Abstract

During laser-induced, breakdown-based medical procedures in human eyes such as posterior capsulotomy and vitreolysis, shock waves are emitted from the location of the plasma. A part of these spherically expanding transients is reflected from the concave surface of the corneal epithelium and refocused within the eye. Using a simplified experimental model of the eye, the dominant secondary cavitation clusters were detected by high-speed camera shadowgraphy in the refocusing volume, dislocated from the breakdown position and described by an abridged ray theory. Individual microbubbles were detected in the preheated cone of the incoming laser pulse and radially extending cavitation filaments were generated around the location of the breakdown soon after collapse of the initial bubble. The generation of the secondary cavitation structures due to shock wave focusing can be considered an adverse effect, important in ophthalmology.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optodynamic characterization of the shock waves after laser-induced breakdown in water

Rok Petkovšek, Janez Možina, and Griša Močnik
Opt. Express 13(11) 4107-4112 (2005)

Shock-wave propagation and cavitation bubble oscillation by Nd:YAG laser ablation of a metal in water

Xiao Chen, Rong-Qing Xu, Jian-Ping Chen, Zhong-Hua Shen, Lu Jian, and Xiao-Wu Ni
Appl. Opt. 43(16) 3251-3257 (2004)

Optical observation of shock waves and cavitation bubbles in high intensity laser-induced shock processes

L. Martí-López, R. Ocaña, J. A. Porro, M. Morales, and J. L. Ocaña
Appl. Opt. 48(19) 3671-3680 (2009)

References

  • View by:
  • |
  • |
  • |

  1. M. H. Niemz, Laser-Tissue Interactions: Fundamentals and Applications (Springer, 2007).
  2. A. Vogel, M. R. C. Capon, M. N. Asiyo-Vogel, and R. Birngruber, “Intraocular Photodisruption with Picosecond and Nanosecond Laser-Pulses - Tissue Effects in Cornea, Lens, and Retina,” Invest. Ophth. Vis. Sci. 35(7), 3032–3044 (1994).
  3. W. Lauterborn and A. Vogel, “Shock wave emission by laser generated bubbles,” in Bubble Dynamics and Shock WavesC. F. Delale, ed. (Springer, 2013), pp. 67–103.
  4. A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
    [Crossref]
  5. A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
    [Crossref]
  6. P. Hahn, E. W. Schneider, H. Tabandeh, R. W. Wong, and G. G. Emerson, “Reported Complications Following Laser Vitreolysis,” JAMA Ophthalmol. 135(9), 973–976 (2017).
    [Crossref]
  7. J. I. Lim, “YAG Laser Vitreolysis-Is It as Clear as It Seems?” JAMA Ophthalmol. 135(9), 924–925 (2017).
    [Crossref]
  8. H. L. Little and R. L. Jack, “Q-Switched neodymium:YAG laser surgery of the vitreous,” Graefe's Arch. Clin. Exp. Ophthalmol. 224(3), 240–246 (1986).
    [Crossref]
  9. A. Vogel, P. Schweiger, A. Frieser, M. N. Asiyo, and R. Birngruber, “Intraocular Nd:YAG Laser-Surgery: Light-Tissue Interaction, Damage Range, and Reduction of Collateral Effects,” IEEE J. Quantum Electron. 26(12), 2240–2260 (1990).
    [Crossref]
  10. P. X. Wang, V. T. C. Koh, and S. C. Loon, “Laser iridotomy and the corneal endothelium: a systemic review,” Acta Ophthalmol. 92(7), 604–616 (2014).
    [Crossref]
  11. D. J. Apple, K. D. Solomon, M. R. Tetz, E. I. Assia, E. Y. Holland, U. F. C. Legler, J. C. Tsai, V. E. Castaneda, J. P. Hoggatt, and A. M. P. Kostick, “Posterior Capsule Opacification,” Surv. Ophthalmol. 37(2), 73–116 (1992).
    [Crossref]
  12. F. Fankhauser and S. Kwasniewska, “Laser vitreolysis,” Ophthalmologica 216(2), 73–84 (2002).
    [Crossref]
  13. F. Fankhauser, U. Durr, H. Giger, P. Rol, and S. Kwasniewska, “Lasers, optical systems and safety in ophthalmology: A review,” Graefe's Arch. Clin. Exp. Ophthalmol. 234(8), 473–487 (1996).
    [Crossref]
  14. A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B: Lasers Opt. 68(2), 271–280 (1999).
    [Crossref]
  15. C. T. Wilson, T. L. Hall, E. Johnsen, L. Mancia, M. Rodriguez, J. E. Lundt, T. Colonius, D. L. Henann, C. Franck, Z. Xu, and J. R. Sukovich, “Comparative study of the dynamics of laser and acoustically generated bubbles in viscoelastic media,” Phys. Rev. E 99(4), 043103 (2019).
    [Crossref]
  16. T. Požar, M. Halilovič, D. Horvat, and R. Petkovšek, “Simulation of wave propagation inside a human eye: acoustic eye model (AEM),” Appl. Phys. A: Mater. Sci. Process. 124(2), 112 (2018).
    [Crossref]
  17. E. A. Brujan and A. Vogel, “Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom,” J. Fluid Mech. 558, 281–308 (2006).
    [Crossref]
  18. O. Supponen, “Collapse phenomena of deformed cavitation bubbles,” PhD Thesis: (Federal Institute of Technology Lausanne, 2017).
  19. O. Supponen, D. Obreschkow, P. Kobel, M. Tinguely, N. Dorsaz, and M. Farhat, “Shock waves from nonspherical cavitation bubbles,” Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2(9), 093601 (2017).
    [Crossref]
  20. W. Lauterborn, “Laser-Induced Cavitation,” Acustica 31(2), 51–78 (1974).
  21. Y. Tomita, T. Kodama, and A. Shima, “Secondary Cavitation Due to Interaction of a Collapsing Bubble with a Rising Free-Surface,” Appl. Phys. Lett. 59(3), 274–276 (1991).
    [Crossref]
  22. E. Robert, J. Lettry, M. Farhat, P. A. Monkewitz, and F. Avellan, “Cavitation bubble behavior inside a liquid jet,” Phys. Fluids 19(6), 067106 (2007).
    [Crossref]
  23. D. Obreschkow, N. Dorsaz, P. Kobel, A. de Bosset, M. Tinguely, J. Field, and M. Farhat, “Confined shocks inside isolated liquid volumes: A new path of erosion?” Phys. Fluids 23(10), 101702 (2011).
    [Crossref]
  24. A. Vogel, W. Hentschel, J. Holzfuss, and W. Lauterborn, “Cavitation Bubble Dynamics and Acoustic Transient Generation in Ocular Surgery with Pulsed Neodymium - Yag Lasers,” Ophthalmology 93(10), 1259–1269 (1986).
    [Crossref]
  25. H. L. Heacock, “Molded ophthalmic lens,” patent: (US 8,303,116 B2, 2012).
  26. M. P. Kummer, J. J. Abbott, S. Dinser, and B. J. Nelson, “Artificial Vitreous Humor for In Vitro Experiments,” 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, pp. 6406–6409.
  27. G. S. Settles, Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media (Springer, 2001).
  28. F. E. Jones and G. L. Harris, “ITS-90 Density of Water Formulation for Volumetric Standards Calibration,” J. Res. Natl. Inst. Stand. Technol. 97(3), 335–340 (1992).
    [Crossref]
  29. N. Bilaniuk and G. S. K. Wong, “Speed of Sound in Pure Water as a Function of Temperature,” J. Acoust. Soc. Am. 93(3), 1609–1612 (1993).
    [Crossref]
  30. D. R. Christman, General motors technical center Warren MI materials and structures lab, “Dynamic Properties of Poly(methylmethacrylate) (PMMA) (Plexiglas),” (Defense Technical Information Center, 1972), pp. 1–48.
  31. L. P. Geldart and R. E. Sheriff, Problems in Exploration Seismology and their Solutions (Society of Exploration Geophysicists, 2004), pp. 53–58.
  32. B. E. Treeby, E. Z. Zhang, A. S. Thomas, and B. T. Cox, “Measurement of the Ultrasound Attenuation and Dispersion in Whole Human Blood and Its Components from 0-70 MHz,” Ultrasound. Med. Biol. 37(2), 289–300 (2011).
    [Crossref]
  33. T. Požar, D. Horvat, B. Starman, M. Halilovič, and R. Petkovšek, “Pressure wave propagation effects in the eye after photoablation,” J. Appl. Phys. 125(20), 204701 (2019).
    [Crossref]
  34. R. Oguri and K. Ando, “Cavitation bubble nucleation induced by shock-bubble interaction in a gelatin gel,” Phys. Fluids 30(5), 051904 (2018).
    [Crossref]
  35. T. Ogasawara, T. Horiba, T. Sano, and H. Takahira, “Pressure measurement and high-speed observation on the cavitation bubble cloud due to the backscattering of HIFU from a laser-induced bubble,” Fluid Dyn. Res. 50(6), 065512 (2018).
    [Crossref]
  36. C. X. Pei, T. Fukuchi, H. T. Zhu, K. Koyama, K. Demachi, and M. Uesaka, “A Study of Internal Defect Testing With the Laser-EMAT Ultrasonic Method,” IEEE Trans. Sonics Ultrason. 59(12), 2702–2708 (2012).
    [Crossref]
  37. A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R. J. Thomas, and B. A. Rockwell, “Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption,” Appl. Opt. 38(16), 3636–3643 (1999).
    [Crossref]
  38. F. Reuter, S. R. Gonzalez-Avila, R. Mettin, and C. D. Ohl, “Flow fields and vortex dynamics of bubbles collapsing near a solid boundary,” Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2(6), 064202 (2017).
    [Crossref]
  39. M. Dular, T. Požar, J. Zevnik, and R. Petkovšek, “High speed observation of damage created by a collapse of a single cavitation bubble,” Wear 418-419, 13–23 (2019).
    [Crossref]
  40. O. Lindau and W. Lauterborn, “Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall,” J. Fluid Mech. 479, 327–348 (2003).
    [Crossref]
  41. S. Kedenburg, M. Vieweg, T. Gissibl, and H. Giessen, “Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region,” Opt. Mater. Express 2(11), 1588–1611 (2012).
    [Crossref]
  42. L. Rayleigh, “On the pressure developed in a liquid during the collapse of a spherical cavity,” Philos. Mag. 34(200), 94–98 (1917).
    [Crossref]
  43. I. H. Fine, M. Packer, and R. S. Hoffman, “New phacoemulsification technologies,” J. Cataract Refractive Surg. 28(6), 1054–1060 (2002).
    [Crossref]
  44. H. Burkhard Dick, M. Tehrani, and H. Höh, “Phacoemulsification and Vitrectomy with the Erbium: or Neodymium:YAG-Laser,” Biomed. Laser: Technol. Clin. Appl. 17(4), 313–320 (2002).
    [Crossref]
  45. A. Vrečko, T. Požar, R. Petkovšek, and U. Orthaber, “An acoustic diverter for improved safety during ophthalmic laser treatments,” patent application: (PCT/SI2018/050020, 2018).

2019 (3)

C. T. Wilson, T. L. Hall, E. Johnsen, L. Mancia, M. Rodriguez, J. E. Lundt, T. Colonius, D. L. Henann, C. Franck, Z. Xu, and J. R. Sukovich, “Comparative study of the dynamics of laser and acoustically generated bubbles in viscoelastic media,” Phys. Rev. E 99(4), 043103 (2019).
[Crossref]

T. Požar, D. Horvat, B. Starman, M. Halilovič, and R. Petkovšek, “Pressure wave propagation effects in the eye after photoablation,” J. Appl. Phys. 125(20), 204701 (2019).
[Crossref]

M. Dular, T. Požar, J. Zevnik, and R. Petkovšek, “High speed observation of damage created by a collapse of a single cavitation bubble,” Wear 418-419, 13–23 (2019).
[Crossref]

2018 (3)

R. Oguri and K. Ando, “Cavitation bubble nucleation induced by shock-bubble interaction in a gelatin gel,” Phys. Fluids 30(5), 051904 (2018).
[Crossref]

T. Ogasawara, T. Horiba, T. Sano, and H. Takahira, “Pressure measurement and high-speed observation on the cavitation bubble cloud due to the backscattering of HIFU from a laser-induced bubble,” Fluid Dyn. Res. 50(6), 065512 (2018).
[Crossref]

T. Požar, M. Halilovič, D. Horvat, and R. Petkovšek, “Simulation of wave propagation inside a human eye: acoustic eye model (AEM),” Appl. Phys. A: Mater. Sci. Process. 124(2), 112 (2018).
[Crossref]

2017 (4)

O. Supponen, D. Obreschkow, P. Kobel, M. Tinguely, N. Dorsaz, and M. Farhat, “Shock waves from nonspherical cavitation bubbles,” Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2(9), 093601 (2017).
[Crossref]

P. Hahn, E. W. Schneider, H. Tabandeh, R. W. Wong, and G. G. Emerson, “Reported Complications Following Laser Vitreolysis,” JAMA Ophthalmol. 135(9), 973–976 (2017).
[Crossref]

J. I. Lim, “YAG Laser Vitreolysis-Is It as Clear as It Seems?” JAMA Ophthalmol. 135(9), 924–925 (2017).
[Crossref]

F. Reuter, S. R. Gonzalez-Avila, R. Mettin, and C. D. Ohl, “Flow fields and vortex dynamics of bubbles collapsing near a solid boundary,” Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2(6), 064202 (2017).
[Crossref]

2014 (1)

P. X. Wang, V. T. C. Koh, and S. C. Loon, “Laser iridotomy and the corneal endothelium: a systemic review,” Acta Ophthalmol. 92(7), 604–616 (2014).
[Crossref]

2012 (2)

C. X. Pei, T. Fukuchi, H. T. Zhu, K. Koyama, K. Demachi, and M. Uesaka, “A Study of Internal Defect Testing With the Laser-EMAT Ultrasonic Method,” IEEE Trans. Sonics Ultrason. 59(12), 2702–2708 (2012).
[Crossref]

S. Kedenburg, M. Vieweg, T. Gissibl, and H. Giessen, “Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region,” Opt. Mater. Express 2(11), 1588–1611 (2012).
[Crossref]

2011 (2)

B. E. Treeby, E. Z. Zhang, A. S. Thomas, and B. T. Cox, “Measurement of the Ultrasound Attenuation and Dispersion in Whole Human Blood and Its Components from 0-70 MHz,” Ultrasound. Med. Biol. 37(2), 289–300 (2011).
[Crossref]

D. Obreschkow, N. Dorsaz, P. Kobel, A. de Bosset, M. Tinguely, J. Field, and M. Farhat, “Confined shocks inside isolated liquid volumes: A new path of erosion?” Phys. Fluids 23(10), 101702 (2011).
[Crossref]

2007 (1)

E. Robert, J. Lettry, M. Farhat, P. A. Monkewitz, and F. Avellan, “Cavitation bubble behavior inside a liquid jet,” Phys. Fluids 19(6), 067106 (2007).
[Crossref]

2006 (1)

E. A. Brujan and A. Vogel, “Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom,” J. Fluid Mech. 558, 281–308 (2006).
[Crossref]

2003 (2)

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref]

O. Lindau and W. Lauterborn, “Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall,” J. Fluid Mech. 479, 327–348 (2003).
[Crossref]

2002 (3)

I. H. Fine, M. Packer, and R. S. Hoffman, “New phacoemulsification technologies,” J. Cataract Refractive Surg. 28(6), 1054–1060 (2002).
[Crossref]

H. Burkhard Dick, M. Tehrani, and H. Höh, “Phacoemulsification and Vitrectomy with the Erbium: or Neodymium:YAG-Laser,” Biomed. Laser: Technol. Clin. Appl. 17(4), 313–320 (2002).
[Crossref]

F. Fankhauser and S. Kwasniewska, “Laser vitreolysis,” Ophthalmologica 216(2), 73–84 (2002).
[Crossref]

1999 (2)

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B: Lasers Opt. 68(2), 271–280 (1999).
[Crossref]

A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R. J. Thomas, and B. A. Rockwell, “Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption,” Appl. Opt. 38(16), 3636–3643 (1999).
[Crossref]

1996 (2)

F. Fankhauser, U. Durr, H. Giger, P. Rol, and S. Kwasniewska, “Lasers, optical systems and safety in ophthalmology: A review,” Graefe's Arch. Clin. Exp. Ophthalmol. 234(8), 473–487 (1996).
[Crossref]

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
[Crossref]

1994 (1)

A. Vogel, M. R. C. Capon, M. N. Asiyo-Vogel, and R. Birngruber, “Intraocular Photodisruption with Picosecond and Nanosecond Laser-Pulses - Tissue Effects in Cornea, Lens, and Retina,” Invest. Ophth. Vis. Sci. 35(7), 3032–3044 (1994).

1993 (1)

N. Bilaniuk and G. S. K. Wong, “Speed of Sound in Pure Water as a Function of Temperature,” J. Acoust. Soc. Am. 93(3), 1609–1612 (1993).
[Crossref]

1992 (2)

F. E. Jones and G. L. Harris, “ITS-90 Density of Water Formulation for Volumetric Standards Calibration,” J. Res. Natl. Inst. Stand. Technol. 97(3), 335–340 (1992).
[Crossref]

D. J. Apple, K. D. Solomon, M. R. Tetz, E. I. Assia, E. Y. Holland, U. F. C. Legler, J. C. Tsai, V. E. Castaneda, J. P. Hoggatt, and A. M. P. Kostick, “Posterior Capsule Opacification,” Surv. Ophthalmol. 37(2), 73–116 (1992).
[Crossref]

1991 (1)

Y. Tomita, T. Kodama, and A. Shima, “Secondary Cavitation Due to Interaction of a Collapsing Bubble with a Rising Free-Surface,” Appl. Phys. Lett. 59(3), 274–276 (1991).
[Crossref]

1990 (1)

A. Vogel, P. Schweiger, A. Frieser, M. N. Asiyo, and R. Birngruber, “Intraocular Nd:YAG Laser-Surgery: Light-Tissue Interaction, Damage Range, and Reduction of Collateral Effects,” IEEE J. Quantum Electron. 26(12), 2240–2260 (1990).
[Crossref]

1986 (2)

H. L. Little and R. L. Jack, “Q-Switched neodymium:YAG laser surgery of the vitreous,” Graefe's Arch. Clin. Exp. Ophthalmol. 224(3), 240–246 (1986).
[Crossref]

A. Vogel, W. Hentschel, J. Holzfuss, and W. Lauterborn, “Cavitation Bubble Dynamics and Acoustic Transient Generation in Ocular Surgery with Pulsed Neodymium - Yag Lasers,” Ophthalmology 93(10), 1259–1269 (1986).
[Crossref]

1974 (1)

W. Lauterborn, “Laser-Induced Cavitation,” Acustica 31(2), 51–78 (1974).

1917 (1)

L. Rayleigh, “On the pressure developed in a liquid during the collapse of a spherical cavity,” Philos. Mag. 34(200), 94–98 (1917).
[Crossref]

Abbott, J. J.

M. P. Kummer, J. J. Abbott, S. Dinser, and B. J. Nelson, “Artificial Vitreous Humor for In Vitro Experiments,” 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, pp. 6406–6409.

Ando, K.

R. Oguri and K. Ando, “Cavitation bubble nucleation induced by shock-bubble interaction in a gelatin gel,” Phys. Fluids 30(5), 051904 (2018).
[Crossref]

Apple, D. J.

D. J. Apple, K. D. Solomon, M. R. Tetz, E. I. Assia, E. Y. Holland, U. F. C. Legler, J. C. Tsai, V. E. Castaneda, J. P. Hoggatt, and A. M. P. Kostick, “Posterior Capsule Opacification,” Surv. Ophthalmol. 37(2), 73–116 (1992).
[Crossref]

Asiyo, M. N.

A. Vogel, P. Schweiger, A. Frieser, M. N. Asiyo, and R. Birngruber, “Intraocular Nd:YAG Laser-Surgery: Light-Tissue Interaction, Damage Range, and Reduction of Collateral Effects,” IEEE J. Quantum Electron. 26(12), 2240–2260 (1990).
[Crossref]

Asiyo-Vogel, M. N.

A. Vogel, M. R. C. Capon, M. N. Asiyo-Vogel, and R. Birngruber, “Intraocular Photodisruption with Picosecond and Nanosecond Laser-Pulses - Tissue Effects in Cornea, Lens, and Retina,” Invest. Ophth. Vis. Sci. 35(7), 3032–3044 (1994).

Assia, E. I.

D. J. Apple, K. D. Solomon, M. R. Tetz, E. I. Assia, E. Y. Holland, U. F. C. Legler, J. C. Tsai, V. E. Castaneda, J. P. Hoggatt, and A. M. P. Kostick, “Posterior Capsule Opacification,” Surv. Ophthalmol. 37(2), 73–116 (1992).
[Crossref]

Avellan, F.

E. Robert, J. Lettry, M. Farhat, P. A. Monkewitz, and F. Avellan, “Cavitation bubble behavior inside a liquid jet,” Phys. Fluids 19(6), 067106 (2007).
[Crossref]

Bilaniuk, N.

N. Bilaniuk and G. S. K. Wong, “Speed of Sound in Pure Water as a Function of Temperature,” J. Acoust. Soc. Am. 93(3), 1609–1612 (1993).
[Crossref]

Birngruber, R.

A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R. J. Thomas, and B. A. Rockwell, “Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption,” Appl. Opt. 38(16), 3636–3643 (1999).
[Crossref]

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B: Lasers Opt. 68(2), 271–280 (1999).
[Crossref]

A. Vogel, M. R. C. Capon, M. N. Asiyo-Vogel, and R. Birngruber, “Intraocular Photodisruption with Picosecond and Nanosecond Laser-Pulses - Tissue Effects in Cornea, Lens, and Retina,” Invest. Ophth. Vis. Sci. 35(7), 3032–3044 (1994).

A. Vogel, P. Schweiger, A. Frieser, M. N. Asiyo, and R. Birngruber, “Intraocular Nd:YAG Laser-Surgery: Light-Tissue Interaction, Damage Range, and Reduction of Collateral Effects,” IEEE J. Quantum Electron. 26(12), 2240–2260 (1990).
[Crossref]

Brujan, E. A.

E. A. Brujan and A. Vogel, “Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom,” J. Fluid Mech. 558, 281–308 (2006).
[Crossref]

Burkhard Dick, H.

H. Burkhard Dick, M. Tehrani, and H. Höh, “Phacoemulsification and Vitrectomy with the Erbium: or Neodymium:YAG-Laser,” Biomed. Laser: Technol. Clin. Appl. 17(4), 313–320 (2002).
[Crossref]

Busch, S.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B: Lasers Opt. 68(2), 271–280 (1999).
[Crossref]

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
[Crossref]

Capon, M. R. C.

A. Vogel, M. R. C. Capon, M. N. Asiyo-Vogel, and R. Birngruber, “Intraocular Photodisruption with Picosecond and Nanosecond Laser-Pulses - Tissue Effects in Cornea, Lens, and Retina,” Invest. Ophth. Vis. Sci. 35(7), 3032–3044 (1994).

Castaneda, V. E.

D. J. Apple, K. D. Solomon, M. R. Tetz, E. I. Assia, E. Y. Holland, U. F. C. Legler, J. C. Tsai, V. E. Castaneda, J. P. Hoggatt, and A. M. P. Kostick, “Posterior Capsule Opacification,” Surv. Ophthalmol. 37(2), 73–116 (1992).
[Crossref]

Christman, D. R.

D. R. Christman, General motors technical center Warren MI materials and structures lab, “Dynamic Properties of Poly(methylmethacrylate) (PMMA) (Plexiglas),” (Defense Technical Information Center, 1972), pp. 1–48.

Colonius, T.

C. T. Wilson, T. L. Hall, E. Johnsen, L. Mancia, M. Rodriguez, J. E. Lundt, T. Colonius, D. L. Henann, C. Franck, Z. Xu, and J. R. Sukovich, “Comparative study of the dynamics of laser and acoustically generated bubbles in viscoelastic media,” Phys. Rev. E 99(4), 043103 (2019).
[Crossref]

Cox, B. T.

B. E. Treeby, E. Z. Zhang, A. S. Thomas, and B. T. Cox, “Measurement of the Ultrasound Attenuation and Dispersion in Whole Human Blood and Its Components from 0-70 MHz,” Ultrasound. Med. Biol. 37(2), 289–300 (2011).
[Crossref]

de Bosset, A.

D. Obreschkow, N. Dorsaz, P. Kobel, A. de Bosset, M. Tinguely, J. Field, and M. Farhat, “Confined shocks inside isolated liquid volumes: A new path of erosion?” Phys. Fluids 23(10), 101702 (2011).
[Crossref]

Demachi, K.

C. X. Pei, T. Fukuchi, H. T. Zhu, K. Koyama, K. Demachi, and M. Uesaka, “A Study of Internal Defect Testing With the Laser-EMAT Ultrasonic Method,” IEEE Trans. Sonics Ultrason. 59(12), 2702–2708 (2012).
[Crossref]

Dinser, S.

M. P. Kummer, J. J. Abbott, S. Dinser, and B. J. Nelson, “Artificial Vitreous Humor for In Vitro Experiments,” 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, pp. 6406–6409.

Dorsaz, N.

O. Supponen, D. Obreschkow, P. Kobel, M. Tinguely, N. Dorsaz, and M. Farhat, “Shock waves from nonspherical cavitation bubbles,” Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2(9), 093601 (2017).
[Crossref]

D. Obreschkow, N. Dorsaz, P. Kobel, A. de Bosset, M. Tinguely, J. Field, and M. Farhat, “Confined shocks inside isolated liquid volumes: A new path of erosion?” Phys. Fluids 23(10), 101702 (2011).
[Crossref]

Dular, M.

M. Dular, T. Požar, J. Zevnik, and R. Petkovšek, “High speed observation of damage created by a collapse of a single cavitation bubble,” Wear 418-419, 13–23 (2019).
[Crossref]

Durr, U.

F. Fankhauser, U. Durr, H. Giger, P. Rol, and S. Kwasniewska, “Lasers, optical systems and safety in ophthalmology: A review,” Graefe's Arch. Clin. Exp. Ophthalmol. 234(8), 473–487 (1996).
[Crossref]

Emerson, G. G.

P. Hahn, E. W. Schneider, H. Tabandeh, R. W. Wong, and G. G. Emerson, “Reported Complications Following Laser Vitreolysis,” JAMA Ophthalmol. 135(9), 973–976 (2017).
[Crossref]

Fankhauser, F.

F. Fankhauser and S. Kwasniewska, “Laser vitreolysis,” Ophthalmologica 216(2), 73–84 (2002).
[Crossref]

F. Fankhauser, U. Durr, H. Giger, P. Rol, and S. Kwasniewska, “Lasers, optical systems and safety in ophthalmology: A review,” Graefe's Arch. Clin. Exp. Ophthalmol. 234(8), 473–487 (1996).
[Crossref]

Farhat, M.

O. Supponen, D. Obreschkow, P. Kobel, M. Tinguely, N. Dorsaz, and M. Farhat, “Shock waves from nonspherical cavitation bubbles,” Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2(9), 093601 (2017).
[Crossref]

D. Obreschkow, N. Dorsaz, P. Kobel, A. de Bosset, M. Tinguely, J. Field, and M. Farhat, “Confined shocks inside isolated liquid volumes: A new path of erosion?” Phys. Fluids 23(10), 101702 (2011).
[Crossref]

E. Robert, J. Lettry, M. Farhat, P. A. Monkewitz, and F. Avellan, “Cavitation bubble behavior inside a liquid jet,” Phys. Fluids 19(6), 067106 (2007).
[Crossref]

Field, J.

D. Obreschkow, N. Dorsaz, P. Kobel, A. de Bosset, M. Tinguely, J. Field, and M. Farhat, “Confined shocks inside isolated liquid volumes: A new path of erosion?” Phys. Fluids 23(10), 101702 (2011).
[Crossref]

Fine, I. H.

I. H. Fine, M. Packer, and R. S. Hoffman, “New phacoemulsification technologies,” J. Cataract Refractive Surg. 28(6), 1054–1060 (2002).
[Crossref]

Franck, C.

C. T. Wilson, T. L. Hall, E. Johnsen, L. Mancia, M. Rodriguez, J. E. Lundt, T. Colonius, D. L. Henann, C. Franck, Z. Xu, and J. R. Sukovich, “Comparative study of the dynamics of laser and acoustically generated bubbles in viscoelastic media,” Phys. Rev. E 99(4), 043103 (2019).
[Crossref]

Frieser, A.

A. Vogel, P. Schweiger, A. Frieser, M. N. Asiyo, and R. Birngruber, “Intraocular Nd:YAG Laser-Surgery: Light-Tissue Interaction, Damage Range, and Reduction of Collateral Effects,” IEEE J. Quantum Electron. 26(12), 2240–2260 (1990).
[Crossref]

Fukuchi, T.

C. X. Pei, T. Fukuchi, H. T. Zhu, K. Koyama, K. Demachi, and M. Uesaka, “A Study of Internal Defect Testing With the Laser-EMAT Ultrasonic Method,” IEEE Trans. Sonics Ultrason. 59(12), 2702–2708 (2012).
[Crossref]

Geldart, L. P.

L. P. Geldart and R. E. Sheriff, Problems in Exploration Seismology and their Solutions (Society of Exploration Geophysicists, 2004), pp. 53–58.

Giessen, H.

Giger, H.

F. Fankhauser, U. Durr, H. Giger, P. Rol, and S. Kwasniewska, “Lasers, optical systems and safety in ophthalmology: A review,” Graefe's Arch. Clin. Exp. Ophthalmol. 234(8), 473–487 (1996).
[Crossref]

Gissibl, T.

Gonzalez-Avila, S. R.

F. Reuter, S. R. Gonzalez-Avila, R. Mettin, and C. D. Ohl, “Flow fields and vortex dynamics of bubbles collapsing near a solid boundary,” Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2(6), 064202 (2017).
[Crossref]

Hahn, P.

P. Hahn, E. W. Schneider, H. Tabandeh, R. W. Wong, and G. G. Emerson, “Reported Complications Following Laser Vitreolysis,” JAMA Ophthalmol. 135(9), 973–976 (2017).
[Crossref]

Halilovic, M.

T. Požar, D. Horvat, B. Starman, M. Halilovič, and R. Petkovšek, “Pressure wave propagation effects in the eye after photoablation,” J. Appl. Phys. 125(20), 204701 (2019).
[Crossref]

T. Požar, M. Halilovič, D. Horvat, and R. Petkovšek, “Simulation of wave propagation inside a human eye: acoustic eye model (AEM),” Appl. Phys. A: Mater. Sci. Process. 124(2), 112 (2018).
[Crossref]

Hall, T. L.

C. T. Wilson, T. L. Hall, E. Johnsen, L. Mancia, M. Rodriguez, J. E. Lundt, T. Colonius, D. L. Henann, C. Franck, Z. Xu, and J. R. Sukovich, “Comparative study of the dynamics of laser and acoustically generated bubbles in viscoelastic media,” Phys. Rev. E 99(4), 043103 (2019).
[Crossref]

Hammer, D. X.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B: Lasers Opt. 68(2), 271–280 (1999).
[Crossref]

Harris, G. L.

F. E. Jones and G. L. Harris, “ITS-90 Density of Water Formulation for Volumetric Standards Calibration,” J. Res. Natl. Inst. Stand. Technol. 97(3), 335–340 (1992).
[Crossref]

Heacock, H. L.

H. L. Heacock, “Molded ophthalmic lens,” patent: (US 8,303,116 B2, 2012).

Henann, D. L.

C. T. Wilson, T. L. Hall, E. Johnsen, L. Mancia, M. Rodriguez, J. E. Lundt, T. Colonius, D. L. Henann, C. Franck, Z. Xu, and J. R. Sukovich, “Comparative study of the dynamics of laser and acoustically generated bubbles in viscoelastic media,” Phys. Rev. E 99(4), 043103 (2019).
[Crossref]

Hentschel, W.

A. Vogel, W. Hentschel, J. Holzfuss, and W. Lauterborn, “Cavitation Bubble Dynamics and Acoustic Transient Generation in Ocular Surgery with Pulsed Neodymium - Yag Lasers,” Ophthalmology 93(10), 1259–1269 (1986).
[Crossref]

Hoffman, R. S.

I. H. Fine, M. Packer, and R. S. Hoffman, “New phacoemulsification technologies,” J. Cataract Refractive Surg. 28(6), 1054–1060 (2002).
[Crossref]

Hoggatt, J. P.

D. J. Apple, K. D. Solomon, M. R. Tetz, E. I. Assia, E. Y. Holland, U. F. C. Legler, J. C. Tsai, V. E. Castaneda, J. P. Hoggatt, and A. M. P. Kostick, “Posterior Capsule Opacification,” Surv. Ophthalmol. 37(2), 73–116 (1992).
[Crossref]

Höh, H.

H. Burkhard Dick, M. Tehrani, and H. Höh, “Phacoemulsification and Vitrectomy with the Erbium: or Neodymium:YAG-Laser,” Biomed. Laser: Technol. Clin. Appl. 17(4), 313–320 (2002).
[Crossref]

Holland, E. Y.

D. J. Apple, K. D. Solomon, M. R. Tetz, E. I. Assia, E. Y. Holland, U. F. C. Legler, J. C. Tsai, V. E. Castaneda, J. P. Hoggatt, and A. M. P. Kostick, “Posterior Capsule Opacification,” Surv. Ophthalmol. 37(2), 73–116 (1992).
[Crossref]

Holzfuss, J.

A. Vogel, W. Hentschel, J. Holzfuss, and W. Lauterborn, “Cavitation Bubble Dynamics and Acoustic Transient Generation in Ocular Surgery with Pulsed Neodymium - Yag Lasers,” Ophthalmology 93(10), 1259–1269 (1986).
[Crossref]

Horiba, T.

T. Ogasawara, T. Horiba, T. Sano, and H. Takahira, “Pressure measurement and high-speed observation on the cavitation bubble cloud due to the backscattering of HIFU from a laser-induced bubble,” Fluid Dyn. Res. 50(6), 065512 (2018).
[Crossref]

Horvat, D.

T. Požar, D. Horvat, B. Starman, M. Halilovič, and R. Petkovšek, “Pressure wave propagation effects in the eye after photoablation,” J. Appl. Phys. 125(20), 204701 (2019).
[Crossref]

T. Požar, M. Halilovič, D. Horvat, and R. Petkovšek, “Simulation of wave propagation inside a human eye: acoustic eye model (AEM),” Appl. Phys. A: Mater. Sci. Process. 124(2), 112 (2018).
[Crossref]

Jack, R. L.

H. L. Little and R. L. Jack, “Q-Switched neodymium:YAG laser surgery of the vitreous,” Graefe's Arch. Clin. Exp. Ophthalmol. 224(3), 240–246 (1986).
[Crossref]

Johnsen, E.

C. T. Wilson, T. L. Hall, E. Johnsen, L. Mancia, M. Rodriguez, J. E. Lundt, T. Colonius, D. L. Henann, C. Franck, Z. Xu, and J. R. Sukovich, “Comparative study of the dynamics of laser and acoustically generated bubbles in viscoelastic media,” Phys. Rev. E 99(4), 043103 (2019).
[Crossref]

Jones, F. E.

F. E. Jones and G. L. Harris, “ITS-90 Density of Water Formulation for Volumetric Standards Calibration,” J. Res. Natl. Inst. Stand. Technol. 97(3), 335–340 (1992).
[Crossref]

Kedenburg, S.

Kobel, P.

O. Supponen, D. Obreschkow, P. Kobel, M. Tinguely, N. Dorsaz, and M. Farhat, “Shock waves from nonspherical cavitation bubbles,” Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2(9), 093601 (2017).
[Crossref]

D. Obreschkow, N. Dorsaz, P. Kobel, A. de Bosset, M. Tinguely, J. Field, and M. Farhat, “Confined shocks inside isolated liquid volumes: A new path of erosion?” Phys. Fluids 23(10), 101702 (2011).
[Crossref]

Kodama, T.

Y. Tomita, T. Kodama, and A. Shima, “Secondary Cavitation Due to Interaction of a Collapsing Bubble with a Rising Free-Surface,” Appl. Phys. Lett. 59(3), 274–276 (1991).
[Crossref]

Koh, V. T. C.

P. X. Wang, V. T. C. Koh, and S. C. Loon, “Laser iridotomy and the corneal endothelium: a systemic review,” Acta Ophthalmol. 92(7), 604–616 (2014).
[Crossref]

Kostick, A. M. P.

D. J. Apple, K. D. Solomon, M. R. Tetz, E. I. Assia, E. Y. Holland, U. F. C. Legler, J. C. Tsai, V. E. Castaneda, J. P. Hoggatt, and A. M. P. Kostick, “Posterior Capsule Opacification,” Surv. Ophthalmol. 37(2), 73–116 (1992).
[Crossref]

Koyama, K.

C. X. Pei, T. Fukuchi, H. T. Zhu, K. Koyama, K. Demachi, and M. Uesaka, “A Study of Internal Defect Testing With the Laser-EMAT Ultrasonic Method,” IEEE Trans. Sonics Ultrason. 59(12), 2702–2708 (2012).
[Crossref]

Kummer, M. P.

M. P. Kummer, J. J. Abbott, S. Dinser, and B. J. Nelson, “Artificial Vitreous Humor for In Vitro Experiments,” 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, pp. 6406–6409.

Kwasniewska, S.

F. Fankhauser and S. Kwasniewska, “Laser vitreolysis,” Ophthalmologica 216(2), 73–84 (2002).
[Crossref]

F. Fankhauser, U. Durr, H. Giger, P. Rol, and S. Kwasniewska, “Lasers, optical systems and safety in ophthalmology: A review,” Graefe's Arch. Clin. Exp. Ophthalmol. 234(8), 473–487 (1996).
[Crossref]

Lauterborn, W.

O. Lindau and W. Lauterborn, “Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall,” J. Fluid Mech. 479, 327–348 (2003).
[Crossref]

A. Vogel, W. Hentschel, J. Holzfuss, and W. Lauterborn, “Cavitation Bubble Dynamics and Acoustic Transient Generation in Ocular Surgery with Pulsed Neodymium - Yag Lasers,” Ophthalmology 93(10), 1259–1269 (1986).
[Crossref]

W. Lauterborn, “Laser-Induced Cavitation,” Acustica 31(2), 51–78 (1974).

W. Lauterborn and A. Vogel, “Shock wave emission by laser generated bubbles,” in Bubble Dynamics and Shock WavesC. F. Delale, ed. (Springer, 2013), pp. 67–103.

Legler, U. F. C.

D. J. Apple, K. D. Solomon, M. R. Tetz, E. I. Assia, E. Y. Holland, U. F. C. Legler, J. C. Tsai, V. E. Castaneda, J. P. Hoggatt, and A. M. P. Kostick, “Posterior Capsule Opacification,” Surv. Ophthalmol. 37(2), 73–116 (1992).
[Crossref]

Lettry, J.

E. Robert, J. Lettry, M. Farhat, P. A. Monkewitz, and F. Avellan, “Cavitation bubble behavior inside a liquid jet,” Phys. Fluids 19(6), 067106 (2007).
[Crossref]

Lim, J. I.

J. I. Lim, “YAG Laser Vitreolysis-Is It as Clear as It Seems?” JAMA Ophthalmol. 135(9), 924–925 (2017).
[Crossref]

Lindau, O.

O. Lindau and W. Lauterborn, “Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall,” J. Fluid Mech. 479, 327–348 (2003).
[Crossref]

Little, H. L.

H. L. Little and R. L. Jack, “Q-Switched neodymium:YAG laser surgery of the vitreous,” Graefe's Arch. Clin. Exp. Ophthalmol. 224(3), 240–246 (1986).
[Crossref]

Loon, S. C.

P. X. Wang, V. T. C. Koh, and S. C. Loon, “Laser iridotomy and the corneal endothelium: a systemic review,” Acta Ophthalmol. 92(7), 604–616 (2014).
[Crossref]

Lundt, J. E.

C. T. Wilson, T. L. Hall, E. Johnsen, L. Mancia, M. Rodriguez, J. E. Lundt, T. Colonius, D. L. Henann, C. Franck, Z. Xu, and J. R. Sukovich, “Comparative study of the dynamics of laser and acoustically generated bubbles in viscoelastic media,” Phys. Rev. E 99(4), 043103 (2019).
[Crossref]

Mancia, L.

C. T. Wilson, T. L. Hall, E. Johnsen, L. Mancia, M. Rodriguez, J. E. Lundt, T. Colonius, D. L. Henann, C. Franck, Z. Xu, and J. R. Sukovich, “Comparative study of the dynamics of laser and acoustically generated bubbles in viscoelastic media,” Phys. Rev. E 99(4), 043103 (2019).
[Crossref]

Mettin, R.

F. Reuter, S. R. Gonzalez-Avila, R. Mettin, and C. D. Ohl, “Flow fields and vortex dynamics of bubbles collapsing near a solid boundary,” Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2(6), 064202 (2017).
[Crossref]

Monkewitz, P. A.

E. Robert, J. Lettry, M. Farhat, P. A. Monkewitz, and F. Avellan, “Cavitation bubble behavior inside a liquid jet,” Phys. Fluids 19(6), 067106 (2007).
[Crossref]

Nahen, K.

A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R. J. Thomas, and B. A. Rockwell, “Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption,” Appl. Opt. 38(16), 3636–3643 (1999).
[Crossref]

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B: Lasers Opt. 68(2), 271–280 (1999).
[Crossref]

Nelson, B. J.

M. P. Kummer, J. J. Abbott, S. Dinser, and B. J. Nelson, “Artificial Vitreous Humor for In Vitro Experiments,” 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, pp. 6406–6409.

Niemz, M. H.

M. H. Niemz, Laser-Tissue Interactions: Fundamentals and Applications (Springer, 2007).

Noack, J.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B: Lasers Opt. 68(2), 271–280 (1999).
[Crossref]

Noojin, G. D.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B: Lasers Opt. 68(2), 271–280 (1999).
[Crossref]

Obreschkow, D.

O. Supponen, D. Obreschkow, P. Kobel, M. Tinguely, N. Dorsaz, and M. Farhat, “Shock waves from nonspherical cavitation bubbles,” Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2(9), 093601 (2017).
[Crossref]

D. Obreschkow, N. Dorsaz, P. Kobel, A. de Bosset, M. Tinguely, J. Field, and M. Farhat, “Confined shocks inside isolated liquid volumes: A new path of erosion?” Phys. Fluids 23(10), 101702 (2011).
[Crossref]

Ogasawara, T.

T. Ogasawara, T. Horiba, T. Sano, and H. Takahira, “Pressure measurement and high-speed observation on the cavitation bubble cloud due to the backscattering of HIFU from a laser-induced bubble,” Fluid Dyn. Res. 50(6), 065512 (2018).
[Crossref]

Oguri, R.

R. Oguri and K. Ando, “Cavitation bubble nucleation induced by shock-bubble interaction in a gelatin gel,” Phys. Fluids 30(5), 051904 (2018).
[Crossref]

Ohl, C. D.

F. Reuter, S. R. Gonzalez-Avila, R. Mettin, and C. D. Ohl, “Flow fields and vortex dynamics of bubbles collapsing near a solid boundary,” Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2(6), 064202 (2017).
[Crossref]

Orthaber, U.

A. Vrečko, T. Požar, R. Petkovšek, and U. Orthaber, “An acoustic diverter for improved safety during ophthalmic laser treatments,” patent application: (PCT/SI2018/050020, 2018).

Packer, M.

I. H. Fine, M. Packer, and R. S. Hoffman, “New phacoemulsification technologies,” J. Cataract Refractive Surg. 28(6), 1054–1060 (2002).
[Crossref]

Parlitz, U.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B: Lasers Opt. 68(2), 271–280 (1999).
[Crossref]

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
[Crossref]

Pei, C. X.

C. X. Pei, T. Fukuchi, H. T. Zhu, K. Koyama, K. Demachi, and M. Uesaka, “A Study of Internal Defect Testing With the Laser-EMAT Ultrasonic Method,” IEEE Trans. Sonics Ultrason. 59(12), 2702–2708 (2012).
[Crossref]

Petkovšek, R.

T. Požar, D. Horvat, B. Starman, M. Halilovič, and R. Petkovšek, “Pressure wave propagation effects in the eye after photoablation,” J. Appl. Phys. 125(20), 204701 (2019).
[Crossref]

M. Dular, T. Požar, J. Zevnik, and R. Petkovšek, “High speed observation of damage created by a collapse of a single cavitation bubble,” Wear 418-419, 13–23 (2019).
[Crossref]

T. Požar, M. Halilovič, D. Horvat, and R. Petkovšek, “Simulation of wave propagation inside a human eye: acoustic eye model (AEM),” Appl. Phys. A: Mater. Sci. Process. 124(2), 112 (2018).
[Crossref]

A. Vrečko, T. Požar, R. Petkovšek, and U. Orthaber, “An acoustic diverter for improved safety during ophthalmic laser treatments,” patent application: (PCT/SI2018/050020, 2018).

Požar, T.

M. Dular, T. Požar, J. Zevnik, and R. Petkovšek, “High speed observation of damage created by a collapse of a single cavitation bubble,” Wear 418-419, 13–23 (2019).
[Crossref]

T. Požar, D. Horvat, B. Starman, M. Halilovič, and R. Petkovšek, “Pressure wave propagation effects in the eye after photoablation,” J. Appl. Phys. 125(20), 204701 (2019).
[Crossref]

T. Požar, M. Halilovič, D. Horvat, and R. Petkovšek, “Simulation of wave propagation inside a human eye: acoustic eye model (AEM),” Appl. Phys. A: Mater. Sci. Process. 124(2), 112 (2018).
[Crossref]

A. Vrečko, T. Požar, R. Petkovšek, and U. Orthaber, “An acoustic diverter for improved safety during ophthalmic laser treatments,” patent application: (PCT/SI2018/050020, 2018).

Rayleigh, L.

L. Rayleigh, “On the pressure developed in a liquid during the collapse of a spherical cavity,” Philos. Mag. 34(200), 94–98 (1917).
[Crossref]

Reuter, F.

F. Reuter, S. R. Gonzalez-Avila, R. Mettin, and C. D. Ohl, “Flow fields and vortex dynamics of bubbles collapsing near a solid boundary,” Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2(6), 064202 (2017).
[Crossref]

Robert, E.

E. Robert, J. Lettry, M. Farhat, P. A. Monkewitz, and F. Avellan, “Cavitation bubble behavior inside a liquid jet,” Phys. Fluids 19(6), 067106 (2007).
[Crossref]

Rockwell, B. A.

A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R. J. Thomas, and B. A. Rockwell, “Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption,” Appl. Opt. 38(16), 3636–3643 (1999).
[Crossref]

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B: Lasers Opt. 68(2), 271–280 (1999).
[Crossref]

Rodriguez, M.

C. T. Wilson, T. L. Hall, E. Johnsen, L. Mancia, M. Rodriguez, J. E. Lundt, T. Colonius, D. L. Henann, C. Franck, Z. Xu, and J. R. Sukovich, “Comparative study of the dynamics of laser and acoustically generated bubbles in viscoelastic media,” Phys. Rev. E 99(4), 043103 (2019).
[Crossref]

Rol, P.

F. Fankhauser, U. Durr, H. Giger, P. Rol, and S. Kwasniewska, “Lasers, optical systems and safety in ophthalmology: A review,” Graefe's Arch. Clin. Exp. Ophthalmol. 234(8), 473–487 (1996).
[Crossref]

Sano, T.

T. Ogasawara, T. Horiba, T. Sano, and H. Takahira, “Pressure measurement and high-speed observation on the cavitation bubble cloud due to the backscattering of HIFU from a laser-induced bubble,” Fluid Dyn. Res. 50(6), 065512 (2018).
[Crossref]

Schneider, E. W.

P. Hahn, E. W. Schneider, H. Tabandeh, R. W. Wong, and G. G. Emerson, “Reported Complications Following Laser Vitreolysis,” JAMA Ophthalmol. 135(9), 973–976 (2017).
[Crossref]

Schweiger, P.

A. Vogel, P. Schweiger, A. Frieser, M. N. Asiyo, and R. Birngruber, “Intraocular Nd:YAG Laser-Surgery: Light-Tissue Interaction, Damage Range, and Reduction of Collateral Effects,” IEEE J. Quantum Electron. 26(12), 2240–2260 (1990).
[Crossref]

Settles, G. S.

G. S. Settles, Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media (Springer, 2001).

Sheriff, R. E.

L. P. Geldart and R. E. Sheriff, Problems in Exploration Seismology and their Solutions (Society of Exploration Geophysicists, 2004), pp. 53–58.

Shima, A.

Y. Tomita, T. Kodama, and A. Shima, “Secondary Cavitation Due to Interaction of a Collapsing Bubble with a Rising Free-Surface,” Appl. Phys. Lett. 59(3), 274–276 (1991).
[Crossref]

Solomon, K. D.

D. J. Apple, K. D. Solomon, M. R. Tetz, E. I. Assia, E. Y. Holland, U. F. C. Legler, J. C. Tsai, V. E. Castaneda, J. P. Hoggatt, and A. M. P. Kostick, “Posterior Capsule Opacification,” Surv. Ophthalmol. 37(2), 73–116 (1992).
[Crossref]

Starman, B.

T. Požar, D. Horvat, B. Starman, M. Halilovič, and R. Petkovšek, “Pressure wave propagation effects in the eye after photoablation,” J. Appl. Phys. 125(20), 204701 (2019).
[Crossref]

Sukovich, J. R.

C. T. Wilson, T. L. Hall, E. Johnsen, L. Mancia, M. Rodriguez, J. E. Lundt, T. Colonius, D. L. Henann, C. Franck, Z. Xu, and J. R. Sukovich, “Comparative study of the dynamics of laser and acoustically generated bubbles in viscoelastic media,” Phys. Rev. E 99(4), 043103 (2019).
[Crossref]

Supponen, O.

O. Supponen, D. Obreschkow, P. Kobel, M. Tinguely, N. Dorsaz, and M. Farhat, “Shock waves from nonspherical cavitation bubbles,” Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2(9), 093601 (2017).
[Crossref]

O. Supponen, “Collapse phenomena of deformed cavitation bubbles,” PhD Thesis: (Federal Institute of Technology Lausanne, 2017).

Tabandeh, H.

P. Hahn, E. W. Schneider, H. Tabandeh, R. W. Wong, and G. G. Emerson, “Reported Complications Following Laser Vitreolysis,” JAMA Ophthalmol. 135(9), 973–976 (2017).
[Crossref]

Takahira, H.

T. Ogasawara, T. Horiba, T. Sano, and H. Takahira, “Pressure measurement and high-speed observation on the cavitation bubble cloud due to the backscattering of HIFU from a laser-induced bubble,” Fluid Dyn. Res. 50(6), 065512 (2018).
[Crossref]

Tehrani, M.

H. Burkhard Dick, M. Tehrani, and H. Höh, “Phacoemulsification and Vitrectomy with the Erbium: or Neodymium:YAG-Laser,” Biomed. Laser: Technol. Clin. Appl. 17(4), 313–320 (2002).
[Crossref]

Tetz, M. R.

D. J. Apple, K. D. Solomon, M. R. Tetz, E. I. Assia, E. Y. Holland, U. F. C. Legler, J. C. Tsai, V. E. Castaneda, J. P. Hoggatt, and A. M. P. Kostick, “Posterior Capsule Opacification,” Surv. Ophthalmol. 37(2), 73–116 (1992).
[Crossref]

Theisen, D.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B: Lasers Opt. 68(2), 271–280 (1999).
[Crossref]

A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R. J. Thomas, and B. A. Rockwell, “Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption,” Appl. Opt. 38(16), 3636–3643 (1999).
[Crossref]

Thomas, A. S.

B. E. Treeby, E. Z. Zhang, A. S. Thomas, and B. T. Cox, “Measurement of the Ultrasound Attenuation and Dispersion in Whole Human Blood and Its Components from 0-70 MHz,” Ultrasound. Med. Biol. 37(2), 289–300 (2011).
[Crossref]

Thomas, R. J.

Tinguely, M.

O. Supponen, D. Obreschkow, P. Kobel, M. Tinguely, N. Dorsaz, and M. Farhat, “Shock waves from nonspherical cavitation bubbles,” Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2(9), 093601 (2017).
[Crossref]

D. Obreschkow, N. Dorsaz, P. Kobel, A. de Bosset, M. Tinguely, J. Field, and M. Farhat, “Confined shocks inside isolated liquid volumes: A new path of erosion?” Phys. Fluids 23(10), 101702 (2011).
[Crossref]

Tomita, Y.

Y. Tomita, T. Kodama, and A. Shima, “Secondary Cavitation Due to Interaction of a Collapsing Bubble with a Rising Free-Surface,” Appl. Phys. Lett. 59(3), 274–276 (1991).
[Crossref]

Treeby, B. E.

B. E. Treeby, E. Z. Zhang, A. S. Thomas, and B. T. Cox, “Measurement of the Ultrasound Attenuation and Dispersion in Whole Human Blood and Its Components from 0-70 MHz,” Ultrasound. Med. Biol. 37(2), 289–300 (2011).
[Crossref]

Tsai, J. C.

D. J. Apple, K. D. Solomon, M. R. Tetz, E. I. Assia, E. Y. Holland, U. F. C. Legler, J. C. Tsai, V. E. Castaneda, J. P. Hoggatt, and A. M. P. Kostick, “Posterior Capsule Opacification,” Surv. Ophthalmol. 37(2), 73–116 (1992).
[Crossref]

Uesaka, M.

C. X. Pei, T. Fukuchi, H. T. Zhu, K. Koyama, K. Demachi, and M. Uesaka, “A Study of Internal Defect Testing With the Laser-EMAT Ultrasonic Method,” IEEE Trans. Sonics Ultrason. 59(12), 2702–2708 (2012).
[Crossref]

Venugopalan, V.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref]

Vieweg, M.

Vogel, A.

E. A. Brujan and A. Vogel, “Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom,” J. Fluid Mech. 558, 281–308 (2006).
[Crossref]

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref]

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B: Lasers Opt. 68(2), 271–280 (1999).
[Crossref]

A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R. J. Thomas, and B. A. Rockwell, “Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption,” Appl. Opt. 38(16), 3636–3643 (1999).
[Crossref]

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
[Crossref]

A. Vogel, M. R. C. Capon, M. N. Asiyo-Vogel, and R. Birngruber, “Intraocular Photodisruption with Picosecond and Nanosecond Laser-Pulses - Tissue Effects in Cornea, Lens, and Retina,” Invest. Ophth. Vis. Sci. 35(7), 3032–3044 (1994).

A. Vogel, P. Schweiger, A. Frieser, M. N. Asiyo, and R. Birngruber, “Intraocular Nd:YAG Laser-Surgery: Light-Tissue Interaction, Damage Range, and Reduction of Collateral Effects,” IEEE J. Quantum Electron. 26(12), 2240–2260 (1990).
[Crossref]

A. Vogel, W. Hentschel, J. Holzfuss, and W. Lauterborn, “Cavitation Bubble Dynamics and Acoustic Transient Generation in Ocular Surgery with Pulsed Neodymium - Yag Lasers,” Ophthalmology 93(10), 1259–1269 (1986).
[Crossref]

W. Lauterborn and A. Vogel, “Shock wave emission by laser generated bubbles,” in Bubble Dynamics and Shock WavesC. F. Delale, ed. (Springer, 2013), pp. 67–103.

Vrecko, A.

A. Vrečko, T. Požar, R. Petkovšek, and U. Orthaber, “An acoustic diverter for improved safety during ophthalmic laser treatments,” patent application: (PCT/SI2018/050020, 2018).

Wang, P. X.

P. X. Wang, V. T. C. Koh, and S. C. Loon, “Laser iridotomy and the corneal endothelium: a systemic review,” Acta Ophthalmol. 92(7), 604–616 (2014).
[Crossref]

Wilson, C. T.

C. T. Wilson, T. L. Hall, E. Johnsen, L. Mancia, M. Rodriguez, J. E. Lundt, T. Colonius, D. L. Henann, C. Franck, Z. Xu, and J. R. Sukovich, “Comparative study of the dynamics of laser and acoustically generated bubbles in viscoelastic media,” Phys. Rev. E 99(4), 043103 (2019).
[Crossref]

Wong, G. S. K.

N. Bilaniuk and G. S. K. Wong, “Speed of Sound in Pure Water as a Function of Temperature,” J. Acoust. Soc. Am. 93(3), 1609–1612 (1993).
[Crossref]

Wong, R. W.

P. Hahn, E. W. Schneider, H. Tabandeh, R. W. Wong, and G. G. Emerson, “Reported Complications Following Laser Vitreolysis,” JAMA Ophthalmol. 135(9), 973–976 (2017).
[Crossref]

Xu, Z.

C. T. Wilson, T. L. Hall, E. Johnsen, L. Mancia, M. Rodriguez, J. E. Lundt, T. Colonius, D. L. Henann, C. Franck, Z. Xu, and J. R. Sukovich, “Comparative study of the dynamics of laser and acoustically generated bubbles in viscoelastic media,” Phys. Rev. E 99(4), 043103 (2019).
[Crossref]

Zevnik, J.

M. Dular, T. Požar, J. Zevnik, and R. Petkovšek, “High speed observation of damage created by a collapse of a single cavitation bubble,” Wear 418-419, 13–23 (2019).
[Crossref]

Zhang, E. Z.

B. E. Treeby, E. Z. Zhang, A. S. Thomas, and B. T. Cox, “Measurement of the Ultrasound Attenuation and Dispersion in Whole Human Blood and Its Components from 0-70 MHz,” Ultrasound. Med. Biol. 37(2), 289–300 (2011).
[Crossref]

Zhu, H. T.

C. X. Pei, T. Fukuchi, H. T. Zhu, K. Koyama, K. Demachi, and M. Uesaka, “A Study of Internal Defect Testing With the Laser-EMAT Ultrasonic Method,” IEEE Trans. Sonics Ultrason. 59(12), 2702–2708 (2012).
[Crossref]

Acta Ophthalmol. (1)

P. X. Wang, V. T. C. Koh, and S. C. Loon, “Laser iridotomy and the corneal endothelium: a systemic review,” Acta Ophthalmol. 92(7), 604–616 (2014).
[Crossref]

Acustica (1)

W. Lauterborn, “Laser-Induced Cavitation,” Acustica 31(2), 51–78 (1974).

Appl. Opt. (1)

Appl. Phys. A: Mater. Sci. Process. (1)

T. Požar, M. Halilovič, D. Horvat, and R. Petkovšek, “Simulation of wave propagation inside a human eye: acoustic eye model (AEM),” Appl. Phys. A: Mater. Sci. Process. 124(2), 112 (2018).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B: Lasers Opt. 68(2), 271–280 (1999).
[Crossref]

Appl. Phys. Lett. (1)

Y. Tomita, T. Kodama, and A. Shima, “Secondary Cavitation Due to Interaction of a Collapsing Bubble with a Rising Free-Surface,” Appl. Phys. Lett. 59(3), 274–276 (1991).
[Crossref]

Biomed. Laser: Technol. Clin. Appl. (1)

H. Burkhard Dick, M. Tehrani, and H. Höh, “Phacoemulsification and Vitrectomy with the Erbium: or Neodymium:YAG-Laser,” Biomed. Laser: Technol. Clin. Appl. 17(4), 313–320 (2002).
[Crossref]

Chem. Rev. (1)

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref]

Fluid Dyn. Res. (1)

T. Ogasawara, T. Horiba, T. Sano, and H. Takahira, “Pressure measurement and high-speed observation on the cavitation bubble cloud due to the backscattering of HIFU from a laser-induced bubble,” Fluid Dyn. Res. 50(6), 065512 (2018).
[Crossref]

Graefe's Arch. Clin. Exp. Ophthalmol. (2)

H. L. Little and R. L. Jack, “Q-Switched neodymium:YAG laser surgery of the vitreous,” Graefe's Arch. Clin. Exp. Ophthalmol. 224(3), 240–246 (1986).
[Crossref]

F. Fankhauser, U. Durr, H. Giger, P. Rol, and S. Kwasniewska, “Lasers, optical systems and safety in ophthalmology: A review,” Graefe's Arch. Clin. Exp. Ophthalmol. 234(8), 473–487 (1996).
[Crossref]

IEEE J. Quantum Electron. (1)

A. Vogel, P. Schweiger, A. Frieser, M. N. Asiyo, and R. Birngruber, “Intraocular Nd:YAG Laser-Surgery: Light-Tissue Interaction, Damage Range, and Reduction of Collateral Effects,” IEEE J. Quantum Electron. 26(12), 2240–2260 (1990).
[Crossref]

IEEE Trans. Sonics Ultrason. (1)

C. X. Pei, T. Fukuchi, H. T. Zhu, K. Koyama, K. Demachi, and M. Uesaka, “A Study of Internal Defect Testing With the Laser-EMAT Ultrasonic Method,” IEEE Trans. Sonics Ultrason. 59(12), 2702–2708 (2012).
[Crossref]

Invest. Ophth. Vis. Sci. (1)

A. Vogel, M. R. C. Capon, M. N. Asiyo-Vogel, and R. Birngruber, “Intraocular Photodisruption with Picosecond and Nanosecond Laser-Pulses - Tissue Effects in Cornea, Lens, and Retina,” Invest. Ophth. Vis. Sci. 35(7), 3032–3044 (1994).

J. Acoust. Soc. Am. (2)

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
[Crossref]

N. Bilaniuk and G. S. K. Wong, “Speed of Sound in Pure Water as a Function of Temperature,” J. Acoust. Soc. Am. 93(3), 1609–1612 (1993).
[Crossref]

J. Appl. Phys. (1)

T. Požar, D. Horvat, B. Starman, M. Halilovič, and R. Petkovšek, “Pressure wave propagation effects in the eye after photoablation,” J. Appl. Phys. 125(20), 204701 (2019).
[Crossref]

J. Cataract Refractive Surg. (1)

I. H. Fine, M. Packer, and R. S. Hoffman, “New phacoemulsification technologies,” J. Cataract Refractive Surg. 28(6), 1054–1060 (2002).
[Crossref]

J. Fluid Mech. (2)

O. Lindau and W. Lauterborn, “Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall,” J. Fluid Mech. 479, 327–348 (2003).
[Crossref]

E. A. Brujan and A. Vogel, “Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom,” J. Fluid Mech. 558, 281–308 (2006).
[Crossref]

J. Res. Natl. Inst. Stand. Technol. (1)

F. E. Jones and G. L. Harris, “ITS-90 Density of Water Formulation for Volumetric Standards Calibration,” J. Res. Natl. Inst. Stand. Technol. 97(3), 335–340 (1992).
[Crossref]

JAMA Ophthalmol. (2)

P. Hahn, E. W. Schneider, H. Tabandeh, R. W. Wong, and G. G. Emerson, “Reported Complications Following Laser Vitreolysis,” JAMA Ophthalmol. 135(9), 973–976 (2017).
[Crossref]

J. I. Lim, “YAG Laser Vitreolysis-Is It as Clear as It Seems?” JAMA Ophthalmol. 135(9), 924–925 (2017).
[Crossref]

Ophthalmologica (1)

F. Fankhauser and S. Kwasniewska, “Laser vitreolysis,” Ophthalmologica 216(2), 73–84 (2002).
[Crossref]

Ophthalmology (1)

A. Vogel, W. Hentschel, J. Holzfuss, and W. Lauterborn, “Cavitation Bubble Dynamics and Acoustic Transient Generation in Ocular Surgery with Pulsed Neodymium - Yag Lasers,” Ophthalmology 93(10), 1259–1269 (1986).
[Crossref]

Opt. Mater. Express (1)

Philos. Mag. (1)

L. Rayleigh, “On the pressure developed in a liquid during the collapse of a spherical cavity,” Philos. Mag. 34(200), 94–98 (1917).
[Crossref]

Phys. Fluids (3)

R. Oguri and K. Ando, “Cavitation bubble nucleation induced by shock-bubble interaction in a gelatin gel,” Phys. Fluids 30(5), 051904 (2018).
[Crossref]

E. Robert, J. Lettry, M. Farhat, P. A. Monkewitz, and F. Avellan, “Cavitation bubble behavior inside a liquid jet,” Phys. Fluids 19(6), 067106 (2007).
[Crossref]

D. Obreschkow, N. Dorsaz, P. Kobel, A. de Bosset, M. Tinguely, J. Field, and M. Farhat, “Confined shocks inside isolated liquid volumes: A new path of erosion?” Phys. Fluids 23(10), 101702 (2011).
[Crossref]

Phys. Rev. E (1)

C. T. Wilson, T. L. Hall, E. Johnsen, L. Mancia, M. Rodriguez, J. E. Lundt, T. Colonius, D. L. Henann, C. Franck, Z. Xu, and J. R. Sukovich, “Comparative study of the dynamics of laser and acoustically generated bubbles in viscoelastic media,” Phys. Rev. E 99(4), 043103 (2019).
[Crossref]

Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. (2)

O. Supponen, D. Obreschkow, P. Kobel, M. Tinguely, N. Dorsaz, and M. Farhat, “Shock waves from nonspherical cavitation bubbles,” Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2(9), 093601 (2017).
[Crossref]

F. Reuter, S. R. Gonzalez-Avila, R. Mettin, and C. D. Ohl, “Flow fields and vortex dynamics of bubbles collapsing near a solid boundary,” Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2(6), 064202 (2017).
[Crossref]

Surv. Ophthalmol. (1)

D. J. Apple, K. D. Solomon, M. R. Tetz, E. I. Assia, E. Y. Holland, U. F. C. Legler, J. C. Tsai, V. E. Castaneda, J. P. Hoggatt, and A. M. P. Kostick, “Posterior Capsule Opacification,” Surv. Ophthalmol. 37(2), 73–116 (1992).
[Crossref]

Ultrasound. Med. Biol. (1)

B. E. Treeby, E. Z. Zhang, A. S. Thomas, and B. T. Cox, “Measurement of the Ultrasound Attenuation and Dispersion in Whole Human Blood and Its Components from 0-70 MHz,” Ultrasound. Med. Biol. 37(2), 289–300 (2011).
[Crossref]

Wear (1)

M. Dular, T. Požar, J. Zevnik, and R. Petkovšek, “High speed observation of damage created by a collapse of a single cavitation bubble,” Wear 418-419, 13–23 (2019).
[Crossref]

Other (9)

D. R. Christman, General motors technical center Warren MI materials and structures lab, “Dynamic Properties of Poly(methylmethacrylate) (PMMA) (Plexiglas),” (Defense Technical Information Center, 1972), pp. 1–48.

L. P. Geldart and R. E. Sheriff, Problems in Exploration Seismology and their Solutions (Society of Exploration Geophysicists, 2004), pp. 53–58.

H. L. Heacock, “Molded ophthalmic lens,” patent: (US 8,303,116 B2, 2012).

M. P. Kummer, J. J. Abbott, S. Dinser, and B. J. Nelson, “Artificial Vitreous Humor for In Vitro Experiments,” 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, pp. 6406–6409.

G. S. Settles, Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media (Springer, 2001).

O. Supponen, “Collapse phenomena of deformed cavitation bubbles,” PhD Thesis: (Federal Institute of Technology Lausanne, 2017).

M. H. Niemz, Laser-Tissue Interactions: Fundamentals and Applications (Springer, 2007).

W. Lauterborn and A. Vogel, “Shock wave emission by laser generated bubbles,” in Bubble Dynamics and Shock WavesC. F. Delale, ed. (Springer, 2013), pp. 67–103.

A. Vrečko, T. Požar, R. Petkovšek, and U. Orthaber, “An acoustic diverter for improved safety during ophthalmic laser treatments,” patent application: (PCT/SI2018/050020, 2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Illustration of the shock wave refocusing mechanism at four time instants. (a) Laser-induced breakdown takes place at the focus. (b) After the breakdown, a cavitation bubble starts to grow and a compressional shock wave (solid blue circle) is launched spherically into the surrounding tissue. (c) The shock wave travelling posteriorly continues its propagation into soft tissues, while a portion of its anterior wavefront is reflected from the corneal epithelium as a tensile wave (dashed blue line). (d) The reflected shock wave is refocused reaching negative pressure amplitudes that exceed the threshold for secondary acoustic (inertial) cavitation. After the first collapse of the bubble, steps (b)–(d) are repeated with the following differences: smaller isolated cavitation bubbles induced predominantly in the anterior laser cone are now accompanied by larger secondary cavitation clouds near the acoustic focus and radial cavitation filaments are formed in the vicinity of the collapse.
Fig. 2.
Fig. 2. Schematics of the experimental setup in two perspectives (side and top view). The dimensions of the water tank and ophthalmic lens are in right proportions.
Fig. 3.
Fig. 3. Geometry of the lens-water system. A shock wave (light blue circle) is emitted at a distance a (blue dot). A portion of the shock wave entering the spherical cap ($0 \le \phi \le {\phi _{\max }}$) is refocused on the axis (red line). The paraxial rays cross the axis farthest away (red dot) from the apex of the acoustic mirror (posterior concave surface of the ophthalmic lens). The dark blue line represents an arbitrary ray declined by an angle $\phi$ from the axis and reflected by the acoustic mirror.
Fig. 4.
Fig. 4. (a) For each distance of the shock wave source $\tilde{a}$, there is an interval of $\tilde{b}$, given by the dark gray shaded area, where the shock wave refocuses on the axis. The pale gray bands mark the experimentally visually inaccessible values. The presented results are plotted for the experimental size of the cup given by $\tilde{g} = 0.553$. The dashed black line corresponds to the paraxial rays which always intersect the axis furthest away from the apex of the acoustic mirror. The solid black line corresponds to the rays reflected from the edge of the cup. As a reference, if these results were mapped on the dimensions of an adult human eye (top and right axis labels), the solid blue lines would denote the anterior and the posterior surfaces of the ocular lens. The corneal epithelium would be at $\{ \tilde{a},\tilde{b}\} = 0$, the posterior surface of the lens close to $\{ \tilde{a},\tilde{b}\} = 1$ and the retina at $\{ \tilde{a},\tilde{b}\} = 3$. For direct comparison with this theory, the empty black circles show the experimentally determined locations of the dominant secondary cavitation, extracted from Figs. 6(q)–6(v). (b) The time of flight (ToF) s/α1 of the shock wave from the point of emission back to the axis assuming it propagates with a constant acoustic velocity of α1 = 1482 m/s. The ToFs reside within the dark gray shaded area bounded by the ToF curve of the paraxial rays (dashed black line) and the ToF curve of the rays reflected from the edge of the cup (solid black line) which arrive earlier.
Fig. 5.
Fig. 5. (a) Relative pressure profiles $\log [p(\tilde{b} - {\tilde{b}_{\max }})]$ in the refocusing interval for various values of the shock wave origin $\tilde{a}$. The chosen values of $\tilde{a}$ are labeled in red for $\tilde{a}\, < \,1$ in blue for $\tilde{a} = 1$ and in black for $1\, < \,\tilde{a}$. (b) Maximum pressure $\log [{p_{\max }}(\tilde{a})]$ as a function of shock wave origin.
Fig. 6.
Fig. 6. (a)–(k) Dynamics of the cavitation structures following the breakdown at a distance a = 9.53 mm ($\tilde{a} = 1.222$) from the apex of the lens (left column). (l)–(v) Secondary cavitation structures acquired soon after the first collapse of the initial bubble generated at various locations along the optical axis (right column). Laser pulse energy was 15 mJ. The scale (1 mm) is given by the white bar. The meaning of the overlaying lines and labels is described in the main text.
Fig. 7.
Fig. 7. The first secondary bubbles formed in the anterior cone (a)–(c), the maximum extent of the initial cavitation bubble (d)–(f), the first collapse (g)–(i) and the secondary cavitation structures acquired soon after the first collapse of the initial bubble (j)–(l) at three selected energies of the laser pulse: 5 mJ (left column), 10 mJ (middle column), 15 mJ (right column). The location of the breakdown is the same as in Figs. 6(a)–6(k) (a = 9.53 mm, $\tilde{a} = 1.222$). The scale (1 mm) is given by the white bar. The meaning of the overlaying lines and labels is described in the main text.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

b ~ ( a ~ , ϕ ) = a ~ ( 1 a ~ ) + l ~ 2 l ~ 2 ( a ~ 1 ) 2 ,
l ~ ( a ~ , ϕ ) = ( a ~ 1 ) cos ϕ + ( a ~ 1 ) 2 cos 2 ϕ a ~ ( a ~ 2 )  and  t ~ ( a ~ , ϕ ) = l ~ 2 l ~ 2 ( a ~ 1 ) 2 .
ϕ max = arctan ( h ~ a ~ g ~ )  if  g ~ a ~  or  ϕ max = arctan ( h ~ a ~ g ~ ) + π  if  a ~ < g ~ .
w = i w i = R p sin ϕ s ~ e μ ~ s ~ .

Metrics