Abstract

In Fourier-domain optical coherence tomography (OCT), the finite bandwidth of the acquisition electronics constrains the depth range and speed of the system. Circular-ranging (CR) OCT methods use optical-domain compression to surpass this limit. However, the CR-OCT system architectures of prior reports were limited by poor stability and were confined to the 1.55 µm wavelength range. In this work, we describe a novel CR-OCT architecture that is free from these limitations. To ensure stable operation, temperature sensitive optical modules within the system were replaced; the kilometer-length fiber spools used in the stretched-pulse mode-locked (SPML) laser was eliminated in favor of a single 10 meter, continuously chirped fiber Bragg grating, and the interferometer’s passive optical quadrature demodulation circuit was replaced by an active technique using a lithium niobate phase modulator. For improved imaging penetration in biological tissues, the system operating wavelength was shifted to a center wavelength of 1.29 µm by leveraging the wavelength flexibility intrinsic to CFBG-based dispersive fibers. These improvements were achieved while maintaining a broad (100 nm) optical bandwidth, a long 4 cm imaging range, and a high 7.6 MHz A-line rate. By enhancing stability, simplifying overall system design, and operating at 1.3 µm, this CR-OCT architecture will allow a broader exploration of CR-OCT in both medical and non-medical applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm

B. Hyle Park, Mark C. Pierce, Barry Cense, Seok-Hyun Yun, Mircea Mujat, Guillermo J. Tearney, Brett E. Bouma, and Johannes F. de Boer
Opt. Express 13(11) 3931-3944 (2005)

High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength

S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer
Opt. Express 11(26) 3598-3604 (2003)

References

  • View by:
  • |
  • |
  • |

  1. Z. Wang, B. Potsaid, L. Chen, C. Doerr, H.-C. Lee, T. Nielson, V. Jayaraman, A. E. Cable, E. Swanson, and J. G. Fujimoto, “Cubic meter volume optical coherence tomography,” Optica 3(12), 1496–1503 (2016).
    [Crossref]
  2. T. Pfeiffer, M. Petermann, W. Draxinger, C. Jirauschek, and R. Huber, “Ultra low noise Fourier domain mode locked laser for high quality megahertz optical coherence tomography,” Biomed. Opt. Express 9(9), 4130–4148 (2018).
    [Crossref]
  3. M. Siddiqui and B. J. Vakoc, “Optical-domain subsampling for data efficient depth ranging in Fourier-domain optical coherence tomography,” Opt. Express 20(16), 17938–17951 (2012).
    [Crossref]
  4. M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12(2), 111–116 (2018).
    [Crossref]
  5. N. Lippok, M. Siddiqui, B. J. Vakoc, and B. E. Bouma, “Extended coherence length and depth ranging using a Fourier-domain mode-locked frequency comb and circular interferometric ranging,” Phys. Rev. Appl. 11(1), 014018 (2019).
    [Crossref]
  6. M. Siddiqui, S. Tozburun, E. Z. Zhang, and B. J. Vakoc, “Compensation of spectral and RF errors in swept-source OCT for high extinction complex demodulation,” Opt. Express 23(5), 5508–5520 (2015).
    [Crossref]
  7. R. Khazaeinezhad, M. Siddiqui, and B. J. Vakoc, “16 MHz wavelength-swept and wavelength-stepped laser architectures based on stretched-pulse active mode locking with a single continuously chirped fiber Bragg grating,” Opt. Lett. 42(10), 2046–2049 (2017).
    [Crossref]
  8. J. J. Carr, S. L. Saikkonen, and D. H. Williams, “Refractive index measurements on single-mode fiber as functions of product parameters, tensile stress, and temperature,” Fiber Integr. Opt. 9(4), 393–396 (1990).
    [Crossref]
  9. B. Hofer, B. Povazay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, “Dispersion encoded full range frequency domain optical coherence tomography,” Opt. Express 17(1), 7–24 (2009).
    [Crossref]
  10. M. A. Choma, C. Yang, and J. A. Izatt, “Instantaneous quadrature low-coherence interferometry with 3x3 fiber-optic couplers,” Opt. Lett. 28(22), 2162–2164 (2003).
    [Crossref]
  11. B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Elimination of depth degeneracy in optical frequencydomain imaging through polarization-based optical demodulation,” Opt. Lett. 31(3), 362–364 (2006).
    [Crossref]
  12. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27(16), 1415–1417 (2002).
    [Crossref]
  13. R. A. Leitgeb, C. K. Hitzenberger, T. Bajraszewski, and A. F. Fercher, “Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography,” Opt. Lett. 28(22), 2201–2203 (2003).
    [Crossref]
  14. S. Yun, G. Tearney, J. de Boer, and B. Bouma, “Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting,” Opt. Express 12(20), 4822–4828 (2004).
    [Crossref]
  15. A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt. 10(6), 064005 (2005).
    [Crossref]
  16. J. Zhang, J. S. Nelson, and Z. Chen, “Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electrooptic phase modulator,” Opt. Lett. 30(2), 147–149 (2005).
    [Crossref]
  17. Y. K. Tao, M. Zhao, and J. A. Izatt, “High-speed complex conjugate resolved retinal spectral domain optical coherence tomography using sinusoidal phase modulation,” Opt. Lett. 32(20), 2918–2920 (2007).
    [Crossref]
  18. Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, “Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography,” Appl. Opt. 45(8), 1861–1865 (2006).
    [Crossref]
  19. R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, “Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning,” Opt. Lett. 32(23), 3453–3455 (2007).
    [Crossref]
  20. B. Baumann, M. Pircher, E. Goetzinger, and C. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express 15(20), 13375–13387 (2007).
    [Crossref]
  21. A. B. Vakhtin, K. A. Peterson, and D. J. Kane, “Resolving the complex conjugate ambiguity in Fourier-domain OCT by harmonic lock-in detection of the spectral interferogram,” Opt. Lett. 31(9), 1271–1273 (2006).
    [Crossref]
  22. E. Götzinger, M. Pircher, R. A. Leitgeb, and C. K. Hitzenberger, “High speed full range complex spectral domain optical coherence tomography,” Opt. Express 13(2), 583–594 (2005).
    [Crossref]

2019 (1)

N. Lippok, M. Siddiqui, B. J. Vakoc, and B. E. Bouma, “Extended coherence length and depth ranging using a Fourier-domain mode-locked frequency comb and circular interferometric ranging,” Phys. Rev. Appl. 11(1), 014018 (2019).
[Crossref]

2018 (2)

T. Pfeiffer, M. Petermann, W. Draxinger, C. Jirauschek, and R. Huber, “Ultra low noise Fourier domain mode locked laser for high quality megahertz optical coherence tomography,” Biomed. Opt. Express 9(9), 4130–4148 (2018).
[Crossref]

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12(2), 111–116 (2018).
[Crossref]

2017 (1)

2016 (1)

2015 (1)

2012 (1)

2009 (1)

2007 (3)

2006 (3)

2005 (3)

2004 (1)

2003 (2)

2002 (1)

1990 (1)

J. J. Carr, S. L. Saikkonen, and D. H. Williams, “Refractive index measurements on single-mode fiber as functions of product parameters, tensile stress, and temperature,” Fiber Integr. Opt. 9(4), 393–396 (1990).
[Crossref]

Aoki, G.

Bajraszewski, T.

Baumann, B.

Blatter, C.

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12(2), 111–116 (2018).
[Crossref]

Bouma, B.

Bouma, B. E.

N. Lippok, M. Siddiqui, B. J. Vakoc, and B. E. Bouma, “Extended coherence length and depth ranging using a Fourier-domain mode-locked frequency comb and circular interferometric ranging,” Phys. Rev. Appl. 11(1), 014018 (2019).
[Crossref]

B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Elimination of depth degeneracy in optical frequencydomain imaging through polarization-based optical demodulation,” Opt. Lett. 31(3), 362–364 (2006).
[Crossref]

Cable, A. E.

Carr, J. J.

J. J. Carr, S. L. Saikkonen, and D. H. Williams, “Refractive index measurements on single-mode fiber as functions of product parameters, tensile stress, and temperature,” Fiber Integr. Opt. 9(4), 393–396 (1990).
[Crossref]

Chen, L.

Chen, Z.

Choma, M. A.

A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt. 10(6), 064005 (2005).
[Crossref]

M. A. Choma, C. Yang, and J. A. Izatt, “Instantaneous quadrature low-coherence interferometry with 3x3 fiber-optic couplers,” Opt. Lett. 28(22), 2162–2164 (2003).
[Crossref]

Davis, A. M.

A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt. 10(6), 064005 (2005).
[Crossref]

de Boer, J.

Doerr, C.

Draxinger, W.

Drexler, W.

Endo, T.

Fercher, A. F.

Fujimoto, J. G.

Goetzinger, E.

Götzinger, E.

Hermann, B.

Hitzenberger, C. K.

Hofer, B.

Huber, R.

Itoh, M.

Izatt, J. A.

Jayaraman, V.

Jirauschek, C.

Kane, D. J.

Khazaeinezhad, R.

Kowalczyk, A.

Lasser, T.

Lee, H.-C.

Leitgeb, R.

Leitgeb, R. A.

Lippok, N.

N. Lippok, M. Siddiqui, B. J. Vakoc, and B. E. Bouma, “Extended coherence length and depth ranging using a Fourier-domain mode-locked frequency comb and circular interferometric ranging,” Phys. Rev. Appl. 11(1), 014018 (2019).
[Crossref]

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12(2), 111–116 (2018).
[Crossref]

Makita, S.

Matz, G.

Michaely, R.

Nam, A. S.

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12(2), 111–116 (2018).
[Crossref]

Nelson, J. S.

Nielson, T.

Petermann, M.

Peterson, K. A.

Pfeiffer, T.

Pircher, M.

Potsaid, B.

Povazay, B.

Saikkonen, S. L.

J. J. Carr, S. L. Saikkonen, and D. H. Williams, “Refractive index measurements on single-mode fiber as functions of product parameters, tensile stress, and temperature,” Fiber Integr. Opt. 9(4), 393–396 (1990).
[Crossref]

Sekhar, S. C.

Siddiqui, M.

Swanson, E.

Tao, Y. K.

Tearney, G.

Tearney, G. J.

Tozburun, S.

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12(2), 111–116 (2018).
[Crossref]

M. Siddiqui, S. Tozburun, E. Z. Zhang, and B. J. Vakoc, “Compensation of spectral and RF errors in swept-source OCT for high extinction complex demodulation,” Opt. Express 23(5), 5508–5520 (2015).
[Crossref]

Unterhuber, A.

Vakhtin, A. B.

Vakoc, B. J.

Wang, Z.

Williams, D. H.

J. J. Carr, S. L. Saikkonen, and D. H. Williams, “Refractive index measurements on single-mode fiber as functions of product parameters, tensile stress, and temperature,” Fiber Integr. Opt. 9(4), 393–396 (1990).
[Crossref]

Wojtkowski, M.

Yang, C.

Yasuno, Y.

Yatagai, T.

Yun, S.

Yun, S. H.

Zhang, E. Z.

Zhang, J.

Zhao, M.

Appl. Opt. (1)

Biomed. Opt. Express (1)

Fiber Integr. Opt. (1)

J. J. Carr, S. L. Saikkonen, and D. H. Williams, “Refractive index measurements on single-mode fiber as functions of product parameters, tensile stress, and temperature,” Fiber Integr. Opt. 9(4), 393–396 (1990).
[Crossref]

J. Biomed. Opt. (1)

A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt. 10(6), 064005 (2005).
[Crossref]

Nat. Photonics (1)

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12(2), 111–116 (2018).
[Crossref]

Opt. Express (6)

Opt. Lett. (9)

Y. K. Tao, M. Zhao, and J. A. Izatt, “High-speed complex conjugate resolved retinal spectral domain optical coherence tomography using sinusoidal phase modulation,” Opt. Lett. 32(20), 2918–2920 (2007).
[Crossref]

R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, “Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning,” Opt. Lett. 32(23), 3453–3455 (2007).
[Crossref]

R. Khazaeinezhad, M. Siddiqui, and B. J. Vakoc, “16 MHz wavelength-swept and wavelength-stepped laser architectures based on stretched-pulse active mode locking with a single continuously chirped fiber Bragg grating,” Opt. Lett. 42(10), 2046–2049 (2017).
[Crossref]

B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Elimination of depth degeneracy in optical frequencydomain imaging through polarization-based optical demodulation,” Opt. Lett. 31(3), 362–364 (2006).
[Crossref]

A. B. Vakhtin, K. A. Peterson, and D. J. Kane, “Resolving the complex conjugate ambiguity in Fourier-domain OCT by harmonic lock-in detection of the spectral interferogram,” Opt. Lett. 31(9), 1271–1273 (2006).
[Crossref]

J. Zhang, J. S. Nelson, and Z. Chen, “Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electrooptic phase modulator,” Opt. Lett. 30(2), 147–149 (2005).
[Crossref]

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27(16), 1415–1417 (2002).
[Crossref]

M. A. Choma, C. Yang, and J. A. Izatt, “Instantaneous quadrature low-coherence interferometry with 3x3 fiber-optic couplers,” Opt. Lett. 28(22), 2162–2164 (2003).
[Crossref]

R. A. Leitgeb, C. K. Hitzenberger, T. Bajraszewski, and A. F. Fercher, “Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography,” Opt. Lett. 28(22), 2201–2203 (2003).
[Crossref]

Optica (1)

Phys. Rev. Appl. (1)

N. Lippok, M. Siddiqui, B. J. Vakoc, and B. E. Bouma, “Extended coherence length and depth ranging using a Fourier-domain mode-locked frequency comb and circular interferometric ranging,” Phys. Rev. Appl. 11(1), 014018 (2019).
[Crossref]

Supplementary Material (2)

NameDescription
» Visualization 1       Volumetric depth projections showing human teeth at 15 volumes per second using a 50 mm lens.
» Visualization 2       Volumetric depth projections showing human teeth at 15 volumes per second using a 150 mm lens.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Experimental setup showing the frequency comb SPML laser and circular ranging OCT system: LD, laser diode driver; DDG, digital delay generator; PG, pattern generator; A, amplifier; IM, electro-optical intensity modulator; PM, electro-optical phase modulator; PC, polarization controller; CFBG, continuous fiber Bragg grating; SOA, semiconductor optical amplifier; FP, Fabry-Pérot etalon spectral filter; PM, partially reflecting mirror; M, mirror; TS, translation stage; ODL, optical delay line; OSA, optical spectrum analyzer; ISO, optical isolator; FG, signal (function) generator; D, dispersion compensation; LO, local oscillator; CAL, calibration signal; FC, fiber collimator; G, galvanometer mirrors; L, lens; S, sample; BD, balanced photodiode; DAQ, data acquisition board.
Fig. 2.
Fig. 2. Measured SPML laser performance. (a) Optical spectrum. (b) Magnified optical spectrum. (c) Time trace of a single sweep using a 260 ps EOM drive (electrical) pulse. (d) Magnified time trace seen in (c) showing pulsation. (e) Time trace showing five A-lines using a 520 ps EOM drive pulse. (f) Measured fringe amplitude versus path difference.
Fig. 3.
Fig. 3. Frame demodulation. (a) Schematic of frame demodulation. (b),(c) Artefact suppression for mirror signals across the baseband showing the raw, dispersion compensated signals (b) and I/Q signals (c). FSR = 150 GHz. The −1st, baseband and 1st order signals are indicated by the grey and white areas. (d),(e) Imaging of an IR card showing the raw, dispersion compensated image (d) and I,Q demodulated image (e). (f),(g) Imaging of adhesive tape showing the raw, dispersion compensated image (f) and I,Q demodulated image (g). A FSR of 100 GHz was used during imaging. Scale bars correspond to 1 mm in axial direction. Approximate lateral image width 1.2 cm (d-g).
Fig. 4.
Fig. 4. Illustration of phase correction using an IR card (top row) and adhesive tape (bottom row). (a),(b) Images with remaining artefacts after I,Q demodulation (yellow arrow). (c),(d) Phase difference between phase modulated frames, $\varphi (x,z)=\arg \{S_I(x,z)S_Q^*(x,z)\}$. (e),(f) Phase histogram showing $\varphi$ occurrences from data shown in (c),(d). The histogram was used to obtain a global phase offset, $\Delta \varphi$, from the quadrature point. (g),(h) Phase corrected images. (i) Phase error (offset) from the ideal quadrature point for 251 continuously recorded frames. (j) Corresponding measured suppression due to the phase error in (i) before (black line) and after phase correction (red line). The thick lines show the averaged suppression using 5 frames. Scale bars correspond to 1 mm in axial direction. Approximate lateral image width 1.2 cm (a-d,g,h).
Fig. 5.
Fig. 5. Imaging of an iPhone 7 display using only the I frames (left panel), or using the complex (I+$e^{i(\pi /2-\Delta \varphi )}$Q) frames with motion correction (right panel). Distinct layers beneath the top glass plate are visible. Scale bars correspond to 1 mm in axial direction.
Fig. 6.
Fig. 6. A-line I/Q signal generation. (a) Schematic of A-line demodulation. (b),(c) Artefact suppression for mirror signals across the baseband showing the raw, dispersion compensated signals (b) and I,Q demodulated signals (c). FSR = 100 GHz. The −1st, baseband and 1st order signals are indicated by the grey and white areas. (d) Measured complex conjugate suppression of a mirror signal over a time period of one hour.
Fig. 7.
Fig. 7. Complex interpolation. (a) Measured suppression before (circles) and after complex interpolation (squares) as a function of beam step size, $\Delta x$, normalized to the beam spot size, $\delta x$. (b) Imaging example of an IR card illustrating complex interpolation. It is shown the raw image, I,Q demodulated image and interpolated image. (c) The demodulated image was stitched three times to make the borderless wrapping of sample structure beyond the baseband range clear. The FSR was 100 GHz ($L_B=$ 1.5 mm). Scale bar corresponds to 1 mm in axial direction. Approximate lateral image width 1 cm.
Fig. 8.
Fig. 8. Imaging examples using inter-Aline I/Q signal generation. (a) Cross-sectional images of a human nail fold showing the image generated by the in-phase Alines and the image generated by the complex Alines. (b) The demodulated image is stitched twice to reveal the borderless wrapping of structure across the circular depth range boundary. (c) Complex image of a human tooth showing the enamel (1), dentin (2) and gum (3). (d) Volumetric depth projections showing human teeth at 15 volumes per second using a 50 mm lens (left) and 150 mm lens (right). Videos are available as Visualization 1 and Visualization 2. Scale bars correspond to 1 mm in axial direction. Approximate lateral image width 1.2 cm (a,b), 9 mm (c). Approximate field-of-view of depth projections in (d) 0.8 x 1.6 cm and 3.7 x 4.8 cm, respectively.

Metrics