaptive optics full-field oct for in-vivo retinal imaging (conference presentation),” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIII, vol. 10867 (International Society for Optics and Photonics, 2019), p. 1086722.

Groux, K.

Hammer, D. X.

Harms, F.

Hee, M.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Hitzenberger, C. K.

Huang, D.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Jarosz, J.

Jian, Y.

Jones, S. M.

Jonnal, R. S.

R. S. Jonnal, O. P. Kocaoglu, R. J. Zawadzki, Z. Liu, D. T. Miller, and J. S. Werner, “A review of adaptive optics optical coherence tomography: technical advances, scientific applications, and the future,” Invest. Ophthalmol. Visual Sci. 57(9), OCT51–OCT68 (2016).
[Crossref]

D. T. Miller, J. Qu, R. S. Jonnal, and K. E. Thorn, “Coherence gating and adaptive optics in the eye,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, vol. 4956 (International Society for Optics and Photonics, 2003), pp. 65–72.

Kim, D. Y.

Kocaoglu, O. P.

R. S. Jonnal, O. P. Kocaoglu, R. J. Zawadzki, Z. Liu, D. T. Miller, and J. S. Werner, “A review of adaptive optics optical coherence tomography: technical advances, scientific applications, and the future,” Invest. Ophthalmol. Visual Sci. 57(9), OCT51–OCT68 (2016).
[Crossref]

Kulcsar, C.

Kumar, A.

Kurokawa, K.

Z. Liu, K. Kurokawa, F. Zhang, J. J. Lee, and D. T. Miller, “Imaging and quantifying ganglion cells and other transparent neurons in the living human retina,” Proc. Natl. Acad. Sci. 114(48), 12803–12808 (2017).
[Crossref]

Langlo, C. S.

R. F. Cooper, C. S. Langlo, A. Dubra, and J. Carroll, “Automatic detection of modal spacing (yellott’s ring) in adaptive optics scanning light ophthalmoscope images,” Ophthalmic Physiol. Opt. 33(4), 540–549 (2013).
[Crossref]

Lecaque, R.

Lee, J. J.

Z. Liu, K. Kurokawa, F. Zhang, J. J. Lee, and D. T. Miller, “Imaging and quantifying ganglion cells and other transparent neurons in the living human retina,” Proc. Natl. Acad. Sci. 114(48), 12803–12808 (2017).
[Crossref]

Leitgeb, R. A.

Lin, C.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Liu, Y.-Z.

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref]

Liu, Z.

Z. Liu, J. Tam, O. Saeedi, and D. X. Hammer, “Trans-retinal cellular imaging with multimodal adaptive optics,” Biomed. Opt. Express 9(9), 4246–4262 (2018).
[Crossref]

Z. Liu, K. Kurokawa, F. Zhang, J. J. Lee, and D. T. Miller, “Imaging and quantifying ganglion cells and other transparent neurons in the living human retina,” Proc. Natl. Acad. Sci. 114(48), 12803–12808 (2017).
[Crossref]

R. S. Jonnal, O. P. Kocaoglu, R. J. Zawadzki, Z. Liu, D. T. Miller, and J. S. Werner, “A review of adaptive optics optical coherence tomography: technical advances, scientific applications, and the future,” Invest. Ophthalmol. Visual Sci. 57(9), OCT51–OCT68 (2016).
[Crossref]

Mazlin, V.

J. Scholler, V. Mazlin, O. Thouvenin, K. Groux, P. Xiao, J.-A. Sahel, M. Fink, C. Boccara, and K. Grieve, “Probing dynamic processes in the eye at multiple spatial and temporal scales with multimodal full field oct,” Biomed. Opt. Express 10(2), 731–746 (2019).
[Crossref]

P. Xiao, V. Mazlin, K. Grieve, J.-A. Sahel, M. Fink, and A. C. Boccara, “In vivo high-resolution human retinal imaging with wavefront-correctionless full-field oct,” Optica 5(4), 409–412 (2018).
[Crossref]

P. Mecê, P. Xiao, V. Mazlin, J. Scholler, K. Grieve, J.-A. Sahel, M. Fink, and C. Boccara, “Towards lens-based wavefront sensorless adaptive optics full-field oct for in-vivo retinal imaging (conference presentation),” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIII, vol. 10867 (International Society for Optics and Photonics, 2019), p. 1086722.

Mecê, P.

Meimon, S.

Metha, A.

P. Bedggood and A. Metha, “De-warping of images and improved eye tracking for the scanning laser ophthalmoscope,” PLoS One 12(4), e0174617 (2017).
[Crossref]

Miller, D. T.

Z. Liu, K. Kurokawa, F. Zhang, J. J. Lee, and D. T. Miller, “Imaging and quantifying ganglion cells and other transparent neurons in the living human retina,” Proc. Natl. Acad. Sci. 114(48), 12803–12808 (2017).
[Crossref]

R. S. Jonnal, O. P. Kocaoglu, R. J. Zawadzki, Z. Liu, D. T. Miller, and J. S. Werner, “A review of adaptive optics optical coherence tomography: technical advances, scientific applications, and the future,” Invest. Ophthalmol. Visual Sci. 57(9), OCT51–OCT68 (2016).
[Crossref]

D. T. Miller, J. Qu, R. S. Jonnal, and K. E. Thorn, “Coherence gating and adaptive optics in the eye,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, vol. 4956 (International Society for Optics and Photonics, 2003), pp. 65–72.

Moneron, G.

Mugnier, L. M.

Olivier, S. S.

Paques, M.

Petit, C.

Pilli, S.

Pircher, M.

Pugh, E. N.

Puliafito, C.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Qu, J.

D. T. Miller, J. Qu, R. S. Jonnal, and K. E. Thorn, “Coherence gating and adaptive optics in the eye,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, vol. 4956 (International Society for Optics and Photonics, 2003), pp. 65–72.

Roddier, F.

F. Roddier, Adaptive Optics in Astronomy (Cambridge University Press, 1999).

Saeedi, O.

Sahel, J.

Sahel, J.-A.

J. Scholler, V. Mazlin, O. Thouvenin, K. Groux, P. Xiao, J.-A. Sahel, M. Fink, C. Boccara, and K. Grieve, “Probing dynamic processes in the eye at multiple spatial and temporal scales with multimodal full field oct,” Biomed. Opt. Express 10(2), 731–746 (2019).
[Crossref]

P. Xiao, V. Mazlin, K. Grieve, J.-A. Sahel, M. Fink, and A. C. Boccara, “In vivo high-resolution human retinal imaging with wavefront-correctionless full-field oct,” Optica 5(4), 409–412 (2018).
[Crossref]

P. Mecê, P. Xiao, V. Mazlin, J. Scholler, K. Grieve, J.-A. Sahel, M. Fink, and C. Boccara, “Towards lens-based wavefront sensorless adaptive optics full-field oct for in-vivo retinal imaging (conference presentation),” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIII, vol. 10867 (International Society for Optics and Photonics, 2019), p. 1086722.

Salas, M.

Sarunic, M. V.

Sattmann, H.

Sawides, L.

L. Sawides, A. de Castro, and S. A. Burns, “The organization of the cone photoreceptor mosaic measured in the living human retina,” Vision Res. 132, 34–44 (2017).
[Crossref]

Scholler, J.

J. Scholler, V. Mazlin, O. Thouvenin, K. Groux, P. Xiao, J.-A. Sahel, M. Fink, C. Boccara, and K. Grieve, “Probing dynamic processes in the eye at multiple spatial and temporal scales with multimodal full field oct,” Biomed. Opt. Express 10(2), 731–746 (2019).
[Crossref]

J. Scholler, “Motion artifact removal and signal enhancement to achieve in vivo dynamic full field OCT,” Opt. Express 27(14), 19562–19572 (2019).
[Crossref]

J. Scholler, “FFOCT control and acquisition software,” (2019). https://doi.org/10.5281/zenodo.3137245 .

P. Mecê, P. Xiao, V. Mazlin, J. Scholler, K. Grieve, J.-A. Sahel, M. Fink, and C. Boccara, “Towards lens-based wavefront sensorless adaptive optics full-field oct for in-vivo retinal imaging (conference presentation),” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIII, vol. 10867 (International Society for Optics and Photonics, 2019), p. 1086722.

Schuman, J.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Shemonski, N. D.

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref]

South, F. A.

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref]

Stinson, W.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Swanson, E.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Tam, J.

Thorn, K. E.

D. T. Miller, J. Qu, R. S. Jonnal, and K. E. Thorn, “Coherence gating and adaptive optics in the eye,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, vol. 4956 (International Society for Optics and Photonics, 2003), pp. 65–72.

Thouvenin, O.

Vabre, L.

Werner, J. S.

R. S. Jonnal, O. P. Kocaoglu, R. J. Zawadzki, Z. Liu, D. T. Miller, and J. S. Werner, “A review of adaptive optics optical coherence tomography: technical advances, scientific applications, and the future,” Invest. Ophthalmol. Visual Sci. 57(9), OCT51–OCT68 (2016).
[Crossref]

R. J. Zawadzki, S. M. Jones, S. Pilli, S. Balderas-Mata, D. Y. Kim, S. S. Olivier, and J. S. Werner, “Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging,” Biomed. Opt. Express 2(6), 1674–1686 (2011).
[Crossref]

Wurster, L. M.

Xiao, P.

Zam, A.

Zawadzki, R. J.

Zhang, F.

Z. Liu, K. Kurokawa, F. Zhang, J. J. Lee, and D. T. Miller, “Imaging and quantifying ganglion cells and other transparent neurons in the living human retina,” Proc. Natl. Acad. Sci. 114(48), 12803–12808 (2017).
[Crossref]

Zhang, P.

A System of Ophthalmology (1)

S. Duke-Elder, “The anatomy of the visual system,” A System of Ophthalmology 2, 363–382 (1961).

Appl. Opt. (2)

Biomed. Opt. Express (8)

R. J. Zawadzki, S. M. Jones, S. Pilli, S. Balderas-Mata, D. Y. Kim, S. S. Olivier, and J. S. Werner, “Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging,” Biomed. Opt. Express 2(6), 1674–1686 (2011).
[Crossref]

Z. Liu, J. Tam, O. Saeedi, and D. X. Hammer, “Trans-retinal cellular imaging with multimodal adaptive optics,” Biomed. Opt. Express 9(9), 4246–4262 (2018).
[Crossref]

O. Thouvenin, K. Grieve, P. Xiao, C. Apelian, and A. C. Boccara, “En face coherence microscopy,” Biomed. Opt. Express 8(2), 622–639 (2017).
[Crossref]

J. Scholler, V. Mazlin, O. Thouvenin, K. Groux, P. Xiao, J.-A. Sahel, M. Fink, C. Boccara, and K. Grieve, “Probing dynamic processes in the eye at multiple spatial and temporal scales with multimodal full field oct,” Biomed. Opt. Express 10(2), 731–746 (2019).
[Crossref]

J. Jarosz, P. Mecê, J.-M. Conan, C. Petit, M. Paques, and S. Meimon, “High temporal resolution aberrometry in a 50-eye population and implications for adaptive optics error budget,” Biomed. Opt. Express 8(4), 2088–2105 (2017).
[Crossref]

P. Mecê, J. Jarosz, J.-M. Conan, C. Petit, K. Grieve, M. Paques, and S. Meimon, “Fixational eye movement: a negligible source of dynamic aberration,” Biomed. Opt. Express 9(2), 717–727 (2018).
[Crossref]

C. Apelian, F. Harms, O. Thouvenin, and A. C. Boccara, “Dynamic full field optical coherence tomography: subcellular metabolic contrast revealed in tissues by interferometric signals temporal analysis,” Biomed. Opt. Express 7(4), 1511–1524 (2016).
[Crossref]

M. Pircher and R. J. Zawadzki, “Review of adaptive optics oct (AO-OCT): principles and applications for retinal imaging,” Biomed. Opt. Express 8(5), 2536–2562 (2017).
[Crossref]

Invest. Ophthalmol. Visual Sci. (1)

R. S. Jonnal, O. P. Kocaoglu, R. J. Zawadzki, Z. Liu, D. T. Miller, and J. S. Werner, “A review of adaptive optics optical coherence tomography: technical advances, scientific applications, and the future,” Invest. Ophthalmol. Visual Sci. 57(9), OCT51–OCT68 (2016).
[Crossref]

J. Opt. Soc. Am. A (1)

Nat. Photonics (1)

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref]

Ophthalmic Physiol. Opt. (1)

R. F. Cooper, C. S. Langlo, A. Dubra, and J. Carroll, “Automatic detection of modal spacing (yellott’s ring) in adaptive optics scanning light ophthalmoscope images,” Ophthalmic Physiol. Opt. 33(4), 540–549 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Optica (2)

PLoS One (1)

P. Bedggood and A. Metha, “De-warping of images and improved eye tracking for the scanning laser ophthalmoscope,” PLoS One 12(4), e0174617 (2017).
[Crossref]

Proc. Natl. Acad. Sci. (1)

Z. Liu, K. Kurokawa, F. Zhang, J. J. Lee, and D. T. Miller, “Imaging and quantifying ganglion cells and other transparent neurons in the living human retina,” Proc. Natl. Acad. Sci. 114(48), 12803–12808 (2017).
[Crossref]

Science (1)

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Vision Res. (1)

L. Sawides, A. de Castro, and S. A. Burns, “The organization of the cone photoreceptor mosaic measured in the living human retina,” Vision Res. 132, 34–44 (2017).
[Crossref]

Other (5)

D. T. Miller, J. Qu, R. S. Jonnal, and K. E. Thorn, “Coherence gating and adaptive optics in the eye,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, vol. 4956 (International Society for Optics and Photonics, 2003), pp. 65–72.

J. Scholler, “FFOCT control and acquisition software,” (2019). https://doi.org/10.5281/zenodo.3137245 .

F. Roddier, Adaptive Optics in Astronomy (Cambridge University Press, 1999).

W. Drexler and J. G. Fujimoto eds., Optical Coherence Tomography: Technology and Applications (Springer, 2015), 2nd ed.

P. Mecê, P. Xiao, V. Mazlin, J. Scholler, K. Grieve, J.-A. Sahel, M. Fink, and C. Boccara, “Towards lens-based wavefront sensorless adaptive optics full-field oct for in-vivo retinal imaging (conference presentation),” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIII, vol. 10867 (International Society for Optics and Photonics, 2019), p. 1086722.

Supplementary Material (5)

NameDescription
» Visualization 1       On the left, retinal cross-section time series without axial motion correction. On the right, simulation of the expected retinal cross-section time series with axial motion compensation. Both time series are compared to the position of the FF-OCT coh
» Visualization 2       FF-OCT image sequence where the optical stabilization is activated during image acquisition. When optical stabilization is activated, the photoreceptor mosaic becomes visible and the signal becomes constant.
» Visualization 3       FF-OCT image sequence with a tilted coherence gate without axial motion correction. It is possible to visualize both photoreceptor bands moving constantly.
» Visualization 4       FF-OCT image sequence with a tilted coherence gate now with axial motion correction, where bands motion is strongly attenuated.
» Visualization 5       FF-OCT and SD-OCT images recorded simultaneously during the imaging session.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic drawing of the custom-built FF-OCT system coupled with an SD-OCT for real-time axial motion correction and FF-OCT coherence gate positioning guidance.
Fig. 2.
Fig. 2. Performance of the axial eye motion optical stabilization. (A) and (B) are two examples of the axial position temporal evolution. Black line: measured axial position of the retina. Red line: position of the FF-OCT reference mirror. Blue line: Residual tracking error. Black areas represent blink occurrences and were excluded from the study. (C) and (D) averaged A-scan time series without axial motion correction. (E) and (F) presents the same averaged A-scan time series as (C) and (D) but now with expected performance after correcting for axial motion. Red rectangles represent the coherence gate axial position and volume. See Visualization 1 for a simulation of the expected B-scan temporal evolution with optical stabilization compared to the position of the FF-OCT coherence gate. Note that all SD-OCT images are shown in linear scale.
Fig. 3.
Fig. 3. Temporal performance of the axial motion correction control loop. (A) examples of temporal PSD computed for the retinal axial position (blue line) and the residual tracking error (red line). (B) Experimental (black line) rejection transfer function obtained by averaging temporal PSD for different acquired sequences, and the theoretical temporal PSD (red line). Note that, although a loop rate of 50 Hz is adopted, the loop cut-off frequency, i.e. the highest corrected temporal frequency (associated with 0 dB), is approximately 4 Hz.
Fig. 4.
Fig. 4. Images of cone photoreceptor mosaic acquired with the help of the axial motion correction method. (A) Cone mosaic averaged image from Visualization 2, acquired at the IS/OS junction at the fovea center. Eccentricities of zoomed areas 1 and 2 are respectively 1$^o$, 1.5$^o$. (B) Averaged image from Visualization 4. Both cone mosaic from the IS/OS junction and the COST layer close to the fovea center are visible in a single image. Eccentricities of zoomed areas 3, 4 and 5 are respectively 3$^o$, 2$^o$ and 2$^o$. For all zoomed areas the equivalent PSDs were computed.
Fig. 5.
Fig. 5. Averaging registered FF-OCT images improves the clarity of photoreceptors. (A),(B),(C) and (D) show images of photoreceptor mosaic at 4$^o$ eccentricity for different amount of averaging (from N = 1, N = 5, N = 10 and N = 25 images). The red dashed line, highlighted by a red arrow, indicates where a simultaneous SD-OCT acquisition took place. The increase of image contrast is more visible in the zoomed areas. (E) Power spectral density radial average from each zoomed area. The green area indicates the photoreceptor mosaic spatial frequency, which is present for all the cases presented. (F) Tomographic retinal cross-section image obtained with the SD-OCT after averaging 10 consecutive B-scans. The red dashed line highlights the location where the FF-OCT images were simultaneously acquired, i.e. at the IS/OS junction. All averaged images were extracted from Visualization 5.

Tables (1)

Tables Icon

Table 1. Axial motion statistics with and without the use of the method to optically stabilize retinal axial motion. Statistics took into account 13 image sequences of 7 to 28s duration from three subjects, for a total of 4700 analyzed A-scans. PV stands for peak-to-valley amplitude.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ϕ = ϕ N = η I 0 4 ( R e y e + R r e f + R i n c o h + 2 R e y e R r e f c o s ( Δ ϕ N ) )
I 2 p h a s e = | I ϕ N I ϕ N + 1 | = η I 0 2 R e y e R r e f | c o s ( Δ ϕ N ) c o s ( Δ ϕ N + 1 ) |

Metrics