Abstract

Applications using terahertz (THz) frequency radiation will inevitably lead to increased human exposure. The power density and specific absorption rate (SAR) simulations of thin skin at 0.45 THz show the bulk of the energy being absorbed in the upper stratum spinosum, and the maximal temperature rise is in the lower stratum spinosum. There are regions of SAR increase of 100% above the local average at the stratum spinosum/stratum basale boundary. The dead Stratum Corneum layer protects underlying tissues in thick skin. Reflection studies suggest that acute angles and the use of polarised incident radiation may enhance the assessment of diabetic neuropathy.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Computational simulations of the penetration of 0.30 THz radiation into the human ear

Zoltan Vilagosh, Alireza Lajevardipour, and Andrew Wood
Biomed. Opt. Express 10(3) 1462-1468 (2019)

THz in vivo measurements: the effects of pressure on skin reflectivity

Jiarui Wang, Rayko I. Stantchev, Qiushuo Sun, Tor-Wo Chiu, Anil T. Ahuja, and Emma Pickwell MacPherson
Biomed. Opt. Express 9(12) 6467-6476 (2018)

In vivo measurement of mid-infrared light scattering from human skin

Anna P. M. Michel, Sabbir Liakat, Kevin Bors, and Claire F. Gmachl
Biomed. Opt. Express 4(4) 520-530 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Hasted, S. K. Husain, F. A. M. Frescura, and J. R. Birch, “The temperature variation of the near millimetre wavelength optical constants of water,” Infrared Phys. 27(1), 11–15 (1987).
    [Crossref]
  2. H. J. Liebe, G. A. Hufford, and T. Manabe, “A model for the complex permittivity of water at frequencies below 1 THz,” Int. J. Infrared Millimeter Waves 12(7), 659–675 (1991).
    [Crossref]
  3. B. Ferguson, S. Wang, D. Gray, D. Abbott, and X.-C. Zhang, “Identification of biological tissue using chirped probe THz imaging,” Microelectron. J. 33(12), 1043–1051 (2002).
    [Crossref]
  4. A. Abina, U. Puc, A. Jeglič, and A. Zidanšek, “Applications of terahertz spectroscopy in the field of construction and building materials,” Appl. Spectrosc. Rev. 50(4), 279–303 (2015).
    [Crossref]
  5. J. Sibik and J. A. Zeitler, “Direct measurement of molecular mobility and crystallisation of amorphous pharmaceuticals using terahertz spectroscopy,” Adv. Drug Delivery Rev. 100, 147–157 (2016).
    [Crossref]
  6. S. Lu, X. Zhang, Z. Zhang, Y. Yang, and Y. Xiang, “Quantitative measurements of binary amino acids mixtures in yellow foxtail millet by terahertz time domain spectroscopy,” Food Chem. 211, 494–501 (2016).
    [Crossref]
  7. C. Jastrow, K. Mu, R. Piesiewicz, T. Ku, M. Koch, and T. Kleine-Ostmann, “300 GHz transmission system,” Electron. Lett. 44(3), 213–214 (2008).
    [Crossref]
  8. I. Kallfass, I. Dan, S. Rey, P. Harati, J. Antes, A. Tessmann, S. Wagner, M. Kuri, R. Weber, H. Massler, and A. Leuther, “Towards MMIC-based 300 GHz indoor wireless communication systems,” IEICE Trans. Electron. E98.C(12), 1081–1090 (2015).
    [Crossref]
  9. J. Kanitakis, “Anatomy, histology and immunohistochemistry of normal human skin,” Eur. J. Dermatol. 12(4), 390–401 (2002).
  10. M. Egawa, T. Hirao, and M. Takahashi, “In vivo estimation of stratum corneum thickness from water concentration profiles obtained with Raman spectroscopy,” Acta dermato-venereologica 87(1), 4–8 (2007).
    [Crossref]
  11. S. R. Tripathi, E. Miyata, P. Ben Ishai, and K. Kawase, “Morphology of human sweat ducts observed by optical coherence tomography and their frequency of resonance in the terahertz frequency region,” Sci. Rep. 5(1), 9071 (2015).
    [Crossref]
  12. R. R. Warner, M. C. Myers, and D. A. Taylor, “Electron probe analysis of human skin: determination of the water concentration profile,” J. Invest. Dermatol. 90(2), 218–224 (1988).
    [Crossref]
  13. C. Olsovsky, R. Shelton, O. Carrasco-Zevallos, B. E. Applegate, and K. C. Maitland, “Chromatic confocal microscopy for multi-depth imaging of epithelial tissue,” Biomed. Opt. Express 4(5), 732–740 (2013).
    [Crossref]
  14. T. Bove, T. Zawada, J. Serup, A. Jessen, and M. Poli, “High-frequency (20-MHz) high-intensity focused ultrasound (HIFU) system for dermal intervention: Preclinical evaluation in skin equivalents,” Skin Res. Technol. 25(2), 217–228 (2019).
    [Crossref]
  15. S. M. Waldstein, H. Faatz, M. Szimacsek, A. M. Glodan, D. Podkowinski, A. Montuoro, C. Simader, B. S. Gerendas, and U. Schmidt-Erfurth, “Comparison of penetration depth in choroidal imaging using swept source vs spectral domain optical coherence tomography,” Eye 29(3), 409–415 (2015).
    [Crossref]
  16. J. Xia, J. Yao, and L. V. Wang, “Photoacoustic tomography: principles and advances,” Electromagnetic waves 147, 1–22 (2014).
    [Crossref]
  17. R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys. 29(2/3), 257–259 (2003).
    [Crossref]
  18. K. I. Zaitsev, N. V. Chernomyrdin, K. G. Kudrin, I. V. Reshetov, and S. O. Yurchenko, “Terahertz spectroscopy of pigmentary skin nevi in vivo,” Opt. Spectrosc. 119(3), 404–410 (2015).
    [Crossref]
  19. V. P. Wallace, “Medical applications” in : “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
    [Crossref]
  20. M. Ney and I. Abdulhalim, “Ultrahigh polarimetric image contrast enhancement for skin cancer diagnosis using InN plasmonic nanoparticles in the terahertz range,” J. Biomed. Opt. 20(12), 125007 (2015).
    [Crossref]
  21. G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
    [Crossref]
  22. G.G. Hernandez-Cardoso, M. Alfaro-Gomez, S. C. Rojas-Landeros, I. Salas-Gutierrez, and E. Castro-Camus, “Diabetic foot early diagnosis and statistical analysis by spectral terahertz reflection images,” Proc. SPIE 10756, 107560X (2018).
    [Crossref]
  23. International Commission on Non-Ionizing Radiation Protection. (ICNIRP) guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz) Health Physics.74, 492–522 (1998).
  24. International Commission on Non-Ionizing Radiation Protection. (ICNIRP) Draft guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (100kHz to 300 GHz) 11 July 2018, www.icnirp.org/cms/upload/consultation_upload/ICNIRP_RF_Guidelines_PCD_2018_07_11.pdf
  25. International Commission on Non-Ionizing Radiation Protection (ICNIRP), Guidelines on Limits of Exposure to Laser Radiation of Wavelengths between 180 nm and 1,000µm, Health Phys.105(3), 271–295 (2013).
    [Crossref]
  26. R. A. Lewis, “A review of terahertz sources,” J. Phys. D: Appl. Phys. 47(37), 374001 (2014).
    [Crossref]
  27. N. Yaekashiwa, H. Yoshida, S. Otsuki, S. Hayashi, and K. Kawase, “Verification of Non-thermal Effects of 0.3–0.6 THz-Waves on Human Cultured Cells,” Photonics 6(1), 33 (2019).
    [Crossref]
  28. Z. Vilagosh, A. Lajevardipour, and A. W. Wood, “An empirical formula for temperature adjustment of complex permittivity of human skin in the terahertz frequencies,” Bioelectromagnetics 40(1), 74–79 (2019).
    [Crossref]
  29. R. S. Singh, P. Tewari, J. L. Bourges, J. P. Hubschman, D. B. Bennett, Z. D. Taylor, H. Lee, E.R. Brown, W. S. Grundfest, and M. O. Culjat, “Terahertz sensing of corneal hydration,” In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 3021–3024 (2010).
  30. A. Vorobyov, E. Daskalaki, C. Hennemann, and J-D. Decotignie, “Human physical condition RF sensing at THz range,” In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2067–2070 (2016).
  31. Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M.O. Culjat, A. Stojadinovic, H. Lee, J. P. Hubschman, and E. R. Brown, “THz medical imaging, in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
    [Crossref]
  32. D. M. Mittleman, “Twenty years of terahertz imaging,” Opt. Express 26(8), 9417–9431 (2018).
    [Crossref]
  33. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 14(3), 302–307 (1966).
    [Crossref]
  34. D. M. Sullivan, Electromagnetic Simulation using the FDTD Method, (John Wiley and Sons, 2013).
  35. E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
    [Crossref]
  36. S. Y. Huang, Y. X. J. Wang, D. K. W. Yeung, A. T. Ahuja, Y. T. Zhang, and E. Pickwell-MacPherson, “Tissue characterization using terahertz pulsed imaging in reflection geometry,” Phys. Med. Biol. 54(1), 149 (2009).
    [Crossref]
  37. C. Jördens, M. Scheller, B. Breitenstein, D. Selmar, and M. Koch, “Evaluation of leaf water status by means of permittivity at terahertz frequencies,” J. Biol. Phys. 35(3), 255–264 (2009).
    [Crossref]
  38. G. M. Png, R. Flook, B. W.-H. Ng, and D. Abbott, “Terahertz spectroscopy of snap-frozen human brain tissue: an initial study,” Electron. Lett. 45(7), 343–345 (2009).
    [Crossref]
  39. S. Sy, S. H. Yi-Xiang, J. Wang, J. Yu, A. T. Ahuja, Y. Zhang, and E. Pickwell-MacPherson, “Terahertz spectroscopy of liver cirrhosis: investigating the origin of contrast,” Phys. Med. Biol. 55(24), 7587–7596 (2010).
    [Crossref]
  40. M. H. Arbab, T. C. Dickey, D. P. Winebrenner, A. Chen, M. B. Klein, and P. D. Mourad, “Terahertz reflectometry of burn wounds in a rat model,” Biomed. Opt. Express 2(8), 2339–2347 (2011).
    [Crossref]
  41. Y. C. Sim, K.-M. Ahn, J. Y. Park, C.-S. Park, and J.-H. Son, “Temperature-dependent terahertz imaging of excised oral malignant melanoma,” IEEE J. Biomed. Health Inform. 17(4), 779–784 (2013).
    [Crossref]
  42. Y. C. Sim, J. Y. Park, K.-M. Ahn, C. Park, and J.-H. Son, “Terahertz imaging of excised oral cancer at frozen temperature,” Biomed. Opt. Express 4(8), 1413–1421 (2013).
    [Crossref]
  43. V.A. Guseva, S.I. Gusev, P.S. Demchenko, E.A. Sedykh, and M.K. Khodzitsky, “Optical properties of human nails in THz frequency range,” J. Biomed. Photonics Eng. 2(4), 040306 (2016).
    [Crossref]
  44. M. Mizuno, N. Yaekashiwa, and S. Watanabe, “Analysis of dermal composite conditions using collagen absorption characteristics in the THz range,” Biomed. Opt. Express 9(5), 2277–2283 (2018).
    [Crossref]
  45. M. Ney and I. Abdulhalim, “Modeling of reflectometric and ellipsometric spectra from the skin in the terahertz and submillimeter waves region,” J. Biomed. Opt. 16(6), 067006 (2011).
    [Crossref]
  46. A. Lajevardipour, A. W. Wood, R. L. McIntosh, and S. Iskra, “Estimation of dielectric values for tissue water in the Terahertz range,” Bioelectromagnetics 37(8), 563–567 (2016).
    [Crossref]
  47. P.A. Hasgall, F. Di Gennaro, C. Baumgartner, E. Neufeld, B. Lloyd, M.C. Gosselin, D. Payne, and A. Klingenböck, and N. Kuster “IT’IS Database for thermal and electromagnetic parameters of biological tissues,”Version 4.0, May 15, 2018, DOI: 10.13099/VIP21000-04-0. itis.swiss/database
  48. D. T. Dias, A. Steimacher, A. C. Bento, A. M. Neto, and M. L. Baesso, “Thermal characterization in vitro of human nail: photoacoustic study of the aging process,” Photochem. Photobiol. 83(5), 1144–1148 (2007).
    [Crossref]
  49. P. Bernardi, M. Cavagnaro, S. Pisa, and E. Piuzzi, “SAR distribution and temperature increase in an anatomical model of the human eye exposed to the field radiated by the user antenna in a wireless LAN,” IEEE Trans. Microwave Theory Tech. 46(12), 2074–2082 (1998).
    [Crossref]
  50. P. Bernardi, M. Cavagnaro, S. Pisa, and E. Piuzzi, “Specific absorption rate and temperature elevation in a subject exposed in the far-field of radio-frequency sources operating in the 10-900-MHz range,” IEEE Trans. Biomed. Eng. 50(3), 295–304 (2003).
    [Crossref]
  51. J. Wang and O. Fujiwara, “FDTD computation of temperature rise in the human head for portable telephones,” IEEE Trans. Microwave Theory Tech. 47(8), 1528–1534 (1999).
    [Crossref]
  52. L. R. Williams and R. W. Leggett, “Reference values for resting blood flow to organs of man,” Clin. Phys. Physiol. Meas. 10(3), 187–217 (1989).
    [Crossref]
  53. S. I. Alekseev and M. C. Ziskin, “Influence of blood flow and millimeter wave exposure on skin temperature in different thermal models,” Bioelectromagnetics 30(1), 52–58 (2009).
    [Crossref]
  54. K. R. Foster, H. N. Kritikos, and H. P. Schwan, “Effect of surface cooling and blood flow on the microwave heating of tissue,” IEEE Trans. Biomed. Eng. BME-25(3), 313–316 (1978).
    [Crossref]
  55. R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch, and T. Kürner, “Properties of building and plastic materials in the THz range,” Int. J. Infrared Millimeter Waves 28(5), 363–371 (2007).
    [Crossref]
  56. K. Sasaki, M. Mizuno, K. Wake, and S. Watanabe, “Monte Carlo simulations of skin exposure to electromagnetic field from 10 GHz to 1 THz,” Phys. Med. Biol. 62(17), 6993–7010 (2017).
    [Crossref]

2019 (3)

T. Bove, T. Zawada, J. Serup, A. Jessen, and M. Poli, “High-frequency (20-MHz) high-intensity focused ultrasound (HIFU) system for dermal intervention: Preclinical evaluation in skin equivalents,” Skin Res. Technol. 25(2), 217–228 (2019).
[Crossref]

N. Yaekashiwa, H. Yoshida, S. Otsuki, S. Hayashi, and K. Kawase, “Verification of Non-thermal Effects of 0.3–0.6 THz-Waves on Human Cultured Cells,” Photonics 6(1), 33 (2019).
[Crossref]

Z. Vilagosh, A. Lajevardipour, and A. W. Wood, “An empirical formula for temperature adjustment of complex permittivity of human skin in the terahertz frequencies,” Bioelectromagnetics 40(1), 74–79 (2019).
[Crossref]

2018 (3)

G.G. Hernandez-Cardoso, M. Alfaro-Gomez, S. C. Rojas-Landeros, I. Salas-Gutierrez, and E. Castro-Camus, “Diabetic foot early diagnosis and statistical analysis by spectral terahertz reflection images,” Proc. SPIE 10756, 107560X (2018).
[Crossref]

D. M. Mittleman, “Twenty years of terahertz imaging,” Opt. Express 26(8), 9417–9431 (2018).
[Crossref]

M. Mizuno, N. Yaekashiwa, and S. Watanabe, “Analysis of dermal composite conditions using collagen absorption characteristics in the THz range,” Biomed. Opt. Express 9(5), 2277–2283 (2018).
[Crossref]

2017 (3)

K. Sasaki, M. Mizuno, K. Wake, and S. Watanabe, “Monte Carlo simulations of skin exposure to electromagnetic field from 10 GHz to 1 THz,” Phys. Med. Biol. 62(17), 6993–7010 (2017).
[Crossref]

V. P. Wallace, “Medical applications” in : “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
[Crossref]

2016 (4)

J. Sibik and J. A. Zeitler, “Direct measurement of molecular mobility and crystallisation of amorphous pharmaceuticals using terahertz spectroscopy,” Adv. Drug Delivery Rev. 100, 147–157 (2016).
[Crossref]

S. Lu, X. Zhang, Z. Zhang, Y. Yang, and Y. Xiang, “Quantitative measurements of binary amino acids mixtures in yellow foxtail millet by terahertz time domain spectroscopy,” Food Chem. 211, 494–501 (2016).
[Crossref]

V.A. Guseva, S.I. Gusev, P.S. Demchenko, E.A. Sedykh, and M.K. Khodzitsky, “Optical properties of human nails in THz frequency range,” J. Biomed. Photonics Eng. 2(4), 040306 (2016).
[Crossref]

A. Lajevardipour, A. W. Wood, R. L. McIntosh, and S. Iskra, “Estimation of dielectric values for tissue water in the Terahertz range,” Bioelectromagnetics 37(8), 563–567 (2016).
[Crossref]

2015 (6)

I. Kallfass, I. Dan, S. Rey, P. Harati, J. Antes, A. Tessmann, S. Wagner, M. Kuri, R. Weber, H. Massler, and A. Leuther, “Towards MMIC-based 300 GHz indoor wireless communication systems,” IEICE Trans. Electron. E98.C(12), 1081–1090 (2015).
[Crossref]

A. Abina, U. Puc, A. Jeglič, and A. Zidanšek, “Applications of terahertz spectroscopy in the field of construction and building materials,” Appl. Spectrosc. Rev. 50(4), 279–303 (2015).
[Crossref]

S. M. Waldstein, H. Faatz, M. Szimacsek, A. M. Glodan, D. Podkowinski, A. Montuoro, C. Simader, B. S. Gerendas, and U. Schmidt-Erfurth, “Comparison of penetration depth in choroidal imaging using swept source vs spectral domain optical coherence tomography,” Eye 29(3), 409–415 (2015).
[Crossref]

S. R. Tripathi, E. Miyata, P. Ben Ishai, and K. Kawase, “Morphology of human sweat ducts observed by optical coherence tomography and their frequency of resonance in the terahertz frequency region,” Sci. Rep. 5(1), 9071 (2015).
[Crossref]

K. I. Zaitsev, N. V. Chernomyrdin, K. G. Kudrin, I. V. Reshetov, and S. O. Yurchenko, “Terahertz spectroscopy of pigmentary skin nevi in vivo,” Opt. Spectrosc. 119(3), 404–410 (2015).
[Crossref]

M. Ney and I. Abdulhalim, “Ultrahigh polarimetric image contrast enhancement for skin cancer diagnosis using InN plasmonic nanoparticles in the terahertz range,” J. Biomed. Opt. 20(12), 125007 (2015).
[Crossref]

2014 (2)

R. A. Lewis, “A review of terahertz sources,” J. Phys. D: Appl. Phys. 47(37), 374001 (2014).
[Crossref]

J. Xia, J. Yao, and L. V. Wang, “Photoacoustic tomography: principles and advances,” Electromagnetic waves 147, 1–22 (2014).
[Crossref]

2013 (3)

2011 (3)

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M.O. Culjat, A. Stojadinovic, H. Lee, J. P. Hubschman, and E. R. Brown, “THz medical imaging, in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref]

M. H. Arbab, T. C. Dickey, D. P. Winebrenner, A. Chen, M. B. Klein, and P. D. Mourad, “Terahertz reflectometry of burn wounds in a rat model,” Biomed. Opt. Express 2(8), 2339–2347 (2011).
[Crossref]

M. Ney and I. Abdulhalim, “Modeling of reflectometric and ellipsometric spectra from the skin in the terahertz and submillimeter waves region,” J. Biomed. Opt. 16(6), 067006 (2011).
[Crossref]

2010 (1)

S. Sy, S. H. Yi-Xiang, J. Wang, J. Yu, A. T. Ahuja, Y. Zhang, and E. Pickwell-MacPherson, “Terahertz spectroscopy of liver cirrhosis: investigating the origin of contrast,” Phys. Med. Biol. 55(24), 7587–7596 (2010).
[Crossref]

2009 (4)

S. Y. Huang, Y. X. J. Wang, D. K. W. Yeung, A. T. Ahuja, Y. T. Zhang, and E. Pickwell-MacPherson, “Tissue characterization using terahertz pulsed imaging in reflection geometry,” Phys. Med. Biol. 54(1), 149 (2009).
[Crossref]

C. Jördens, M. Scheller, B. Breitenstein, D. Selmar, and M. Koch, “Evaluation of leaf water status by means of permittivity at terahertz frequencies,” J. Biol. Phys. 35(3), 255–264 (2009).
[Crossref]

G. M. Png, R. Flook, B. W.-H. Ng, and D. Abbott, “Terahertz spectroscopy of snap-frozen human brain tissue: an initial study,” Electron. Lett. 45(7), 343–345 (2009).
[Crossref]

S. I. Alekseev and M. C. Ziskin, “Influence of blood flow and millimeter wave exposure on skin temperature in different thermal models,” Bioelectromagnetics 30(1), 52–58 (2009).
[Crossref]

2008 (1)

C. Jastrow, K. Mu, R. Piesiewicz, T. Ku, M. Koch, and T. Kleine-Ostmann, “300 GHz transmission system,” Electron. Lett. 44(3), 213–214 (2008).
[Crossref]

2007 (3)

M. Egawa, T. Hirao, and M. Takahashi, “In vivo estimation of stratum corneum thickness from water concentration profiles obtained with Raman spectroscopy,” Acta dermato-venereologica 87(1), 4–8 (2007).
[Crossref]

R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch, and T. Kürner, “Properties of building and plastic materials in the THz range,” Int. J. Infrared Millimeter Waves 28(5), 363–371 (2007).
[Crossref]

D. T. Dias, A. Steimacher, A. C. Bento, A. M. Neto, and M. L. Baesso, “Thermal characterization in vitro of human nail: photoacoustic study of the aging process,” Photochem. Photobiol. 83(5), 1144–1148 (2007).
[Crossref]

2004 (1)

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
[Crossref]

2003 (2)

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys. 29(2/3), 257–259 (2003).
[Crossref]

P. Bernardi, M. Cavagnaro, S. Pisa, and E. Piuzzi, “Specific absorption rate and temperature elevation in a subject exposed in the far-field of radio-frequency sources operating in the 10-900-MHz range,” IEEE Trans. Biomed. Eng. 50(3), 295–304 (2003).
[Crossref]

2002 (2)

J. Kanitakis, “Anatomy, histology and immunohistochemistry of normal human skin,” Eur. J. Dermatol. 12(4), 390–401 (2002).

B. Ferguson, S. Wang, D. Gray, D. Abbott, and X.-C. Zhang, “Identification of biological tissue using chirped probe THz imaging,” Microelectron. J. 33(12), 1043–1051 (2002).
[Crossref]

1999 (1)

J. Wang and O. Fujiwara, “FDTD computation of temperature rise in the human head for portable telephones,” IEEE Trans. Microwave Theory Tech. 47(8), 1528–1534 (1999).
[Crossref]

1998 (1)

P. Bernardi, M. Cavagnaro, S. Pisa, and E. Piuzzi, “SAR distribution and temperature increase in an anatomical model of the human eye exposed to the field radiated by the user antenna in a wireless LAN,” IEEE Trans. Microwave Theory Tech. 46(12), 2074–2082 (1998).
[Crossref]

1991 (1)

H. J. Liebe, G. A. Hufford, and T. Manabe, “A model for the complex permittivity of water at frequencies below 1 THz,” Int. J. Infrared Millimeter Waves 12(7), 659–675 (1991).
[Crossref]

1989 (1)

L. R. Williams and R. W. Leggett, “Reference values for resting blood flow to organs of man,” Clin. Phys. Physiol. Meas. 10(3), 187–217 (1989).
[Crossref]

1988 (1)

R. R. Warner, M. C. Myers, and D. A. Taylor, “Electron probe analysis of human skin: determination of the water concentration profile,” J. Invest. Dermatol. 90(2), 218–224 (1988).
[Crossref]

1987 (1)

J. B. Hasted, S. K. Husain, F. A. M. Frescura, and J. R. Birch, “The temperature variation of the near millimetre wavelength optical constants of water,” Infrared Phys. 27(1), 11–15 (1987).
[Crossref]

1978 (1)

K. R. Foster, H. N. Kritikos, and H. P. Schwan, “Effect of surface cooling and blood flow on the microwave heating of tissue,” IEEE Trans. Biomed. Eng. BME-25(3), 313–316 (1978).
[Crossref]

1966 (1)

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 14(3), 302–307 (1966).
[Crossref]

Abbott, D.

G. M. Png, R. Flook, B. W.-H. Ng, and D. Abbott, “Terahertz spectroscopy of snap-frozen human brain tissue: an initial study,” Electron. Lett. 45(7), 343–345 (2009).
[Crossref]

B. Ferguson, S. Wang, D. Gray, D. Abbott, and X.-C. Zhang, “Identification of biological tissue using chirped probe THz imaging,” Microelectron. J. 33(12), 1043–1051 (2002).
[Crossref]

Abdulhalim, I.

M. Ney and I. Abdulhalim, “Ultrahigh polarimetric image contrast enhancement for skin cancer diagnosis using InN plasmonic nanoparticles in the terahertz range,” J. Biomed. Opt. 20(12), 125007 (2015).
[Crossref]

M. Ney and I. Abdulhalim, “Modeling of reflectometric and ellipsometric spectra from the skin in the terahertz and submillimeter waves region,” J. Biomed. Opt. 16(6), 067006 (2011).
[Crossref]

Abina, A.

A. Abina, U. Puc, A. Jeglič, and A. Zidanšek, “Applications of terahertz spectroscopy in the field of construction and building materials,” Appl. Spectrosc. Rev. 50(4), 279–303 (2015).
[Crossref]

Ahn, K.-M.

Y. C. Sim, J. Y. Park, K.-M. Ahn, C. Park, and J.-H. Son, “Terahertz imaging of excised oral cancer at frozen temperature,” Biomed. Opt. Express 4(8), 1413–1421 (2013).
[Crossref]

Y. C. Sim, K.-M. Ahn, J. Y. Park, C.-S. Park, and J.-H. Son, “Temperature-dependent terahertz imaging of excised oral malignant melanoma,” IEEE J. Biomed. Health Inform. 17(4), 779–784 (2013).
[Crossref]

Ahuja, A. T.

S. Sy, S. H. Yi-Xiang, J. Wang, J. Yu, A. T. Ahuja, Y. Zhang, and E. Pickwell-MacPherson, “Terahertz spectroscopy of liver cirrhosis: investigating the origin of contrast,” Phys. Med. Biol. 55(24), 7587–7596 (2010).
[Crossref]

S. Y. Huang, Y. X. J. Wang, D. K. W. Yeung, A. T. Ahuja, Y. T. Zhang, and E. Pickwell-MacPherson, “Tissue characterization using terahertz pulsed imaging in reflection geometry,” Phys. Med. Biol. 54(1), 149 (2009).
[Crossref]

Alekseev, S. I.

S. I. Alekseev and M. C. Ziskin, “Influence of blood flow and millimeter wave exposure on skin temperature in different thermal models,” Bioelectromagnetics 30(1), 52–58 (2009).
[Crossref]

Alfaro-Gomez, M.

G.G. Hernandez-Cardoso, M. Alfaro-Gomez, S. C. Rojas-Landeros, I. Salas-Gutierrez, and E. Castro-Camus, “Diabetic foot early diagnosis and statistical analysis by spectral terahertz reflection images,” Proc. SPIE 10756, 107560X (2018).
[Crossref]

G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
[Crossref]

Antes, J.

I. Kallfass, I. Dan, S. Rey, P. Harati, J. Antes, A. Tessmann, S. Wagner, M. Kuri, R. Weber, H. Massler, and A. Leuther, “Towards MMIC-based 300 GHz indoor wireless communication systems,” IEICE Trans. Electron. E98.C(12), 1081–1090 (2015).
[Crossref]

Applegate, B. E.

Arbab, M. H.

Arnone, D. D.

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys. 29(2/3), 257–259 (2003).
[Crossref]

Baesso, M. L.

D. T. Dias, A. Steimacher, A. C. Bento, A. M. Neto, and M. L. Baesso, “Thermal characterization in vitro of human nail: photoacoustic study of the aging process,” Photochem. Photobiol. 83(5), 1144–1148 (2007).
[Crossref]

Bajwa, N.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M.O. Culjat, A. Stojadinovic, H. Lee, J. P. Hubschman, and E. R. Brown, “THz medical imaging, in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref]

Baumgartner, C.

P.A. Hasgall, F. Di Gennaro, C. Baumgartner, E. Neufeld, B. Lloyd, M.C. Gosselin, D. Payne, and A. Klingenböck, and N. Kuster “IT’IS Database for thermal and electromagnetic parameters of biological tissues,”Version 4.0, May 15, 2018, DOI: 10.13099/VIP21000-04-0. itis.swiss/database

Ben Ishai, P.

S. R. Tripathi, E. Miyata, P. Ben Ishai, and K. Kawase, “Morphology of human sweat ducts observed by optical coherence tomography and their frequency of resonance in the terahertz frequency region,” Sci. Rep. 5(1), 9071 (2015).
[Crossref]

Bennett, D. B.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M.O. Culjat, A. Stojadinovic, H. Lee, J. P. Hubschman, and E. R. Brown, “THz medical imaging, in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref]

R. S. Singh, P. Tewari, J. L. Bourges, J. P. Hubschman, D. B. Bennett, Z. D. Taylor, H. Lee, E.R. Brown, W. S. Grundfest, and M. O. Culjat, “Terahertz sensing of corneal hydration,” In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 3021–3024 (2010).

Bento, A. C.

D. T. Dias, A. Steimacher, A. C. Bento, A. M. Neto, and M. L. Baesso, “Thermal characterization in vitro of human nail: photoacoustic study of the aging process,” Photochem. Photobiol. 83(5), 1144–1148 (2007).
[Crossref]

Bernardi, P.

P. Bernardi, M. Cavagnaro, S. Pisa, and E. Piuzzi, “Specific absorption rate and temperature elevation in a subject exposed in the far-field of radio-frequency sources operating in the 10-900-MHz range,” IEEE Trans. Biomed. Eng. 50(3), 295–304 (2003).
[Crossref]

P. Bernardi, M. Cavagnaro, S. Pisa, and E. Piuzzi, “SAR distribution and temperature increase in an anatomical model of the human eye exposed to the field radiated by the user antenna in a wireless LAN,” IEEE Trans. Microwave Theory Tech. 46(12), 2074–2082 (1998).
[Crossref]

Birch, J. R.

J. B. Hasted, S. K. Husain, F. A. M. Frescura, and J. R. Birch, “The temperature variation of the near millimetre wavelength optical constants of water,” Infrared Phys. 27(1), 11–15 (1987).
[Crossref]

Bourges, J. L.

R. S. Singh, P. Tewari, J. L. Bourges, J. P. Hubschman, D. B. Bennett, Z. D. Taylor, H. Lee, E.R. Brown, W. S. Grundfest, and M. O. Culjat, “Terahertz sensing of corneal hydration,” In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 3021–3024 (2010).

Bove, T.

T. Bove, T. Zawada, J. Serup, A. Jessen, and M. Poli, “High-frequency (20-MHz) high-intensity focused ultrasound (HIFU) system for dermal intervention: Preclinical evaluation in skin equivalents,” Skin Res. Technol. 25(2), 217–228 (2019).
[Crossref]

Breitenstein, B.

C. Jördens, M. Scheller, B. Breitenstein, D. Selmar, and M. Koch, “Evaluation of leaf water status by means of permittivity at terahertz frequencies,” J. Biol. Phys. 35(3), 255–264 (2009).
[Crossref]

Brown, E. R.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M.O. Culjat, A. Stojadinovic, H. Lee, J. P. Hubschman, and E. R. Brown, “THz medical imaging, in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref]

Brown, E.R.

R. S. Singh, P. Tewari, J. L. Bourges, J. P. Hubschman, D. B. Bennett, Z. D. Taylor, H. Lee, E.R. Brown, W. S. Grundfest, and M. O. Culjat, “Terahertz sensing of corneal hydration,” In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 3021–3024 (2010).

Carrasco-Zevallos, O.

Castillo-Guzman, A. R.

G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
[Crossref]

Castro-Camus, E.

G.G. Hernandez-Cardoso, M. Alfaro-Gomez, S. C. Rojas-Landeros, I. Salas-Gutierrez, and E. Castro-Camus, “Diabetic foot early diagnosis and statistical analysis by spectral terahertz reflection images,” Proc. SPIE 10756, 107560X (2018).
[Crossref]

G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
[Crossref]

Cavagnaro, M.

P. Bernardi, M. Cavagnaro, S. Pisa, and E. Piuzzi, “Specific absorption rate and temperature elevation in a subject exposed in the far-field of radio-frequency sources operating in the 10-900-MHz range,” IEEE Trans. Biomed. Eng. 50(3), 295–304 (2003).
[Crossref]

P. Bernardi, M. Cavagnaro, S. Pisa, and E. Piuzzi, “SAR distribution and temperature increase in an anatomical model of the human eye exposed to the field radiated by the user antenna in a wireless LAN,” IEEE Trans. Microwave Theory Tech. 46(12), 2074–2082 (1998).
[Crossref]

Chen, A.

Chernomyrdin, N. V.

K. I. Zaitsev, N. V. Chernomyrdin, K. G. Kudrin, I. V. Reshetov, and S. O. Yurchenko, “Terahertz spectroscopy of pigmentary skin nevi in vivo,” Opt. Spectrosc. 119(3), 404–410 (2015).
[Crossref]

Cole, B. E.

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
[Crossref]

Culjat, M. O.

R. S. Singh, P. Tewari, J. L. Bourges, J. P. Hubschman, D. B. Bennett, Z. D. Taylor, H. Lee, E.R. Brown, W. S. Grundfest, and M. O. Culjat, “Terahertz sensing of corneal hydration,” In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 3021–3024 (2010).

Culjat, M.O.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M.O. Culjat, A. Stojadinovic, H. Lee, J. P. Hubschman, and E. R. Brown, “THz medical imaging, in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref]

Dan, I.

I. Kallfass, I. Dan, S. Rey, P. Harati, J. Antes, A. Tessmann, S. Wagner, M. Kuri, R. Weber, H. Massler, and A. Leuther, “Towards MMIC-based 300 GHz indoor wireless communication systems,” IEICE Trans. Electron. E98.C(12), 1081–1090 (2015).
[Crossref]

Daskalaki, E.

A. Vorobyov, E. Daskalaki, C. Hennemann, and J-D. Decotignie, “Human physical condition RF sensing at THz range,” In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2067–2070 (2016).

Decotignie, J-D.

A. Vorobyov, E. Daskalaki, C. Hennemann, and J-D. Decotignie, “Human physical condition RF sensing at THz range,” In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2067–2070 (2016).

Demchenko, P.S.

V.A. Guseva, S.I. Gusev, P.S. Demchenko, E.A. Sedykh, and M.K. Khodzitsky, “Optical properties of human nails in THz frequency range,” J. Biomed. Photonics Eng. 2(4), 040306 (2016).
[Crossref]

Di Gennaro, F.

P.A. Hasgall, F. Di Gennaro, C. Baumgartner, E. Neufeld, B. Lloyd, M.C. Gosselin, D. Payne, and A. Klingenböck, and N. Kuster “IT’IS Database for thermal and electromagnetic parameters of biological tissues,”Version 4.0, May 15, 2018, DOI: 10.13099/VIP21000-04-0. itis.swiss/database

Dias, D. T.

D. T. Dias, A. Steimacher, A. C. Bento, A. M. Neto, and M. L. Baesso, “Thermal characterization in vitro of human nail: photoacoustic study of the aging process,” Photochem. Photobiol. 83(5), 1144–1148 (2007).
[Crossref]

Dickey, T. C.

Egawa, M.

M. Egawa, T. Hirao, and M. Takahashi, “In vivo estimation of stratum corneum thickness from water concentration profiles obtained with Raman spectroscopy,” Acta dermato-venereologica 87(1), 4–8 (2007).
[Crossref]

Faatz, H.

S. M. Waldstein, H. Faatz, M. Szimacsek, A. M. Glodan, D. Podkowinski, A. Montuoro, C. Simader, B. S. Gerendas, and U. Schmidt-Erfurth, “Comparison of penetration depth in choroidal imaging using swept source vs spectral domain optical coherence tomography,” Eye 29(3), 409–415 (2015).
[Crossref]

Ferguson, B.

B. Ferguson, S. Wang, D. Gray, D. Abbott, and X.-C. Zhang, “Identification of biological tissue using chirped probe THz imaging,” Microelectron. J. 33(12), 1043–1051 (2002).
[Crossref]

Fitzgerald, A. J.

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
[Crossref]

Flook, R.

G. M. Png, R. Flook, B. W.-H. Ng, and D. Abbott, “Terahertz spectroscopy of snap-frozen human brain tissue: an initial study,” Electron. Lett. 45(7), 343–345 (2009).
[Crossref]

Foster, K. R.

K. R. Foster, H. N. Kritikos, and H. P. Schwan, “Effect of surface cooling and blood flow on the microwave heating of tissue,” IEEE Trans. Biomed. Eng. BME-25(3), 313–316 (1978).
[Crossref]

Frescura, F. A. M.

J. B. Hasted, S. K. Husain, F. A. M. Frescura, and J. R. Birch, “The temperature variation of the near millimetre wavelength optical constants of water,” Infrared Phys. 27(1), 11–15 (1987).
[Crossref]

Fujiwara, O.

J. Wang and O. Fujiwara, “FDTD computation of temperature rise in the human head for portable telephones,” IEEE Trans. Microwave Theory Tech. 47(8), 1528–1534 (1999).
[Crossref]

Gerendas, B. S.

S. M. Waldstein, H. Faatz, M. Szimacsek, A. M. Glodan, D. Podkowinski, A. Montuoro, C. Simader, B. S. Gerendas, and U. Schmidt-Erfurth, “Comparison of penetration depth in choroidal imaging using swept source vs spectral domain optical coherence tomography,” Eye 29(3), 409–415 (2015).
[Crossref]

Glodan, A. M.

S. M. Waldstein, H. Faatz, M. Szimacsek, A. M. Glodan, D. Podkowinski, A. Montuoro, C. Simader, B. S. Gerendas, and U. Schmidt-Erfurth, “Comparison of penetration depth in choroidal imaging using swept source vs spectral domain optical coherence tomography,” Eye 29(3), 409–415 (2015).
[Crossref]

Gosselin, M.C.

P.A. Hasgall, F. Di Gennaro, C. Baumgartner, E. Neufeld, B. Lloyd, M.C. Gosselin, D. Payne, and A. Klingenböck, and N. Kuster “IT’IS Database for thermal and electromagnetic parameters of biological tissues,”Version 4.0, May 15, 2018, DOI: 10.13099/VIP21000-04-0. itis.swiss/database

Gray, D.

B. Ferguson, S. Wang, D. Gray, D. Abbott, and X.-C. Zhang, “Identification of biological tissue using chirped probe THz imaging,” Microelectron. J. 33(12), 1043–1051 (2002).
[Crossref]

Grundfest, W. S.

R. S. Singh, P. Tewari, J. L. Bourges, J. P. Hubschman, D. B. Bennett, Z. D. Taylor, H. Lee, E.R. Brown, W. S. Grundfest, and M. O. Culjat, “Terahertz sensing of corneal hydration,” In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 3021–3024 (2010).

Gusev, S.I.

V.A. Guseva, S.I. Gusev, P.S. Demchenko, E.A. Sedykh, and M.K. Khodzitsky, “Optical properties of human nails in THz frequency range,” J. Biomed. Photonics Eng. 2(4), 040306 (2016).
[Crossref]

Guseva, V.A.

V.A. Guseva, S.I. Gusev, P.S. Demchenko, E.A. Sedykh, and M.K. Khodzitsky, “Optical properties of human nails in THz frequency range,” J. Biomed. Photonics Eng. 2(4), 040306 (2016).
[Crossref]

Harati, P.

I. Kallfass, I. Dan, S. Rey, P. Harati, J. Antes, A. Tessmann, S. Wagner, M. Kuri, R. Weber, H. Massler, and A. Leuther, “Towards MMIC-based 300 GHz indoor wireless communication systems,” IEICE Trans. Electron. E98.C(12), 1081–1090 (2015).
[Crossref]

Hasgall, P.A.

P.A. Hasgall, F. Di Gennaro, C. Baumgartner, E. Neufeld, B. Lloyd, M.C. Gosselin, D. Payne, and A. Klingenböck, and N. Kuster “IT’IS Database for thermal and electromagnetic parameters of biological tissues,”Version 4.0, May 15, 2018, DOI: 10.13099/VIP21000-04-0. itis.swiss/database

Hasted, J. B.

J. B. Hasted, S. K. Husain, F. A. M. Frescura, and J. R. Birch, “The temperature variation of the near millimetre wavelength optical constants of water,” Infrared Phys. 27(1), 11–15 (1987).
[Crossref]

Hayashi, S.

N. Yaekashiwa, H. Yoshida, S. Otsuki, S. Hayashi, and K. Kawase, “Verification of Non-thermal Effects of 0.3–0.6 THz-Waves on Human Cultured Cells,” Photonics 6(1), 33 (2019).
[Crossref]

Hennemann, C.

A. Vorobyov, E. Daskalaki, C. Hennemann, and J-D. Decotignie, “Human physical condition RF sensing at THz range,” In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2067–2070 (2016).

Hernandez-Cardoso, G. G.

G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
[Crossref]

Hernandez-Cardoso, G.G.

G.G. Hernandez-Cardoso, M. Alfaro-Gomez, S. C. Rojas-Landeros, I. Salas-Gutierrez, and E. Castro-Camus, “Diabetic foot early diagnosis and statistical analysis by spectral terahertz reflection images,” Proc. SPIE 10756, 107560X (2018).
[Crossref]

Hernandez-Serrano, A. I.

G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
[Crossref]

Hirao, T.

M. Egawa, T. Hirao, and M. Takahashi, “In vivo estimation of stratum corneum thickness from water concentration profiles obtained with Raman spectroscopy,” Acta dermato-venereologica 87(1), 4–8 (2007).
[Crossref]

Huang, S. Y.

S. Y. Huang, Y. X. J. Wang, D. K. W. Yeung, A. T. Ahuja, Y. T. Zhang, and E. Pickwell-MacPherson, “Tissue characterization using terahertz pulsed imaging in reflection geometry,” Phys. Med. Biol. 54(1), 149 (2009).
[Crossref]

Hubschman, J. P.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M.O. Culjat, A. Stojadinovic, H. Lee, J. P. Hubschman, and E. R. Brown, “THz medical imaging, in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref]

R. S. Singh, P. Tewari, J. L. Bourges, J. P. Hubschman, D. B. Bennett, Z. D. Taylor, H. Lee, E.R. Brown, W. S. Grundfest, and M. O. Culjat, “Terahertz sensing of corneal hydration,” In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 3021–3024 (2010).

Hufford, G. A.

H. J. Liebe, G. A. Hufford, and T. Manabe, “A model for the complex permittivity of water at frequencies below 1 THz,” Int. J. Infrared Millimeter Waves 12(7), 659–675 (1991).
[Crossref]

Husain, S. K.

J. B. Hasted, S. K. Husain, F. A. M. Frescura, and J. R. Birch, “The temperature variation of the near millimetre wavelength optical constants of water,” Infrared Phys. 27(1), 11–15 (1987).
[Crossref]

Iskra, S.

A. Lajevardipour, A. W. Wood, R. L. McIntosh, and S. Iskra, “Estimation of dielectric values for tissue water in the Terahertz range,” Bioelectromagnetics 37(8), 563–567 (2016).
[Crossref]

Jansen, C.

R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch, and T. Kürner, “Properties of building and plastic materials in the THz range,” Int. J. Infrared Millimeter Waves 28(5), 363–371 (2007).
[Crossref]

Jastrow, C.

C. Jastrow, K. Mu, R. Piesiewicz, T. Ku, M. Koch, and T. Kleine-Ostmann, “300 GHz transmission system,” Electron. Lett. 44(3), 213–214 (2008).
[Crossref]

Jeglic, A.

A. Abina, U. Puc, A. Jeglič, and A. Zidanšek, “Applications of terahertz spectroscopy in the field of construction and building materials,” Appl. Spectrosc. Rev. 50(4), 279–303 (2015).
[Crossref]

Jessen, A.

T. Bove, T. Zawada, J. Serup, A. Jessen, and M. Poli, “High-frequency (20-MHz) high-intensity focused ultrasound (HIFU) system for dermal intervention: Preclinical evaluation in skin equivalents,” Skin Res. Technol. 25(2), 217–228 (2019).
[Crossref]

Jördens, C.

C. Jördens, M. Scheller, B. Breitenstein, D. Selmar, and M. Koch, “Evaluation of leaf water status by means of permittivity at terahertz frequencies,” J. Biol. Phys. 35(3), 255–264 (2009).
[Crossref]

Kallfass, I.

I. Kallfass, I. Dan, S. Rey, P. Harati, J. Antes, A. Tessmann, S. Wagner, M. Kuri, R. Weber, H. Massler, and A. Leuther, “Towards MMIC-based 300 GHz indoor wireless communication systems,” IEICE Trans. Electron. E98.C(12), 1081–1090 (2015).
[Crossref]

Kanitakis, J.

J. Kanitakis, “Anatomy, histology and immunohistochemistry of normal human skin,” Eur. J. Dermatol. 12(4), 390–401 (2002).

Kawase, K.

N. Yaekashiwa, H. Yoshida, S. Otsuki, S. Hayashi, and K. Kawase, “Verification of Non-thermal Effects of 0.3–0.6 THz-Waves on Human Cultured Cells,” Photonics 6(1), 33 (2019).
[Crossref]

S. R. Tripathi, E. Miyata, P. Ben Ishai, and K. Kawase, “Morphology of human sweat ducts observed by optical coherence tomography and their frequency of resonance in the terahertz frequency region,” Sci. Rep. 5(1), 9071 (2015).
[Crossref]

Kealey, C. P.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M.O. Culjat, A. Stojadinovic, H. Lee, J. P. Hubschman, and E. R. Brown, “THz medical imaging, in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref]

Khodzitsky, M.K.

V.A. Guseva, S.I. Gusev, P.S. Demchenko, E.A. Sedykh, and M.K. Khodzitsky, “Optical properties of human nails in THz frequency range,” J. Biomed. Photonics Eng. 2(4), 040306 (2016).
[Crossref]

Klein, M. B.

Kleine-Ostmann, T.

C. Jastrow, K. Mu, R. Piesiewicz, T. Ku, M. Koch, and T. Kleine-Ostmann, “300 GHz transmission system,” Electron. Lett. 44(3), 213–214 (2008).
[Crossref]

Klingenböck, A.

P.A. Hasgall, F. Di Gennaro, C. Baumgartner, E. Neufeld, B. Lloyd, M.C. Gosselin, D. Payne, and A. Klingenböck, and N. Kuster “IT’IS Database for thermal and electromagnetic parameters of biological tissues,”Version 4.0, May 15, 2018, DOI: 10.13099/VIP21000-04-0. itis.swiss/database

Koch, M.

C. Jördens, M. Scheller, B. Breitenstein, D. Selmar, and M. Koch, “Evaluation of leaf water status by means of permittivity at terahertz frequencies,” J. Biol. Phys. 35(3), 255–264 (2009).
[Crossref]

C. Jastrow, K. Mu, R. Piesiewicz, T. Ku, M. Koch, and T. Kleine-Ostmann, “300 GHz transmission system,” Electron. Lett. 44(3), 213–214 (2008).
[Crossref]

R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch, and T. Kürner, “Properties of building and plastic materials in the THz range,” Int. J. Infrared Millimeter Waves 28(5), 363–371 (2007).
[Crossref]

Kritikos, H. N.

K. R. Foster, H. N. Kritikos, and H. P. Schwan, “Effect of surface cooling and blood flow on the microwave heating of tissue,” IEEE Trans. Biomed. Eng. BME-25(3), 313–316 (1978).
[Crossref]

Ku, T.

C. Jastrow, K. Mu, R. Piesiewicz, T. Ku, M. Koch, and T. Kleine-Ostmann, “300 GHz transmission system,” Electron. Lett. 44(3), 213–214 (2008).
[Crossref]

Kudrin, K. G.

K. I. Zaitsev, N. V. Chernomyrdin, K. G. Kudrin, I. V. Reshetov, and S. O. Yurchenko, “Terahertz spectroscopy of pigmentary skin nevi in vivo,” Opt. Spectrosc. 119(3), 404–410 (2015).
[Crossref]

Kuri, M.

I. Kallfass, I. Dan, S. Rey, P. Harati, J. Antes, A. Tessmann, S. Wagner, M. Kuri, R. Weber, H. Massler, and A. Leuther, “Towards MMIC-based 300 GHz indoor wireless communication systems,” IEICE Trans. Electron. E98.C(12), 1081–1090 (2015).
[Crossref]

Kürner, T.

R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch, and T. Kürner, “Properties of building and plastic materials in the THz range,” Int. J. Infrared Millimeter Waves 28(5), 363–371 (2007).
[Crossref]

Lajevardipour, A.

Z. Vilagosh, A. Lajevardipour, and A. W. Wood, “An empirical formula for temperature adjustment of complex permittivity of human skin in the terahertz frequencies,” Bioelectromagnetics 40(1), 74–79 (2019).
[Crossref]

A. Lajevardipour, A. W. Wood, R. L. McIntosh, and S. Iskra, “Estimation of dielectric values for tissue water in the Terahertz range,” Bioelectromagnetics 37(8), 563–567 (2016).
[Crossref]

Lee, H.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M.O. Culjat, A. Stojadinovic, H. Lee, J. P. Hubschman, and E. R. Brown, “THz medical imaging, in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref]

R. S. Singh, P. Tewari, J. L. Bourges, J. P. Hubschman, D. B. Bennett, Z. D. Taylor, H. Lee, E.R. Brown, W. S. Grundfest, and M. O. Culjat, “Terahertz sensing of corneal hydration,” In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 3021–3024 (2010).

Leggett, R. W.

L. R. Williams and R. W. Leggett, “Reference values for resting blood flow to organs of man,” Clin. Phys. Physiol. Meas. 10(3), 187–217 (1989).
[Crossref]

Lemus-Bedolla, E.

G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
[Crossref]

Leuther, A.

I. Kallfass, I. Dan, S. Rey, P. Harati, J. Antes, A. Tessmann, S. Wagner, M. Kuri, R. Weber, H. Massler, and A. Leuther, “Towards MMIC-based 300 GHz indoor wireless communication systems,” IEICE Trans. Electron. E98.C(12), 1081–1090 (2015).
[Crossref]

Lewis, R. A.

R. A. Lewis, “A review of terahertz sources,” J. Phys. D: Appl. Phys. 47(37), 374001 (2014).
[Crossref]

Liebe, H. J.

H. J. Liebe, G. A. Hufford, and T. Manabe, “A model for the complex permittivity of water at frequencies below 1 THz,” Int. J. Infrared Millimeter Waves 12(7), 659–675 (1991).
[Crossref]

Linfield, E. H.

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys. 29(2/3), 257–259 (2003).
[Crossref]

Lloyd, B.

P.A. Hasgall, F. Di Gennaro, C. Baumgartner, E. Neufeld, B. Lloyd, M.C. Gosselin, D. Payne, and A. Klingenböck, and N. Kuster “IT’IS Database for thermal and electromagnetic parameters of biological tissues,”Version 4.0, May 15, 2018, DOI: 10.13099/VIP21000-04-0. itis.swiss/database

Lopez-Lemus, H. L.

G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
[Crossref]

Lu, S.

S. Lu, X. Zhang, Z. Zhang, Y. Yang, and Y. Xiang, “Quantitative measurements of binary amino acids mixtures in yellow foxtail millet by terahertz time domain spectroscopy,” Food Chem. 211, 494–501 (2016).
[Crossref]

Maitland, K. C.

Manabe, T.

H. J. Liebe, G. A. Hufford, and T. Manabe, “A model for the complex permittivity of water at frequencies below 1 THz,” Int. J. Infrared Millimeter Waves 12(7), 659–675 (1991).
[Crossref]

Massler, H.

I. Kallfass, I. Dan, S. Rey, P. Harati, J. Antes, A. Tessmann, S. Wagner, M. Kuri, R. Weber, H. Massler, and A. Leuther, “Towards MMIC-based 300 GHz indoor wireless communication systems,” IEICE Trans. Electron. E98.C(12), 1081–1090 (2015).
[Crossref]

McIntosh, R. L.

A. Lajevardipour, A. W. Wood, R. L. McIntosh, and S. Iskra, “Estimation of dielectric values for tissue water in the Terahertz range,” Bioelectromagnetics 37(8), 563–567 (2016).
[Crossref]

Mittleman, D.

R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch, and T. Kürner, “Properties of building and plastic materials in the THz range,” Int. J. Infrared Millimeter Waves 28(5), 363–371 (2007).
[Crossref]

Mittleman, D. M.

Miyata, E.

S. R. Tripathi, E. Miyata, P. Ben Ishai, and K. Kawase, “Morphology of human sweat ducts observed by optical coherence tomography and their frequency of resonance in the terahertz frequency region,” Sci. Rep. 5(1), 9071 (2015).
[Crossref]

Mizuno, M.

M. Mizuno, N. Yaekashiwa, and S. Watanabe, “Analysis of dermal composite conditions using collagen absorption characteristics in the THz range,” Biomed. Opt. Express 9(5), 2277–2283 (2018).
[Crossref]

K. Sasaki, M. Mizuno, K. Wake, and S. Watanabe, “Monte Carlo simulations of skin exposure to electromagnetic field from 10 GHz to 1 THz,” Phys. Med. Biol. 62(17), 6993–7010 (2017).
[Crossref]

Montuoro, A.

S. M. Waldstein, H. Faatz, M. Szimacsek, A. M. Glodan, D. Podkowinski, A. Montuoro, C. Simader, B. S. Gerendas, and U. Schmidt-Erfurth, “Comparison of penetration depth in choroidal imaging using swept source vs spectral domain optical coherence tomography,” Eye 29(3), 409–415 (2015).
[Crossref]

Mourad, P. D.

Mu, K.

C. Jastrow, K. Mu, R. Piesiewicz, T. Ku, M. Koch, and T. Kleine-Ostmann, “300 GHz transmission system,” Electron. Lett. 44(3), 213–214 (2008).
[Crossref]

Myers, M. C.

R. R. Warner, M. C. Myers, and D. A. Taylor, “Electron probe analysis of human skin: determination of the water concentration profile,” J. Invest. Dermatol. 90(2), 218–224 (1988).
[Crossref]

Neto, A. M.

D. T. Dias, A. Steimacher, A. C. Bento, A. M. Neto, and M. L. Baesso, “Thermal characterization in vitro of human nail: photoacoustic study of the aging process,” Photochem. Photobiol. 83(5), 1144–1148 (2007).
[Crossref]

Neufeld, E.

P.A. Hasgall, F. Di Gennaro, C. Baumgartner, E. Neufeld, B. Lloyd, M.C. Gosselin, D. Payne, and A. Klingenböck, and N. Kuster “IT’IS Database for thermal and electromagnetic parameters of biological tissues,”Version 4.0, May 15, 2018, DOI: 10.13099/VIP21000-04-0. itis.swiss/database

Ney, M.

M. Ney and I. Abdulhalim, “Ultrahigh polarimetric image contrast enhancement for skin cancer diagnosis using InN plasmonic nanoparticles in the terahertz range,” J. Biomed. Opt. 20(12), 125007 (2015).
[Crossref]

M. Ney and I. Abdulhalim, “Modeling of reflectometric and ellipsometric spectra from the skin in the terahertz and submillimeter waves region,” J. Biomed. Opt. 16(6), 067006 (2011).
[Crossref]

Ng, B. W.-H.

G. M. Png, R. Flook, B. W.-H. Ng, and D. Abbott, “Terahertz spectroscopy of snap-frozen human brain tissue: an initial study,” Electron. Lett. 45(7), 343–345 (2009).
[Crossref]

Olsovsky, C.

Otsuki, S.

N. Yaekashiwa, H. Yoshida, S. Otsuki, S. Hayashi, and K. Kawase, “Verification of Non-thermal Effects of 0.3–0.6 THz-Waves on Human Cultured Cells,” Photonics 6(1), 33 (2019).
[Crossref]

Park, C.

Park, C.-S.

Y. C. Sim, K.-M. Ahn, J. Y. Park, C.-S. Park, and J.-H. Son, “Temperature-dependent terahertz imaging of excised oral malignant melanoma,” IEEE J. Biomed. Health Inform. 17(4), 779–784 (2013).
[Crossref]

Park, J. Y.

Y. C. Sim, J. Y. Park, K.-M. Ahn, C. Park, and J.-H. Son, “Terahertz imaging of excised oral cancer at frozen temperature,” Biomed. Opt. Express 4(8), 1413–1421 (2013).
[Crossref]

Y. C. Sim, K.-M. Ahn, J. Y. Park, C.-S. Park, and J.-H. Son, “Temperature-dependent terahertz imaging of excised oral malignant melanoma,” IEEE J. Biomed. Health Inform. 17(4), 779–784 (2013).
[Crossref]

Payne, D.

P.A. Hasgall, F. Di Gennaro, C. Baumgartner, E. Neufeld, B. Lloyd, M.C. Gosselin, D. Payne, and A. Klingenböck, and N. Kuster “IT’IS Database for thermal and electromagnetic parameters of biological tissues,”Version 4.0, May 15, 2018, DOI: 10.13099/VIP21000-04-0. itis.swiss/database

Pepper, M.

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
[Crossref]

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys. 29(2/3), 257–259 (2003).
[Crossref]

Pickwell, E.

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
[Crossref]

Pickwell-MacPherson, E.

S. Sy, S. H. Yi-Xiang, J. Wang, J. Yu, A. T. Ahuja, Y. Zhang, and E. Pickwell-MacPherson, “Terahertz spectroscopy of liver cirrhosis: investigating the origin of contrast,” Phys. Med. Biol. 55(24), 7587–7596 (2010).
[Crossref]

S. Y. Huang, Y. X. J. Wang, D. K. W. Yeung, A. T. Ahuja, Y. T. Zhang, and E. Pickwell-MacPherson, “Tissue characterization using terahertz pulsed imaging in reflection geometry,” Phys. Med. Biol. 54(1), 149 (2009).
[Crossref]

Piesiewicz, R.

C. Jastrow, K. Mu, R. Piesiewicz, T. Ku, M. Koch, and T. Kleine-Ostmann, “300 GHz transmission system,” Electron. Lett. 44(3), 213–214 (2008).
[Crossref]

R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch, and T. Kürner, “Properties of building and plastic materials in the THz range,” Int. J. Infrared Millimeter Waves 28(5), 363–371 (2007).
[Crossref]

Pisa, S.

P. Bernardi, M. Cavagnaro, S. Pisa, and E. Piuzzi, “Specific absorption rate and temperature elevation in a subject exposed in the far-field of radio-frequency sources operating in the 10-900-MHz range,” IEEE Trans. Biomed. Eng. 50(3), 295–304 (2003).
[Crossref]

P. Bernardi, M. Cavagnaro, S. Pisa, and E. Piuzzi, “SAR distribution and temperature increase in an anatomical model of the human eye exposed to the field radiated by the user antenna in a wireless LAN,” IEEE Trans. Microwave Theory Tech. 46(12), 2074–2082 (1998).
[Crossref]

Piuzzi, E.

P. Bernardi, M. Cavagnaro, S. Pisa, and E. Piuzzi, “Specific absorption rate and temperature elevation in a subject exposed in the far-field of radio-frequency sources operating in the 10-900-MHz range,” IEEE Trans. Biomed. Eng. 50(3), 295–304 (2003).
[Crossref]

P. Bernardi, M. Cavagnaro, S. Pisa, and E. Piuzzi, “SAR distribution and temperature increase in an anatomical model of the human eye exposed to the field radiated by the user antenna in a wireless LAN,” IEEE Trans. Microwave Theory Tech. 46(12), 2074–2082 (1998).
[Crossref]

Png, G. M.

G. M. Png, R. Flook, B. W.-H. Ng, and D. Abbott, “Terahertz spectroscopy of snap-frozen human brain tissue: an initial study,” Electron. Lett. 45(7), 343–345 (2009).
[Crossref]

Podkowinski, D.

S. M. Waldstein, H. Faatz, M. Szimacsek, A. M. Glodan, D. Podkowinski, A. Montuoro, C. Simader, B. S. Gerendas, and U. Schmidt-Erfurth, “Comparison of penetration depth in choroidal imaging using swept source vs spectral domain optical coherence tomography,” Eye 29(3), 409–415 (2015).
[Crossref]

Poli, M.

T. Bove, T. Zawada, J. Serup, A. Jessen, and M. Poli, “High-frequency (20-MHz) high-intensity focused ultrasound (HIFU) system for dermal intervention: Preclinical evaluation in skin equivalents,” Skin Res. Technol. 25(2), 217–228 (2019).
[Crossref]

Puc, U.

A. Abina, U. Puc, A. Jeglič, and A. Zidanšek, “Applications of terahertz spectroscopy in the field of construction and building materials,” Appl. Spectrosc. Rev. 50(4), 279–303 (2015).
[Crossref]

Reshetov, I. V.

K. I. Zaitsev, N. V. Chernomyrdin, K. G. Kudrin, I. V. Reshetov, and S. O. Yurchenko, “Terahertz spectroscopy of pigmentary skin nevi in vivo,” Opt. Spectrosc. 119(3), 404–410 (2015).
[Crossref]

Rey, S.

I. Kallfass, I. Dan, S. Rey, P. Harati, J. Antes, A. Tessmann, S. Wagner, M. Kuri, R. Weber, H. Massler, and A. Leuther, “Towards MMIC-based 300 GHz indoor wireless communication systems,” IEICE Trans. Electron. E98.C(12), 1081–1090 (2015).
[Crossref]

Rojas-Landeros, S. C.

G.G. Hernandez-Cardoso, M. Alfaro-Gomez, S. C. Rojas-Landeros, I. Salas-Gutierrez, and E. Castro-Camus, “Diabetic foot early diagnosis and statistical analysis by spectral terahertz reflection images,” Proc. SPIE 10756, 107560X (2018).
[Crossref]

G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
[Crossref]

Salas-Gutierrez, I.

G.G. Hernandez-Cardoso, M. Alfaro-Gomez, S. C. Rojas-Landeros, I. Salas-Gutierrez, and E. Castro-Camus, “Diabetic foot early diagnosis and statistical analysis by spectral terahertz reflection images,” Proc. SPIE 10756, 107560X (2018).
[Crossref]

G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
[Crossref]

Sasaki, K.

K. Sasaki, M. Mizuno, K. Wake, and S. Watanabe, “Monte Carlo simulations of skin exposure to electromagnetic field from 10 GHz to 1 THz,” Phys. Med. Biol. 62(17), 6993–7010 (2017).
[Crossref]

Scheller, M.

C. Jördens, M. Scheller, B. Breitenstein, D. Selmar, and M. Koch, “Evaluation of leaf water status by means of permittivity at terahertz frequencies,” J. Biol. Phys. 35(3), 255–264 (2009).
[Crossref]

Schmidt-Erfurth, U.

S. M. Waldstein, H. Faatz, M. Szimacsek, A. M. Glodan, D. Podkowinski, A. Montuoro, C. Simader, B. S. Gerendas, and U. Schmidt-Erfurth, “Comparison of penetration depth in choroidal imaging using swept source vs spectral domain optical coherence tomography,” Eye 29(3), 409–415 (2015).
[Crossref]

Schwan, H. P.

K. R. Foster, H. N. Kritikos, and H. P. Schwan, “Effect of surface cooling and blood flow on the microwave heating of tissue,” IEEE Trans. Biomed. Eng. BME-25(3), 313–316 (1978).
[Crossref]

Sedykh, E.A.

V.A. Guseva, S.I. Gusev, P.S. Demchenko, E.A. Sedykh, and M.K. Khodzitsky, “Optical properties of human nails in THz frequency range,” J. Biomed. Photonics Eng. 2(4), 040306 (2016).
[Crossref]

Selmar, D.

C. Jördens, M. Scheller, B. Breitenstein, D. Selmar, and M. Koch, “Evaluation of leaf water status by means of permittivity at terahertz frequencies,” J. Biol. Phys. 35(3), 255–264 (2009).
[Crossref]

Serup, J.

T. Bove, T. Zawada, J. Serup, A. Jessen, and M. Poli, “High-frequency (20-MHz) high-intensity focused ultrasound (HIFU) system for dermal intervention: Preclinical evaluation in skin equivalents,” Skin Res. Technol. 25(2), 217–228 (2019).
[Crossref]

Shelton, R.

Sibik, J.

J. Sibik and J. A. Zeitler, “Direct measurement of molecular mobility and crystallisation of amorphous pharmaceuticals using terahertz spectroscopy,” Adv. Drug Delivery Rev. 100, 147–157 (2016).
[Crossref]

Sim, Y. C.

Y. C. Sim, K.-M. Ahn, J. Y. Park, C.-S. Park, and J.-H. Son, “Temperature-dependent terahertz imaging of excised oral malignant melanoma,” IEEE J. Biomed. Health Inform. 17(4), 779–784 (2013).
[Crossref]

Y. C. Sim, J. Y. Park, K.-M. Ahn, C. Park, and J.-H. Son, “Terahertz imaging of excised oral cancer at frozen temperature,” Biomed. Opt. Express 4(8), 1413–1421 (2013).
[Crossref]

Simader, C.

S. M. Waldstein, H. Faatz, M. Szimacsek, A. M. Glodan, D. Podkowinski, A. Montuoro, C. Simader, B. S. Gerendas, and U. Schmidt-Erfurth, “Comparison of penetration depth in choroidal imaging using swept source vs spectral domain optical coherence tomography,” Eye 29(3), 409–415 (2015).
[Crossref]

Singh, R. S.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M.O. Culjat, A. Stojadinovic, H. Lee, J. P. Hubschman, and E. R. Brown, “THz medical imaging, in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref]

R. S. Singh, P. Tewari, J. L. Bourges, J. P. Hubschman, D. B. Bennett, Z. D. Taylor, H. Lee, E.R. Brown, W. S. Grundfest, and M. O. Culjat, “Terahertz sensing of corneal hydration,” In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 3021–3024 (2010).

Son, J.-H.

Y. C. Sim, K.-M. Ahn, J. Y. Park, C.-S. Park, and J.-H. Son, “Temperature-dependent terahertz imaging of excised oral malignant melanoma,” IEEE J. Biomed. Health Inform. 17(4), 779–784 (2013).
[Crossref]

Y. C. Sim, J. Y. Park, K.-M. Ahn, C. Park, and J.-H. Son, “Terahertz imaging of excised oral cancer at frozen temperature,” Biomed. Opt. Express 4(8), 1413–1421 (2013).
[Crossref]

Steimacher, A.

D. T. Dias, A. Steimacher, A. C. Bento, A. M. Neto, and M. L. Baesso, “Thermal characterization in vitro of human nail: photoacoustic study of the aging process,” Photochem. Photobiol. 83(5), 1144–1148 (2007).
[Crossref]

Stojadinovic, A.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M.O. Culjat, A. Stojadinovic, H. Lee, J. P. Hubschman, and E. R. Brown, “THz medical imaging, in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref]

Sullivan, D. M.

D. M. Sullivan, Electromagnetic Simulation using the FDTD Method, (John Wiley and Sons, 2013).

Sy, S.

S. Sy, S. H. Yi-Xiang, J. Wang, J. Yu, A. T. Ahuja, Y. Zhang, and E. Pickwell-MacPherson, “Terahertz spectroscopy of liver cirrhosis: investigating the origin of contrast,” Phys. Med. Biol. 55(24), 7587–7596 (2010).
[Crossref]

Szimacsek, M.

S. M. Waldstein, H. Faatz, M. Szimacsek, A. M. Glodan, D. Podkowinski, A. Montuoro, C. Simader, B. S. Gerendas, and U. Schmidt-Erfurth, “Comparison of penetration depth in choroidal imaging using swept source vs spectral domain optical coherence tomography,” Eye 29(3), 409–415 (2015).
[Crossref]

Takahashi, M.

M. Egawa, T. Hirao, and M. Takahashi, “In vivo estimation of stratum corneum thickness from water concentration profiles obtained with Raman spectroscopy,” Acta dermato-venereologica 87(1), 4–8 (2007).
[Crossref]

Taylor, D. A.

R. R. Warner, M. C. Myers, and D. A. Taylor, “Electron probe analysis of human skin: determination of the water concentration profile,” J. Invest. Dermatol. 90(2), 218–224 (1988).
[Crossref]

Taylor, Z. D.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M.O. Culjat, A. Stojadinovic, H. Lee, J. P. Hubschman, and E. R. Brown, “THz medical imaging, in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref]

R. S. Singh, P. Tewari, J. L. Bourges, J. P. Hubschman, D. B. Bennett, Z. D. Taylor, H. Lee, E.R. Brown, W. S. Grundfest, and M. O. Culjat, “Terahertz sensing of corneal hydration,” In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 3021–3024 (2010).

Tessmann, A.

I. Kallfass, I. Dan, S. Rey, P. Harati, J. Antes, A. Tessmann, S. Wagner, M. Kuri, R. Weber, H. Massler, and A. Leuther, “Towards MMIC-based 300 GHz indoor wireless communication systems,” IEICE Trans. Electron. E98.C(12), 1081–1090 (2015).
[Crossref]

Tewari, P.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M.O. Culjat, A. Stojadinovic, H. Lee, J. P. Hubschman, and E. R. Brown, “THz medical imaging, in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref]

R. S. Singh, P. Tewari, J. L. Bourges, J. P. Hubschman, D. B. Bennett, Z. D. Taylor, H. Lee, E.R. Brown, W. S. Grundfest, and M. O. Culjat, “Terahertz sensing of corneal hydration,” In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 3021–3024 (2010).

Tripathi, S. R.

S. R. Tripathi, E. Miyata, P. Ben Ishai, and K. Kawase, “Morphology of human sweat ducts observed by optical coherence tomography and their frequency of resonance in the terahertz frequency region,” Sci. Rep. 5(1), 9071 (2015).
[Crossref]

Vilagosh, Z.

Z. Vilagosh, A. Lajevardipour, and A. W. Wood, “An empirical formula for temperature adjustment of complex permittivity of human skin in the terahertz frequencies,” Bioelectromagnetics 40(1), 74–79 (2019).
[Crossref]

Vorobyov, A.

A. Vorobyov, E. Daskalaki, C. Hennemann, and J-D. Decotignie, “Human physical condition RF sensing at THz range,” In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2067–2070 (2016).

Wagner, S.

I. Kallfass, I. Dan, S. Rey, P. Harati, J. Antes, A. Tessmann, S. Wagner, M. Kuri, R. Weber, H. Massler, and A. Leuther, “Towards MMIC-based 300 GHz indoor wireless communication systems,” IEICE Trans. Electron. E98.C(12), 1081–1090 (2015).
[Crossref]

Wake, K.

K. Sasaki, M. Mizuno, K. Wake, and S. Watanabe, “Monte Carlo simulations of skin exposure to electromagnetic field from 10 GHz to 1 THz,” Phys. Med. Biol. 62(17), 6993–7010 (2017).
[Crossref]

Waldstein, S. M.

S. M. Waldstein, H. Faatz, M. Szimacsek, A. M. Glodan, D. Podkowinski, A. Montuoro, C. Simader, B. S. Gerendas, and U. Schmidt-Erfurth, “Comparison of penetration depth in choroidal imaging using swept source vs spectral domain optical coherence tomography,” Eye 29(3), 409–415 (2015).
[Crossref]

Wallace, V. P.

V. P. Wallace, “Medical applications” in : “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
[Crossref]

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys. 29(2/3), 257–259 (2003).
[Crossref]

Wang, J.

S. Sy, S. H. Yi-Xiang, J. Wang, J. Yu, A. T. Ahuja, Y. Zhang, and E. Pickwell-MacPherson, “Terahertz spectroscopy of liver cirrhosis: investigating the origin of contrast,” Phys. Med. Biol. 55(24), 7587–7596 (2010).
[Crossref]

J. Wang and O. Fujiwara, “FDTD computation of temperature rise in the human head for portable telephones,” IEEE Trans. Microwave Theory Tech. 47(8), 1528–1534 (1999).
[Crossref]

Wang, L. V.

J. Xia, J. Yao, and L. V. Wang, “Photoacoustic tomography: principles and advances,” Electromagnetic waves 147, 1–22 (2014).
[Crossref]

Wang, S.

B. Ferguson, S. Wang, D. Gray, D. Abbott, and X.-C. Zhang, “Identification of biological tissue using chirped probe THz imaging,” Microelectron. J. 33(12), 1043–1051 (2002).
[Crossref]

Wang, Y. X. J.

S. Y. Huang, Y. X. J. Wang, D. K. W. Yeung, A. T. Ahuja, Y. T. Zhang, and E. Pickwell-MacPherson, “Tissue characterization using terahertz pulsed imaging in reflection geometry,” Phys. Med. Biol. 54(1), 149 (2009).
[Crossref]

Warner, R. R.

R. R. Warner, M. C. Myers, and D. A. Taylor, “Electron probe analysis of human skin: determination of the water concentration profile,” J. Invest. Dermatol. 90(2), 218–224 (1988).
[Crossref]

Watanabe, S.

M. Mizuno, N. Yaekashiwa, and S. Watanabe, “Analysis of dermal composite conditions using collagen absorption characteristics in the THz range,” Biomed. Opt. Express 9(5), 2277–2283 (2018).
[Crossref]

K. Sasaki, M. Mizuno, K. Wake, and S. Watanabe, “Monte Carlo simulations of skin exposure to electromagnetic field from 10 GHz to 1 THz,” Phys. Med. Biol. 62(17), 6993–7010 (2017).
[Crossref]

Weber, R.

I. Kallfass, I. Dan, S. Rey, P. Harati, J. Antes, A. Tessmann, S. Wagner, M. Kuri, R. Weber, H. Massler, and A. Leuther, “Towards MMIC-based 300 GHz indoor wireless communication systems,” IEICE Trans. Electron. E98.C(12), 1081–1090 (2015).
[Crossref]

Wietzke, S.

R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch, and T. Kürner, “Properties of building and plastic materials in the THz range,” Int. J. Infrared Millimeter Waves 28(5), 363–371 (2007).
[Crossref]

Williams, L. R.

L. R. Williams and R. W. Leggett, “Reference values for resting blood flow to organs of man,” Clin. Phys. Physiol. Meas. 10(3), 187–217 (1989).
[Crossref]

Winebrenner, D. P.

Wood, A. W.

Z. Vilagosh, A. Lajevardipour, and A. W. Wood, “An empirical formula for temperature adjustment of complex permittivity of human skin in the terahertz frequencies,” Bioelectromagnetics 40(1), 74–79 (2019).
[Crossref]

A. Lajevardipour, A. W. Wood, R. L. McIntosh, and S. Iskra, “Estimation of dielectric values for tissue water in the Terahertz range,” Bioelectromagnetics 37(8), 563–567 (2016).
[Crossref]

Woodward, R. M.

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys. 29(2/3), 257–259 (2003).
[Crossref]

Xia, J.

J. Xia, J. Yao, and L. V. Wang, “Photoacoustic tomography: principles and advances,” Electromagnetic waves 147, 1–22 (2014).
[Crossref]

Xiang, Y.

S. Lu, X. Zhang, Z. Zhang, Y. Yang, and Y. Xiang, “Quantitative measurements of binary amino acids mixtures in yellow foxtail millet by terahertz time domain spectroscopy,” Food Chem. 211, 494–501 (2016).
[Crossref]

Yaekashiwa, N.

N. Yaekashiwa, H. Yoshida, S. Otsuki, S. Hayashi, and K. Kawase, “Verification of Non-thermal Effects of 0.3–0.6 THz-Waves on Human Cultured Cells,” Photonics 6(1), 33 (2019).
[Crossref]

M. Mizuno, N. Yaekashiwa, and S. Watanabe, “Analysis of dermal composite conditions using collagen absorption characteristics in the THz range,” Biomed. Opt. Express 9(5), 2277–2283 (2018).
[Crossref]

Yang, Y.

S. Lu, X. Zhang, Z. Zhang, Y. Yang, and Y. Xiang, “Quantitative measurements of binary amino acids mixtures in yellow foxtail millet by terahertz time domain spectroscopy,” Food Chem. 211, 494–501 (2016).
[Crossref]

Yao, J.

J. Xia, J. Yao, and L. V. Wang, “Photoacoustic tomography: principles and advances,” Electromagnetic waves 147, 1–22 (2014).
[Crossref]

Yee, K.

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 14(3), 302–307 (1966).
[Crossref]

Yeung, D. K. W.

S. Y. Huang, Y. X. J. Wang, D. K. W. Yeung, A. T. Ahuja, Y. T. Zhang, and E. Pickwell-MacPherson, “Tissue characterization using terahertz pulsed imaging in reflection geometry,” Phys. Med. Biol. 54(1), 149 (2009).
[Crossref]

Yi-Xiang, S. H.

S. Sy, S. H. Yi-Xiang, J. Wang, J. Yu, A. T. Ahuja, Y. Zhang, and E. Pickwell-MacPherson, “Terahertz spectroscopy of liver cirrhosis: investigating the origin of contrast,” Phys. Med. Biol. 55(24), 7587–7596 (2010).
[Crossref]

Yoshida, H.

N. Yaekashiwa, H. Yoshida, S. Otsuki, S. Hayashi, and K. Kawase, “Verification of Non-thermal Effects of 0.3–0.6 THz-Waves on Human Cultured Cells,” Photonics 6(1), 33 (2019).
[Crossref]

Yu, J.

S. Sy, S. H. Yi-Xiang, J. Wang, J. Yu, A. T. Ahuja, Y. Zhang, and E. Pickwell-MacPherson, “Terahertz spectroscopy of liver cirrhosis: investigating the origin of contrast,” Phys. Med. Biol. 55(24), 7587–7596 (2010).
[Crossref]

Yurchenko, S. O.

K. I. Zaitsev, N. V. Chernomyrdin, K. G. Kudrin, I. V. Reshetov, and S. O. Yurchenko, “Terahertz spectroscopy of pigmentary skin nevi in vivo,” Opt. Spectrosc. 119(3), 404–410 (2015).
[Crossref]

Zaitsev, K. I.

K. I. Zaitsev, N. V. Chernomyrdin, K. G. Kudrin, I. V. Reshetov, and S. O. Yurchenko, “Terahertz spectroscopy of pigmentary skin nevi in vivo,” Opt. Spectrosc. 119(3), 404–410 (2015).
[Crossref]

Zawada, T.

T. Bove, T. Zawada, J. Serup, A. Jessen, and M. Poli, “High-frequency (20-MHz) high-intensity focused ultrasound (HIFU) system for dermal intervention: Preclinical evaluation in skin equivalents,” Skin Res. Technol. 25(2), 217–228 (2019).
[Crossref]

Zeitler, J. A.

J. Sibik and J. A. Zeitler, “Direct measurement of molecular mobility and crystallisation of amorphous pharmaceuticals using terahertz spectroscopy,” Adv. Drug Delivery Rev. 100, 147–157 (2016).
[Crossref]

Zhang, X.

S. Lu, X. Zhang, Z. Zhang, Y. Yang, and Y. Xiang, “Quantitative measurements of binary amino acids mixtures in yellow foxtail millet by terahertz time domain spectroscopy,” Food Chem. 211, 494–501 (2016).
[Crossref]

Zhang, X.-C.

B. Ferguson, S. Wang, D. Gray, D. Abbott, and X.-C. Zhang, “Identification of biological tissue using chirped probe THz imaging,” Microelectron. J. 33(12), 1043–1051 (2002).
[Crossref]

Zhang, Y.

S. Sy, S. H. Yi-Xiang, J. Wang, J. Yu, A. T. Ahuja, Y. Zhang, and E. Pickwell-MacPherson, “Terahertz spectroscopy of liver cirrhosis: investigating the origin of contrast,” Phys. Med. Biol. 55(24), 7587–7596 (2010).
[Crossref]

Zhang, Y. T.

S. Y. Huang, Y. X. J. Wang, D. K. W. Yeung, A. T. Ahuja, Y. T. Zhang, and E. Pickwell-MacPherson, “Tissue characterization using terahertz pulsed imaging in reflection geometry,” Phys. Med. Biol. 54(1), 149 (2009).
[Crossref]

Zhang, Z.

S. Lu, X. Zhang, Z. Zhang, Y. Yang, and Y. Xiang, “Quantitative measurements of binary amino acids mixtures in yellow foxtail millet by terahertz time domain spectroscopy,” Food Chem. 211, 494–501 (2016).
[Crossref]

Zidanšek, A.

A. Abina, U. Puc, A. Jeglič, and A. Zidanšek, “Applications of terahertz spectroscopy in the field of construction and building materials,” Appl. Spectrosc. Rev. 50(4), 279–303 (2015).
[Crossref]

Ziskin, M. C.

S. I. Alekseev and M. C. Ziskin, “Influence of blood flow and millimeter wave exposure on skin temperature in different thermal models,” Bioelectromagnetics 30(1), 52–58 (2009).
[Crossref]

Acta dermato-venereologica (1)

M. Egawa, T. Hirao, and M. Takahashi, “In vivo estimation of stratum corneum thickness from water concentration profiles obtained with Raman spectroscopy,” Acta dermato-venereologica 87(1), 4–8 (2007).
[Crossref]

Adv. Drug Delivery Rev. (1)

J. Sibik and J. A. Zeitler, “Direct measurement of molecular mobility and crystallisation of amorphous pharmaceuticals using terahertz spectroscopy,” Adv. Drug Delivery Rev. 100, 147–157 (2016).
[Crossref]

Appl. Spectrosc. Rev. (1)

A. Abina, U. Puc, A. Jeglič, and A. Zidanšek, “Applications of terahertz spectroscopy in the field of construction and building materials,” Appl. Spectrosc. Rev. 50(4), 279–303 (2015).
[Crossref]

Bioelectromagnetics (3)

Z. Vilagosh, A. Lajevardipour, and A. W. Wood, “An empirical formula for temperature adjustment of complex permittivity of human skin in the terahertz frequencies,” Bioelectromagnetics 40(1), 74–79 (2019).
[Crossref]

A. Lajevardipour, A. W. Wood, R. L. McIntosh, and S. Iskra, “Estimation of dielectric values for tissue water in the Terahertz range,” Bioelectromagnetics 37(8), 563–567 (2016).
[Crossref]

S. I. Alekseev and M. C. Ziskin, “Influence of blood flow and millimeter wave exposure on skin temperature in different thermal models,” Bioelectromagnetics 30(1), 52–58 (2009).
[Crossref]

Biomed. Opt. Express (4)

Clin. Phys. Physiol. Meas. (1)

L. R. Williams and R. W. Leggett, “Reference values for resting blood flow to organs of man,” Clin. Phys. Physiol. Meas. 10(3), 187–217 (1989).
[Crossref]

Electromagnetic waves (1)

J. Xia, J. Yao, and L. V. Wang, “Photoacoustic tomography: principles and advances,” Electromagnetic waves 147, 1–22 (2014).
[Crossref]

Electron. Lett. (2)

C. Jastrow, K. Mu, R. Piesiewicz, T. Ku, M. Koch, and T. Kleine-Ostmann, “300 GHz transmission system,” Electron. Lett. 44(3), 213–214 (2008).
[Crossref]

G. M. Png, R. Flook, B. W.-H. Ng, and D. Abbott, “Terahertz spectroscopy of snap-frozen human brain tissue: an initial study,” Electron. Lett. 45(7), 343–345 (2009).
[Crossref]

Eur. J. Dermatol. (1)

J. Kanitakis, “Anatomy, histology and immunohistochemistry of normal human skin,” Eur. J. Dermatol. 12(4), 390–401 (2002).

Eye (1)

S. M. Waldstein, H. Faatz, M. Szimacsek, A. M. Glodan, D. Podkowinski, A. Montuoro, C. Simader, B. S. Gerendas, and U. Schmidt-Erfurth, “Comparison of penetration depth in choroidal imaging using swept source vs spectral domain optical coherence tomography,” Eye 29(3), 409–415 (2015).
[Crossref]

Food Chem. (1)

S. Lu, X. Zhang, Z. Zhang, Y. Yang, and Y. Xiang, “Quantitative measurements of binary amino acids mixtures in yellow foxtail millet by terahertz time domain spectroscopy,” Food Chem. 211, 494–501 (2016).
[Crossref]

IEEE J. Biomed. Health Inform. (1)

Y. C. Sim, K.-M. Ahn, J. Y. Park, C.-S. Park, and J.-H. Son, “Temperature-dependent terahertz imaging of excised oral malignant melanoma,” IEEE J. Biomed. Health Inform. 17(4), 779–784 (2013).
[Crossref]

IEEE Trans. Antennas Propag. (1)

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 14(3), 302–307 (1966).
[Crossref]

IEEE Trans. Biomed. Eng. (2)

P. Bernardi, M. Cavagnaro, S. Pisa, and E. Piuzzi, “Specific absorption rate and temperature elevation in a subject exposed in the far-field of radio-frequency sources operating in the 10-900-MHz range,” IEEE Trans. Biomed. Eng. 50(3), 295–304 (2003).
[Crossref]

K. R. Foster, H. N. Kritikos, and H. P. Schwan, “Effect of surface cooling and blood flow on the microwave heating of tissue,” IEEE Trans. Biomed. Eng. BME-25(3), 313–316 (1978).
[Crossref]

IEEE Trans. Microwave Theory Tech. (2)

J. Wang and O. Fujiwara, “FDTD computation of temperature rise in the human head for portable telephones,” IEEE Trans. Microwave Theory Tech. 47(8), 1528–1534 (1999).
[Crossref]

P. Bernardi, M. Cavagnaro, S. Pisa, and E. Piuzzi, “SAR distribution and temperature increase in an anatomical model of the human eye exposed to the field radiated by the user antenna in a wireless LAN,” IEEE Trans. Microwave Theory Tech. 46(12), 2074–2082 (1998).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M.O. Culjat, A. Stojadinovic, H. Lee, J. P. Hubschman, and E. R. Brown, “THz medical imaging, in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref]

IEICE Trans. Electron. (1)

I. Kallfass, I. Dan, S. Rey, P. Harati, J. Antes, A. Tessmann, S. Wagner, M. Kuri, R. Weber, H. Massler, and A. Leuther, “Towards MMIC-based 300 GHz indoor wireless communication systems,” IEICE Trans. Electron. E98.C(12), 1081–1090 (2015).
[Crossref]

Infrared Phys. (1)

J. B. Hasted, S. K. Husain, F. A. M. Frescura, and J. R. Birch, “The temperature variation of the near millimetre wavelength optical constants of water,” Infrared Phys. 27(1), 11–15 (1987).
[Crossref]

Int. J. Infrared Millimeter Waves (2)

H. J. Liebe, G. A. Hufford, and T. Manabe, “A model for the complex permittivity of water at frequencies below 1 THz,” Int. J. Infrared Millimeter Waves 12(7), 659–675 (1991).
[Crossref]

R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch, and T. Kürner, “Properties of building and plastic materials in the THz range,” Int. J. Infrared Millimeter Waves 28(5), 363–371 (2007).
[Crossref]

J. Biol. Phys. (2)

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys. 29(2/3), 257–259 (2003).
[Crossref]

C. Jördens, M. Scheller, B. Breitenstein, D. Selmar, and M. Koch, “Evaluation of leaf water status by means of permittivity at terahertz frequencies,” J. Biol. Phys. 35(3), 255–264 (2009).
[Crossref]

J. Biomed. Opt. (2)

M. Ney and I. Abdulhalim, “Ultrahigh polarimetric image contrast enhancement for skin cancer diagnosis using InN plasmonic nanoparticles in the terahertz range,” J. Biomed. Opt. 20(12), 125007 (2015).
[Crossref]

M. Ney and I. Abdulhalim, “Modeling of reflectometric and ellipsometric spectra from the skin in the terahertz and submillimeter waves region,” J. Biomed. Opt. 16(6), 067006 (2011).
[Crossref]

J. Biomed. Photonics Eng. (1)

V.A. Guseva, S.I. Gusev, P.S. Demchenko, E.A. Sedykh, and M.K. Khodzitsky, “Optical properties of human nails in THz frequency range,” J. Biomed. Photonics Eng. 2(4), 040306 (2016).
[Crossref]

J. Invest. Dermatol. (1)

R. R. Warner, M. C. Myers, and D. A. Taylor, “Electron probe analysis of human skin: determination of the water concentration profile,” J. Invest. Dermatol. 90(2), 218–224 (1988).
[Crossref]

J. Phys. D: Appl. Phys. (2)

V. P. Wallace, “Medical applications” in : “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).
[Crossref]

R. A. Lewis, “A review of terahertz sources,” J. Phys. D: Appl. Phys. 47(37), 374001 (2014).
[Crossref]

Microelectron. J. (1)

B. Ferguson, S. Wang, D. Gray, D. Abbott, and X.-C. Zhang, “Identification of biological tissue using chirped probe THz imaging,” Microelectron. J. 33(12), 1043–1051 (2002).
[Crossref]

Opt. Express (1)

Opt. Spectrosc. (1)

K. I. Zaitsev, N. V. Chernomyrdin, K. G. Kudrin, I. V. Reshetov, and S. O. Yurchenko, “Terahertz spectroscopy of pigmentary skin nevi in vivo,” Opt. Spectrosc. 119(3), 404–410 (2015).
[Crossref]

Photochem. Photobiol. (1)

D. T. Dias, A. Steimacher, A. C. Bento, A. M. Neto, and M. L. Baesso, “Thermal characterization in vitro of human nail: photoacoustic study of the aging process,” Photochem. Photobiol. 83(5), 1144–1148 (2007).
[Crossref]

Photonics (1)

N. Yaekashiwa, H. Yoshida, S. Otsuki, S. Hayashi, and K. Kawase, “Verification of Non-thermal Effects of 0.3–0.6 THz-Waves on Human Cultured Cells,” Photonics 6(1), 33 (2019).
[Crossref]

Phys. Med. Biol. (4)

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
[Crossref]

S. Y. Huang, Y. X. J. Wang, D. K. W. Yeung, A. T. Ahuja, Y. T. Zhang, and E. Pickwell-MacPherson, “Tissue characterization using terahertz pulsed imaging in reflection geometry,” Phys. Med. Biol. 54(1), 149 (2009).
[Crossref]

S. Sy, S. H. Yi-Xiang, J. Wang, J. Yu, A. T. Ahuja, Y. Zhang, and E. Pickwell-MacPherson, “Terahertz spectroscopy of liver cirrhosis: investigating the origin of contrast,” Phys. Med. Biol. 55(24), 7587–7596 (2010).
[Crossref]

K. Sasaki, M. Mizuno, K. Wake, and S. Watanabe, “Monte Carlo simulations of skin exposure to electromagnetic field from 10 GHz to 1 THz,” Phys. Med. Biol. 62(17), 6993–7010 (2017).
[Crossref]

Proc. SPIE (1)

G.G. Hernandez-Cardoso, M. Alfaro-Gomez, S. C. Rojas-Landeros, I. Salas-Gutierrez, and E. Castro-Camus, “Diabetic foot early diagnosis and statistical analysis by spectral terahertz reflection images,” Proc. SPIE 10756, 107560X (2018).
[Crossref]

Sci. Rep. (2)

G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
[Crossref]

S. R. Tripathi, E. Miyata, P. Ben Ishai, and K. Kawase, “Morphology of human sweat ducts observed by optical coherence tomography and their frequency of resonance in the terahertz frequency region,” Sci. Rep. 5(1), 9071 (2015).
[Crossref]

Skin Res. Technol. (1)

T. Bove, T. Zawada, J. Serup, A. Jessen, and M. Poli, “High-frequency (20-MHz) high-intensity focused ultrasound (HIFU) system for dermal intervention: Preclinical evaluation in skin equivalents,” Skin Res. Technol. 25(2), 217–228 (2019).
[Crossref]

Other (7)

International Commission on Non-Ionizing Radiation Protection. (ICNIRP) guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz) Health Physics.74, 492–522 (1998).

International Commission on Non-Ionizing Radiation Protection. (ICNIRP) Draft guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (100kHz to 300 GHz) 11 July 2018, www.icnirp.org/cms/upload/consultation_upload/ICNIRP_RF_Guidelines_PCD_2018_07_11.pdf

International Commission on Non-Ionizing Radiation Protection (ICNIRP), Guidelines on Limits of Exposure to Laser Radiation of Wavelengths between 180 nm and 1,000µm, Health Phys.105(3), 271–295 (2013).
[Crossref]

D. M. Sullivan, Electromagnetic Simulation using the FDTD Method, (John Wiley and Sons, 2013).

R. S. Singh, P. Tewari, J. L. Bourges, J. P. Hubschman, D. B. Bennett, Z. D. Taylor, H. Lee, E.R. Brown, W. S. Grundfest, and M. O. Culjat, “Terahertz sensing of corneal hydration,” In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 3021–3024 (2010).

A. Vorobyov, E. Daskalaki, C. Hennemann, and J-D. Decotignie, “Human physical condition RF sensing at THz range,” In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2067–2070 (2016).

P.A. Hasgall, F. Di Gennaro, C. Baumgartner, E. Neufeld, B. Lloyd, M.C. Gosselin, D. Payne, and A. Klingenböck, and N. Kuster “IT’IS Database for thermal and electromagnetic parameters of biological tissues,”Version 4.0, May 15, 2018, DOI: 10.13099/VIP21000-04-0. itis.swiss/database

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (A) The x, y, z orientation in the thin skin model, the Stratum Corneum (SC, light tan) and layers of the living epidermis. The thin skin SC was modelled with an irregular upper surface, with three layers of 0.01 mm that could be set at 15% to 40% hydration. The Stratum Spinosum (SS, blue) is 0.1 mm thick with the rete ridge extensions adding a further 0.17 mm in maximum depth. The Stratum Basale (SB, brown) was modelled as a 0.01 to 0.045 mm layer between the underlying Dermis and the SS. (B) The model is encased in the Dermis inferiorly and laterally, to prevent interference from stray excitation. The total depth of the model was 0.6 mm.
Fig. 2.
Fig. 2. Left: The x, y, z orientation in the thick skin model (left), with a “fingerprint pattern” Stratum Corneum (SC), and the living layers of the Epidermis. The Dermis is rendered invisible. Centre: (A-D) Layers of the SC (each 0.05 mm in thickness, A-D), (E) represents the Stratum Granulosum and Stratum Lucidum (0.05 mm), (F) Stratum Spinosum (SS, 0.1 mm), and (G) Stratum Basale (SB, 0.05 mm). The dielectric properties of each layer can be individually altered to simulate varied states of hydration. Right: The model showing the thick Dermis (2.0 mm) to prevent interference from lateral excitation leakage.
Fig. 3.
Fig. 3. (A) Lateral cross section of a typical E-field distribution in thin skin following an excitation of 1.0 Vm-1. The rete ridges are visualized. (B) The thin skin SAR distribution. The maximal SAR is in the upper SS and there are anomalous regions at the SS/SB boundary. (C) Horizontal section of the distribution of SAR at the SS/SB boundary at 0.13 mm below the skin surface, with regions of up to 100% higher absorption compared to the average. (D) Thick skin SAR with an intermediate mode in which the outer two layers are set at 15% hydration and a cascade to 40% hydration just above the SS. The energy is deposited in the upper regions of the dead SC. (E) The “dry” mode of thick skin, with more radiation surviving to the upper regions of the SS.
Fig. 4.
Fig. 4. Lateral cross section of a typical wave progression in thin skin following an excitation of 1.0 Vm-1, (equivalent to a PD of 0.0027 Wm-2 in free space). The thin skin PD progression is shown. The PD falls rapidly after passage through the upper SS, with a PD of ∼0.0005 Wm-2 at the SS/SB boundary.
Fig. 5.
Fig. 5. (A-C) A typical thick skin reflection pattern output of the E-field with S-polarised radiation at 12.50, 250 and 500, using a vertical planar sensor in the center of the model aligned with the x direction. Most of the reflection forms a single wave-front reflecting from the surface of the SC. The location of the point sensors 2.0 mm above the surface is marked. (D) Typical E-field time domain outputs of a point sensor with the “dry” (15% SC hydration, red dashed line) and “wet” (40% SC hydration, blue solid line) settings with 250, S-polarised excitation.

Tables (5)

Tables Icon

Table 1. Simulation parameters, 0.45 THz (λ = 0.667 mm in free space, ∼0.32 mm in living tissues). The minimum resolution, problem space, number of time steps, time step duration, and total simulation time. Since the refractive index of skin tissues is in the order of 2.1, the indicative λ within skin is in the order of 0.32 mm at 0.45 THz.

Tables Icon

Table 2. Dielectric properties of skin tissues at 0.45 THz. The dielectric values are derived from data from refs. [3544] and the analysis of tissue component and water mixing formulae [37,45,46]. The tissue densities, heat capacity and thermal conductivity are based on Hasgall [47] and for Stratum Corneum based on Dias [48]. The Stratum Granulosum and Strum Lucidum were considered to be equivalent to the 40% hydrated Stratum Corneum.

Tables Icon

Table 3. Theoretical reflection E-field magnitudes with a 1.0 Vm-1 incident excitation. The estimation of the variability of reflected radiation using the Fresnel equations at “dry” 15% ( n =1.76) and “wet” 40% ( n =1.98) SC hydration, at θ of 12.50, 250 and 500, as a proportion of the total incident radiation. The best theoretical contrast (largest difference) is with 500, P-polarised radiation, but at low total intensities.

Tables Icon

Table 4. Adjusted PD, micro SAR and temperature rise in thin and thick skin. PD, micro” SAR and temperature rise in thin skin in the region of maximal absorption in the upper SS, the high SAR regions at the SS/SB boundary and the maximal absorption layer of the dead SC in the thick skin. The PD, SAR was adjusted for the maximum incident PD in the ICNIRP, (2013) [25] guidelines of 1 kWm-2. Temperature rise assumed ambient air temperatures of 220 and 350 C.

Tables Icon

Table 5. Maximum reflection E-field with a 1.0 Vm-1 incident excitation. The maximum reflected E-field values at 500 for thin skin and 12.50, 250 and 500 in thick skin 2.0 mm above the skin model. There are significant differences in the S-Polarised and P-polarised values at 500, with both skin types, with the maximal K at 500, with P-polarised excitation, in line with the theoretical predictions. K is reduced from the theoretical in all modes due to skin surface topology.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

S A R = σ t E 2 ρ t
P D = E 2 377
P D = n t E 2 377
Δ T t =   ( S A R / c t )   Δ t
Δ T t = k t 2 T t + ρ t S A R b ( T t T b ) ρ t c t Δ t
b = ρ b c b B P
r s = n i Cos θ i n t Cos θ t n i Cos θ i + n t Cos θ t t s = 2 n i Cos θ i n i Cos θ i + n t Cos θ t r p = n i Cos θ t n t Cos θ i n i Cos θ t + n t Cos θ i t p = 2 n i Cos θ i n i Cos θ t + n t Cos θ i
K =   1 -   ( E D r y / E W e t )

Metrics