Abstract

THz technologies are a powerful tool for label-free detection of biomolecules. However, significant reduction of the lower detection limit is required to apply THz-sensors in biomedical diagnosis. This paper reports an ultrasensitive THz-biosensor based on asymmetric double split ring resonators (aDSRR) for the direct label- and PCR-free detection of DNA at physiologically relevant concentrations. We introduce selective functionalization and localized electric field concentration to enhance aDSRR sensitivity and specificity. The sensor characteristics are demonstrated using the human tumor marker MIA in cDNA samples produced from total RNA without PCR-amplification. Measurements of DNA samples with concentrations as low as 1.55 × 10−12 mol/l are presented.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Micro-capillary-based evanescent field biosensor for sensitive, label-free DNA detection

Yun Liu, Shimeng Chen, Qiang Liu, and Wei Peng
Opt. Express 23(16) 20686-20695 (2015)

Label-free and specific detection of soluble programmed death ligand-1 using a localized surface plasmon resonance biosensor based on excessively tilted fiber gratings

Binbin Luo, Yajie Wang, Huafeng Lu, Shengxi Wu, Youming Lu, Shenghui Shi, Lingchen Li, Shanghai Jiang, and Mingfu Zhao
Biomed. Opt. Express 10(10) 5136-5148 (2019)

Prenatal detection of thalassemia by cell-free fetal DNA (cffDNA) in maternal plasma using surface enhanced Raman spectroscopy combined with PCR

Xiaozhou Li, Tianyue Yang, Caesar Siqi Li, Lili Jin, Hong Lou, and Youtao Song
Biomed. Opt. Express 9(7) 3167-3176 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T. Vo-Dinh, B. M. Cullum, and D. L. Stokes, “Nanosensors and biochips: frontiers in biomolecular diagnostics,” Sens. Actuators, B 74(1-3), 2–11 (2001).
    [Crossref]
  2. R. H. Liu, J. Yang, R. Lenigk, J. Bonanno, and P. Grodzinski, “Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection,” Anal. Chem. 76(7), 1824–1831 (2004).
    [Crossref]
  3. J. Wang, “Survey and summary: from DNA biosensors to gene chips,” Nucleic Acids Res. 28(16), 3011–3016 (2000).
    [Crossref]
  4. H. Ozaki and L. W. McLaughlin, “The estimation of distances between specific backbone-labeled sites in DNA using fluorescence resonance energy transfer,” Nucleic Acids Res. 20(19), 5205–5214 (1992).
    [Crossref]
  5. Z. Zhu, J. Chao, H. Yu, and A. S. Waggoner, “Directly labeled DNA probes using fluorescent nucleotides with different length linkers,” Nucleic Acids Res. 22(16), 3418–3422 (1994).
    [Crossref]
  6. Z. Zhu and A. Waggoner, “Molecular mechanism controlling the incorporation of fluorescent nucleotides into DNA by PCR,” Cytometry 28(3), 206–211 (1997).
    [Crossref]
  7. M. L. Larramendy, W. El-Rifai, and S. Knuutila, “Comparison of fluorescein isothiocyanate-and texas red-conjugated nucleotides for direct labeling in comparative genomic hybridization,” Cytometry 31(3), 174–179 (1998).
    [Crossref]
  8. H. Froehlich, “Long-range coherence and energy storage in biological systems,” Int. J. Quantum Chem. 2(5), 641–649 (1968).
    [Crossref]
  9. W. Zhuang, Y. Feng, and E. W. Prohofsky, “Self-consistent calculation of localized DNA vibrational properties at a double-helix-single-strand junction with anharmonic potential,” Phys. Rev. A 41(12), 7033–7042 (1990).
    [Crossref]
  10. M. Brucherseifer, M. Nagel, P. H. Bolívar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049–4051 (2000).
    [Crossref]
  11. A. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett. 320(1-2), 42–48 (2000).
    [Crossref]
  12. S. P. Mickan, A. Menikh, H. Liu, C. A. Mannella, R. MacColl, D. Abbott, J. Munch, and X.-C. Zhang, “Label-free bioaffinity detection using terahertz technology,” Phys. Med. Biol. 47(21), 3789–3795 (2002).
    [Crossref]
  13. B. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47(21), 3807–3814 (2002).
    [Crossref]
  14. C. Debus and P. H. Bolívar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
    [Crossref]
  15. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
    [Crossref]
  16. C. Debus, M. Awad, M. Nagel, and P. H. Bolívar, “Terahertz biochip technology: Toward high-sensitivity label-free DNA sensors,” Am. Biotechnol. Lab. 27, 8–11 (2009).
  17. M. I. Lvovska, N. C. Seeman, R. Sha, T. R. Globus, T. B. Khromova, and T. S. Dorofeeva, “THz characterization of DNA four-way junction and its components,” IEEE Trans. Nanotechnol. 9(5), 610–617 (2010).
    [Crossref]
  18. A. Arora, T. Q. Luong, M. Krüger, Y. J. Kim, C.-H. Nam, A. Manz, and M. Havenith, “Terahertz-time domain spectroscopy for the detection of PCR amplified DNA in aqueous solution,” Analyst 137(3), 575–579 (2012).
    [Crossref]
  19. S. Laurette, A. Treizebre, A. Elagli, B. Hatirnaz, R. Froidevaux, F. Affouard, L. Duponchel, and B. Bocquet, “Highly sensitive terahertz spectroscopy in microsystem,” RSC Adv. 2(26), 10064–10071 (2012).
    [Crossref]
  20. Company Abcam plc, “Human albumin elisa kit (ab179887),” (2019).
  21. Z. Geng, X. Zhang, Z. Fan, X. Lv, and H. Chen, “A route to terahertz metamaterial biosensor integrated with microfluidics for liver cancer biomarker testing in early stage,” Sci. Rep. 7(1), 16378 (2017).
    [Crossref]
  22. F. Falcone, T. Lopetegi, M. Laso, J. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
    [Crossref]
  23. C. Debus and P. H. Bolívar, “Terahertz biosensors based on double split ring arrays,” in Photonics Europe, (International Society for Optics and Photonics, 2008), p. 69870U.
  24. M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE 95(8), 1658–1665 (2007).
    [Crossref]
  25. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  26. D. Grischkowsky, S. Keiding, M. Van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7(10), 2006–2015 (1990).
    [Crossref]
  27. M. Nagel, P. H. Bolívar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154–156 (2002).
    [Crossref]
  28. T. Baras, T. Kleine-Ostmann, and M. Koch, “On-chip THz detection of biomaterials: A numerical study,” J. Biol. Phys. 29(2/3), 187–194 (2003).
    [Crossref]
  29. M. Nagel, F. Richter, P. Haring Bolívar, and H. Kurz, “A functionalized THz sensor for marker-free DNA analysis,” Phys. Med. Biol. 48(22), 3625–3636 (2003).
    [Crossref]
  30. C. Debus, “A high-sensitivity THz-sensing technology for DNA detection with split-ring resonator based biochips,” Ph.D. thesis, Siegen, Universität Siegen, Diss., 2013 (2013).
  31. Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).
  32. D. H. Auston, K. Cheung, J. Valdmanis, and D. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett. 53(16), 1555–1558 (1984).
    [Crossref]
  33. K. Cheung and D. Auston, “Excitation of coherent phonon polaritons with femtosecond optical pulses,” Phys. Rev. Lett. 55(20), 2152–2155 (1985).
    [Crossref]
  34. C. Debus, G. Spickermann, M. Nagel, and P. H. Bolívar, “All-electronic terahertz spectrometer for biosensing,” Microw. Opt. Technol. Lett. 53(12), 2899–2902 (2011).
    [Crossref]
  35. J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev. 105(4), 1103–1170 (2005).
    [Crossref]
  36. T. M. Herne and M. J. Tarlov, “Characterization of DNA probes immobilized on gold surfaces,” J. Am. Chem. Soc. 119(38), 8916–8920 (1997).
    [Crossref]
  37. Y. Sun, P. Du, X. Lu, P. Xie, Z. Qian, S. Fan, and Z. Zhu, “Quantitative characterization of bovine serum albumin thin-films using terahertz spectroscopy and machine learning methods,” Biomed. Opt. Express 9(7), 2917–2929 (2018).
    [Crossref]
  38. C. Weisenstein, D. Schaar, M. Schmeck, A. K. Wigger, A. K. Bosserhoff, and P. H. Bolívar, “Detection of human tumor markers with THz metamaterials,” in 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), (2018), pp. 1–2.

2018 (1)

2017 (1)

Z. Geng, X. Zhang, Z. Fan, X. Lv, and H. Chen, “A route to terahertz metamaterial biosensor integrated with microfluidics for liver cancer biomarker testing in early stage,” Sci. Rep. 7(1), 16378 (2017).
[Crossref]

2012 (2)

A. Arora, T. Q. Luong, M. Krüger, Y. J. Kim, C.-H. Nam, A. Manz, and M. Havenith, “Terahertz-time domain spectroscopy for the detection of PCR amplified DNA in aqueous solution,” Analyst 137(3), 575–579 (2012).
[Crossref]

S. Laurette, A. Treizebre, A. Elagli, B. Hatirnaz, R. Froidevaux, F. Affouard, L. Duponchel, and B. Bocquet, “Highly sensitive terahertz spectroscopy in microsystem,” RSC Adv. 2(26), 10064–10071 (2012).
[Crossref]

2011 (1)

C. Debus, G. Spickermann, M. Nagel, and P. H. Bolívar, “All-electronic terahertz spectrometer for biosensing,” Microw. Opt. Technol. Lett. 53(12), 2899–2902 (2011).
[Crossref]

2010 (1)

M. I. Lvovska, N. C. Seeman, R. Sha, T. R. Globus, T. B. Khromova, and T. S. Dorofeeva, “THz characterization of DNA four-way junction and its components,” IEEE Trans. Nanotechnol. 9(5), 610–617 (2010).
[Crossref]

2009 (1)

C. Debus, M. Awad, M. Nagel, and P. H. Bolívar, “Terahertz biochip technology: Toward high-sensitivity label-free DNA sensors,” Am. Biotechnol. Lab. 27, 8–11 (2009).

2007 (3)

C. Debus and P. H. Bolívar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
[Crossref]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref]

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE 95(8), 1658–1665 (2007).
[Crossref]

2006 (1)

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

2005 (1)

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev. 105(4), 1103–1170 (2005).
[Crossref]

2004 (2)

F. Falcone, T. Lopetegi, M. Laso, J. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref]

R. H. Liu, J. Yang, R. Lenigk, J. Bonanno, and P. Grodzinski, “Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection,” Anal. Chem. 76(7), 1824–1831 (2004).
[Crossref]

2003 (2)

T. Baras, T. Kleine-Ostmann, and M. Koch, “On-chip THz detection of biomaterials: A numerical study,” J. Biol. Phys. 29(2/3), 187–194 (2003).
[Crossref]

M. Nagel, F. Richter, P. Haring Bolívar, and H. Kurz, “A functionalized THz sensor for marker-free DNA analysis,” Phys. Med. Biol. 48(22), 3625–3636 (2003).
[Crossref]

2002 (3)

M. Nagel, P. H. Bolívar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154–156 (2002).
[Crossref]

S. P. Mickan, A. Menikh, H. Liu, C. A. Mannella, R. MacColl, D. Abbott, J. Munch, and X.-C. Zhang, “Label-free bioaffinity detection using terahertz technology,” Phys. Med. Biol. 47(21), 3789–3795 (2002).
[Crossref]

B. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47(21), 3807–3814 (2002).
[Crossref]

2001 (1)

T. Vo-Dinh, B. M. Cullum, and D. L. Stokes, “Nanosensors and biochips: frontiers in biomolecular diagnostics,” Sens. Actuators, B 74(1-3), 2–11 (2001).
[Crossref]

2000 (3)

J. Wang, “Survey and summary: from DNA biosensors to gene chips,” Nucleic Acids Res. 28(16), 3011–3016 (2000).
[Crossref]

M. Brucherseifer, M. Nagel, P. H. Bolívar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049–4051 (2000).
[Crossref]

A. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett. 320(1-2), 42–48 (2000).
[Crossref]

1998 (1)

M. L. Larramendy, W. El-Rifai, and S. Knuutila, “Comparison of fluorescein isothiocyanate-and texas red-conjugated nucleotides for direct labeling in comparative genomic hybridization,” Cytometry 31(3), 174–179 (1998).
[Crossref]

1997 (2)

Z. Zhu and A. Waggoner, “Molecular mechanism controlling the incorporation of fluorescent nucleotides into DNA by PCR,” Cytometry 28(3), 206–211 (1997).
[Crossref]

T. M. Herne and M. J. Tarlov, “Characterization of DNA probes immobilized on gold surfaces,” J. Am. Chem. Soc. 119(38), 8916–8920 (1997).
[Crossref]

1994 (1)

Z. Zhu, J. Chao, H. Yu, and A. S. Waggoner, “Directly labeled DNA probes using fluorescent nucleotides with different length linkers,” Nucleic Acids Res. 22(16), 3418–3422 (1994).
[Crossref]

1992 (1)

H. Ozaki and L. W. McLaughlin, “The estimation of distances between specific backbone-labeled sites in DNA using fluorescence resonance energy transfer,” Nucleic Acids Res. 20(19), 5205–5214 (1992).
[Crossref]

1990 (2)

W. Zhuang, Y. Feng, and E. W. Prohofsky, “Self-consistent calculation of localized DNA vibrational properties at a double-helix-single-strand junction with anharmonic potential,” Phys. Rev. A 41(12), 7033–7042 (1990).
[Crossref]

D. Grischkowsky, S. Keiding, M. Van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7(10), 2006–2015 (1990).
[Crossref]

1985 (1)

K. Cheung and D. Auston, “Excitation of coherent phonon polaritons with femtosecond optical pulses,” Phys. Rev. Lett. 55(20), 2152–2155 (1985).
[Crossref]

1984 (1)

D. H. Auston, K. Cheung, J. Valdmanis, and D. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett. 53(16), 1555–1558 (1984).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1968 (1)

H. Froehlich, “Long-range coherence and energy storage in biological systems,” Int. J. Quantum Chem. 2(5), 641–649 (1968).
[Crossref]

Abbott, D.

S. P. Mickan, A. Menikh, H. Liu, C. A. Mannella, R. MacColl, D. Abbott, J. Munch, and X.-C. Zhang, “Label-free bioaffinity detection using terahertz technology,” Phys. Med. Biol. 47(21), 3789–3795 (2002).
[Crossref]

Affouard, F.

S. Laurette, A. Treizebre, A. Elagli, B. Hatirnaz, R. Froidevaux, F. Affouard, L. Duponchel, and B. Bocquet, “Highly sensitive terahertz spectroscopy in microsystem,” RSC Adv. 2(26), 10064–10071 (2012).
[Crossref]

Arora, A.

A. Arora, T. Q. Luong, M. Krüger, Y. J. Kim, C.-H. Nam, A. Manz, and M. Havenith, “Terahertz-time domain spectroscopy for the detection of PCR amplified DNA in aqueous solution,” Analyst 137(3), 575–579 (2012).
[Crossref]

Auston, D.

K. Cheung and D. Auston, “Excitation of coherent phonon polaritons with femtosecond optical pulses,” Phys. Rev. Lett. 55(20), 2152–2155 (1985).
[Crossref]

Auston, D. H.

D. H. Auston, K. Cheung, J. Valdmanis, and D. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett. 53(16), 1555–1558 (1984).
[Crossref]

Awad, M.

C. Debus, M. Awad, M. Nagel, and P. H. Bolívar, “Terahertz biochip technology: Toward high-sensitivity label-free DNA sensors,” Am. Biotechnol. Lab. 27, 8–11 (2009).

Baena, J.

F. Falcone, T. Lopetegi, M. Laso, J. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref]

Baras, T.

T. Baras, T. Kleine-Ostmann, and M. Koch, “On-chip THz detection of biomaterials: A numerical study,” J. Biol. Phys. 29(2/3), 187–194 (2003).
[Crossref]

Beruete, M.

F. Falcone, T. Lopetegi, M. Laso, J. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref]

Bocquet, B.

S. Laurette, A. Treizebre, A. Elagli, B. Hatirnaz, R. Froidevaux, F. Affouard, L. Duponchel, and B. Bocquet, “Highly sensitive terahertz spectroscopy in microsystem,” RSC Adv. 2(26), 10064–10071 (2012).
[Crossref]

Bolívar, P. H.

C. Debus, G. Spickermann, M. Nagel, and P. H. Bolívar, “All-electronic terahertz spectrometer for biosensing,” Microw. Opt. Technol. Lett. 53(12), 2899–2902 (2011).
[Crossref]

C. Debus, M. Awad, M. Nagel, and P. H. Bolívar, “Terahertz biochip technology: Toward high-sensitivity label-free DNA sensors,” Am. Biotechnol. Lab. 27, 8–11 (2009).

C. Debus and P. H. Bolívar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
[Crossref]

M. Nagel, P. H. Bolívar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154–156 (2002).
[Crossref]

M. Brucherseifer, M. Nagel, P. H. Bolívar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049–4051 (2000).
[Crossref]

C. Weisenstein, D. Schaar, M. Schmeck, A. K. Wigger, A. K. Bosserhoff, and P. H. Bolívar, “Detection of human tumor markers with THz metamaterials,” in 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), (2018), pp. 1–2.

C. Debus and P. H. Bolívar, “Terahertz biosensors based on double split ring arrays,” in Photonics Europe, (International Society for Optics and Photonics, 2008), p. 69870U.

Bonache, J.

F. Falcone, T. Lopetegi, M. Laso, J. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref]

Bonanno, J.

R. H. Liu, J. Yang, R. Lenigk, J. Bonanno, and P. Grodzinski, “Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection,” Anal. Chem. 76(7), 1824–1831 (2004).
[Crossref]

Bosserhoff, A.

M. Nagel, P. H. Bolívar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154–156 (2002).
[Crossref]

M. Brucherseifer, M. Nagel, P. H. Bolívar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049–4051 (2000).
[Crossref]

Bosserhoff, A. K.

C. Weisenstein, D. Schaar, M. Schmeck, A. K. Wigger, A. K. Bosserhoff, and P. H. Bolívar, “Detection of human tumor markers with THz metamaterials,” in 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), (2018), pp. 1–2.

Brucherseifer, M.

M. Nagel, P. H. Bolívar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154–156 (2002).
[Crossref]

M. Brucherseifer, M. Nagel, P. H. Bolívar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049–4051 (2000).
[Crossref]

Büttner, R.

M. Nagel, P. H. Bolívar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154–156 (2002).
[Crossref]

M. Brucherseifer, M. Nagel, P. H. Bolívar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049–4051 (2000).
[Crossref]

Chao, J.

Z. Zhu, J. Chao, H. Yu, and A. S. Waggoner, “Directly labeled DNA probes using fluorescent nucleotides with different length linkers,” Nucleic Acids Res. 22(16), 3418–3422 (1994).
[Crossref]

Chen, H.

Z. Geng, X. Zhang, Z. Fan, X. Lv, and H. Chen, “A route to terahertz metamaterial biosensor integrated with microfluidics for liver cancer biomarker testing in early stage,” Sci. Rep. 7(1), 16378 (2017).
[Crossref]

Cheung, K.

K. Cheung and D. Auston, “Excitation of coherent phonon polaritons with femtosecond optical pulses,” Phys. Rev. Lett. 55(20), 2152–2155 (1985).
[Crossref]

D. H. Auston, K. Cheung, J. Valdmanis, and D. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett. 53(16), 1555–1558 (1984).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Cullum, B. M.

T. Vo-Dinh, B. M. Cullum, and D. L. Stokes, “Nanosensors and biochips: frontiers in biomolecular diagnostics,” Sens. Actuators, B 74(1-3), 2–11 (2001).
[Crossref]

Debus, C.

C. Debus, G. Spickermann, M. Nagel, and P. H. Bolívar, “All-electronic terahertz spectrometer for biosensing,” Microw. Opt. Technol. Lett. 53(12), 2899–2902 (2011).
[Crossref]

C. Debus, M. Awad, M. Nagel, and P. H. Bolívar, “Terahertz biochip technology: Toward high-sensitivity label-free DNA sensors,” Am. Biotechnol. Lab. 27, 8–11 (2009).

C. Debus and P. H. Bolívar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
[Crossref]

C. Debus, “A high-sensitivity THz-sensing technology for DNA detection with split-ring resonator based biochips,” Ph.D. thesis, Siegen, Universität Siegen, Diss., 2013 (2013).

C. Debus and P. H. Bolívar, “Terahertz biosensors based on double split ring arrays,” in Photonics Europe, (International Society for Optics and Photonics, 2008), p. 69870U.

Dorofeeva, T. S.

M. I. Lvovska, N. C. Seeman, R. Sha, T. R. Globus, T. B. Khromova, and T. S. Dorofeeva, “THz characterization of DNA four-way junction and its components,” IEEE Trans. Nanotechnol. 9(5), 610–617 (2010).
[Crossref]

Du, P.

Duponchel, L.

S. Laurette, A. Treizebre, A. Elagli, B. Hatirnaz, R. Froidevaux, F. Affouard, L. Duponchel, and B. Bocquet, “Highly sensitive terahertz spectroscopy in microsystem,” RSC Adv. 2(26), 10064–10071 (2012).
[Crossref]

Elagli, A.

S. Laurette, A. Treizebre, A. Elagli, B. Hatirnaz, R. Froidevaux, F. Affouard, L. Duponchel, and B. Bocquet, “Highly sensitive terahertz spectroscopy in microsystem,” RSC Adv. 2(26), 10064–10071 (2012).
[Crossref]

El-Rifai, W.

M. L. Larramendy, W. El-Rifai, and S. Knuutila, “Comparison of fluorescein isothiocyanate-and texas red-conjugated nucleotides for direct labeling in comparative genomic hybridization,” Cytometry 31(3), 174–179 (1998).
[Crossref]

Estroff, L. A.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev. 105(4), 1103–1170 (2005).
[Crossref]

Falcone, F.

F. Falcone, T. Lopetegi, M. Laso, J. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref]

Fan, S.

Fan, Z.

Z. Geng, X. Zhang, Z. Fan, X. Lv, and H. Chen, “A route to terahertz metamaterial biosensor integrated with microfluidics for liver cancer biomarker testing in early stage,” Sci. Rep. 7(1), 16378 (2017).
[Crossref]

Fattinger, C.

Fedotov, V. A.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref]

Feng, Y.

W. Zhuang, Y. Feng, and E. W. Prohofsky, “Self-consistent calculation of localized DNA vibrational properties at a double-helix-single-strand junction with anharmonic potential,” Phys. Rev. A 41(12), 7033–7042 (1990).
[Crossref]

Fischer, B.

B. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47(21), 3807–3814 (2002).
[Crossref]

Froehlich, H.

H. Froehlich, “Long-range coherence and energy storage in biological systems,” Int. J. Quantum Chem. 2(5), 641–649 (1968).
[Crossref]

Froidevaux, R.

S. Laurette, A. Treizebre, A. Elagli, B. Hatirnaz, R. Froidevaux, F. Affouard, L. Duponchel, and B. Bocquet, “Highly sensitive terahertz spectroscopy in microsystem,” RSC Adv. 2(26), 10064–10071 (2012).
[Crossref]

Geng, Z.

Z. Geng, X. Zhang, Z. Fan, X. Lv, and H. Chen, “A route to terahertz metamaterial biosensor integrated with microfluidics for liver cancer biomarker testing in early stage,” Sci. Rep. 7(1), 16378 (2017).
[Crossref]

Globus, T. R.

M. I. Lvovska, N. C. Seeman, R. Sha, T. R. Globus, T. B. Khromova, and T. S. Dorofeeva, “THz characterization of DNA four-way junction and its components,” IEEE Trans. Nanotechnol. 9(5), 610–617 (2010).
[Crossref]

Grischkowsky, D.

Grodzinski, P.

R. H. Liu, J. Yang, R. Lenigk, J. Bonanno, and P. Grodzinski, “Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection,” Anal. Chem. 76(7), 1824–1831 (2004).
[Crossref]

Haring Bolívar, P.

M. Nagel, F. Richter, P. Haring Bolívar, and H. Kurz, “A functionalized THz sensor for marker-free DNA analysis,” Phys. Med. Biol. 48(22), 3625–3636 (2003).
[Crossref]

Hatirnaz, B.

S. Laurette, A. Treizebre, A. Elagli, B. Hatirnaz, R. Froidevaux, F. Affouard, L. Duponchel, and B. Bocquet, “Highly sensitive terahertz spectroscopy in microsystem,” RSC Adv. 2(26), 10064–10071 (2012).
[Crossref]

Havenith, M.

A. Arora, T. Q. Luong, M. Krüger, Y. J. Kim, C.-H. Nam, A. Manz, and M. Havenith, “Terahertz-time domain spectroscopy for the detection of PCR amplified DNA in aqueous solution,” Analyst 137(3), 575–579 (2012).
[Crossref]

Heilweil, E. J.

A. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett. 320(1-2), 42–48 (2000).
[Crossref]

Herne, T. M.

T. M. Herne and M. J. Tarlov, “Characterization of DNA probes immobilized on gold surfaces,” J. Am. Chem. Soc. 119(38), 8916–8920 (1997).
[Crossref]

Jeon, S.-G.

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

Jepsen, P. U.

B. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47(21), 3807–3814 (2002).
[Crossref]

Jin, Y.-S.

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Keiding, S.

Khromova, T. B.

M. I. Lvovska, N. C. Seeman, R. Sha, T. R. Globus, T. B. Khromova, and T. S. Dorofeeva, “THz characterization of DNA four-way junction and its components,” IEEE Trans. Nanotechnol. 9(5), 610–617 (2010).
[Crossref]

Kim, G.-J.

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

Kim, Y. J.

A. Arora, T. Q. Luong, M. Krüger, Y. J. Kim, C.-H. Nam, A. Manz, and M. Havenith, “Terahertz-time domain spectroscopy for the detection of PCR amplified DNA in aqueous solution,” Analyst 137(3), 575–579 (2012).
[Crossref]

Kleine-Ostmann, T.

T. Baras, T. Kleine-Ostmann, and M. Koch, “On-chip THz detection of biomaterials: A numerical study,” J. Biol. Phys. 29(2/3), 187–194 (2003).
[Crossref]

Kleinman, D.

D. H. Auston, K. Cheung, J. Valdmanis, and D. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett. 53(16), 1555–1558 (1984).
[Crossref]

Knuutila, S.

M. L. Larramendy, W. El-Rifai, and S. Knuutila, “Comparison of fluorescein isothiocyanate-and texas red-conjugated nucleotides for direct labeling in comparative genomic hybridization,” Cytometry 31(3), 174–179 (1998).
[Crossref]

Koch, M.

T. Baras, T. Kleine-Ostmann, and M. Koch, “On-chip THz detection of biomaterials: A numerical study,” J. Biol. Phys. 29(2/3), 187–194 (2003).
[Crossref]

Kriebel, J. K.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev. 105(4), 1103–1170 (2005).
[Crossref]

Krüger, M.

A. Arora, T. Q. Luong, M. Krüger, Y. J. Kim, C.-H. Nam, A. Manz, and M. Havenith, “Terahertz-time domain spectroscopy for the detection of PCR amplified DNA in aqueous solution,” Analyst 137(3), 575–579 (2012).
[Crossref]

Kurz, H.

M. Nagel, F. Richter, P. Haring Bolívar, and H. Kurz, “A functionalized THz sensor for marker-free DNA analysis,” Phys. Med. Biol. 48(22), 3625–3636 (2003).
[Crossref]

M. Nagel, P. H. Bolívar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154–156 (2002).
[Crossref]

M. Brucherseifer, M. Nagel, P. H. Bolívar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049–4051 (2000).
[Crossref]

Larramendy, M. L.

M. L. Larramendy, W. El-Rifai, and S. Knuutila, “Comparison of fluorescein isothiocyanate-and texas red-conjugated nucleotides for direct labeling in comparative genomic hybridization,” Cytometry 31(3), 174–179 (1998).
[Crossref]

Laso, M.

F. Falcone, T. Lopetegi, M. Laso, J. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref]

Laurette, S.

S. Laurette, A. Treizebre, A. Elagli, B. Hatirnaz, R. Froidevaux, F. Affouard, L. Duponchel, and B. Bocquet, “Highly sensitive terahertz spectroscopy in microsystem,” RSC Adv. 2(26), 10064–10071 (2012).
[Crossref]

Lenigk, R.

R. H. Liu, J. Yang, R. Lenigk, J. Bonanno, and P. Grodzinski, “Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection,” Anal. Chem. 76(7), 1824–1831 (2004).
[Crossref]

Liu, H.

S. P. Mickan, A. Menikh, H. Liu, C. A. Mannella, R. MacColl, D. Abbott, J. Munch, and X.-C. Zhang, “Label-free bioaffinity detection using terahertz technology,” Phys. Med. Biol. 47(21), 3789–3795 (2002).
[Crossref]

Liu, R. H.

R. H. Liu, J. Yang, R. Lenigk, J. Bonanno, and P. Grodzinski, “Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection,” Anal. Chem. 76(7), 1824–1831 (2004).
[Crossref]

Lopetegi, T.

F. Falcone, T. Lopetegi, M. Laso, J. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref]

Love, J. C.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev. 105(4), 1103–1170 (2005).
[Crossref]

Lu, X.

Luong, T. Q.

A. Arora, T. Q. Luong, M. Krüger, Y. J. Kim, C.-H. Nam, A. Manz, and M. Havenith, “Terahertz-time domain spectroscopy for the detection of PCR amplified DNA in aqueous solution,” Analyst 137(3), 575–579 (2012).
[Crossref]

Lv, X.

Z. Geng, X. Zhang, Z. Fan, X. Lv, and H. Chen, “A route to terahertz metamaterial biosensor integrated with microfluidics for liver cancer biomarker testing in early stage,” Sci. Rep. 7(1), 16378 (2017).
[Crossref]

Lvovska, M. I.

M. I. Lvovska, N. C. Seeman, R. Sha, T. R. Globus, T. B. Khromova, and T. S. Dorofeeva, “THz characterization of DNA four-way junction and its components,” IEEE Trans. Nanotechnol. 9(5), 610–617 (2010).
[Crossref]

MacColl, R.

S. P. Mickan, A. Menikh, H. Liu, C. A. Mannella, R. MacColl, D. Abbott, J. Munch, and X.-C. Zhang, “Label-free bioaffinity detection using terahertz technology,” Phys. Med. Biol. 47(21), 3789–3795 (2002).
[Crossref]

Mannella, C. A.

S. P. Mickan, A. Menikh, H. Liu, C. A. Mannella, R. MacColl, D. Abbott, J. Munch, and X.-C. Zhang, “Label-free bioaffinity detection using terahertz technology,” Phys. Med. Biol. 47(21), 3789–3795 (2002).
[Crossref]

Manz, A.

A. Arora, T. Q. Luong, M. Krüger, Y. J. Kim, C.-H. Nam, A. Manz, and M. Havenith, “Terahertz-time domain spectroscopy for the detection of PCR amplified DNA in aqueous solution,” Analyst 137(3), 575–579 (2012).
[Crossref]

Markelz, A.

A. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett. 320(1-2), 42–48 (2000).
[Crossref]

Marqués, R.

F. Falcone, T. Lopetegi, M. Laso, J. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref]

Martín, F.

F. Falcone, T. Lopetegi, M. Laso, J. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref]

McLaughlin, L. W.

H. Ozaki and L. W. McLaughlin, “The estimation of distances between specific backbone-labeled sites in DNA using fluorescence resonance energy transfer,” Nucleic Acids Res. 20(19), 5205–5214 (1992).
[Crossref]

Menikh, A.

S. P. Mickan, A. Menikh, H. Liu, C. A. Mannella, R. MacColl, D. Abbott, J. Munch, and X.-C. Zhang, “Label-free bioaffinity detection using terahertz technology,” Phys. Med. Biol. 47(21), 3789–3795 (2002).
[Crossref]

Mickan, S. P.

S. P. Mickan, A. Menikh, H. Liu, C. A. Mannella, R. MacColl, D. Abbott, J. Munch, and X.-C. Zhang, “Label-free bioaffinity detection using terahertz technology,” Phys. Med. Biol. 47(21), 3789–3795 (2002).
[Crossref]

Miles, R. E.

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE 95(8), 1658–1665 (2007).
[Crossref]

Munch, J.

S. P. Mickan, A. Menikh, H. Liu, C. A. Mannella, R. MacColl, D. Abbott, J. Munch, and X.-C. Zhang, “Label-free bioaffinity detection using terahertz technology,” Phys. Med. Biol. 47(21), 3789–3795 (2002).
[Crossref]

Naftaly, M.

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE 95(8), 1658–1665 (2007).
[Crossref]

Nagel, M.

C. Debus, G. Spickermann, M. Nagel, and P. H. Bolívar, “All-electronic terahertz spectrometer for biosensing,” Microw. Opt. Technol. Lett. 53(12), 2899–2902 (2011).
[Crossref]

C. Debus, M. Awad, M. Nagel, and P. H. Bolívar, “Terahertz biochip technology: Toward high-sensitivity label-free DNA sensors,” Am. Biotechnol. Lab. 27, 8–11 (2009).

M. Nagel, F. Richter, P. Haring Bolívar, and H. Kurz, “A functionalized THz sensor for marker-free DNA analysis,” Phys. Med. Biol. 48(22), 3625–3636 (2003).
[Crossref]

M. Nagel, P. H. Bolívar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154–156 (2002).
[Crossref]

M. Brucherseifer, M. Nagel, P. H. Bolívar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049–4051 (2000).
[Crossref]

Nam, C.-H.

A. Arora, T. Q. Luong, M. Krüger, Y. J. Kim, C.-H. Nam, A. Manz, and M. Havenith, “Terahertz-time domain spectroscopy for the detection of PCR amplified DNA in aqueous solution,” Analyst 137(3), 575–579 (2012).
[Crossref]

Nuzzo, R. G.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev. 105(4), 1103–1170 (2005).
[Crossref]

Ozaki, H.

H. Ozaki and L. W. McLaughlin, “The estimation of distances between specific backbone-labeled sites in DNA using fluorescence resonance energy transfer,” Nucleic Acids Res. 20(19), 5205–5214 (1992).
[Crossref]

Papasimakis, N.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref]

Prohofsky, E. W.

W. Zhuang, Y. Feng, and E. W. Prohofsky, “Self-consistent calculation of localized DNA vibrational properties at a double-helix-single-strand junction with anharmonic potential,” Phys. Rev. A 41(12), 7033–7042 (1990).
[Crossref]

Prosvirnin, S. L.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref]

Qian, Z.

Richter, F.

M. Nagel, F. Richter, P. Haring Bolívar, and H. Kurz, “A functionalized THz sensor for marker-free DNA analysis,” Phys. Med. Biol. 48(22), 3625–3636 (2003).
[Crossref]

Roitberg, A.

A. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett. 320(1-2), 42–48 (2000).
[Crossref]

Rose, M.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref]

Schaar, D.

C. Weisenstein, D. Schaar, M. Schmeck, A. K. Wigger, A. K. Bosserhoff, and P. H. Bolívar, “Detection of human tumor markers with THz metamaterials,” in 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), (2018), pp. 1–2.

Schmeck, M.

C. Weisenstein, D. Schaar, M. Schmeck, A. K. Wigger, A. K. Bosserhoff, and P. H. Bolívar, “Detection of human tumor markers with THz metamaterials,” in 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), (2018), pp. 1–2.

Seeman, N. C.

M. I. Lvovska, N. C. Seeman, R. Sha, T. R. Globus, T. B. Khromova, and T. S. Dorofeeva, “THz characterization of DNA four-way junction and its components,” IEEE Trans. Nanotechnol. 9(5), 610–617 (2010).
[Crossref]

Sha, R.

M. I. Lvovska, N. C. Seeman, R. Sha, T. R. Globus, T. B. Khromova, and T. S. Dorofeeva, “THz characterization of DNA four-way junction and its components,” IEEE Trans. Nanotechnol. 9(5), 610–617 (2010).
[Crossref]

Sorolla, M.

F. Falcone, T. Lopetegi, M. Laso, J. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref]

Spickermann, G.

C. Debus, G. Spickermann, M. Nagel, and P. H. Bolívar, “All-electronic terahertz spectrometer for biosensing,” Microw. Opt. Technol. Lett. 53(12), 2899–2902 (2011).
[Crossref]

Stokes, D. L.

T. Vo-Dinh, B. M. Cullum, and D. L. Stokes, “Nanosensors and biochips: frontiers in biomolecular diagnostics,” Sens. Actuators, B 74(1-3), 2–11 (2001).
[Crossref]

Sun, Y.

Tarlov, M. J.

T. M. Herne and M. J. Tarlov, “Characterization of DNA probes immobilized on gold surfaces,” J. Am. Chem. Soc. 119(38), 8916–8920 (1997).
[Crossref]

Treizebre, A.

S. Laurette, A. Treizebre, A. Elagli, B. Hatirnaz, R. Froidevaux, F. Affouard, L. Duponchel, and B. Bocquet, “Highly sensitive terahertz spectroscopy in microsystem,” RSC Adv. 2(26), 10064–10071 (2012).
[Crossref]

Valdmanis, J.

D. H. Auston, K. Cheung, J. Valdmanis, and D. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett. 53(16), 1555–1558 (1984).
[Crossref]

Van Exter, M.

Vo-Dinh, T.

T. Vo-Dinh, B. M. Cullum, and D. L. Stokes, “Nanosensors and biochips: frontiers in biomolecular diagnostics,” Sens. Actuators, B 74(1-3), 2–11 (2001).
[Crossref]

Waggoner, A.

Z. Zhu and A. Waggoner, “Molecular mechanism controlling the incorporation of fluorescent nucleotides into DNA by PCR,” Cytometry 28(3), 206–211 (1997).
[Crossref]

Waggoner, A. S.

Z. Zhu, J. Chao, H. Yu, and A. S. Waggoner, “Directly labeled DNA probes using fluorescent nucleotides with different length linkers,” Nucleic Acids Res. 22(16), 3418–3422 (1994).
[Crossref]

Walther, M.

B. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47(21), 3807–3814 (2002).
[Crossref]

Wang, J.

J. Wang, “Survey and summary: from DNA biosensors to gene chips,” Nucleic Acids Res. 28(16), 3011–3016 (2000).
[Crossref]

Weisenstein, C.

C. Weisenstein, D. Schaar, M. Schmeck, A. K. Wigger, A. K. Bosserhoff, and P. H. Bolívar, “Detection of human tumor markers with THz metamaterials,” in 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), (2018), pp. 1–2.

Whitesides, G. M.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev. 105(4), 1103–1170 (2005).
[Crossref]

Wigger, A. K.

C. Weisenstein, D. Schaar, M. Schmeck, A. K. Wigger, A. K. Bosserhoff, and P. H. Bolívar, “Detection of human tumor markers with THz metamaterials,” in 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), (2018), pp. 1–2.

Xie, P.

Yang, J.

R. H. Liu, J. Yang, R. Lenigk, J. Bonanno, and P. Grodzinski, “Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection,” Anal. Chem. 76(7), 1824–1831 (2004).
[Crossref]

Yu, H.

Z. Zhu, J. Chao, H. Yu, and A. S. Waggoner, “Directly labeled DNA probes using fluorescent nucleotides with different length linkers,” Nucleic Acids Res. 22(16), 3418–3422 (1994).
[Crossref]

Zhang, X.

Z. Geng, X. Zhang, Z. Fan, X. Lv, and H. Chen, “A route to terahertz metamaterial biosensor integrated with microfluidics for liver cancer biomarker testing in early stage,” Sci. Rep. 7(1), 16378 (2017).
[Crossref]

Zhang, X.-C.

S. P. Mickan, A. Menikh, H. Liu, C. A. Mannella, R. MacColl, D. Abbott, J. Munch, and X.-C. Zhang, “Label-free bioaffinity detection using terahertz technology,” Phys. Med. Biol. 47(21), 3789–3795 (2002).
[Crossref]

Zheludev, N. I.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref]

Zhu, Z.

Y. Sun, P. Du, X. Lu, P. Xie, Z. Qian, S. Fan, and Z. Zhu, “Quantitative characterization of bovine serum albumin thin-films using terahertz spectroscopy and machine learning methods,” Biomed. Opt. Express 9(7), 2917–2929 (2018).
[Crossref]

Z. Zhu and A. Waggoner, “Molecular mechanism controlling the incorporation of fluorescent nucleotides into DNA by PCR,” Cytometry 28(3), 206–211 (1997).
[Crossref]

Z. Zhu, J. Chao, H. Yu, and A. S. Waggoner, “Directly labeled DNA probes using fluorescent nucleotides with different length linkers,” Nucleic Acids Res. 22(16), 3418–3422 (1994).
[Crossref]

Zhuang, W.

W. Zhuang, Y. Feng, and E. W. Prohofsky, “Self-consistent calculation of localized DNA vibrational properties at a double-helix-single-strand junction with anharmonic potential,” Phys. Rev. A 41(12), 7033–7042 (1990).
[Crossref]

Am. Biotechnol. Lab. (1)

C. Debus, M. Awad, M. Nagel, and P. H. Bolívar, “Terahertz biochip technology: Toward high-sensitivity label-free DNA sensors,” Am. Biotechnol. Lab. 27, 8–11 (2009).

Anal. Chem. (1)

R. H. Liu, J. Yang, R. Lenigk, J. Bonanno, and P. Grodzinski, “Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection,” Anal. Chem. 76(7), 1824–1831 (2004).
[Crossref]

Analyst (1)

A. Arora, T. Q. Luong, M. Krüger, Y. J. Kim, C.-H. Nam, A. Manz, and M. Havenith, “Terahertz-time domain spectroscopy for the detection of PCR amplified DNA in aqueous solution,” Analyst 137(3), 575–579 (2012).
[Crossref]

Appl. Phys. Lett. (3)

M. Nagel, P. H. Bolívar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154–156 (2002).
[Crossref]

C. Debus and P. H. Bolívar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
[Crossref]

M. Brucherseifer, M. Nagel, P. H. Bolívar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049–4051 (2000).
[Crossref]

Biomed. Opt. Express (1)

Chem. Phys. Lett. (1)

A. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett. 320(1-2), 42–48 (2000).
[Crossref]

Chem. Rev. (1)

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev. 105(4), 1103–1170 (2005).
[Crossref]

Cytometry (2)

Z. Zhu and A. Waggoner, “Molecular mechanism controlling the incorporation of fluorescent nucleotides into DNA by PCR,” Cytometry 28(3), 206–211 (1997).
[Crossref]

M. L. Larramendy, W. El-Rifai, and S. Knuutila, “Comparison of fluorescein isothiocyanate-and texas red-conjugated nucleotides for direct labeling in comparative genomic hybridization,” Cytometry 31(3), 174–179 (1998).
[Crossref]

IEEE Trans. Nanotechnol. (1)

M. I. Lvovska, N. C. Seeman, R. Sha, T. R. Globus, T. B. Khromova, and T. S. Dorofeeva, “THz characterization of DNA four-way junction and its components,” IEEE Trans. Nanotechnol. 9(5), 610–617 (2010).
[Crossref]

Int. J. Quantum Chem. (1)

H. Froehlich, “Long-range coherence and energy storage in biological systems,” Int. J. Quantum Chem. 2(5), 641–649 (1968).
[Crossref]

J. Am. Chem. Soc. (1)

T. M. Herne and M. J. Tarlov, “Characterization of DNA probes immobilized on gold surfaces,” J. Am. Chem. Soc. 119(38), 8916–8920 (1997).
[Crossref]

J. Biol. Phys. (1)

T. Baras, T. Kleine-Ostmann, and M. Koch, “On-chip THz detection of biomaterials: A numerical study,” J. Biol. Phys. 29(2/3), 187–194 (2003).
[Crossref]

J. Korean Phys. Soc. (1)

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

J. Opt. Soc. Am. B (1)

Microw. Opt. Technol. Lett. (1)

C. Debus, G. Spickermann, M. Nagel, and P. H. Bolívar, “All-electronic terahertz spectrometer for biosensing,” Microw. Opt. Technol. Lett. 53(12), 2899–2902 (2011).
[Crossref]

Nucleic Acids Res. (3)

J. Wang, “Survey and summary: from DNA biosensors to gene chips,” Nucleic Acids Res. 28(16), 3011–3016 (2000).
[Crossref]

H. Ozaki and L. W. McLaughlin, “The estimation of distances between specific backbone-labeled sites in DNA using fluorescence resonance energy transfer,” Nucleic Acids Res. 20(19), 5205–5214 (1992).
[Crossref]

Z. Zhu, J. Chao, H. Yu, and A. S. Waggoner, “Directly labeled DNA probes using fluorescent nucleotides with different length linkers,” Nucleic Acids Res. 22(16), 3418–3422 (1994).
[Crossref]

Phys. Med. Biol. (3)

S. P. Mickan, A. Menikh, H. Liu, C. A. Mannella, R. MacColl, D. Abbott, J. Munch, and X.-C. Zhang, “Label-free bioaffinity detection using terahertz technology,” Phys. Med. Biol. 47(21), 3789–3795 (2002).
[Crossref]

B. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47(21), 3807–3814 (2002).
[Crossref]

M. Nagel, F. Richter, P. Haring Bolívar, and H. Kurz, “A functionalized THz sensor for marker-free DNA analysis,” Phys. Med. Biol. 48(22), 3625–3636 (2003).
[Crossref]

Phys. Rev. A (1)

W. Zhuang, Y. Feng, and E. W. Prohofsky, “Self-consistent calculation of localized DNA vibrational properties at a double-helix-single-strand junction with anharmonic potential,” Phys. Rev. A 41(12), 7033–7042 (1990).
[Crossref]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (4)

F. Falcone, T. Lopetegi, M. Laso, J. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref]

D. H. Auston, K. Cheung, J. Valdmanis, and D. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett. 53(16), 1555–1558 (1984).
[Crossref]

K. Cheung and D. Auston, “Excitation of coherent phonon polaritons with femtosecond optical pulses,” Phys. Rev. Lett. 55(20), 2152–2155 (1985).
[Crossref]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref]

Proc. IEEE (1)

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE 95(8), 1658–1665 (2007).
[Crossref]

RSC Adv. (1)

S. Laurette, A. Treizebre, A. Elagli, B. Hatirnaz, R. Froidevaux, F. Affouard, L. Duponchel, and B. Bocquet, “Highly sensitive terahertz spectroscopy in microsystem,” RSC Adv. 2(26), 10064–10071 (2012).
[Crossref]

Sci. Rep. (1)

Z. Geng, X. Zhang, Z. Fan, X. Lv, and H. Chen, “A route to terahertz metamaterial biosensor integrated with microfluidics for liver cancer biomarker testing in early stage,” Sci. Rep. 7(1), 16378 (2017).
[Crossref]

Sens. Actuators, B (1)

T. Vo-Dinh, B. M. Cullum, and D. L. Stokes, “Nanosensors and biochips: frontiers in biomolecular diagnostics,” Sens. Actuators, B 74(1-3), 2–11 (2001).
[Crossref]

Other (4)

Company Abcam plc, “Human albumin elisa kit (ab179887),” (2019).

C. Debus and P. H. Bolívar, “Terahertz biosensors based on double split ring arrays,” in Photonics Europe, (International Society for Optics and Photonics, 2008), p. 69870U.

C. Weisenstein, D. Schaar, M. Schmeck, A. K. Wigger, A. K. Bosserhoff, and P. H. Bolívar, “Detection of human tumor markers with THz metamaterials,” in 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), (2018), pp. 1–2.

C. Debus, “A high-sensitivity THz-sensing technology for DNA detection with split-ring resonator based biochips,” Ph.D. thesis, Siegen, Universität Siegen, Diss., 2013 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic layout of the aDSRR structure and (b) cross section of one arc of the aDSRR (not to scale), showing the quartz substrate with the etched profile (blue) and the lithographic chromium layers (grey) enclosing the gold layer. The biofilm (green) is selectively functionalized on the open gold surfaces. (c) Cross-sectional SEM image of a fabricated biosensor with the undercut etched profile. (d) Simulated distribution of the electric field in the cross section of the aDSRR long arc. The maximum of the asymmetric E-field is concentrated at the edge of the free-standing metallic structure. (e) Complete biosensor with query fields consisting of aDSRR arrays of 5x5 and 7x7 elements.
Fig. 2.
Fig. 2. Simulated transmission spectra for the designed aDSRR structure of reference and simulated DNA loading. The peak-to-peak transmission intensity difference of both resonance features is $\sim 23\,$dB with an $8.5\,$GHz width. Comparing the center frequencies of both simulations, a shift of $\Delta f=0.76\,$GHz towards lower frequencies is observed as a result of DNA loading.
Fig. 3.
Fig. 3. (a) Representative transmission spectra of four measurements at two query fields. The resonance frequency $F_{R}$ of each measurement was determined by a fitting and analyzed at $-15\,$dB. A frequency shift of $\Delta f_{1}=-314\,$MHz is observed for the query field loaded with $5\,\mu$M dsDNA in comparison the frequency shift $\Delta f_{2}$ of the reference field is negligibly small (b).
Fig. 4.
Fig. 4. Measured frequency shift caused by loading the biosensor with hybridized $24\,$bp dsDNA SYN2. Variation in DNA concentration between $20$ and $0.1\,\mu$M has a dependency related to the frequency shift towards lower resonance frequencies.
Fig. 5.
Fig. 5. (a) Relative frequency shifts towards lower frequencies as a consequence of different DNA sequences which are functionalized on different query fields (indicated by green, red, and blue boxes) on one biosensor. The colored bars indicate the process steps: red is the functionalization with thiol modified capture DNA, blue the treatment with MCH, pink rinsing with UREA, and green the on-chip hybridization with the target sequences SYN2 and MIA cDNA. The biosensor loaded with various analytes is illustrated in (b).
Fig. 6.
Fig. 6. (a) In comparison to published THz results, our measurements show increased sensitivity by six orders of magnitude at comparable molecular weights. The dashed line represents the overall trend of decreasing detection limits with increasing molecular weight. (b) Table with best of class THz analyses of biomolecules.

Metrics