Abstract

Melanoma is a type of aggressive cancer. Recent studies have indicated that blue light has an inhibition effect on melanoma cells, but the effect of photobiomodulation (PBM) parameters on the treatment of melanoma remains unknown. Thus, this study was aimed to investigate B16F10 melanoma cells responses to PBM with varying irradiance and doses, and further explored the molecular mechanism of PBM. Our results suggested that the responses of B16F10 melanoma cells to PBM with varying irradiance and dose were different and the inhibition of blue light on cells under high irradiance was better than low irradiance at a constant total dose (0.04, 0.07, 0.15, 0.22, 0.30, 0.37, 0.45, 0.56 or 1.12 J/cm2), presumably due to that high irradiance can produce more ROS, thus disrupting mitochondrial function.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Anti-inflammatory and cell proliferative effect of the 1270 nm laser irradiation on the BALB/c nude mouse model involves activation of the cell antioxidant system

Dinara Dolgova, Tatiana Abakumova, Tatiana Gening, Ludmila Poludnyakova, Igor Zolotovskii, Dmitrii Stoliarov, Andrei Fotiadi, Anna Khokhlova, Edik Rafailov, and Sergei Sokolovski
Biomed. Opt. Express 10(8) 4261-4275 (2019)

Direct visualization of changes of lymphatic function and drainage pathways in lymph node metastasis of B16F10 melanoma using near-infrared fluorescence imaging

Sunkuk Kwon, Germaine D. Agollah, Grace Wu, Wenyaw Chan, and Eva M. Sevick-Muraca
Biomed. Opt. Express 4(6) 967-977 (2013)

Photothermal effect by 808-nm laser irradiation of melanin: a proof-of-concept study of photothermal therapy using B16-F10 melanotic melanoma growing in BALB/c mice

Lucas L. Colombo, Silvia I. Vanzulli, Alfonso Blázquez-Castro, Clara Sanchez Terrero, and Juan C. Stockert
Biomed. Opt. Express 10(6) 2932-2941 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. B. Lens and M. Dawes, “Global perspectives of contemporary epidemiological trends of cutaneous malignant melanoma,” Br. J. Dermatol. 150(2), 179–185 (2004).
    [Crossref]
  2. J. Bustamante, L. Guerra, L. Bredeston, J. Mordoh, and A. Boveris, “Melanin content and hydroperoxidemetabolism in human melanoma cells,” Exp. Cell Res. 196(2), 172–176 (1991).
    [Crossref]
  3. B. M. Putzer, M. Steder, and V. Alla, “Predicting and preventing melanoma invasiveness: advances in clarifying E2F1 function,” Expert Rev. Anticancer Ther. 10(11), 1707–1720 (2010).
    [Crossref]
  4. J. F. Thompson, R. A. Scolyer, and R. F. Kefford, “Cutaneous melanoma,” Lancet 365(9460), 687–701 (2005).
    [Crossref]
  5. M. R. Hamblin, “PBM, Photomedicine, and laser surgery: a new leap forward into the light for the 21(st) century,” Photobiomodulation, Photomed., Laser Surg. 36(8), 395–396 (2018).
    [Crossref]
  6. F. Salehpour, J. Mahmoudi, F. Kamari, S. Sadigh-Eteghad, S. H. Rasta, and M. R. Hamblin, “Brain photobiomodulation therapy: a narrative review,” Mol. Neurobiol. 55(8), 6601–6636 (2018).
    [Crossref]
  7. M. R. Hamblin, “Mechanisms and applications of the anti-inflammatory effects of PBM,” AIMS Biophys. 4(3), 337–361 (2017).
    [Crossref]
  8. P. S. Oh, K. S. Na, H. Hwang, H. S. Jeong, S. Lim, M. H. Sohn, and H. J. Jeong, “Effect of blue light emitting diodes on melanoma cells: involvement of apoptotic signaling,” J. Photochem. Photobiol., B 142(1), 197–203 (2015).
    [Crossref]
  9. T. Dai, A. Gupta, C. K. Murray, M. S. Vrahas, G. P. Tegos, and M. R. Hamblin, “Blue light for infectious diseases: Propionibacterium acnes, Helicobacter pylori, and beyond?” Drug Resist. Updates 15(4), 223–236 (2012).
    [Crossref]
  10. P. Avci, G. K. Gupta, J. Clark, N. Wikonkal, and M. R. Hamblin, “Low-level laser (light) therapy (LLLT) for treatment of hair loss,” Lasers Surg. Med. 46(2), 144–151 (2014).
    [Crossref]
  11. K. Kim, J. Lee, H. Jang, S. Park, J. Na, J. K. Myung, M. J. Kim, W. S. Jang, S. J. Lee, H. Kim, H. Myung, J. Kang, and S. Shim, “PBM enhances the angiogenic effect of mesenchymal stem cells to mitigate radiation-induced enteropathy,” Int. J. Mol. Sci. 20(5), 1131 (2019).
    [Crossref]
  12. L. F. DeFreitas and M. R. Hamblin, “Proposed mechanisms of PBM or low-level light therapy,” IEEE J. Sel. Top. Quantum Electron. 22(3), 348–364 (2016).
    [Crossref]
  13. Y. Y. Huang, S. K. Sharma, J. Carroll, and M. R. Hamblin, “Biphasic dose response in low level light therapy - an update,” Dose-Response 9(4), 602–618 (2011).
    [Crossref]
  14. S. Young, P. Bolton, M. Dyson, W. Harvey, and C. Diamantopoulos, “Macrophage responsiveness to light therapy,” Lasers Surg. Med. 9(5), 497–505 (1989).
    [Crossref]
  15. R. J. Lanzafame, I. Stadler, A. F. Kurtz, R. Connelly, T. A. Peter Sr, P. Brondon, and D. Olson, “Reciprocity of exposure time and irradiance on energy density during photoradiation on wound healing in a murine pressure ulcer model,” Lasers Surg. Med. 39(6), 534–542 (2007).
    [Crossref]
  16. M. M. Kleinpenning, T. Smits, M. H. Frunt, P. E. van Erp, P. C. van De Kerkhof, and R. M. Gerritsen, “Clinical and histological effects of blue light on normal skin,” Photodermatol., Photoimmunol. Photomed. 26(1), 16–21 (2010).
    [Crossref]
  17. T. Niu, Y. Tian, Z. Mei, and G. Guo, “Inhibition of autophagy enhances curcumin united light irradiation-induced oxidative stress and tumor growth suppression in human melanoma cells,” Sci. Rep. 6(1), 31383 (2016).
    [Crossref]
  18. A. J. Brady, F. Kearney, and M. M. Tunney, “Comparative evaluation of 2,3-bis [2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium -5-carboxanilide (XTT) and 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2, 4-disulfophenyl)-2H-tetrazolium, monosodium salt (WST-8) rapid colorimetric assays for antimicrobial susceptibility testing of staphylococci and ESBL-producing clinical isolates,” J. Microbiol. Methods 71(3), 305–311 (2007).
    [Crossref]
  19. R. Lubart, M. Eichler, R. Lavi, H. Friedman, and A. Shainberg, “Low-energy laser irradiation promotes cellular redox activity,” Photomed. Laser Surg. 23(1), 3–9 (2005).
    [Crossref]
  20. J. Zhang, D. Xing, and X. Gao, “Low-power laser irradiation activates Srctyrosine kinase through reactive oxygen species-mediated signaling pathway,” J. Cell. Physiol. 217(2), 518–528 (2008).
    [Crossref]
  21. Y. Zhu and H. He, “Molecular response of mitochondria to a short-duration femtosecond-laser stimulation,” Biomed. Opt. Express 8(11), 4965–4973 (2017).
    [Crossref]
  22. A. Lynnyk, M. Lunova, M. Jirsa, D. Egorova, A. Kulikov, Š. Kubinová, O. Lunov, and A. Dejneka, “Manipulating the mitochondria activity in human hepatic cell line Huh7 by low-power laser irradiation,” Biomed. Opt. Express 9(3), 1283–1300 (2018).
    [Crossref]
  23. M. Ohara, M. Kobayashi, H. Fujiwara, S. Kitajima, C. Mitsuoka, and H. Watanabe, “Blue light inhibits melanin synthesis in B16 melanoma 4A5 cells and skin pigmentation induced by ultraviolet B in guinea-pigs,” Photodermatol., Photoimmunol. Photomed. 20(2), 86–92 (2004).
    [Crossref]
  24. G. Ottaviani, V. Martinelli, K. Rupel, N. Caronni, A. Naseem, L. Zandonà, G. Perinetti, M. Gobbo, R. Di Lenarda, R. Bussani, F. Benvenuti, M. Giacca, M. Biasotto, and S. Zacchigna, “Laser therapy inhibits tumor growth in mice by promoting immune surveillance and vessel normalization,” IEEE J. Sel. Top. Quantum Electron. 11(7), 165–172 (2016).
    [Crossref]
  25. A. Sparsa, K. Faucher, V. Sol, H. Durox, S. Boulinguez, V. Doffoel-Hantz, C. A. Calliste, J. Cook-Moreau, P. Krausz, F. G. Sturtz, C. Bedane, M. O. Jauberteau-Marchan, M. H. Ratinaud, and J. M. Bonnetblanc, “Blue light is phototoxic for B16F10 murine melanoma and bovine endothelial cell lines by direct cytocidal effect,” Anticancer research. 30(1), 143–147 (2010).
  26. Z. C. F. Garza, M. Born, P. A. J. Hilbers, N. A. W. van Riel, and J. Liebmann, “Visible light therapy: molecular mechanisms and therapeutic opportunities,” Curr. Med. Chem. 25(40), 5564–5577 (2019).
    [Crossref]
  27. V. Y. Plavskii, A. V. Mikulich, A. I. Tretyakova, I. A. Leusenka, L. G. Plavskaya, O. A. Kazyuchits, I. I. Dobysh, and T. P. Krasnenkova, “Porphyrins and flavins as endogenous acceptors of optical radiation of blue spectral region determining photoinactivation of microbial cells,” J. Photochem. Photobiol., B 183(6), 172–183 (2018).
    [Crossref]
  28. M. Ohara, Y. Kawashima, O. Katoh, and H. Watanabe, “Blue light inhibits the growth of B16 melanoma cells,” Jpn. J. Cancer Res. 93(5), 551–558 (2002).
    [Crossref]
  29. A. Yoshida, Y. Shiotsu-Ogura, S. Wada-Takahashi, S. S. Takahashi, T. Toyama, and F. Yoshino, “Blue light irradiation-induced oxidative stress in vivo via ROS generation in rat gingival tissue,” J. Photochem. Photobiol., B 151(2), 48–53 (2015).
    [Crossref]
  30. T. Karu, “Primary and secondary mechanisms of action of visible to near-IR radiation on cells,” J. Photochem. Photobiol., B 49(1), 1–17 (1999).
    [Crossref]
  31. M. L. Porter, “Beyond the Eye: Molecular Evolution of Extraocular Photoreception,” Integr. Comp. Biol. 56(5), 842–852 (2016).
    [Crossref]
  32. Y. Wang, Y. Y. Huang, Y. Wang, P. Lyu, and M. R. Hamblin, “PBM (blue and green light) encourages osteoblastic-differentiation of human adipose-derived stem cells: role of intracellular calcium and light-gated ion channels,” Sci. Rep. 6(1), 33719 (2016).
    [Crossref]
  33. C. Oplander, A. Deck, C. M. Volkmar, M. Kirsch, J. Liebmann, M. Born, F. van Abeelen, E. E. van Faassen, K. D. Kröncke, J. Windolf, and C. V. Suschek, “Mechanism and biological relevance of blue-light (420-453 nm)-induced nonenzymatic nitric oxide generation from photolabile nitric oxide derivates in human skin in vitro and in vivo,” Free Radical Biol. Med. 65(2), 1363–1377 (2013).
    [Crossref]
  34. I. Castellano-Pellicena, N. E. Uzunbajakava, C. Mignon, B. Raafs, V. A. Botchkarev, and M. J. Thornton, “Does blue light restore human epidermal barrier function via activation of Opsin during cutaneous wound healing?” Lasers Surg. Med. 51(4), 370–382 (2019).
    [Crossref]
  35. P. Gál, M. Mokrý, B. Vidinský, R. Kilík, F. Depta, M. Harakalová, F. Longauer, S. Mozes, and J. Sabo, “Effect of equal daily doses achieved by different power densities of low-level laser therapy at 635 nm on open skin wound healing in normal and corticosteroid-treated rats,” Lasers Med Sci. 24(4), 539–547 (2009).
    [Crossref]
  36. S. K. Sharma, G. B. Kharkwal, M. Sajo, Y. Y. Huang, L. De Taboada, T. McCarthy, and M. R. Hamblin, “Dose response effects of 810 nm laser light on mouse primary cortical neurons,” Lasers Surg. Med. 43(8), 851–859 (2011).
    [Crossref]
  37. L. H. Azevedo, F. de Paula Eduardo, M. S. Moreira, C. de Paula Eduardo, and M. M. Marques, “Influence of different power densities of LILT on cultured human fibroblast growth: a pilot study,” Lasers Med Sci. 21(2), 86–89 (2006).
    [Crossref]
  38. P. S. Brookes, “Mitochondrial H (+) leak and ROS generation: an odd couple,” Free Radical Biol. Med. 38(1), 12–23 (2005).
    [Crossref]
  39. S. Wu, D. Xing, X. Gao, and W. R. Chen, “High fluence low-power laser irradiation induces mitochondrial permeability transition mediated by reactive oxygen species,” J. Cell. Physiol. 218(3), 603–611 (2009).
    [Crossref]
  40. L. Frigo, J. M. Cordeiro, G. M. Favero, D. A. Maria, E. C. P. Leal-Junior, J. Joensen, J. M. Bjordal, D. C. Roxo, R. L. Marcos, and R. A. B. Lopes-Martins, “High doses of laser phototherapy can increase proliferation in melanoma stromal connective tissue,” Lasers Med Sci. 33(6), 1215–1223 (2018).
    [Crossref]
  41. A. Tani, F. Chellini, M. Giannelli, D. Nosi, S. Zecchi-Orlandini, and C. Sassoli, “Red (635 nm), near-infrared (808 nm) and violet-blue (405 nm) Photobiomodulation potentiality on human osteoblasts and mesenchymal stromal cells: a morphological and molecular in vitro study,” Int. J. Mol. Sci. 19(7), 1946 (2018).
    [Crossref]

2019 (3)

K. Kim, J. Lee, H. Jang, S. Park, J. Na, J. K. Myung, M. J. Kim, W. S. Jang, S. J. Lee, H. Kim, H. Myung, J. Kang, and S. Shim, “PBM enhances the angiogenic effect of mesenchymal stem cells to mitigate radiation-induced enteropathy,” Int. J. Mol. Sci. 20(5), 1131 (2019).
[Crossref]

Z. C. F. Garza, M. Born, P. A. J. Hilbers, N. A. W. van Riel, and J. Liebmann, “Visible light therapy: molecular mechanisms and therapeutic opportunities,” Curr. Med. Chem. 25(40), 5564–5577 (2019).
[Crossref]

I. Castellano-Pellicena, N. E. Uzunbajakava, C. Mignon, B. Raafs, V. A. Botchkarev, and M. J. Thornton, “Does blue light restore human epidermal barrier function via activation of Opsin during cutaneous wound healing?” Lasers Surg. Med. 51(4), 370–382 (2019).
[Crossref]

2018 (6)

V. Y. Plavskii, A. V. Mikulich, A. I. Tretyakova, I. A. Leusenka, L. G. Plavskaya, O. A. Kazyuchits, I. I. Dobysh, and T. P. Krasnenkova, “Porphyrins and flavins as endogenous acceptors of optical radiation of blue spectral region determining photoinactivation of microbial cells,” J. Photochem. Photobiol., B 183(6), 172–183 (2018).
[Crossref]

A. Lynnyk, M. Lunova, M. Jirsa, D. Egorova, A. Kulikov, Š. Kubinová, O. Lunov, and A. Dejneka, “Manipulating the mitochondria activity in human hepatic cell line Huh7 by low-power laser irradiation,” Biomed. Opt. Express 9(3), 1283–1300 (2018).
[Crossref]

M. R. Hamblin, “PBM, Photomedicine, and laser surgery: a new leap forward into the light for the 21(st) century,” Photobiomodulation, Photomed., Laser Surg. 36(8), 395–396 (2018).
[Crossref]

F. Salehpour, J. Mahmoudi, F. Kamari, S. Sadigh-Eteghad, S. H. Rasta, and M. R. Hamblin, “Brain photobiomodulation therapy: a narrative review,” Mol. Neurobiol. 55(8), 6601–6636 (2018).
[Crossref]

L. Frigo, J. M. Cordeiro, G. M. Favero, D. A. Maria, E. C. P. Leal-Junior, J. Joensen, J. M. Bjordal, D. C. Roxo, R. L. Marcos, and R. A. B. Lopes-Martins, “High doses of laser phototherapy can increase proliferation in melanoma stromal connective tissue,” Lasers Med Sci. 33(6), 1215–1223 (2018).
[Crossref]

A. Tani, F. Chellini, M. Giannelli, D. Nosi, S. Zecchi-Orlandini, and C. Sassoli, “Red (635 nm), near-infrared (808 nm) and violet-blue (405 nm) Photobiomodulation potentiality on human osteoblasts and mesenchymal stromal cells: a morphological and molecular in vitro study,” Int. J. Mol. Sci. 19(7), 1946 (2018).
[Crossref]

2017 (2)

Y. Zhu and H. He, “Molecular response of mitochondria to a short-duration femtosecond-laser stimulation,” Biomed. Opt. Express 8(11), 4965–4973 (2017).
[Crossref]

M. R. Hamblin, “Mechanisms and applications of the anti-inflammatory effects of PBM,” AIMS Biophys. 4(3), 337–361 (2017).
[Crossref]

2016 (5)

L. F. DeFreitas and M. R. Hamblin, “Proposed mechanisms of PBM or low-level light therapy,” IEEE J. Sel. Top. Quantum Electron. 22(3), 348–364 (2016).
[Crossref]

T. Niu, Y. Tian, Z. Mei, and G. Guo, “Inhibition of autophagy enhances curcumin united light irradiation-induced oxidative stress and tumor growth suppression in human melanoma cells,” Sci. Rep. 6(1), 31383 (2016).
[Crossref]

G. Ottaviani, V. Martinelli, K. Rupel, N. Caronni, A. Naseem, L. Zandonà, G. Perinetti, M. Gobbo, R. Di Lenarda, R. Bussani, F. Benvenuti, M. Giacca, M. Biasotto, and S. Zacchigna, “Laser therapy inhibits tumor growth in mice by promoting immune surveillance and vessel normalization,” IEEE J. Sel. Top. Quantum Electron. 11(7), 165–172 (2016).
[Crossref]

M. L. Porter, “Beyond the Eye: Molecular Evolution of Extraocular Photoreception,” Integr. Comp. Biol. 56(5), 842–852 (2016).
[Crossref]

Y. Wang, Y. Y. Huang, Y. Wang, P. Lyu, and M. R. Hamblin, “PBM (blue and green light) encourages osteoblastic-differentiation of human adipose-derived stem cells: role of intracellular calcium and light-gated ion channels,” Sci. Rep. 6(1), 33719 (2016).
[Crossref]

2015 (2)

A. Yoshida, Y. Shiotsu-Ogura, S. Wada-Takahashi, S. S. Takahashi, T. Toyama, and F. Yoshino, “Blue light irradiation-induced oxidative stress in vivo via ROS generation in rat gingival tissue,” J. Photochem. Photobiol., B 151(2), 48–53 (2015).
[Crossref]

P. S. Oh, K. S. Na, H. Hwang, H. S. Jeong, S. Lim, M. H. Sohn, and H. J. Jeong, “Effect of blue light emitting diodes on melanoma cells: involvement of apoptotic signaling,” J. Photochem. Photobiol., B 142(1), 197–203 (2015).
[Crossref]

2014 (1)

P. Avci, G. K. Gupta, J. Clark, N. Wikonkal, and M. R. Hamblin, “Low-level laser (light) therapy (LLLT) for treatment of hair loss,” Lasers Surg. Med. 46(2), 144–151 (2014).
[Crossref]

2013 (1)

C. Oplander, A. Deck, C. M. Volkmar, M. Kirsch, J. Liebmann, M. Born, F. van Abeelen, E. E. van Faassen, K. D. Kröncke, J. Windolf, and C. V. Suschek, “Mechanism and biological relevance of blue-light (420-453 nm)-induced nonenzymatic nitric oxide generation from photolabile nitric oxide derivates in human skin in vitro and in vivo,” Free Radical Biol. Med. 65(2), 1363–1377 (2013).
[Crossref]

2012 (1)

T. Dai, A. Gupta, C. K. Murray, M. S. Vrahas, G. P. Tegos, and M. R. Hamblin, “Blue light for infectious diseases: Propionibacterium acnes, Helicobacter pylori, and beyond?” Drug Resist. Updates 15(4), 223–236 (2012).
[Crossref]

2011 (2)

Y. Y. Huang, S. K. Sharma, J. Carroll, and M. R. Hamblin, “Biphasic dose response in low level light therapy - an update,” Dose-Response 9(4), 602–618 (2011).
[Crossref]

S. K. Sharma, G. B. Kharkwal, M. Sajo, Y. Y. Huang, L. De Taboada, T. McCarthy, and M. R. Hamblin, “Dose response effects of 810 nm laser light on mouse primary cortical neurons,” Lasers Surg. Med. 43(8), 851–859 (2011).
[Crossref]

2010 (3)

A. Sparsa, K. Faucher, V. Sol, H. Durox, S. Boulinguez, V. Doffoel-Hantz, C. A. Calliste, J. Cook-Moreau, P. Krausz, F. G. Sturtz, C. Bedane, M. O. Jauberteau-Marchan, M. H. Ratinaud, and J. M. Bonnetblanc, “Blue light is phototoxic for B16F10 murine melanoma and bovine endothelial cell lines by direct cytocidal effect,” Anticancer research. 30(1), 143–147 (2010).

M. M. Kleinpenning, T. Smits, M. H. Frunt, P. E. van Erp, P. C. van De Kerkhof, and R. M. Gerritsen, “Clinical and histological effects of blue light on normal skin,” Photodermatol., Photoimmunol. Photomed. 26(1), 16–21 (2010).
[Crossref]

B. M. Putzer, M. Steder, and V. Alla, “Predicting and preventing melanoma invasiveness: advances in clarifying E2F1 function,” Expert Rev. Anticancer Ther. 10(11), 1707–1720 (2010).
[Crossref]

2009 (2)

P. Gál, M. Mokrý, B. Vidinský, R. Kilík, F. Depta, M. Harakalová, F. Longauer, S. Mozes, and J. Sabo, “Effect of equal daily doses achieved by different power densities of low-level laser therapy at 635 nm on open skin wound healing in normal and corticosteroid-treated rats,” Lasers Med Sci. 24(4), 539–547 (2009).
[Crossref]

S. Wu, D. Xing, X. Gao, and W. R. Chen, “High fluence low-power laser irradiation induces mitochondrial permeability transition mediated by reactive oxygen species,” J. Cell. Physiol. 218(3), 603–611 (2009).
[Crossref]

2008 (1)

J. Zhang, D. Xing, and X. Gao, “Low-power laser irradiation activates Srctyrosine kinase through reactive oxygen species-mediated signaling pathway,” J. Cell. Physiol. 217(2), 518–528 (2008).
[Crossref]

2007 (2)

R. J. Lanzafame, I. Stadler, A. F. Kurtz, R. Connelly, T. A. Peter Sr, P. Brondon, and D. Olson, “Reciprocity of exposure time and irradiance on energy density during photoradiation on wound healing in a murine pressure ulcer model,” Lasers Surg. Med. 39(6), 534–542 (2007).
[Crossref]

A. J. Brady, F. Kearney, and M. M. Tunney, “Comparative evaluation of 2,3-bis [2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium -5-carboxanilide (XTT) and 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2, 4-disulfophenyl)-2H-tetrazolium, monosodium salt (WST-8) rapid colorimetric assays for antimicrobial susceptibility testing of staphylococci and ESBL-producing clinical isolates,” J. Microbiol. Methods 71(3), 305–311 (2007).
[Crossref]

2006 (1)

L. H. Azevedo, F. de Paula Eduardo, M. S. Moreira, C. de Paula Eduardo, and M. M. Marques, “Influence of different power densities of LILT on cultured human fibroblast growth: a pilot study,” Lasers Med Sci. 21(2), 86–89 (2006).
[Crossref]

2005 (3)

P. S. Brookes, “Mitochondrial H (+) leak and ROS generation: an odd couple,” Free Radical Biol. Med. 38(1), 12–23 (2005).
[Crossref]

R. Lubart, M. Eichler, R. Lavi, H. Friedman, and A. Shainberg, “Low-energy laser irradiation promotes cellular redox activity,” Photomed. Laser Surg. 23(1), 3–9 (2005).
[Crossref]

J. F. Thompson, R. A. Scolyer, and R. F. Kefford, “Cutaneous melanoma,” Lancet 365(9460), 687–701 (2005).
[Crossref]

2004 (2)

M. B. Lens and M. Dawes, “Global perspectives of contemporary epidemiological trends of cutaneous malignant melanoma,” Br. J. Dermatol. 150(2), 179–185 (2004).
[Crossref]

M. Ohara, M. Kobayashi, H. Fujiwara, S. Kitajima, C. Mitsuoka, and H. Watanabe, “Blue light inhibits melanin synthesis in B16 melanoma 4A5 cells and skin pigmentation induced by ultraviolet B in guinea-pigs,” Photodermatol., Photoimmunol. Photomed. 20(2), 86–92 (2004).
[Crossref]

2002 (1)

M. Ohara, Y. Kawashima, O. Katoh, and H. Watanabe, “Blue light inhibits the growth of B16 melanoma cells,” Jpn. J. Cancer Res. 93(5), 551–558 (2002).
[Crossref]

1999 (1)

T. Karu, “Primary and secondary mechanisms of action of visible to near-IR radiation on cells,” J. Photochem. Photobiol., B 49(1), 1–17 (1999).
[Crossref]

1991 (1)

J. Bustamante, L. Guerra, L. Bredeston, J. Mordoh, and A. Boveris, “Melanin content and hydroperoxidemetabolism in human melanoma cells,” Exp. Cell Res. 196(2), 172–176 (1991).
[Crossref]

1989 (1)

S. Young, P. Bolton, M. Dyson, W. Harvey, and C. Diamantopoulos, “Macrophage responsiveness to light therapy,” Lasers Surg. Med. 9(5), 497–505 (1989).
[Crossref]

Alla, V.

B. M. Putzer, M. Steder, and V. Alla, “Predicting and preventing melanoma invasiveness: advances in clarifying E2F1 function,” Expert Rev. Anticancer Ther. 10(11), 1707–1720 (2010).
[Crossref]

Avci, P.

P. Avci, G. K. Gupta, J. Clark, N. Wikonkal, and M. R. Hamblin, “Low-level laser (light) therapy (LLLT) for treatment of hair loss,” Lasers Surg. Med. 46(2), 144–151 (2014).
[Crossref]

Azevedo, L. H.

L. H. Azevedo, F. de Paula Eduardo, M. S. Moreira, C. de Paula Eduardo, and M. M. Marques, “Influence of different power densities of LILT on cultured human fibroblast growth: a pilot study,” Lasers Med Sci. 21(2), 86–89 (2006).
[Crossref]

Bedane, C.

A. Sparsa, K. Faucher, V. Sol, H. Durox, S. Boulinguez, V. Doffoel-Hantz, C. A. Calliste, J. Cook-Moreau, P. Krausz, F. G. Sturtz, C. Bedane, M. O. Jauberteau-Marchan, M. H. Ratinaud, and J. M. Bonnetblanc, “Blue light is phototoxic for B16F10 murine melanoma and bovine endothelial cell lines by direct cytocidal effect,” Anticancer research. 30(1), 143–147 (2010).

Benvenuti, F.

G. Ottaviani, V. Martinelli, K. Rupel, N. Caronni, A. Naseem, L. Zandonà, G. Perinetti, M. Gobbo, R. Di Lenarda, R. Bussani, F. Benvenuti, M. Giacca, M. Biasotto, and S. Zacchigna, “Laser therapy inhibits tumor growth in mice by promoting immune surveillance and vessel normalization,” IEEE J. Sel. Top. Quantum Electron. 11(7), 165–172 (2016).
[Crossref]

Biasotto, M.

G. Ottaviani, V. Martinelli, K. Rupel, N. Caronni, A. Naseem, L. Zandonà, G. Perinetti, M. Gobbo, R. Di Lenarda, R. Bussani, F. Benvenuti, M. Giacca, M. Biasotto, and S. Zacchigna, “Laser therapy inhibits tumor growth in mice by promoting immune surveillance and vessel normalization,” IEEE J. Sel. Top. Quantum Electron. 11(7), 165–172 (2016).
[Crossref]

Bjordal, J. M.

L. Frigo, J. M. Cordeiro, G. M. Favero, D. A. Maria, E. C. P. Leal-Junior, J. Joensen, J. M. Bjordal, D. C. Roxo, R. L. Marcos, and R. A. B. Lopes-Martins, “High doses of laser phototherapy can increase proliferation in melanoma stromal connective tissue,” Lasers Med Sci. 33(6), 1215–1223 (2018).
[Crossref]

Bolton, P.

S. Young, P. Bolton, M. Dyson, W. Harvey, and C. Diamantopoulos, “Macrophage responsiveness to light therapy,” Lasers Surg. Med. 9(5), 497–505 (1989).
[Crossref]

Bonnetblanc, J. M.

A. Sparsa, K. Faucher, V. Sol, H. Durox, S. Boulinguez, V. Doffoel-Hantz, C. A. Calliste, J. Cook-Moreau, P. Krausz, F. G. Sturtz, C. Bedane, M. O. Jauberteau-Marchan, M. H. Ratinaud, and J. M. Bonnetblanc, “Blue light is phototoxic for B16F10 murine melanoma and bovine endothelial cell lines by direct cytocidal effect,” Anticancer research. 30(1), 143–147 (2010).

Born, M.

Z. C. F. Garza, M. Born, P. A. J. Hilbers, N. A. W. van Riel, and J. Liebmann, “Visible light therapy: molecular mechanisms and therapeutic opportunities,” Curr. Med. Chem. 25(40), 5564–5577 (2019).
[Crossref]

C. Oplander, A. Deck, C. M. Volkmar, M. Kirsch, J. Liebmann, M. Born, F. van Abeelen, E. E. van Faassen, K. D. Kröncke, J. Windolf, and C. V. Suschek, “Mechanism and biological relevance of blue-light (420-453 nm)-induced nonenzymatic nitric oxide generation from photolabile nitric oxide derivates in human skin in vitro and in vivo,” Free Radical Biol. Med. 65(2), 1363–1377 (2013).
[Crossref]

Botchkarev, V. A.

I. Castellano-Pellicena, N. E. Uzunbajakava, C. Mignon, B. Raafs, V. A. Botchkarev, and M. J. Thornton, “Does blue light restore human epidermal barrier function via activation of Opsin during cutaneous wound healing?” Lasers Surg. Med. 51(4), 370–382 (2019).
[Crossref]

Boulinguez, S.

A. Sparsa, K. Faucher, V. Sol, H. Durox, S. Boulinguez, V. Doffoel-Hantz, C. A. Calliste, J. Cook-Moreau, P. Krausz, F. G. Sturtz, C. Bedane, M. O. Jauberteau-Marchan, M. H. Ratinaud, and J. M. Bonnetblanc, “Blue light is phototoxic for B16F10 murine melanoma and bovine endothelial cell lines by direct cytocidal effect,” Anticancer research. 30(1), 143–147 (2010).

Boveris, A.

J. Bustamante, L. Guerra, L. Bredeston, J. Mordoh, and A. Boveris, “Melanin content and hydroperoxidemetabolism in human melanoma cells,” Exp. Cell Res. 196(2), 172–176 (1991).
[Crossref]

Brady, A. J.

A. J. Brady, F. Kearney, and M. M. Tunney, “Comparative evaluation of 2,3-bis [2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium -5-carboxanilide (XTT) and 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2, 4-disulfophenyl)-2H-tetrazolium, monosodium salt (WST-8) rapid colorimetric assays for antimicrobial susceptibility testing of staphylococci and ESBL-producing clinical isolates,” J. Microbiol. Methods 71(3), 305–311 (2007).
[Crossref]

Bredeston, L.

J. Bustamante, L. Guerra, L. Bredeston, J. Mordoh, and A. Boveris, “Melanin content and hydroperoxidemetabolism in human melanoma cells,” Exp. Cell Res. 196(2), 172–176 (1991).
[Crossref]

Brondon, P.

R. J. Lanzafame, I. Stadler, A. F. Kurtz, R. Connelly, T. A. Peter Sr, P. Brondon, and D. Olson, “Reciprocity of exposure time and irradiance on energy density during photoradiation on wound healing in a murine pressure ulcer model,” Lasers Surg. Med. 39(6), 534–542 (2007).
[Crossref]

Brookes, P. S.

P. S. Brookes, “Mitochondrial H (+) leak and ROS generation: an odd couple,” Free Radical Biol. Med. 38(1), 12–23 (2005).
[Crossref]

Bussani, R.

G. Ottaviani, V. Martinelli, K. Rupel, N. Caronni, A. Naseem, L. Zandonà, G. Perinetti, M. Gobbo, R. Di Lenarda, R. Bussani, F. Benvenuti, M. Giacca, M. Biasotto, and S. Zacchigna, “Laser therapy inhibits tumor growth in mice by promoting immune surveillance and vessel normalization,” IEEE J. Sel. Top. Quantum Electron. 11(7), 165–172 (2016).
[Crossref]

Bustamante, J.

J. Bustamante, L. Guerra, L. Bredeston, J. Mordoh, and A. Boveris, “Melanin content and hydroperoxidemetabolism in human melanoma cells,” Exp. Cell Res. 196(2), 172–176 (1991).
[Crossref]

Calliste, C. A.

A. Sparsa, K. Faucher, V. Sol, H. Durox, S. Boulinguez, V. Doffoel-Hantz, C. A. Calliste, J. Cook-Moreau, P. Krausz, F. G. Sturtz, C. Bedane, M. O. Jauberteau-Marchan, M. H. Ratinaud, and J. M. Bonnetblanc, “Blue light is phototoxic for B16F10 murine melanoma and bovine endothelial cell lines by direct cytocidal effect,” Anticancer research. 30(1), 143–147 (2010).

Caronni, N.

G. Ottaviani, V. Martinelli, K. Rupel, N. Caronni, A. Naseem, L. Zandonà, G. Perinetti, M. Gobbo, R. Di Lenarda, R. Bussani, F. Benvenuti, M. Giacca, M. Biasotto, and S. Zacchigna, “Laser therapy inhibits tumor growth in mice by promoting immune surveillance and vessel normalization,” IEEE J. Sel. Top. Quantum Electron. 11(7), 165–172 (2016).
[Crossref]

Carroll, J.

Y. Y. Huang, S. K. Sharma, J. Carroll, and M. R. Hamblin, “Biphasic dose response in low level light therapy - an update,” Dose-Response 9(4), 602–618 (2011).
[Crossref]

Castellano-Pellicena, I.

I. Castellano-Pellicena, N. E. Uzunbajakava, C. Mignon, B. Raafs, V. A. Botchkarev, and M. J. Thornton, “Does blue light restore human epidermal barrier function via activation of Opsin during cutaneous wound healing?” Lasers Surg. Med. 51(4), 370–382 (2019).
[Crossref]

Chellini, F.

A. Tani, F. Chellini, M. Giannelli, D. Nosi, S. Zecchi-Orlandini, and C. Sassoli, “Red (635 nm), near-infrared (808 nm) and violet-blue (405 nm) Photobiomodulation potentiality on human osteoblasts and mesenchymal stromal cells: a morphological and molecular in vitro study,” Int. J. Mol. Sci. 19(7), 1946 (2018).
[Crossref]

Chen, W. R.

S. Wu, D. Xing, X. Gao, and W. R. Chen, “High fluence low-power laser irradiation induces mitochondrial permeability transition mediated by reactive oxygen species,” J. Cell. Physiol. 218(3), 603–611 (2009).
[Crossref]

Clark, J.

P. Avci, G. K. Gupta, J. Clark, N. Wikonkal, and M. R. Hamblin, “Low-level laser (light) therapy (LLLT) for treatment of hair loss,” Lasers Surg. Med. 46(2), 144–151 (2014).
[Crossref]

Connelly, R.

R. J. Lanzafame, I. Stadler, A. F. Kurtz, R. Connelly, T. A. Peter Sr, P. Brondon, and D. Olson, “Reciprocity of exposure time and irradiance on energy density during photoradiation on wound healing in a murine pressure ulcer model,” Lasers Surg. Med. 39(6), 534–542 (2007).
[Crossref]

Cook-Moreau, J.

A. Sparsa, K. Faucher, V. Sol, H. Durox, S. Boulinguez, V. Doffoel-Hantz, C. A. Calliste, J. Cook-Moreau, P. Krausz, F. G. Sturtz, C. Bedane, M. O. Jauberteau-Marchan, M. H. Ratinaud, and J. M. Bonnetblanc, “Blue light is phototoxic for B16F10 murine melanoma and bovine endothelial cell lines by direct cytocidal effect,” Anticancer research. 30(1), 143–147 (2010).

Cordeiro, J. M.

L. Frigo, J. M. Cordeiro, G. M. Favero, D. A. Maria, E. C. P. Leal-Junior, J. Joensen, J. M. Bjordal, D. C. Roxo, R. L. Marcos, and R. A. B. Lopes-Martins, “High doses of laser phototherapy can increase proliferation in melanoma stromal connective tissue,” Lasers Med Sci. 33(6), 1215–1223 (2018).
[Crossref]

Dai, T.

T. Dai, A. Gupta, C. K. Murray, M. S. Vrahas, G. P. Tegos, and M. R. Hamblin, “Blue light for infectious diseases: Propionibacterium acnes, Helicobacter pylori, and beyond?” Drug Resist. Updates 15(4), 223–236 (2012).
[Crossref]

Dawes, M.

M. B. Lens and M. Dawes, “Global perspectives of contemporary epidemiological trends of cutaneous malignant melanoma,” Br. J. Dermatol. 150(2), 179–185 (2004).
[Crossref]

de Paula Eduardo, C.

L. H. Azevedo, F. de Paula Eduardo, M. S. Moreira, C. de Paula Eduardo, and M. M. Marques, “Influence of different power densities of LILT on cultured human fibroblast growth: a pilot study,” Lasers Med Sci. 21(2), 86–89 (2006).
[Crossref]

de Paula Eduardo, F.

L. H. Azevedo, F. de Paula Eduardo, M. S. Moreira, C. de Paula Eduardo, and M. M. Marques, “Influence of different power densities of LILT on cultured human fibroblast growth: a pilot study,” Lasers Med Sci. 21(2), 86–89 (2006).
[Crossref]

De Taboada, L.

S. K. Sharma, G. B. Kharkwal, M. Sajo, Y. Y. Huang, L. De Taboada, T. McCarthy, and M. R. Hamblin, “Dose response effects of 810 nm laser light on mouse primary cortical neurons,” Lasers Surg. Med. 43(8), 851–859 (2011).
[Crossref]

Deck, A.

C. Oplander, A. Deck, C. M. Volkmar, M. Kirsch, J. Liebmann, M. Born, F. van Abeelen, E. E. van Faassen, K. D. Kröncke, J. Windolf, and C. V. Suschek, “Mechanism and biological relevance of blue-light (420-453 nm)-induced nonenzymatic nitric oxide generation from photolabile nitric oxide derivates in human skin in vitro and in vivo,” Free Radical Biol. Med. 65(2), 1363–1377 (2013).
[Crossref]

DeFreitas, L. F.

L. F. DeFreitas and M. R. Hamblin, “Proposed mechanisms of PBM or low-level light therapy,” IEEE J. Sel. Top. Quantum Electron. 22(3), 348–364 (2016).
[Crossref]

Dejneka, A.

Depta, F.

P. Gál, M. Mokrý, B. Vidinský, R. Kilík, F. Depta, M. Harakalová, F. Longauer, S. Mozes, and J. Sabo, “Effect of equal daily doses achieved by different power densities of low-level laser therapy at 635 nm on open skin wound healing in normal and corticosteroid-treated rats,” Lasers Med Sci. 24(4), 539–547 (2009).
[Crossref]

Di Lenarda, R.

G. Ottaviani, V. Martinelli, K. Rupel, N. Caronni, A. Naseem, L. Zandonà, G. Perinetti, M. Gobbo, R. Di Lenarda, R. Bussani, F. Benvenuti, M. Giacca, M. Biasotto, and S. Zacchigna, “Laser therapy inhibits tumor growth in mice by promoting immune surveillance and vessel normalization,” IEEE J. Sel. Top. Quantum Electron. 11(7), 165–172 (2016).
[Crossref]

Diamantopoulos, C.

S. Young, P. Bolton, M. Dyson, W. Harvey, and C. Diamantopoulos, “Macrophage responsiveness to light therapy,” Lasers Surg. Med. 9(5), 497–505 (1989).
[Crossref]

Dobysh, I. I.

V. Y. Plavskii, A. V. Mikulich, A. I. Tretyakova, I. A. Leusenka, L. G. Plavskaya, O. A. Kazyuchits, I. I. Dobysh, and T. P. Krasnenkova, “Porphyrins and flavins as endogenous acceptors of optical radiation of blue spectral region determining photoinactivation of microbial cells,” J. Photochem. Photobiol., B 183(6), 172–183 (2018).
[Crossref]

Doffoel-Hantz, V.

A. Sparsa, K. Faucher, V. Sol, H. Durox, S. Boulinguez, V. Doffoel-Hantz, C. A. Calliste, J. Cook-Moreau, P. Krausz, F. G. Sturtz, C. Bedane, M. O. Jauberteau-Marchan, M. H. Ratinaud, and J. M. Bonnetblanc, “Blue light is phototoxic for B16F10 murine melanoma and bovine endothelial cell lines by direct cytocidal effect,” Anticancer research. 30(1), 143–147 (2010).

Durox, H.

A. Sparsa, K. Faucher, V. Sol, H. Durox, S. Boulinguez, V. Doffoel-Hantz, C. A. Calliste, J. Cook-Moreau, P. Krausz, F. G. Sturtz, C. Bedane, M. O. Jauberteau-Marchan, M. H. Ratinaud, and J. M. Bonnetblanc, “Blue light is phototoxic for B16F10 murine melanoma and bovine endothelial cell lines by direct cytocidal effect,” Anticancer research. 30(1), 143–147 (2010).

Dyson, M.

S. Young, P. Bolton, M. Dyson, W. Harvey, and C. Diamantopoulos, “Macrophage responsiveness to light therapy,” Lasers Surg. Med. 9(5), 497–505 (1989).
[Crossref]

Egorova, D.

Eichler, M.

R. Lubart, M. Eichler, R. Lavi, H. Friedman, and A. Shainberg, “Low-energy laser irradiation promotes cellular redox activity,” Photomed. Laser Surg. 23(1), 3–9 (2005).
[Crossref]

Faucher, K.

A. Sparsa, K. Faucher, V. Sol, H. Durox, S. Boulinguez, V. Doffoel-Hantz, C. A. Calliste, J. Cook-Moreau, P. Krausz, F. G. Sturtz, C. Bedane, M. O. Jauberteau-Marchan, M. H. Ratinaud, and J. M. Bonnetblanc, “Blue light is phototoxic for B16F10 murine melanoma and bovine endothelial cell lines by direct cytocidal effect,” Anticancer research. 30(1), 143–147 (2010).

Favero, G. M.

L. Frigo, J. M. Cordeiro, G. M. Favero, D. A. Maria, E. C. P. Leal-Junior, J. Joensen, J. M. Bjordal, D. C. Roxo, R. L. Marcos, and R. A. B. Lopes-Martins, “High doses of laser phototherapy can increase proliferation in melanoma stromal connective tissue,” Lasers Med Sci. 33(6), 1215–1223 (2018).
[Crossref]

Friedman, H.

R. Lubart, M. Eichler, R. Lavi, H. Friedman, and A. Shainberg, “Low-energy laser irradiation promotes cellular redox activity,” Photomed. Laser Surg. 23(1), 3–9 (2005).
[Crossref]

Frigo, L.

L. Frigo, J. M. Cordeiro, G. M. Favero, D. A. Maria, E. C. P. Leal-Junior, J. Joensen, J. M. Bjordal, D. C. Roxo, R. L. Marcos, and R. A. B. Lopes-Martins, “High doses of laser phototherapy can increase proliferation in melanoma stromal connective tissue,” Lasers Med Sci. 33(6), 1215–1223 (2018).
[Crossref]

Frunt, M. H.

M. M. Kleinpenning, T. Smits, M. H. Frunt, P. E. van Erp, P. C. van De Kerkhof, and R. M. Gerritsen, “Clinical and histological effects of blue light on normal skin,” Photodermatol., Photoimmunol. Photomed. 26(1), 16–21 (2010).
[Crossref]

Fujiwara, H.

M. Ohara, M. Kobayashi, H. Fujiwara, S. Kitajima, C. Mitsuoka, and H. Watanabe, “Blue light inhibits melanin synthesis in B16 melanoma 4A5 cells and skin pigmentation induced by ultraviolet B in guinea-pigs,” Photodermatol., Photoimmunol. Photomed. 20(2), 86–92 (2004).
[Crossref]

Gál, P.

P. Gál, M. Mokrý, B. Vidinský, R. Kilík, F. Depta, M. Harakalová, F. Longauer, S. Mozes, and J. Sabo, “Effect of equal daily doses achieved by different power densities of low-level laser therapy at 635 nm on open skin wound healing in normal and corticosteroid-treated rats,” Lasers Med Sci. 24(4), 539–547 (2009).
[Crossref]

Gao, X.

S. Wu, D. Xing, X. Gao, and W. R. Chen, “High fluence low-power laser irradiation induces mitochondrial permeability transition mediated by reactive oxygen species,” J. Cell. Physiol. 218(3), 603–611 (2009).
[Crossref]

J. Zhang, D. Xing, and X. Gao, “Low-power laser irradiation activates Srctyrosine kinase through reactive oxygen species-mediated signaling pathway,” J. Cell. Physiol. 217(2), 518–528 (2008).
[Crossref]

Garza, Z. C. F.

Z. C. F. Garza, M. Born, P. A. J. Hilbers, N. A. W. van Riel, and J. Liebmann, “Visible light therapy: molecular mechanisms and therapeutic opportunities,” Curr. Med. Chem. 25(40), 5564–5577 (2019).
[Crossref]

Gerritsen, R. M.

M. M. Kleinpenning, T. Smits, M. H. Frunt, P. E. van Erp, P. C. van De Kerkhof, and R. M. Gerritsen, “Clinical and histological effects of blue light on normal skin,” Photodermatol., Photoimmunol. Photomed. 26(1), 16–21 (2010).
[Crossref]

Giacca, M.

G. Ottaviani, V. Martinelli, K. Rupel, N. Caronni, A. Naseem, L. Zandonà, G. Perinetti, M. Gobbo, R. Di Lenarda, R. Bussani, F. Benvenuti, M. Giacca, M. Biasotto, and S. Zacchigna, “Laser therapy inhibits tumor growth in mice by promoting immune surveillance and vessel normalization,” IEEE J. Sel. Top. Quantum Electron. 11(7), 165–172 (2016).
[Crossref]

Giannelli, M.

A. Tani, F. Chellini, M. Giannelli, D. Nosi, S. Zecchi-Orlandini, and C. Sassoli, “Red (635 nm), near-infrared (808 nm) and violet-blue (405 nm) Photobiomodulation potentiality on human osteoblasts and mesenchymal stromal cells: a morphological and molecular in vitro study,” Int. J. Mol. Sci. 19(7), 1946 (2018).
[Crossref]

Gobbo, M.

G. Ottaviani, V. Martinelli, K. Rupel, N. Caronni, A. Naseem, L. Zandonà, G. Perinetti, M. Gobbo, R. Di Lenarda, R. Bussani, F. Benvenuti, M. Giacca, M. Biasotto, and S. Zacchigna, “Laser therapy inhibits tumor growth in mice by promoting immune surveillance and vessel normalization,” IEEE J. Sel. Top. Quantum Electron. 11(7), 165–172 (2016).
[Crossref]

Guerra, L.

J. Bustamante, L. Guerra, L. Bredeston, J. Mordoh, and A. Boveris, “Melanin content and hydroperoxidemetabolism in human melanoma cells,” Exp. Cell Res. 196(2), 172–176 (1991).
[Crossref]

Guo, G.

T. Niu, Y. Tian, Z. Mei, and G. Guo, “Inhibition of autophagy enhances curcumin united light irradiation-induced oxidative stress and tumor growth suppression in human melanoma cells,” Sci. Rep. 6(1), 31383 (2016).
[Crossref]

Gupta, A.

T. Dai, A. Gupta, C. K. Murray, M. S. Vrahas, G. P. Tegos, and M. R. Hamblin, “Blue light for infectious diseases: Propionibacterium acnes, Helicobacter pylori, and beyond?” Drug Resist. Updates 15(4), 223–236 (2012).
[Crossref]

Gupta, G. K.

P. Avci, G. K. Gupta, J. Clark, N. Wikonkal, and M. R. Hamblin, “Low-level laser (light) therapy (LLLT) for treatment of hair loss,” Lasers Surg. Med. 46(2), 144–151 (2014).
[Crossref]

Hamblin, M. R.

F. Salehpour, J. Mahmoudi, F. Kamari, S. Sadigh-Eteghad, S. H. Rasta, and M. R. Hamblin, “Brain photobiomodulation therapy: a narrative review,” Mol. Neurobiol. 55(8), 6601–6636 (2018).
[Crossref]

M. R. Hamblin, “PBM, Photomedicine, and laser surgery: a new leap forward into the light for the 21(st) century,” Photobiomodulation, Photomed., Laser Surg. 36(8), 395–396 (2018).
[Crossref]

M. R. Hamblin, “Mechanisms and applications of the anti-inflammatory effects of PBM,” AIMS Biophys. 4(3), 337–361 (2017).
[Crossref]

L. F. DeFreitas and M. R. Hamblin, “Proposed mechanisms of PBM or low-level light therapy,” IEEE J. Sel. Top. Quantum Electron. 22(3), 348–364 (2016).
[Crossref]

Y. Wang, Y. Y. Huang, Y. Wang, P. Lyu, and M. R. Hamblin, “PBM (blue and green light) encourages osteoblastic-differentiation of human adipose-derived stem cells: role of intracellular calcium and light-gated ion channels,” Sci. Rep. 6(1), 33719 (2016).
[Crossref]

P. Avci, G. K. Gupta, J. Clark, N. Wikonkal, and M. R. Hamblin, “Low-level laser (light) therapy (LLLT) for treatment of hair loss,” Lasers Surg. Med. 46(2), 144–151 (2014).
[Crossref]

T. Dai, A. Gupta, C. K. Murray, M. S. Vrahas, G. P. Tegos, and M. R. Hamblin, “Blue light for infectious diseases: Propionibacterium acnes, Helicobacter pylori, and beyond?” Drug Resist. Updates 15(4), 223–236 (2012).
[Crossref]

Y. Y. Huang, S. K. Sharma, J. Carroll, and M. R. Hamblin, “Biphasic dose response in low level light therapy - an update,” Dose-Response 9(4), 602–618 (2011).
[Crossref]

S. K. Sharma, G. B. Kharkwal, M. Sajo, Y. Y. Huang, L. De Taboada, T. McCarthy, and M. R. Hamblin, “Dose response effects of 810 nm laser light on mouse primary cortical neurons,” Lasers Surg. Med. 43(8), 851–859 (2011).
[Crossref]

Harakalová, M.

P. Gál, M. Mokrý, B. Vidinský, R. Kilík, F. Depta, M. Harakalová, F. Longauer, S. Mozes, and J. Sabo, “Effect of equal daily doses achieved by different power densities of low-level laser therapy at 635 nm on open skin wound healing in normal and corticosteroid-treated rats,” Lasers Med Sci. 24(4), 539–547 (2009).
[Crossref]

Harvey, W.

S. Young, P. Bolton, M. Dyson, W. Harvey, and C. Diamantopoulos, “Macrophage responsiveness to light therapy,” Lasers Surg. Med. 9(5), 497–505 (1989).
[Crossref]

He, H.

Hilbers, P. A. J.

Z. C. F. Garza, M. Born, P. A. J. Hilbers, N. A. W. van Riel, and J. Liebmann, “Visible light therapy: molecular mechanisms and therapeutic opportunities,” Curr. Med. Chem. 25(40), 5564–5577 (2019).
[Crossref]

Huang, Y. Y.

Y. Wang, Y. Y. Huang, Y. Wang, P. Lyu, and M. R. Hamblin, “PBM (blue and green light) encourages osteoblastic-differentiation of human adipose-derived stem cells: role of intracellular calcium and light-gated ion channels,” Sci. Rep. 6(1), 33719 (2016).
[Crossref]

S. K. Sharma, G. B. Kharkwal, M. Sajo, Y. Y. Huang, L. De Taboada, T. McCarthy, and M. R. Hamblin, “Dose response effects of 810 nm laser light on mouse primary cortical neurons,” Lasers Surg. Med. 43(8), 851–859 (2011).
[Crossref]

Y. Y. Huang, S. K. Sharma, J. Carroll, and M. R. Hamblin, “Biphasic dose response in low level light therapy - an update,” Dose-Response 9(4), 602–618 (2011).
[Crossref]

Hwang, H.

P. S. Oh, K. S. Na, H. Hwang, H. S. Jeong, S. Lim, M. H. Sohn, and H. J. Jeong, “Effect of blue light emitting diodes on melanoma cells: involvement of apoptotic signaling,” J. Photochem. Photobiol., B 142(1), 197–203 (2015).
[Crossref]

Jang, H.

K. Kim, J. Lee, H. Jang, S. Park, J. Na, J. K. Myung, M. J. Kim, W. S. Jang, S. J. Lee, H. Kim, H. Myung, J. Kang, and S. Shim, “PBM enhances the angiogenic effect of mesenchymal stem cells to mitigate radiation-induced enteropathy,” Int. J. Mol. Sci. 20(5), 1131 (2019).
[Crossref]

Jang, W. S.

K. Kim, J. Lee, H. Jang, S. Park, J. Na, J. K. Myung, M. J. Kim, W. S. Jang, S. J. Lee, H. Kim, H. Myung, J. Kang, and S. Shim, “PBM enhances the angiogenic effect of mesenchymal stem cells to mitigate radiation-induced enteropathy,” Int. J. Mol. Sci. 20(5), 1131 (2019).
[Crossref]

Jauberteau-Marchan, M. O.

A. Sparsa, K. Faucher, V. Sol, H. Durox, S. Boulinguez, V. Doffoel-Hantz, C. A. Calliste, J. Cook-Moreau, P. Krausz, F. G. Sturtz, C. Bedane, M. O. Jauberteau-Marchan, M. H. Ratinaud, and J. M. Bonnetblanc, “Blue light is phototoxic for B16F10 murine melanoma and bovine endothelial cell lines by direct cytocidal effect,” Anticancer research. 30(1), 143–147 (2010).

Jeong, H. J.

P. S. Oh, K. S. Na, H. Hwang, H. S. Jeong, S. Lim, M. H. Sohn, and H. J. Jeong, “Effect of blue light emitting diodes on melanoma cells: involvement of apoptotic signaling,” J. Photochem. Photobiol., B 142(1), 197–203 (2015).
[Crossref]

Jeong, H. S.

P. S. Oh, K. S. Na, H. Hwang, H. S. Jeong, S. Lim, M. H. Sohn, and H. J. Jeong, “Effect of blue light emitting diodes on melanoma cells: involvement of apoptotic signaling,” J. Photochem. Photobiol., B 142(1), 197–203 (2015).
[Crossref]

Jirsa, M.

Joensen, J.

L. Frigo, J. M. Cordeiro, G. M. Favero, D. A. Maria, E. C. P. Leal-Junior, J. Joensen, J. M. Bjordal, D. C. Roxo, R. L. Marcos, and R. A. B. Lopes-Martins, “High doses of laser phototherapy can increase proliferation in melanoma stromal connective tissue,” Lasers Med Sci. 33(6), 1215–1223 (2018).
[Crossref]

Kamari, F.

F. Salehpour, J. Mahmoudi, F. Kamari, S. Sadigh-Eteghad, S. H. Rasta, and M. R. Hamblin, “Brain photobiomodulation therapy: a narrative review,” Mol. Neurobiol. 55(8), 6601–6636 (2018).
[Crossref]

Kang, J.

K. Kim, J. Lee, H. Jang, S. Park, J. Na, J. K. Myung, M. J. Kim, W. S. Jang, S. J. Lee, H. Kim, H. Myung, J. Kang, and S. Shim, “PBM enhances the angiogenic effect of mesenchymal stem cells to mitigate radiation-induced enteropathy,” Int. J. Mol. Sci. 20(5), 1131 (2019).
[Crossref]

Karu, T.

T. Karu, “Primary and secondary mechanisms of action of visible to near-IR radiation on cells,” J. Photochem. Photobiol., B 49(1), 1–17 (1999).
[Crossref]

Katoh, O.

M. Ohara, Y. Kawashima, O. Katoh, and H. Watanabe, “Blue light inhibits the growth of B16 melanoma cells,” Jpn. J. Cancer Res. 93(5), 551–558 (2002).
[Crossref]

Kawashima, Y.

M. Ohara, Y. Kawashima, O. Katoh, and H. Watanabe, “Blue light inhibits the growth of B16 melanoma cells,” Jpn. J. Cancer Res. 93(5), 551–558 (2002).
[Crossref]

Kazyuchits, O. A.

V. Y. Plavskii, A. V. Mikulich, A. I. Tretyakova, I. A. Leusenka, L. G. Plavskaya, O. A. Kazyuchits, I. I. Dobysh, and T. P. Krasnenkova, “Porphyrins and flavins as endogenous acceptors of optical radiation of blue spectral region determining photoinactivation of microbial cells,” J. Photochem. Photobiol., B 183(6), 172–183 (2018).
[Crossref]

Kearney, F.

A. J. Brady, F. Kearney, and M. M. Tunney, “Comparative evaluation of 2,3-bis [2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium -5-carboxanilide (XTT) and 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2, 4-disulfophenyl)-2H-tetrazolium, monosodium salt (WST-8) rapid colorimetric assays for antimicrobial susceptibility testing of staphylococci and ESBL-producing clinical isolates,” J. Microbiol. Methods 71(3), 305–311 (2007).
[Crossref]

Kefford, R. F.

J. F. Thompson, R. A. Scolyer, and R. F. Kefford, “Cutaneous melanoma,” Lancet 365(9460), 687–701 (2005).
[Crossref]

Kharkwal, G. B.

S. K. Sharma, G. B. Kharkwal, M. Sajo, Y. Y. Huang, L. De Taboada, T. McCarthy, and M. R. Hamblin, “Dose response effects of 810 nm laser light on mouse primary cortical neurons,” Lasers Surg. Med. 43(8), 851–859 (2011).
[Crossref]

Kilík, R.

P. Gál, M. Mokrý, B. Vidinský, R. Kilík, F. Depta, M. Harakalová, F. Longauer, S. Mozes, and J. Sabo, “Effect of equal daily doses achieved by different power densities of low-level laser therapy at 635 nm on open skin wound healing in normal and corticosteroid-treated rats,” Lasers Med Sci. 24(4), 539–547 (2009).
[Crossref]

Kim, H.

K. Kim, J. Lee, H. Jang, S. Park, J. Na, J. K. Myung, M. J. Kim, W. S. Jang, S. J. Lee, H. Kim, H. Myung, J. Kang, and S. Shim, “PBM enhances the angiogenic effect of mesenchymal stem cells to mitigate radiation-induced enteropathy,” Int. J. Mol. Sci. 20(5), 1131 (2019).
[Crossref]

Kim, K.

K. Kim, J. Lee, H. Jang, S. Park, J. Na, J. K. Myung, M. J. Kim, W. S. Jang, S. J. Lee, H. Kim, H. Myung, J. Kang, and S. Shim, “PBM enhances the angiogenic effect of mesenchymal stem cells to mitigate radiation-induced enteropathy,” Int. J. Mol. Sci. 20(5), 1131 (2019).
[Crossref]

Kim, M. J.

K. Kim, J. Lee, H. Jang, S. Park, J. Na, J. K. Myung, M. J. Kim, W. S. Jang, S. J. Lee, H. Kim, H. Myung, J. Kang, and S. Shim, “PBM enhances the angiogenic effect of mesenchymal stem cells to mitigate radiation-induced enteropathy,” Int. J. Mol. Sci. 20(5), 1131 (2019).
[Crossref]

Kirsch, M.

C. Oplander, A. Deck, C. M. Volkmar, M. Kirsch, J. Liebmann, M. Born, F. van Abeelen, E. E. van Faassen, K. D. Kröncke, J. Windolf, and C. V. Suschek, “Mechanism and biological relevance of blue-light (420-453 nm)-induced nonenzymatic nitric oxide generation from photolabile nitric oxide derivates in human skin in vitro and in vivo,” Free Radical Biol. Med. 65(2), 1363–1377 (2013).
[Crossref]

Kitajima, S.

M. Ohara, M. Kobayashi, H. Fujiwara, S. Kitajima, C. Mitsuoka, and H. Watanabe, “Blue light inhibits melanin synthesis in B16 melanoma 4A5 cells and skin pigmentation induced by ultraviolet B in guinea-pigs,” Photodermatol., Photoimmunol. Photomed. 20(2), 86–92 (2004).
[Crossref]

Kleinpenning, M. M.

M. M. Kleinpenning, T. Smits, M. H. Frunt, P. E. van Erp, P. C. van De Kerkhof, and R. M. Gerritsen, “Clinical and histological effects of blue light on normal skin,” Photodermatol., Photoimmunol. Photomed. 26(1), 16–21 (2010).
[Crossref]

Kobayashi, M.

M. Ohara, M. Kobayashi, H. Fujiwara, S. Kitajima, C. Mitsuoka, and H. Watanabe, “Blue light inhibits melanin synthesis in B16 melanoma 4A5 cells and skin pigmentation induced by ultraviolet B in guinea-pigs,” Photodermatol., Photoimmunol. Photomed. 20(2), 86–92 (2004).
[Crossref]

Krasnenkova, T. P.

V. Y. Plavskii, A. V. Mikulich, A. I. Tretyakova, I. A. Leusenka, L. G. Plavskaya, O. A. Kazyuchits, I. I. Dobysh, and T. P. Krasnenkova, “Porphyrins and flavins as endogenous acceptors of optical radiation of blue spectral region determining photoinactivation of microbial cells,” J. Photochem. Photobiol., B 183(6), 172–183 (2018).
[Crossref]

Krausz, P.

A. Sparsa, K. Faucher, V. Sol, H. Durox, S. Boulinguez, V. Doffoel-Hantz, C. A. Calliste, J. Cook-Moreau, P. Krausz, F. G. Sturtz, C. Bedane, M. O. Jauberteau-Marchan, M. H. Ratinaud, and J. M. Bonnetblanc, “Blue light is phototoxic for B16F10 murine melanoma and bovine endothelial cell lines by direct cytocidal effect,” Anticancer research. 30(1), 143–147 (2010).

Kröncke, K. D.

C. Oplander, A. Deck, C. M. Volkmar, M. Kirsch, J. Liebmann, M. Born, F. van Abeelen, E. E. van Faassen, K. D. Kröncke, J. Windolf, and C. V. Suschek, “Mechanism and biological relevance of blue-light (420-453 nm)-induced nonenzymatic nitric oxide generation from photolabile nitric oxide derivates in human skin in vitro and in vivo,” Free Radical Biol. Med. 65(2), 1363–1377 (2013).
[Crossref]

Kubinová, Š.

Kulikov, A.

Kurtz, A. F.

R. J. Lanzafame, I. Stadler, A. F. Kurtz, R. Connelly, T. A. Peter Sr, P. Brondon, and D. Olson, “Reciprocity of exposure time and irradiance on energy density during photoradiation on wound healing in a murine pressure ulcer model,” Lasers Surg. Med. 39(6), 534–542 (2007).
[Crossref]

Lanzafame, R. J.

R. J. Lanzafame, I. Stadler, A. F. Kurtz, R. Connelly, T. A. Peter Sr, P. Brondon, and D. Olson, “Reciprocity of exposure time and irradiance on energy density during photoradiation on wound healing in a murine pressure ulcer model,” Lasers Surg. Med. 39(6), 534–542 (2007).
[Crossref]

Lavi, R.

R. Lubart, M. Eichler, R. Lavi, H. Friedman, and A. Shainberg, “Low-energy laser irradiation promotes cellular redox activity,” Photomed. Laser Surg. 23(1), 3–9 (2005).
[Crossref]

Leal-Junior, E. C. P.

L. Frigo, J. M. Cordeiro, G. M. Favero, D. A. Maria, E. C. P. Leal-Junior, J. Joensen, J. M. Bjordal, D. C. Roxo, R. L. Marcos, and R. A. B. Lopes-Martins, “High doses of laser phototherapy can increase proliferation in melanoma stromal connective tissue,” Lasers Med Sci. 33(6), 1215–1223 (2018).
[Crossref]

Lee, J.

K. Kim, J. Lee, H. Jang, S. Park, J. Na, J. K. Myung, M. J. Kim, W. S. Jang, S. J. Lee, H. Kim, H. Myung, J. Kang, and S. Shim, “PBM enhances the angiogenic effect of mesenchymal stem cells to mitigate radiation-induced enteropathy,” Int. J. Mol. Sci. 20(5), 1131 (2019).
[Crossref]

Lee, S. J.

K. Kim, J. Lee, H. Jang, S. Park, J. Na, J. K. Myung, M. J. Kim, W. S. Jang, S. J. Lee, H. Kim, H. Myung, J. Kang, and S. Shim, “PBM enhances the angiogenic effect of mesenchymal stem cells to mitigate radiation-induced enteropathy,” Int. J. Mol. Sci. 20(5), 1131 (2019).
[Crossref]

Lens, M. B.

M. B. Lens and M. Dawes, “Global perspectives of contemporary epidemiological trends of cutaneous malignant melanoma,” Br. J. Dermatol. 150(2), 179–185 (2004).
[Crossref]

Leusenka, I. A.

V. Y. Plavskii, A. V. Mikulich, A. I. Tretyakova, I. A. Leusenka, L. G. Plavskaya, O. A. Kazyuchits, I. I. Dobysh, and T. P. Krasnenkova, “Porphyrins and flavins as endogenous acceptors of optical radiation of blue spectral region determining photoinactivation of microbial cells,” J. Photochem. Photobiol., B 183(6), 172–183 (2018).
[Crossref]

Liebmann, J.

Z. C. F. Garza, M. Born, P. A. J. Hilbers, N. A. W. van Riel, and J. Liebmann, “Visible light therapy: molecular mechanisms and therapeutic opportunities,” Curr. Med. Chem. 25(40), 5564–5577 (2019).
[Crossref]

C. Oplander, A. Deck, C. M. Volkmar, M. Kirsch, J. Liebmann, M. Born, F. van Abeelen, E. E. van Faassen, K. D. Kröncke, J. Windolf, and C. V. Suschek, “Mechanism and biological relevance of blue-light (420-453 nm)-induced nonenzymatic nitric oxide generation from photolabile nitric oxide derivates in human skin in vitro and in vivo,” Free Radical Biol. Med. 65(2), 1363–1377 (2013).
[Crossref]

Lim, S.

P. S. Oh, K. S. Na, H. Hwang, H. S. Jeong, S. Lim, M. H. Sohn, and H. J. Jeong, “Effect of blue light emitting diodes on melanoma cells: involvement of apoptotic signaling,” J. Photochem. Photobiol., B 142(1), 197–203 (2015).
[Crossref]

Longauer, F.

P. Gál, M. Mokrý, B. Vidinský, R. Kilík, F. Depta, M. Harakalová, F. Longauer, S. Mozes, and J. Sabo, “Effect of equal daily doses achieved by different power densities of low-level laser therapy at 635 nm on open skin wound healing in normal and corticosteroid-treated rats,” Lasers Med Sci. 24(4), 539–547 (2009).
[Crossref]

Lopes-Martins, R. A. B.

L. Frigo, J. M. Cordeiro, G. M. Favero, D. A. Maria, E. C. P. Leal-Junior, J. Joensen, J. M. Bjordal, D. C. Roxo, R. L. Marcos, and R. A. B. Lopes-Martins, “High doses of laser phototherapy can increase proliferation in melanoma stromal connective tissue,” Lasers Med Sci. 33(6), 1215–1223 (2018).
[Crossref]

Lubart, R.

R. Lubart, M. Eichler, R. Lavi, H. Friedman, and A. Shainberg, “Low-energy laser irradiation promotes cellular redox activity,” Photomed. Laser Surg. 23(1), 3–9 (2005).
[Crossref]

Lunov, O.

Lunova, M.

Lynnyk, A.

Lyu, P.

Y. Wang, Y. Y. Huang, Y. Wang, P. Lyu, and M. R. Hamblin, “PBM (blue and green light) encourages osteoblastic-differentiation of human adipose-derived stem cells: role of intracellular calcium and light-gated ion channels,” Sci. Rep. 6(1), 33719 (2016).
[Crossref]

Mahmoudi, J.

F. Salehpour, J. Mahmoudi, F. Kamari, S. Sadigh-Eteghad, S. H. Rasta, and M. R. Hamblin, “Brain photobiomodulation therapy: a narrative review,” Mol. Neurobiol. 55(8), 6601–6636 (2018).
[Crossref]

Marcos, R. L.

L. Frigo, J. M. Cordeiro, G. M. Favero, D. A. Maria, E. C. P. Leal-Junior, J. Joensen, J. M. Bjordal, D. C. Roxo, R. L. Marcos, and R. A. B. Lopes-Martins, “High doses of laser phototherapy can increase proliferation in melanoma stromal connective tissue,” Lasers Med Sci. 33(6), 1215–1223 (2018).
[Crossref]

Maria, D. A.

L. Frigo, J. M. Cordeiro, G. M. Favero, D. A. Maria, E. C. P. Leal-Junior, J. Joensen, J. M. Bjordal, D. C. Roxo, R. L. Marcos, and R. A. B. Lopes-Martins, “High doses of laser phototherapy can increase proliferation in melanoma stromal connective tissue,” Lasers Med Sci. 33(6), 1215–1223 (2018).
[Crossref]

Marques, M. M.

L. H. Azevedo, F. de Paula Eduardo, M. S. Moreira, C. de Paula Eduardo, and M. M. Marques, “Influence of different power densities of LILT on cultured human fibroblast growth: a pilot study,” Lasers Med Sci. 21(2), 86–89 (2006).
[Crossref]

Martinelli, V.

G. Ottaviani, V. Martinelli, K. Rupel, N. Caronni, A. Naseem, L. Zandonà, G. Perinetti, M. Gobbo, R. Di Lenarda, R. Bussani, F. Benvenuti, M. Giacca, M. Biasotto, and S. Zacchigna, “Laser therapy inhibits tumor growth in mice by promoting immune surveillance and vessel normalization,” IEEE J. Sel. Top. Quantum Electron. 11(7), 165–172 (2016).
[Crossref]

McCarthy, T.

S. K. Sharma, G. B. Kharkwal, M. Sajo, Y. Y. Huang, L. De Taboada, T. McCarthy, and M. R. Hamblin, “Dose response effects of 810 nm laser light on mouse primary cortical neurons,” Lasers Surg. Med. 43(8), 851–859 (2011).
[Crossref]

Mei, Z.

T. Niu, Y. Tian, Z. Mei, and G. Guo, “Inhibition of autophagy enhances curcumin united light irradiation-induced oxidative stress and tumor growth suppression in human melanoma cells,” Sci. Rep. 6(1), 31383 (2016).
[Crossref]

Mignon, C.

I. Castellano-Pellicena, N. E. Uzunbajakava, C. Mignon, B. Raafs, V. A. Botchkarev, and M. J. Thornton, “Does blue light restore human epidermal barrier function via activation of Opsin during cutaneous wound healing?” Lasers Surg. Med. 51(4), 370–382 (2019).
[Crossref]

Mikulich, A. V.

V. Y. Plavskii, A. V. Mikulich, A. I. Tretyakova, I. A. Leusenka, L. G. Plavskaya, O. A. Kazyuchits, I. I. Dobysh, and T. P. Krasnenkova, “Porphyrins and flavins as endogenous acceptors of optical radiation of blue spectral region determining photoinactivation of microbial cells,” J. Photochem. Photobiol., B 183(6), 172–183 (2018).
[Crossref]

Mitsuoka, C.

M. Ohara, M. Kobayashi, H. Fujiwara, S. Kitajima, C. Mitsuoka, and H. Watanabe, “Blue light inhibits melanin synthesis in B16 melanoma 4A5 cells and skin pigmentation induced by ultraviolet B in guinea-pigs,” Photodermatol., Photoimmunol. Photomed. 20(2), 86–92 (2004).
[Crossref]

Mokrý, M.

P. Gál, M. Mokrý, B. Vidinský, R. Kilík, F. Depta, M. Harakalová, F. Longauer, S. Mozes, and J. Sabo, “Effect of equal daily doses achieved by different power densities of low-level laser therapy at 635 nm on open skin wound healing in normal and corticosteroid-treated rats,” Lasers Med Sci. 24(4), 539–547 (2009).
[Crossref]

Mordoh, J.

J. Bustamante, L. Guerra, L. Bredeston, J. Mordoh, and A. Boveris, “Melanin content and hydroperoxidemetabolism in human melanoma cells,” Exp. Cell Res. 196(2), 172–176 (1991).
[Crossref]

Moreira, M. S.

L. H. Azevedo, F. de Paula Eduardo, M. S. Moreira, C. de Paula Eduardo, and M. M. Marques, “Influence of different power densities of LILT on cultured human fibroblast growth: a pilot study,” Lasers Med Sci. 21(2), 86–89 (2006).
[Crossref]

Mozes, S.

P. Gál, M. Mokrý, B. Vidinský, R. Kilík, F. Depta, M. Harakalová, F. Longauer, S. Mozes, and J. Sabo, “Effect of equal daily doses achieved by different power densities of low-level laser therapy at 635 nm on open skin wound healing in normal and corticosteroid-treated rats,” Lasers Med Sci. 24(4), 539–547 (2009).
[Crossref]

Murray, C. K.

T. Dai, A. Gupta, C. K. Murray, M. S. Vrahas, G. P. Tegos, and M. R. Hamblin, “Blue light for infectious diseases: Propionibacterium acnes, Helicobacter pylori, and beyond?” Drug Resist. Updates 15(4), 223–236 (2012).
[Crossref]

Myung, H.

K. Kim, J. Lee, H. Jang, S. Park, J. Na, J. K. Myung, M. J. Kim, W. S. Jang, S. J. Lee, H. Kim, H. Myung, J. Kang, and S. Shim, “PBM enhances the angiogenic effect of mesenchymal stem cells to mitigate radiation-induced enteropathy,” Int. J. Mol. Sci. 20(5), 1131 (2019).
[Crossref]

Myung, J. K.

K. Kim, J. Lee, H. Jang, S. Park, J. Na, J. K. Myung, M. J. Kim, W. S. Jang, S. J. Lee, H. Kim, H. Myung, J. Kang, and S. Shim, “PBM enhances the angiogenic effect of mesenchymal stem cells to mitigate radiation-induced enteropathy,” Int. J. Mol. Sci. 20(5), 1131 (2019).
[Crossref]

Na, J.

K. Kim, J. Lee, H. Jang, S. Park, J. Na, J. K. Myung, M. J. Kim, W. S. Jang, S. J. Lee, H. Kim, H. Myung, J. Kang, and S. Shim, “PBM enhances the angiogenic effect of mesenchymal stem cells to mitigate radiation-induced enteropathy,” Int. J. Mol. Sci. 20(5), 1131 (2019).
[Crossref]

Na, K. S.

P. S. Oh, K. S. Na, H. Hwang, H. S. Jeong, S. Lim, M. H. Sohn, and H. J. Jeong, “Effect of blue light emitting diodes on melanoma cells: involvement of apoptotic signaling,” J. Photochem. Photobiol., B 142(1), 197–203 (2015).
[Crossref]

Naseem, A.

G. Ottaviani, V. Martinelli, K. Rupel, N. Caronni, A. Naseem, L. Zandonà, G. Perinetti, M. Gobbo, R. Di Lenarda, R. Bussani, F. Benvenuti, M. Giacca, M. Biasotto, and S. Zacchigna, “Laser therapy inhibits tumor growth in mice by promoting immune surveillance and vessel normalization,” IEEE J. Sel. Top. Quantum Electron. 11(7), 165–172 (2016).
[Crossref]

Niu, T.

T. Niu, Y. Tian, Z. Mei, and G. Guo, “Inhibition of autophagy enhances curcumin united light irradiation-induced oxidative stress and tumor growth suppression in human melanoma cells,” Sci. Rep. 6(1), 31383 (2016).
[Crossref]

Nosi, D.

A. Tani, F. Chellini, M. Giannelli, D. Nosi, S. Zecchi-Orlandini, and C. Sassoli, “Red (635 nm), near-infrared (808 nm) and violet-blue (405 nm) Photobiomodulation potentiality on human osteoblasts and mesenchymal stromal cells: a morphological and molecular in vitro study,” Int. J. Mol. Sci. 19(7), 1946 (2018).
[Crossref]

Oh, P. S.

P. S. Oh, K. S. Na, H. Hwang, H. S. Jeong, S. Lim, M. H. Sohn, and H. J. Jeong, “Effect of blue light emitting diodes on melanoma cells: involvement of apoptotic signaling,” J. Photochem. Photobiol., B 142(1), 197–203 (2015).
[Crossref]

Ohara, M.

M. Ohara, M. Kobayashi, H. Fujiwara, S. Kitajima, C. Mitsuoka, and H. Watanabe, “Blue light inhibits melanin synthesis in B16 melanoma 4A5 cells and skin pigmentation induced by ultraviolet B in guinea-pigs,” Photodermatol., Photoimmunol. Photomed. 20(2), 86–92 (2004).
[Crossref]

M. Ohara, Y. Kawashima, O. Katoh, and H. Watanabe, “Blue light inhibits the growth of B16 melanoma cells,” Jpn. J. Cancer Res. 93(5), 551–558 (2002).
[Crossref]

Olson, D.

R. J. Lanzafame, I. Stadler, A. F. Kurtz, R. Connelly, T. A. Peter Sr, P. Brondon, and D. Olson, “Reciprocity of exposure time and irradiance on energy density during photoradiation on wound healing in a murine pressure ulcer model,” Lasers Surg. Med. 39(6), 534–542 (2007).
[Crossref]

Oplander, C.

C. Oplander, A. Deck, C. M. Volkmar, M. Kirsch, J. Liebmann, M. Born, F. van Abeelen, E. E. van Faassen, K. D. Kröncke, J. Windolf, and C. V. Suschek, “Mechanism and biological relevance of blue-light (420-453 nm)-induced nonenzymatic nitric oxide generation from photolabile nitric oxide derivates in human skin in vitro and in vivo,” Free Radical Biol. Med. 65(2), 1363–1377 (2013).
[Crossref]

Ottaviani, G.

G. Ottaviani, V. Martinelli, K. Rupel, N. Caronni, A. Naseem, L. Zandonà, G. Perinetti, M. Gobbo, R. Di Lenarda, R. Bussani, F. Benvenuti, M. Giacca, M. Biasotto, and S. Zacchigna, “Laser therapy inhibits tumor growth in mice by promoting immune surveillance and vessel normalization,” IEEE J. Sel. Top. Quantum Electron. 11(7), 165–172 (2016).
[Crossref]

Park, S.

K. Kim, J. Lee, H. Jang, S. Park, J. Na, J. K. Myung, M. J. Kim, W. S. Jang, S. J. Lee, H. Kim, H. Myung, J. Kang, and S. Shim, “PBM enhances the angiogenic effect of mesenchymal stem cells to mitigate radiation-induced enteropathy,” Int. J. Mol. Sci. 20(5), 1131 (2019).
[Crossref]

Perinetti, G.

G. Ottaviani, V. Martinelli, K. Rupel, N. Caronni, A. Naseem, L. Zandonà, G. Perinetti, M. Gobbo, R. Di Lenarda, R. Bussani, F. Benvenuti, M. Giacca, M. Biasotto, and S. Zacchigna, “Laser therapy inhibits tumor growth in mice by promoting immune surveillance and vessel normalization,” IEEE J. Sel. Top. Quantum Electron. 11(7), 165–172 (2016).
[Crossref]

Peter Sr, T. A.

R. J. Lanzafame, I. Stadler, A. F. Kurtz, R. Connelly, T. A. Peter Sr, P. Brondon, and D. Olson, “Reciprocity of exposure time and irradiance on energy density during photoradiation on wound healing in a murine pressure ulcer model,” Lasers Surg. Med. 39(6), 534–542 (2007).
[Crossref]

Plavskaya, L. G.

V. Y. Plavskii, A. V. Mikulich, A. I. Tretyakova, I. A. Leusenka, L. G. Plavskaya, O. A. Kazyuchits, I. I. Dobysh, and T. P. Krasnenkova, “Porphyrins and flavins as endogenous acceptors of optical radiation of blue spectral region determining photoinactivation of microbial cells,” J. Photochem. Photobiol., B 183(6), 172–183 (2018).
[Crossref]

Plavskii, V. Y.

V. Y. Plavskii, A. V. Mikulich, A. I. Tretyakova, I. A. Leusenka, L. G. Plavskaya, O. A. Kazyuchits, I. I. Dobysh, and T. P. Krasnenkova, “Porphyrins and flavins as endogenous acceptors of optical radiation of blue spectral region determining photoinactivation of microbial cells,” J. Photochem. Photobiol., B 183(6), 172–183 (2018).
[Crossref]

Porter, M. L.

M. L. Porter, “Beyond the Eye: Molecular Evolution of Extraocular Photoreception,” Integr. Comp. Biol. 56(5), 842–852 (2016).
[Crossref]

Putzer, B. M.

B. M. Putzer, M. Steder, and V. Alla, “Predicting and preventing melanoma invasiveness: advances in clarifying E2F1 function,” Expert Rev. Anticancer Ther. 10(11), 1707–1720 (2010).
[Crossref]

Raafs, B.

I. Castellano-Pellicena, N. E. Uzunbajakava, C. Mignon, B. Raafs, V. A. Botchkarev, and M. J. Thornton, “Does blue light restore human epidermal barrier function via activation of Opsin during cutaneous wound healing?” Lasers Surg. Med. 51(4), 370–382 (2019).
[Crossref]

Rasta, S. H.

F. Salehpour, J. Mahmoudi, F. Kamari, S. Sadigh-Eteghad, S. H. Rasta, and M. R. Hamblin, “Brain photobiomodulation therapy: a narrative review,” Mol. Neurobiol. 55(8), 6601–6636 (2018).
[Crossref]

Ratinaud, M. H.

A. Sparsa, K. Faucher, V. Sol, H. Durox, S. Boulinguez, V. Doffoel-Hantz, C. A. Calliste, J. Cook-Moreau, P. Krausz, F. G. Sturtz, C. Bedane, M. O. Jauberteau-Marchan, M. H. Ratinaud, and J. M. Bonnetblanc, “Blue light is phototoxic for B16F10 murine melanoma and bovine endothelial cell lines by direct cytocidal effect,” Anticancer research. 30(1), 143–147 (2010).

Roxo, D. C.

L. Frigo, J. M. Cordeiro, G. M. Favero, D. A. Maria, E. C. P. Leal-Junior, J. Joensen, J. M. Bjordal, D. C. Roxo, R. L. Marcos, and R. A. B. Lopes-Martins, “High doses of laser phototherapy can increase proliferation in melanoma stromal connective tissue,” Lasers Med Sci. 33(6), 1215–1223 (2018).
[Crossref]

Rupel, K.

G. Ottaviani, V. Martinelli, K. Rupel, N. Caronni, A. Naseem, L. Zandonà, G. Perinetti, M. Gobbo, R. Di Lenarda, R. Bussani, F. Benvenuti, M. Giacca, M. Biasotto, and S. Zacchigna, “Laser therapy inhibits tumor growth in mice by promoting immune surveillance and vessel normalization,” IEEE J. Sel. Top. Quantum Electron. 11(7), 165–172 (2016).
[Crossref]

Sabo, J.

P. Gál, M. Mokrý, B. Vidinský, R. Kilík, F. Depta, M. Harakalová, F. Longauer, S. Mozes, and J. Sabo, “Effect of equal daily doses achieved by different power densities of low-level laser therapy at 635 nm on open skin wound healing in normal and corticosteroid-treated rats,” Lasers Med Sci. 24(4), 539–547 (2009).
[Crossref]

Sadigh-Eteghad, S.

F. Salehpour, J. Mahmoudi, F. Kamari, S. Sadigh-Eteghad, S. H. Rasta, and M. R. Hamblin, “Brain photobiomodulation therapy: a narrative review,” Mol. Neurobiol. 55(8), 6601–6636 (2018).
[Crossref]

Sajo, M.

S. K. Sharma, G. B. Kharkwal, M. Sajo, Y. Y. Huang, L. De Taboada, T. McCarthy, and M. R. Hamblin, “Dose response effects of 810 nm laser light on mouse primary cortical neurons,” Lasers Surg. Med. 43(8), 851–859 (2011).
[Crossref]

Salehpour, F.

F. Salehpour, J. Mahmoudi, F. Kamari, S. Sadigh-Eteghad, S. H. Rasta, and M. R. Hamblin, “Brain photobiomodulation therapy: a narrative review,” Mol. Neurobiol. 55(8), 6601–6636 (2018).
[Crossref]

Sassoli, C.

A. Tani, F. Chellini, M. Giannelli, D. Nosi, S. Zecchi-Orlandini, and C. Sassoli, “Red (635 nm), near-infrared (808 nm) and violet-blue (405 nm) Photobiomodulation potentiality on human osteoblasts and mesenchymal stromal cells: a morphological and molecular in vitro study,” Int. J. Mol. Sci. 19(7), 1946 (2018).
[Crossref]

Scolyer, R. A.

J. F. Thompson, R. A. Scolyer, and R. F. Kefford, “Cutaneous melanoma,” Lancet 365(9460), 687–701 (2005).
[Crossref]

Shainberg, A.

R. Lubart, M. Eichler, R. Lavi, H. Friedman, and A. Shainberg, “Low-energy laser irradiation promotes cellular redox activity,” Photomed. Laser Surg. 23(1), 3–9 (2005).
[Crossref]

Sharma, S. K.

Y. Y. Huang, S. K. Sharma, J. Carroll, and M. R. Hamblin, “Biphasic dose response in low level light therapy - an update,” Dose-Response 9(4), 602–618 (2011).
[Crossref]

S. K. Sharma, G. B. Kharkwal, M. Sajo, Y. Y. Huang, L. De Taboada, T. McCarthy, and M. R. Hamblin, “Dose response effects of 810 nm laser light on mouse primary cortical neurons,” Lasers Surg. Med. 43(8), 851–859 (2011).
[Crossref]

Shim, S.

K. Kim, J. Lee, H. Jang, S. Park, J. Na, J. K. Myung, M. J. Kim, W. S. Jang, S. J. Lee, H. Kim, H. Myung, J. Kang, and S. Shim, “PBM enhances the angiogenic effect of mesenchymal stem cells to mitigate radiation-induced enteropathy,” Int. J. Mol. Sci. 20(5), 1131 (2019).
[Crossref]

Shiotsu-Ogura, Y.

A. Yoshida, Y. Shiotsu-Ogura, S. Wada-Takahashi, S. S. Takahashi, T. Toyama, and F. Yoshino, “Blue light irradiation-induced oxidative stress in vivo via ROS generation in rat gingival tissue,” J. Photochem. Photobiol., B 151(2), 48–53 (2015).
[Crossref]

Smits, T.

M. M. Kleinpenning, T. Smits, M. H. Frunt, P. E. van Erp, P. C. van De Kerkhof, and R. M. Gerritsen, “Clinical and histological effects of blue light on normal skin,” Photodermatol., Photoimmunol. Photomed. 26(1), 16–21 (2010).
[Crossref]

Sohn, M. H.

P. S. Oh, K. S. Na, H. Hwang, H. S. Jeong, S. Lim, M. H. Sohn, and H. J. Jeong, “Effect of blue light emitting diodes on melanoma cells: involvement of apoptotic signaling,” J. Photochem. Photobiol., B 142(1), 197–203 (2015).
[Crossref]

Sol, V.

A. Sparsa, K. Faucher, V. Sol, H. Durox, S. Boulinguez, V. Doffoel-Hantz, C. A. Calliste, J. Cook-Moreau, P. Krausz, F. G. Sturtz, C. Bedane, M. O. Jauberteau-Marchan, M. H. Ratinaud, and J. M. Bonnetblanc, “Blue light is phototoxic for B16F10 murine melanoma and bovine endothelial cell lines by direct cytocidal effect,” Anticancer research. 30(1), 143–147 (2010).

Sparsa, A.

A. Sparsa, K. Faucher, V. Sol, H. Durox, S. Boulinguez, V. Doffoel-Hantz, C. A. Calliste, J. Cook-Moreau, P. Krausz, F. G. Sturtz, C. Bedane, M. O. Jauberteau-Marchan, M. H. Ratinaud, and J. M. Bonnetblanc, “Blue light is phototoxic for B16F10 murine melanoma and bovine endothelial cell lines by direct cytocidal effect,” Anticancer research. 30(1), 143–147 (2010).

Stadler, I.

R. J. Lanzafame, I. Stadler, A. F. Kurtz, R. Connelly, T. A. Peter Sr, P. Brondon, and D. Olson, “Reciprocity of exposure time and irradiance on energy density during photoradiation on wound healing in a murine pressure ulcer model,” Lasers Surg. Med. 39(6), 534–542 (2007).
[Crossref]

Steder, M.

B. M. Putzer, M. Steder, and V. Alla, “Predicting and preventing melanoma invasiveness: advances in clarifying E2F1 function,” Expert Rev. Anticancer Ther. 10(11), 1707–1720 (2010).
[Crossref]

Sturtz, F. G.

A. Sparsa, K. Faucher, V. Sol, H. Durox, S. Boulinguez, V. Doffoel-Hantz, C. A. Calliste, J. Cook-Moreau, P. Krausz, F. G. Sturtz, C. Bedane, M. O. Jauberteau-Marchan, M. H. Ratinaud, and J. M. Bonnetblanc, “Blue light is phototoxic for B16F10 murine melanoma and bovine endothelial cell lines by direct cytocidal effect,” Anticancer research. 30(1), 143–147 (2010).

Suschek, C. V.

C. Oplander, A. Deck, C. M. Volkmar, M. Kirsch, J. Liebmann, M. Born, F. van Abeelen, E. E. van Faassen, K. D. Kröncke, J. Windolf, and C. V. Suschek, “Mechanism and biological relevance of blue-light (420-453 nm)-induced nonenzymatic nitric oxide generation from photolabile nitric oxide derivates in human skin in vitro and in vivo,” Free Radical Biol. Med. 65(2), 1363–1377 (2013).
[Crossref]

Takahashi, S. S.

A. Yoshida, Y. Shiotsu-Ogura, S. Wada-Takahashi, S. S. Takahashi, T. Toyama, and F. Yoshino, “Blue light irradiation-induced oxidative stress in vivo via ROS generation in rat gingival tissue,” J. Photochem. Photobiol., B 151(2), 48–53 (2015).
[Crossref]

Tani, A.

A. Tani, F. Chellini, M. Giannelli, D. Nosi, S. Zecchi-Orlandini, and C. Sassoli, “Red (635 nm), near-infrared (808 nm) and violet-blue (405 nm) Photobiomodulation potentiality on human osteoblasts and mesenchymal stromal cells: a morphological and molecular in vitro study,” Int. J. Mol. Sci. 19(7), 1946 (2018).
[Crossref]

Tegos, G. P.

T. Dai, A. Gupta, C. K. Murray, M. S. Vrahas, G. P. Tegos, and M. R. Hamblin, “Blue light for infectious diseases: Propionibacterium acnes, Helicobacter pylori, and beyond?” Drug Resist. Updates 15(4), 223–236 (2012).
[Crossref]

Thompson, J. F.

J. F. Thompson, R. A. Scolyer, and R. F. Kefford, “Cutaneous melanoma,” Lancet 365(9460), 687–701 (2005).
[Crossref]

Thornton, M. J.

I. Castellano-Pellicena, N. E. Uzunbajakava, C. Mignon, B. Raafs, V. A. Botchkarev, and M. J. Thornton, “Does blue light restore human epidermal barrier function via activation of Opsin during cutaneous wound healing?” Lasers Surg. Med. 51(4), 370–382 (2019).
[Crossref]

Tian, Y.

T. Niu, Y. Tian, Z. Mei, and G. Guo, “Inhibition of autophagy enhances curcumin united light irradiation-induced oxidative stress and tumor growth suppression in human melanoma cells,” Sci. Rep. 6(1), 31383 (2016).
[Crossref]

Toyama, T.

A. Yoshida, Y. Shiotsu-Ogura, S. Wada-Takahashi, S. S. Takahashi, T. Toyama, and F. Yoshino, “Blue light irradiation-induced oxidative stress in vivo via ROS generation in rat gingival tissue,” J. Photochem. Photobiol., B 151(2), 48–53 (2015).
[Crossref]

Tretyakova, A. I.

V. Y. Plavskii, A. V. Mikulich, A. I. Tretyakova, I. A. Leusenka, L. G. Plavskaya, O. A. Kazyuchits, I. I. Dobysh, and T. P. Krasnenkova, “Porphyrins and flavins as endogenous acceptors of optical radiation of blue spectral region determining photoinactivation of microbial cells,” J. Photochem. Photobiol., B 183(6), 172–183 (2018).
[Crossref]

Tunney, M. M.

A. J. Brady, F. Kearney, and M. M. Tunney, “Comparative evaluation of 2,3-bis [2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium -5-carboxanilide (XTT) and 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2, 4-disulfophenyl)-2H-tetrazolium, monosodium salt (WST-8) rapid colorimetric assays for antimicrobial susceptibility testing of staphylococci and ESBL-producing clinical isolates,” J. Microbiol. Methods 71(3), 305–311 (2007).
[Crossref]

Uzunbajakava, N. E.

I. Castellano-Pellicena, N. E. Uzunbajakava, C. Mignon, B. Raafs, V. A. Botchkarev, and M. J. Thornton, “Does blue light restore human epidermal barrier function via activation of Opsin during cutaneous wound healing?” Lasers Surg. Med. 51(4), 370–382 (2019).
[Crossref]

van Abeelen, F.

C. Oplander, A. Deck, C. M. Volkmar, M. Kirsch, J. Liebmann, M. Born, F. van Abeelen, E. E. van Faassen, K. D. Kröncke, J. Windolf, and C. V. Suschek, “Mechanism and biological relevance of blue-light (420-453 nm)-induced nonenzymatic nitric oxide generation from photolabile nitric oxide derivates in human skin in vitro and in vivo,” Free Radical Biol. Med. 65(2), 1363–1377 (2013).
[Crossref]

van De Kerkhof, P. C.

M. M. Kleinpenning, T. Smits, M. H. Frunt, P. E. van Erp, P. C. van De Kerkhof, and R. M. Gerritsen, “Clinical and histological effects of blue light on normal skin,” Photodermatol., Photoimmunol. Photomed. 26(1), 16–21 (2010).
[Crossref]

van Erp, P. E.

M. M. Kleinpenning, T. Smits, M. H. Frunt, P. E. van Erp, P. C. van De Kerkhof, and R. M. Gerritsen, “Clinical and histological effects of blue light on normal skin,” Photodermatol., Photoimmunol. Photomed. 26(1), 16–21 (2010).
[Crossref]

van Faassen, E. E.

C. Oplander, A. Deck, C. M. Volkmar, M. Kirsch, J. Liebmann, M. Born, F. van Abeelen, E. E. van Faassen, K. D. Kröncke, J. Windolf, and C. V. Suschek, “Mechanism and biological relevance of blue-light (420-453 nm)-induced nonenzymatic nitric oxide generation from photolabile nitric oxide derivates in human skin in vitro and in vivo,” Free Radical Biol. Med. 65(2), 1363–1377 (2013).
[Crossref]

van Riel, N. A. W.

Z. C. F. Garza, M. Born, P. A. J. Hilbers, N. A. W. van Riel, and J. Liebmann, “Visible light therapy: molecular mechanisms and therapeutic opportunities,” Curr. Med. Chem. 25(40), 5564–5577 (2019).
[Crossref]

Vidinský, B.

P. Gál, M. Mokrý, B. Vidinský, R. Kilík, F. Depta, M. Harakalová, F. Longauer, S. Mozes, and J. Sabo, “Effect of equal daily doses achieved by different power densities of low-level laser therapy at 635 nm on open skin wound healing in normal and corticosteroid-treated rats,” Lasers Med Sci. 24(4), 539–547 (2009).
[Crossref]

Volkmar, C. M.

C. Oplander, A. Deck, C. M. Volkmar, M. Kirsch, J. Liebmann, M. Born, F. van Abeelen, E. E. van Faassen, K. D. Kröncke, J. Windolf, and C. V. Suschek, “Mechanism and biological relevance of blue-light (420-453 nm)-induced nonenzymatic nitric oxide generation from photolabile nitric oxide derivates in human skin in vitro and in vivo,” Free Radical Biol. Med. 65(2), 1363–1377 (2013).
[Crossref]

Vrahas, M. S.

T. Dai, A. Gupta, C. K. Murray, M. S. Vrahas, G. P. Tegos, and M. R. Hamblin, “Blue light for infectious diseases: Propionibacterium acnes, Helicobacter pylori, and beyond?” Drug Resist. Updates 15(4), 223–236 (2012).
[Crossref]

Wada-Takahashi, S.

A. Yoshida, Y. Shiotsu-Ogura, S. Wada-Takahashi, S. S. Takahashi, T. Toyama, and F. Yoshino, “Blue light irradiation-induced oxidative stress in vivo via ROS generation in rat gingival tissue,” J. Photochem. Photobiol., B 151(2), 48–53 (2015).
[Crossref]

Wang, Y.

Y. Wang, Y. Y. Huang, Y. Wang, P. Lyu, and M. R. Hamblin, “PBM (blue and green light) encourages osteoblastic-differentiation of human adipose-derived stem cells: role of intracellular calcium and light-gated ion channels,” Sci. Rep. 6(1), 33719 (2016).
[Crossref]

Y. Wang, Y. Y. Huang, Y. Wang, P. Lyu, and M. R. Hamblin, “PBM (blue and green light) encourages osteoblastic-differentiation of human adipose-derived stem cells: role of intracellular calcium and light-gated ion channels,” Sci. Rep. 6(1), 33719 (2016).
[Crossref]

Watanabe, H.

M. Ohara, M. Kobayashi, H. Fujiwara, S. Kitajima, C. Mitsuoka, and H. Watanabe, “Blue light inhibits melanin synthesis in B16 melanoma 4A5 cells and skin pigmentation induced by ultraviolet B in guinea-pigs,” Photodermatol., Photoimmunol. Photomed. 20(2), 86–92 (2004).
[Crossref]

M. Ohara, Y. Kawashima, O. Katoh, and H. Watanabe, “Blue light inhibits the growth of B16 melanoma cells,” Jpn. J. Cancer Res. 93(5), 551–558 (2002).
[Crossref]

Wikonkal, N.

P. Avci, G. K. Gupta, J. Clark, N. Wikonkal, and M. R. Hamblin, “Low-level laser (light) therapy (LLLT) for treatment of hair loss,” Lasers Surg. Med. 46(2), 144–151 (2014).
[Crossref]

Windolf, J.

C. Oplander, A. Deck, C. M. Volkmar, M. Kirsch, J. Liebmann, M. Born, F. van Abeelen, E. E. van Faassen, K. D. Kröncke, J. Windolf, and C. V. Suschek, “Mechanism and biological relevance of blue-light (420-453 nm)-induced nonenzymatic nitric oxide generation from photolabile nitric oxide derivates in human skin in vitro and in vivo,” Free Radical Biol. Med. 65(2), 1363–1377 (2013).
[Crossref]

Wu, S.

S. Wu, D. Xing, X. Gao, and W. R. Chen, “High fluence low-power laser irradiation induces mitochondrial permeability transition mediated by reactive oxygen species,” J. Cell. Physiol. 218(3), 603–611 (2009).
[Crossref]

Xing, D.

S. Wu, D. Xing, X. Gao, and W. R. Chen, “High fluence low-power laser irradiation induces mitochondrial permeability transition mediated by reactive oxygen species,” J. Cell. Physiol. 218(3), 603–611 (2009).
[Crossref]

J. Zhang, D. Xing, and X. Gao, “Low-power laser irradiation activates Srctyrosine kinase through reactive oxygen species-mediated signaling pathway,” J. Cell. Physiol. 217(2), 518–528 (2008).
[Crossref]

Yoshida, A.

A. Yoshida, Y. Shiotsu-Ogura, S. Wada-Takahashi, S. S. Takahashi, T. Toyama, and F. Yoshino, “Blue light irradiation-induced oxidative stress in vivo via ROS generation in rat gingival tissue,” J. Photochem. Photobiol., B 151(2), 48–53 (2015).
[Crossref]

Yoshino, F.

A. Yoshida, Y. Shiotsu-Ogura, S. Wada-Takahashi, S. S. Takahashi, T. Toyama, and F. Yoshino, “Blue light irradiation-induced oxidative stress in vivo via ROS generation in rat gingival tissue,” J. Photochem. Photobiol., B 151(2), 48–53 (2015).
[Crossref]

Young, S.

S. Young, P. Bolton, M. Dyson, W. Harvey, and C. Diamantopoulos, “Macrophage responsiveness to light therapy,” Lasers Surg. Med. 9(5), 497–505 (1989).
[Crossref]

Zacchigna, S.

G. Ottaviani, V. Martinelli, K. Rupel, N. Caronni, A. Naseem, L. Zandonà, G. Perinetti, M. Gobbo, R. Di Lenarda, R. Bussani, F. Benvenuti, M. Giacca, M. Biasotto, and S. Zacchigna, “Laser therapy inhibits tumor growth in mice by promoting immune surveillance and vessel normalization,” IEEE J. Sel. Top. Quantum Electron. 11(7), 165–172 (2016).
[Crossref]

Zandonà, L.

G. Ottaviani, V. Martinelli, K. Rupel, N. Caronni, A. Naseem, L. Zandonà, G. Perinetti, M. Gobbo, R. Di Lenarda, R. Bussani, F. Benvenuti, M. Giacca, M. Biasotto, and S. Zacchigna, “Laser therapy inhibits tumor growth in mice by promoting immune surveillance and vessel normalization,” IEEE J. Sel. Top. Quantum Electron. 11(7), 165–172 (2016).
[Crossref]

Zecchi-Orlandini, S.

A. Tani, F. Chellini, M. Giannelli, D. Nosi, S. Zecchi-Orlandini, and C. Sassoli, “Red (635 nm), near-infrared (808 nm) and violet-blue (405 nm) Photobiomodulation potentiality on human osteoblasts and mesenchymal stromal cells: a morphological and molecular in vitro study,” Int. J. Mol. Sci. 19(7), 1946 (2018).
[Crossref]

Zhang, J.

J. Zhang, D. Xing, and X. Gao, “Low-power laser irradiation activates Srctyrosine kinase through reactive oxygen species-mediated signaling pathway,” J. Cell. Physiol. 217(2), 518–528 (2008).
[Crossref]

Zhu, Y.

AIMS Biophys. (1)

M. R. Hamblin, “Mechanisms and applications of the anti-inflammatory effects of PBM,” AIMS Biophys. 4(3), 337–361 (2017).
[Crossref]

Anticancer research. (1)

A. Sparsa, K. Faucher, V. Sol, H. Durox, S. Boulinguez, V. Doffoel-Hantz, C. A. Calliste, J. Cook-Moreau, P. Krausz, F. G. Sturtz, C. Bedane, M. O. Jauberteau-Marchan, M. H. Ratinaud, and J. M. Bonnetblanc, “Blue light is phototoxic for B16F10 murine melanoma and bovine endothelial cell lines by direct cytocidal effect,” Anticancer research. 30(1), 143–147 (2010).

Biomed. Opt. Express (2)

Br. J. Dermatol. (1)

M. B. Lens and M. Dawes, “Global perspectives of contemporary epidemiological trends of cutaneous malignant melanoma,” Br. J. Dermatol. 150(2), 179–185 (2004).
[Crossref]

Curr. Med. Chem. (1)

Z. C. F. Garza, M. Born, P. A. J. Hilbers, N. A. W. van Riel, and J. Liebmann, “Visible light therapy: molecular mechanisms and therapeutic opportunities,” Curr. Med. Chem. 25(40), 5564–5577 (2019).
[Crossref]

Dose-Response (1)

Y. Y. Huang, S. K. Sharma, J. Carroll, and M. R. Hamblin, “Biphasic dose response in low level light therapy - an update,” Dose-Response 9(4), 602–618 (2011).
[Crossref]

Drug Resist. Updates (1)

T. Dai, A. Gupta, C. K. Murray, M. S. Vrahas, G. P. Tegos, and M. R. Hamblin, “Blue light for infectious diseases: Propionibacterium acnes, Helicobacter pylori, and beyond?” Drug Resist. Updates 15(4), 223–236 (2012).
[Crossref]

Exp. Cell Res. (1)

J. Bustamante, L. Guerra, L. Bredeston, J. Mordoh, and A. Boveris, “Melanin content and hydroperoxidemetabolism in human melanoma cells,” Exp. Cell Res. 196(2), 172–176 (1991).
[Crossref]

Expert Rev. Anticancer Ther. (1)

B. M. Putzer, M. Steder, and V. Alla, “Predicting and preventing melanoma invasiveness: advances in clarifying E2F1 function,” Expert Rev. Anticancer Ther. 10(11), 1707–1720 (2010).
[Crossref]

Free Radical Biol. Med. (2)

C. Oplander, A. Deck, C. M. Volkmar, M. Kirsch, J. Liebmann, M. Born, F. van Abeelen, E. E. van Faassen, K. D. Kröncke, J. Windolf, and C. V. Suschek, “Mechanism and biological relevance of blue-light (420-453 nm)-induced nonenzymatic nitric oxide generation from photolabile nitric oxide derivates in human skin in vitro and in vivo,” Free Radical Biol. Med. 65(2), 1363–1377 (2013).
[Crossref]

P. S. Brookes, “Mitochondrial H (+) leak and ROS generation: an odd couple,” Free Radical Biol. Med. 38(1), 12–23 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

L. F. DeFreitas and M. R. Hamblin, “Proposed mechanisms of PBM or low-level light therapy,” IEEE J. Sel. Top. Quantum Electron. 22(3), 348–364 (2016).
[Crossref]

G. Ottaviani, V. Martinelli, K. Rupel, N. Caronni, A. Naseem, L. Zandonà, G. Perinetti, M. Gobbo, R. Di Lenarda, R. Bussani, F. Benvenuti, M. Giacca, M. Biasotto, and S. Zacchigna, “Laser therapy inhibits tumor growth in mice by promoting immune surveillance and vessel normalization,” IEEE J. Sel. Top. Quantum Electron. 11(7), 165–172 (2016).
[Crossref]

Int. J. Mol. Sci. (2)

K. Kim, J. Lee, H. Jang, S. Park, J. Na, J. K. Myung, M. J. Kim, W. S. Jang, S. J. Lee, H. Kim, H. Myung, J. Kang, and S. Shim, “PBM enhances the angiogenic effect of mesenchymal stem cells to mitigate radiation-induced enteropathy,” Int. J. Mol. Sci. 20(5), 1131 (2019).
[Crossref]

A. Tani, F. Chellini, M. Giannelli, D. Nosi, S. Zecchi-Orlandini, and C. Sassoli, “Red (635 nm), near-infrared (808 nm) and violet-blue (405 nm) Photobiomodulation potentiality on human osteoblasts and mesenchymal stromal cells: a morphological and molecular in vitro study,” Int. J. Mol. Sci. 19(7), 1946 (2018).
[Crossref]

Integr. Comp. Biol. (1)

M. L. Porter, “Beyond the Eye: Molecular Evolution of Extraocular Photoreception,” Integr. Comp. Biol. 56(5), 842–852 (2016).
[Crossref]

J. Cell. Physiol. (2)

J. Zhang, D. Xing, and X. Gao, “Low-power laser irradiation activates Srctyrosine kinase through reactive oxygen species-mediated signaling pathway,” J. Cell. Physiol. 217(2), 518–528 (2008).
[Crossref]

S. Wu, D. Xing, X. Gao, and W. R. Chen, “High fluence low-power laser irradiation induces mitochondrial permeability transition mediated by reactive oxygen species,” J. Cell. Physiol. 218(3), 603–611 (2009).
[Crossref]

J. Microbiol. Methods (1)

A. J. Brady, F. Kearney, and M. M. Tunney, “Comparative evaluation of 2,3-bis [2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium -5-carboxanilide (XTT) and 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2, 4-disulfophenyl)-2H-tetrazolium, monosodium salt (WST-8) rapid colorimetric assays for antimicrobial susceptibility testing of staphylococci and ESBL-producing clinical isolates,” J. Microbiol. Methods 71(3), 305–311 (2007).
[Crossref]

J. Photochem. Photobiol., B (4)

P. S. Oh, K. S. Na, H. Hwang, H. S. Jeong, S. Lim, M. H. Sohn, and H. J. Jeong, “Effect of blue light emitting diodes on melanoma cells: involvement of apoptotic signaling,” J. Photochem. Photobiol., B 142(1), 197–203 (2015).
[Crossref]

V. Y. Plavskii, A. V. Mikulich, A. I. Tretyakova, I. A. Leusenka, L. G. Plavskaya, O. A. Kazyuchits, I. I. Dobysh, and T. P. Krasnenkova, “Porphyrins and flavins as endogenous acceptors of optical radiation of blue spectral region determining photoinactivation of microbial cells,” J. Photochem. Photobiol., B 183(6), 172–183 (2018).
[Crossref]

A. Yoshida, Y. Shiotsu-Ogura, S. Wada-Takahashi, S. S. Takahashi, T. Toyama, and F. Yoshino, “Blue light irradiation-induced oxidative stress in vivo via ROS generation in rat gingival tissue,” J. Photochem. Photobiol., B 151(2), 48–53 (2015).
[Crossref]

T. Karu, “Primary and secondary mechanisms of action of visible to near-IR radiation on cells,” J. Photochem. Photobiol., B 49(1), 1–17 (1999).
[Crossref]

Jpn. J. Cancer Res. (1)

M. Ohara, Y. Kawashima, O. Katoh, and H. Watanabe, “Blue light inhibits the growth of B16 melanoma cells,” Jpn. J. Cancer Res. 93(5), 551–558 (2002).
[Crossref]

Lancet (1)

J. F. Thompson, R. A. Scolyer, and R. F. Kefford, “Cutaneous melanoma,” Lancet 365(9460), 687–701 (2005).
[Crossref]

Lasers Med Sci. (3)

P. Gál, M. Mokrý, B. Vidinský, R. Kilík, F. Depta, M. Harakalová, F. Longauer, S. Mozes, and J. Sabo, “Effect of equal daily doses achieved by different power densities of low-level laser therapy at 635 nm on open skin wound healing in normal and corticosteroid-treated rats,” Lasers Med Sci. 24(4), 539–547 (2009).
[Crossref]

L. Frigo, J. M. Cordeiro, G. M. Favero, D. A. Maria, E. C. P. Leal-Junior, J. Joensen, J. M. Bjordal, D. C. Roxo, R. L. Marcos, and R. A. B. Lopes-Martins, “High doses of laser phototherapy can increase proliferation in melanoma stromal connective tissue,” Lasers Med Sci. 33(6), 1215–1223 (2018).
[Crossref]

L. H. Azevedo, F. de Paula Eduardo, M. S. Moreira, C. de Paula Eduardo, and M. M. Marques, “Influence of different power densities of LILT on cultured human fibroblast growth: a pilot study,” Lasers Med Sci. 21(2), 86–89 (2006).
[Crossref]

Lasers Surg. Med. (5)

S. K. Sharma, G. B. Kharkwal, M. Sajo, Y. Y. Huang, L. De Taboada, T. McCarthy, and M. R. Hamblin, “Dose response effects of 810 nm laser light on mouse primary cortical neurons,” Lasers Surg. Med. 43(8), 851–859 (2011).
[Crossref]

I. Castellano-Pellicena, N. E. Uzunbajakava, C. Mignon, B. Raafs, V. A. Botchkarev, and M. J. Thornton, “Does blue light restore human epidermal barrier function via activation of Opsin during cutaneous wound healing?” Lasers Surg. Med. 51(4), 370–382 (2019).
[Crossref]

P. Avci, G. K. Gupta, J. Clark, N. Wikonkal, and M. R. Hamblin, “Low-level laser (light) therapy (LLLT) for treatment of hair loss,” Lasers Surg. Med. 46(2), 144–151 (2014).
[Crossref]

S. Young, P. Bolton, M. Dyson, W. Harvey, and C. Diamantopoulos, “Macrophage responsiveness to light therapy,” Lasers Surg. Med. 9(5), 497–505 (1989).
[Crossref]

R. J. Lanzafame, I. Stadler, A. F. Kurtz, R. Connelly, T. A. Peter Sr, P. Brondon, and D. Olson, “Reciprocity of exposure time and irradiance on energy density during photoradiation on wound healing in a murine pressure ulcer model,” Lasers Surg. Med. 39(6), 534–542 (2007).
[Crossref]

Mol. Neurobiol. (1)

F. Salehpour, J. Mahmoudi, F. Kamari, S. Sadigh-Eteghad, S. H. Rasta, and M. R. Hamblin, “Brain photobiomodulation therapy: a narrative review,” Mol. Neurobiol. 55(8), 6601–6636 (2018).
[Crossref]

Photobiomodulation, Photomed., Laser Surg. (1)

M. R. Hamblin, “PBM, Photomedicine, and laser surgery: a new leap forward into the light for the 21(st) century,” Photobiomodulation, Photomed., Laser Surg. 36(8), 395–396 (2018).
[Crossref]

Photodermatol., Photoimmunol. Photomed. (2)

M. M. Kleinpenning, T. Smits, M. H. Frunt, P. E. van Erp, P. C. van De Kerkhof, and R. M. Gerritsen, “Clinical and histological effects of blue light on normal skin,” Photodermatol., Photoimmunol. Photomed. 26(1), 16–21 (2010).
[Crossref]

M. Ohara, M. Kobayashi, H. Fujiwara, S. Kitajima, C. Mitsuoka, and H. Watanabe, “Blue light inhibits melanin synthesis in B16 melanoma 4A5 cells and skin pigmentation induced by ultraviolet B in guinea-pigs,” Photodermatol., Photoimmunol. Photomed. 20(2), 86–92 (2004).
[Crossref]

Photomed. Laser Surg. (1)

R. Lubart, M. Eichler, R. Lavi, H. Friedman, and A. Shainberg, “Low-energy laser irradiation promotes cellular redox activity,” Photomed. Laser Surg. 23(1), 3–9 (2005).
[Crossref]

Sci. Rep. (2)

T. Niu, Y. Tian, Z. Mei, and G. Guo, “Inhibition of autophagy enhances curcumin united light irradiation-induced oxidative stress and tumor growth suppression in human melanoma cells,” Sci. Rep. 6(1), 31383 (2016).
[Crossref]

Y. Wang, Y. Y. Huang, Y. Wang, P. Lyu, and M. R. Hamblin, “PBM (blue and green light) encourages osteoblastic-differentiation of human adipose-derived stem cells: role of intracellular calcium and light-gated ion channels,” Sci. Rep. 6(1), 33719 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Light humidified incubator and spectrum of the respective LED light source. (A) Light humidified incubator. (B) The spectra of blue light (418 nm,457 nm) and red light (630 nm) used in this study. The LEDs light sources are on top of the incubator and can be replaced.
Fig. 2.
Fig. 2. B16F10 melanoma cells were treated with light at 418 nm and 457 nm of blue, and 630 nm of red. The 630 nm had no effect on cells, 418 nm and 457 nm inhibited cells. At 900 s, 457 nm inhibited cells were better than 418 nm(p < 0.05).
Fig. 3.
Fig. 3. Cell migration results after irradiation for 450 s at 2.48 mW/cm2 (418 nm, 457 nm, and 630 nm). (A) Photograph of cell migration, the area between the two yellow lines was the wound area (B) Statistical analysis of migration ratio,*** p < 0.001
Fig. 4.
Fig. 4. In vitro cell culture temperature
Fig. 5.
Fig. 5. Treatment of melanoma cells with various irradiance (0.31-19.84 mW/cm2) for 450 seconds, the inhibition ratio of the control group was 0.
Fig. 6.
Fig. 6. The inhibition ratio of cells treated with three different irradiance (0.31,0.62,0.93 mW/cm2) at the same doses (0, 0.04, 0.07, 0.15, 0.22, 0.30, 0.37, 0.45, 0.56 or 1.12 J/cm2), the inhibition ratio of the control group was 0.
Fig. 7.
Fig. 7. The inhibition ratio of cells treated with three different irradiance (0.31,0.62,0.93 mW/cm2) at the same doses (0, 0.04, 0.07, 0.15, 0.22, 0.30, 0.37, 0.45, 0.56 or 1.12 J/cm2), the inhibition ratio of the control group was 0. * p < 0.05, ** p < 0.01, *** p < 0.001
Fig. 8.
Fig. 8. Effect of 457 nm irradiation on the production of ROS in B16F10 melanoma cells. (A) Fluorescence of cellular reactive oxygen species (B) Statistical analysis of the average fluorescence intensity of reactive oxygen species. * p < 0.05, *** p < 0.001
Fig. 9.
Fig. 9. Effect of 457 nm irradiation on MMP in B16F10 melanoma cells. The higher the irradiance, the more obvious the loss of MMP (mt.ΔΨ) (A) Fluorescence of MMP (B) Statistical analysis of the fluorescence rate of MMP * p < 0.05, ** p < 0.01

Tables (1)

Tables Icon

Table 1. Experimental conditions

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Cell inhibition rate = [ ( Ac - As ) / ( Ac - Ab ) ] × 100 %

Metrics