Abstract

In this work the terahertz spectra of benzene, toluene, p-xylene and styrene–four volatile organic compounds (VOCs) of interest in environmental pollution studies–have been measured in their liquid phase at room temperature using terahertz time-domain spectroscopy (THz-TDS). Their frequency-dependent refractive index and absorption coefficient have been extracted and analyzed in the spectral range from 0.2 to 2.5 THz. The optical properties of bi-component VOCs mixtures have also been investigated and described in terms of a linear combination of pure VOCs optical components.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Characterization of prospective explosive materials using terahertz time-domain spectroscopy

Norbert Palka, Mateusz Szala, and Elzbieta Czerwinska
Appl. Opt. 55(17) 4575-4583 (2016)

High-pressure cell for terahertz time-domain spectroscopy

Wei Zhang, Daniel Nickel, and Daniel Mittleman
Opt. Express 25(3) 2983-2993 (2017)

Terahertz reflection spectroscopy of Debye relaxation in polar liquids [Invited]

Uffe Møller, David G. Cooke, Koichiro Tanaka, and Peter Uhd Jepsen
J. Opt. Soc. Am. B 26(9) A113-A125 (2009)

References

  • View by:
  • |
  • |
  • |

  1. F. I. Khan and A. Kr. Ghoshal, “Removal of Volatile Organic Compounds from polluted air,” J. Loss Prev. Process Ind. 13(6), 527–545 (2000).
    [Crossref]
  2. S. C. Lee, M. Y. Chiu, K. F. Ho, S. C. Zou, and X. Wang, “Volatile organic compounds (VOCs) in urban atmosphere of Hong Kong,” Chemosphere 48(3), 375–382 (2002).
    [Crossref]
  3. Y. Liu, M. Shao, L. Fu, S. Lu, L. Zeng, and D. Tang, “Source profiles of volatile organic compounds (VOCs) measured in China: Part I,” Atmos. Environ. 42(25), 6247–6260 (2008).
    [Crossref]
  4. F. M. Al-Douseri, Y. Chen, and X. C. Zhang, “THz wave sensing for petroleum industrial applications,” Int. J. Infrared Millimeter Waves 27(4), 481–503 (2007).
    [Crossref]
  5. C. Yu and D. Crump, “A Review of the Emission of VOCs from Polymeric Materials used in Buildings,” Build. Environ. 33(6), 357–374 (1998).
    [Crossref]
  6. A. P. Jones, “Indoor air quality and health,” Atmos. Environ. 33(28), 4535–4564 (1999).
    [Crossref]
  7. M. A. Bari and W. B. Kindzierski, “Concentrations, sources and human health risk of inhalation exposure to air toxics in Edmonton, Canada,” Chemosphere 173, 160–171 (2017).
    [Crossref]
  8. M. A. Bari and W. B. Kindzierski, “Ambient volatile organic compounds (VOCs) in communities of the Athabasca oil sands region: Sources and screening health risk assessment,” Environ. Pollut. (Oxford, U. K.) 235, 602–614 (2018).
    [Crossref]
  9. F. Gozzi, G. Della Ventura, A. Marcelli, and F. Lucci, “Current Status of Particulate Matter Pollution in Europe and Future Perspectives: a Review,” J. Mater. Environ. Sci. 8, 1901–1909 (2017).
  10. J. B. Baxter and G. W. Guglietta, “Terahertz Spectroscopy,” Anal. Chem. 83(12), 4342–4368 (2011).
    [Crossref]
  11. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [Crossref]
  12. J. El Haddad, B. Bousquet, L. Canioni, and P. Mounaix, “Review in terahertz spectral analysis,” Trends Anal. Chem. 44, 98–105 (2013).
    [Crossref]
  13. R. M. Smith and M. Arnold, “Terahertz time-domain spectroscopy of solid samples: principles, applications, and challenges,” Appl. Spectrosc. Rev. 46(8), 636–679 (2011).
    [Crossref]
  14. E. Castro-Camus and M. Alfaro, “Photoconductive devices for terahertz pulsed spectroscopy: a review,” Photonics Res. 4(3), A36 (2016).
    [Crossref]
  15. R. Bowling Barnes, W. S. Benedict, and C. M. Lewis, “The Far Infrared Absorption of Benzene,” Phys. Rev. 47(2), 129–130 (1935).
    [Crossref]
  16. R. C. F. Mrozek, W. F. Sherman, and G. R. Wilkinson, “Far infrared spectra of liquid and solid benzene,” Microchim. Acta 95(1-6), 349–352 (1988).
    [Crossref]
  17. H. R. Wyss, R. D. Werder, and Hs. H. Günthard, “Far infrared spectra of twelve organic liquids,” Spectrochim. Acta 20(4), 573–579 (1964).
    [Crossref]
  18. T. Ikeda, A. Matsushita, M. Tatsuno, Y. Minami, M. Yamaguchi, K. Yamamaoto, M. Tani, and M. Hangyo, “Investigation of inflammable liquids by terahertz spectroscopy,” Appl. Phys. Lett. 87(3), 034105 (2005).
    [Crossref]
  19. D. F. Plusquellic, K. Siegrist, E. J. Heilweil, and O. Esenturk, “Applications of Terahertz Spectroscopy in Biosystems,” ChemPhysChem 8, 2412–2431 (2007).
    [Crossref]
  20. L. Xie, Y. Yao, and Y. Ying, “The Application of Terahertz Spectroscopy to Protein Detection: A Review,” Appl. Spectrosc. Rev. 49(6), 448–461 (2014).
    [Crossref]
  21. J. Qin, Y. Ying, and L. Xie, “The Detection of Agricultural Products and Food Using Terahertz Spectroscopy: A Review,” Appl. Spectrosc. Rev. 48(6), 439–457 (2013).
    [Crossref]
  22. S. Lupi, “Terahertz Spectroscopy of Novel Superconductors,” Adv. Condens. Matter Phys. 2011, 1–9 (2011).
    [Crossref]
  23. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [Crossref]
  24. X. C. Zhang and J. Xu, Introduction to THz Wave Photonics (Springer, 2010).
  25. O. F. Nielsen, “Chapter 3. Low-frequency spectroscopic studies and intermolecular vibrational energy transfer in liquids,” Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 93, 57 (1996).
    [Crossref]
  26. C. Rønne, K. Jensby, B. J. Loughnane, J. Fourkas, O. F. Nielsen, and S. R. Keiding, “Temperature dependence of the dielectric function of C6H6(l) and C6H5CH3(l) measured with THz spectroscopy,” J. Chem. Phys. 113(9), 3749–3756 (2000).
    [Crossref]
  27. Z. P. Zheng, W. H. Fan, and H. Yan, “Terahertz absorption spectra of benzene-1,2-diol, benzene-1,3-diol and benzene-1,4-diol,” Chem. Phys. Lett. 525-526, 140–143 (2012).
    [Crossref]
  28. M. Naftaly and R. A. Dudley, “Methodologies for determining the dynamic ranges and signal-to-noise ratios of terahertz time-domain spectrometers,” Opt. Lett. 34(8), 1213–1215 (2009).
    [Crossref]
  29. Y. Liu and P. H. Daum, “Relationship of refractive index to mass density and self-consistency of mixing rules for multicomponent mixtures like ambient aerosols,” J. Aerosol Sci. 39(11), 974–986 (2008).
    [Crossref]
  30. J. C. R. Reis, I. M. S. Lampreia, A. F. S. Santos, M. L. C. J. Moita, and G. Douhéret, “Refractive index of liquid mixture: Theory and Experiment,” ChemPhysChem 11(17), 3722–3733 (2010).
    [Crossref]
  31. Y.-S. Jin, G.-J. Kim, C.-H. Shon, S.-G. Jeon, and J.-I. Kim, “Analysis of Petroleum Products and Their Mixtures by Using Terahertz Time Domain Spectroscopy,” J. Korean Phys. Soc. 53(4), 1879–1885 (2008).
    [Crossref]
  32. A. H. Buep and M. Baron, “Dielectric Properties of Binary Systems.7. Carbon Tetrachloride with Benzene, with Toluene, and with p-Xylene at 298.15 and 308.15 K,” J. Phys. Chem. 92(3), 840–843 (1988).
    [Crossref]
  33. F. D’Apuzzo, P. Candeloro, F. Domenici, M. Autore, P. Di Pietro, A. Perucchi, P. Roy, S. Sennato, F. Bordi, E. M. Di Fabrizio, and S. Lupi, “Resonating terahertz response of periodic arrays of subwavelength apertures,” Plasmonics 10(1), 45–50 (2015).
    [Crossref]

2018 (1)

M. A. Bari and W. B. Kindzierski, “Ambient volatile organic compounds (VOCs) in communities of the Athabasca oil sands region: Sources and screening health risk assessment,” Environ. Pollut. (Oxford, U. K.) 235, 602–614 (2018).
[Crossref]

2017 (2)

F. Gozzi, G. Della Ventura, A. Marcelli, and F. Lucci, “Current Status of Particulate Matter Pollution in Europe and Future Perspectives: a Review,” J. Mater. Environ. Sci. 8, 1901–1909 (2017).

M. A. Bari and W. B. Kindzierski, “Concentrations, sources and human health risk of inhalation exposure to air toxics in Edmonton, Canada,” Chemosphere 173, 160–171 (2017).
[Crossref]

2016 (1)

E. Castro-Camus and M. Alfaro, “Photoconductive devices for terahertz pulsed spectroscopy: a review,” Photonics Res. 4(3), A36 (2016).
[Crossref]

2015 (1)

F. D’Apuzzo, P. Candeloro, F. Domenici, M. Autore, P. Di Pietro, A. Perucchi, P. Roy, S. Sennato, F. Bordi, E. M. Di Fabrizio, and S. Lupi, “Resonating terahertz response of periodic arrays of subwavelength apertures,” Plasmonics 10(1), 45–50 (2015).
[Crossref]

2014 (1)

L. Xie, Y. Yao, and Y. Ying, “The Application of Terahertz Spectroscopy to Protein Detection: A Review,” Appl. Spectrosc. Rev. 49(6), 448–461 (2014).
[Crossref]

2013 (2)

J. Qin, Y. Ying, and L. Xie, “The Detection of Agricultural Products and Food Using Terahertz Spectroscopy: A Review,” Appl. Spectrosc. Rev. 48(6), 439–457 (2013).
[Crossref]

J. El Haddad, B. Bousquet, L. Canioni, and P. Mounaix, “Review in terahertz spectral analysis,” Trends Anal. Chem. 44, 98–105 (2013).
[Crossref]

2012 (1)

Z. P. Zheng, W. H. Fan, and H. Yan, “Terahertz absorption spectra of benzene-1,2-diol, benzene-1,3-diol and benzene-1,4-diol,” Chem. Phys. Lett. 525-526, 140–143 (2012).
[Crossref]

2011 (3)

S. Lupi, “Terahertz Spectroscopy of Novel Superconductors,” Adv. Condens. Matter Phys. 2011, 1–9 (2011).
[Crossref]

R. M. Smith and M. Arnold, “Terahertz time-domain spectroscopy of solid samples: principles, applications, and challenges,” Appl. Spectrosc. Rev. 46(8), 636–679 (2011).
[Crossref]

J. B. Baxter and G. W. Guglietta, “Terahertz Spectroscopy,” Anal. Chem. 83(12), 4342–4368 (2011).
[Crossref]

2010 (1)

J. C. R. Reis, I. M. S. Lampreia, A. F. S. Santos, M. L. C. J. Moita, and G. Douhéret, “Refractive index of liquid mixture: Theory and Experiment,” ChemPhysChem 11(17), 3722–3733 (2010).
[Crossref]

2009 (1)

2008 (3)

Y.-S. Jin, G.-J. Kim, C.-H. Shon, S.-G. Jeon, and J.-I. Kim, “Analysis of Petroleum Products and Their Mixtures by Using Terahertz Time Domain Spectroscopy,” J. Korean Phys. Soc. 53(4), 1879–1885 (2008).
[Crossref]

Y. Liu and P. H. Daum, “Relationship of refractive index to mass density and self-consistency of mixing rules for multicomponent mixtures like ambient aerosols,” J. Aerosol Sci. 39(11), 974–986 (2008).
[Crossref]

Y. Liu, M. Shao, L. Fu, S. Lu, L. Zeng, and D. Tang, “Source profiles of volatile organic compounds (VOCs) measured in China: Part I,” Atmos. Environ. 42(25), 6247–6260 (2008).
[Crossref]

2007 (2)

F. M. Al-Douseri, Y. Chen, and X. C. Zhang, “THz wave sensing for petroleum industrial applications,” Int. J. Infrared Millimeter Waves 27(4), 481–503 (2007).
[Crossref]

D. F. Plusquellic, K. Siegrist, E. J. Heilweil, and O. Esenturk, “Applications of Terahertz Spectroscopy in Biosystems,” ChemPhysChem 8, 2412–2431 (2007).
[Crossref]

2005 (1)

T. Ikeda, A. Matsushita, M. Tatsuno, Y. Minami, M. Yamaguchi, K. Yamamaoto, M. Tani, and M. Hangyo, “Investigation of inflammable liquids by terahertz spectroscopy,” Appl. Phys. Lett. 87(3), 034105 (2005).
[Crossref]

2002 (3)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref]

S. C. Lee, M. Y. Chiu, K. F. Ho, S. C. Zou, and X. Wang, “Volatile organic compounds (VOCs) in urban atmosphere of Hong Kong,” Chemosphere 48(3), 375–382 (2002).
[Crossref]

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref]

2000 (2)

F. I. Khan and A. Kr. Ghoshal, “Removal of Volatile Organic Compounds from polluted air,” J. Loss Prev. Process Ind. 13(6), 527–545 (2000).
[Crossref]

C. Rønne, K. Jensby, B. J. Loughnane, J. Fourkas, O. F. Nielsen, and S. R. Keiding, “Temperature dependence of the dielectric function of C6H6(l) and C6H5CH3(l) measured with THz spectroscopy,” J. Chem. Phys. 113(9), 3749–3756 (2000).
[Crossref]

1999 (1)

A. P. Jones, “Indoor air quality and health,” Atmos. Environ. 33(28), 4535–4564 (1999).
[Crossref]

1998 (1)

C. Yu and D. Crump, “A Review of the Emission of VOCs from Polymeric Materials used in Buildings,” Build. Environ. 33(6), 357–374 (1998).
[Crossref]

1996 (1)

O. F. Nielsen, “Chapter 3. Low-frequency spectroscopic studies and intermolecular vibrational energy transfer in liquids,” Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 93, 57 (1996).
[Crossref]

1988 (2)

A. H. Buep and M. Baron, “Dielectric Properties of Binary Systems.7. Carbon Tetrachloride with Benzene, with Toluene, and with p-Xylene at 298.15 and 308.15 K,” J. Phys. Chem. 92(3), 840–843 (1988).
[Crossref]

R. C. F. Mrozek, W. F. Sherman, and G. R. Wilkinson, “Far infrared spectra of liquid and solid benzene,” Microchim. Acta 95(1-6), 349–352 (1988).
[Crossref]

1964 (1)

H. R. Wyss, R. D. Werder, and Hs. H. Günthard, “Far infrared spectra of twelve organic liquids,” Spectrochim. Acta 20(4), 573–579 (1964).
[Crossref]

1935 (1)

R. Bowling Barnes, W. S. Benedict, and C. M. Lewis, “The Far Infrared Absorption of Benzene,” Phys. Rev. 47(2), 129–130 (1935).
[Crossref]

Al-Douseri, F. M.

F. M. Al-Douseri, Y. Chen, and X. C. Zhang, “THz wave sensing for petroleum industrial applications,” Int. J. Infrared Millimeter Waves 27(4), 481–503 (2007).
[Crossref]

Alfaro, M.

E. Castro-Camus and M. Alfaro, “Photoconductive devices for terahertz pulsed spectroscopy: a review,” Photonics Res. 4(3), A36 (2016).
[Crossref]

Arnold, M.

R. M. Smith and M. Arnold, “Terahertz time-domain spectroscopy of solid samples: principles, applications, and challenges,” Appl. Spectrosc. Rev. 46(8), 636–679 (2011).
[Crossref]

Autore, M.

F. D’Apuzzo, P. Candeloro, F. Domenici, M. Autore, P. Di Pietro, A. Perucchi, P. Roy, S. Sennato, F. Bordi, E. M. Di Fabrizio, and S. Lupi, “Resonating terahertz response of periodic arrays of subwavelength apertures,” Plasmonics 10(1), 45–50 (2015).
[Crossref]

Bari, M. A.

M. A. Bari and W. B. Kindzierski, “Ambient volatile organic compounds (VOCs) in communities of the Athabasca oil sands region: Sources and screening health risk assessment,” Environ. Pollut. (Oxford, U. K.) 235, 602–614 (2018).
[Crossref]

M. A. Bari and W. B. Kindzierski, “Concentrations, sources and human health risk of inhalation exposure to air toxics in Edmonton, Canada,” Chemosphere 173, 160–171 (2017).
[Crossref]

Baron, M.

A. H. Buep and M. Baron, “Dielectric Properties of Binary Systems.7. Carbon Tetrachloride with Benzene, with Toluene, and with p-Xylene at 298.15 and 308.15 K,” J. Phys. Chem. 92(3), 840–843 (1988).
[Crossref]

Baxter, J. B.

J. B. Baxter and G. W. Guglietta, “Terahertz Spectroscopy,” Anal. Chem. 83(12), 4342–4368 (2011).
[Crossref]

Benedict, W. S.

R. Bowling Barnes, W. S. Benedict, and C. M. Lewis, “The Far Infrared Absorption of Benzene,” Phys. Rev. 47(2), 129–130 (1935).
[Crossref]

Bordi, F.

F. D’Apuzzo, P. Candeloro, F. Domenici, M. Autore, P. Di Pietro, A. Perucchi, P. Roy, S. Sennato, F. Bordi, E. M. Di Fabrizio, and S. Lupi, “Resonating terahertz response of periodic arrays of subwavelength apertures,” Plasmonics 10(1), 45–50 (2015).
[Crossref]

Bousquet, B.

J. El Haddad, B. Bousquet, L. Canioni, and P. Mounaix, “Review in terahertz spectral analysis,” Trends Anal. Chem. 44, 98–105 (2013).
[Crossref]

Bowling Barnes, R.

R. Bowling Barnes, W. S. Benedict, and C. M. Lewis, “The Far Infrared Absorption of Benzene,” Phys. Rev. 47(2), 129–130 (1935).
[Crossref]

Buep, A. H.

A. H. Buep and M. Baron, “Dielectric Properties of Binary Systems.7. Carbon Tetrachloride with Benzene, with Toluene, and with p-Xylene at 298.15 and 308.15 K,” J. Phys. Chem. 92(3), 840–843 (1988).
[Crossref]

Candeloro, P.

F. D’Apuzzo, P. Candeloro, F. Domenici, M. Autore, P. Di Pietro, A. Perucchi, P. Roy, S. Sennato, F. Bordi, E. M. Di Fabrizio, and S. Lupi, “Resonating terahertz response of periodic arrays of subwavelength apertures,” Plasmonics 10(1), 45–50 (2015).
[Crossref]

Canioni, L.

J. El Haddad, B. Bousquet, L. Canioni, and P. Mounaix, “Review in terahertz spectral analysis,” Trends Anal. Chem. 44, 98–105 (2013).
[Crossref]

Castro-Camus, E.

E. Castro-Camus and M. Alfaro, “Photoconductive devices for terahertz pulsed spectroscopy: a review,” Photonics Res. 4(3), A36 (2016).
[Crossref]

Chen, Y.

F. M. Al-Douseri, Y. Chen, and X. C. Zhang, “THz wave sensing for petroleum industrial applications,” Int. J. Infrared Millimeter Waves 27(4), 481–503 (2007).
[Crossref]

Chiu, M. Y.

S. C. Lee, M. Y. Chiu, K. F. Ho, S. C. Zou, and X. Wang, “Volatile organic compounds (VOCs) in urban atmosphere of Hong Kong,” Chemosphere 48(3), 375–382 (2002).
[Crossref]

Crump, D.

C. Yu and D. Crump, “A Review of the Emission of VOCs from Polymeric Materials used in Buildings,” Build. Environ. 33(6), 357–374 (1998).
[Crossref]

D’Apuzzo, F.

F. D’Apuzzo, P. Candeloro, F. Domenici, M. Autore, P. Di Pietro, A. Perucchi, P. Roy, S. Sennato, F. Bordi, E. M. Di Fabrizio, and S. Lupi, “Resonating terahertz response of periodic arrays of subwavelength apertures,” Plasmonics 10(1), 45–50 (2015).
[Crossref]

Daum, P. H.

Y. Liu and P. H. Daum, “Relationship of refractive index to mass density and self-consistency of mixing rules for multicomponent mixtures like ambient aerosols,” J. Aerosol Sci. 39(11), 974–986 (2008).
[Crossref]

Della Ventura, G.

F. Gozzi, G. Della Ventura, A. Marcelli, and F. Lucci, “Current Status of Particulate Matter Pollution in Europe and Future Perspectives: a Review,” J. Mater. Environ. Sci. 8, 1901–1909 (2017).

Di Fabrizio, E. M.

F. D’Apuzzo, P. Candeloro, F. Domenici, M. Autore, P. Di Pietro, A. Perucchi, P. Roy, S. Sennato, F. Bordi, E. M. Di Fabrizio, and S. Lupi, “Resonating terahertz response of periodic arrays of subwavelength apertures,” Plasmonics 10(1), 45–50 (2015).
[Crossref]

Di Pietro, P.

F. D’Apuzzo, P. Candeloro, F. Domenici, M. Autore, P. Di Pietro, A. Perucchi, P. Roy, S. Sennato, F. Bordi, E. M. Di Fabrizio, and S. Lupi, “Resonating terahertz response of periodic arrays of subwavelength apertures,” Plasmonics 10(1), 45–50 (2015).
[Crossref]

Domenici, F.

F. D’Apuzzo, P. Candeloro, F. Domenici, M. Autore, P. Di Pietro, A. Perucchi, P. Roy, S. Sennato, F. Bordi, E. M. Di Fabrizio, and S. Lupi, “Resonating terahertz response of periodic arrays of subwavelength apertures,” Plasmonics 10(1), 45–50 (2015).
[Crossref]

Douhéret, G.

J. C. R. Reis, I. M. S. Lampreia, A. F. S. Santos, M. L. C. J. Moita, and G. Douhéret, “Refractive index of liquid mixture: Theory and Experiment,” ChemPhysChem 11(17), 3722–3733 (2010).
[Crossref]

Dudley, R. A.

El Haddad, J.

J. El Haddad, B. Bousquet, L. Canioni, and P. Mounaix, “Review in terahertz spectral analysis,” Trends Anal. Chem. 44, 98–105 (2013).
[Crossref]

Esenturk, O.

D. F. Plusquellic, K. Siegrist, E. J. Heilweil, and O. Esenturk, “Applications of Terahertz Spectroscopy in Biosystems,” ChemPhysChem 8, 2412–2431 (2007).
[Crossref]

Fan, W. H.

Z. P. Zheng, W. H. Fan, and H. Yan, “Terahertz absorption spectra of benzene-1,2-diol, benzene-1,3-diol and benzene-1,4-diol,” Chem. Phys. Lett. 525-526, 140–143 (2012).
[Crossref]

Ferguson, B.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref]

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref]

Fourkas, J.

C. Rønne, K. Jensby, B. J. Loughnane, J. Fourkas, O. F. Nielsen, and S. R. Keiding, “Temperature dependence of the dielectric function of C6H6(l) and C6H5CH3(l) measured with THz spectroscopy,” J. Chem. Phys. 113(9), 3749–3756 (2000).
[Crossref]

Fu, L.

Y. Liu, M. Shao, L. Fu, S. Lu, L. Zeng, and D. Tang, “Source profiles of volatile organic compounds (VOCs) measured in China: Part I,” Atmos. Environ. 42(25), 6247–6260 (2008).
[Crossref]

Gozzi, F.

F. Gozzi, G. Della Ventura, A. Marcelli, and F. Lucci, “Current Status of Particulate Matter Pollution in Europe and Future Perspectives: a Review,” J. Mater. Environ. Sci. 8, 1901–1909 (2017).

Guglietta, G. W.

J. B. Baxter and G. W. Guglietta, “Terahertz Spectroscopy,” Anal. Chem. 83(12), 4342–4368 (2011).
[Crossref]

Günthard, Hs. H.

H. R. Wyss, R. D. Werder, and Hs. H. Günthard, “Far infrared spectra of twelve organic liquids,” Spectrochim. Acta 20(4), 573–579 (1964).
[Crossref]

Hangyo, M.

T. Ikeda, A. Matsushita, M. Tatsuno, Y. Minami, M. Yamaguchi, K. Yamamaoto, M. Tani, and M. Hangyo, “Investigation of inflammable liquids by terahertz spectroscopy,” Appl. Phys. Lett. 87(3), 034105 (2005).
[Crossref]

Heilweil, E. J.

D. F. Plusquellic, K. Siegrist, E. J. Heilweil, and O. Esenturk, “Applications of Terahertz Spectroscopy in Biosystems,” ChemPhysChem 8, 2412–2431 (2007).
[Crossref]

Ho, K. F.

S. C. Lee, M. Y. Chiu, K. F. Ho, S. C. Zou, and X. Wang, “Volatile organic compounds (VOCs) in urban atmosphere of Hong Kong,” Chemosphere 48(3), 375–382 (2002).
[Crossref]

Ikeda, T.

T. Ikeda, A. Matsushita, M. Tatsuno, Y. Minami, M. Yamaguchi, K. Yamamaoto, M. Tani, and M. Hangyo, “Investigation of inflammable liquids by terahertz spectroscopy,” Appl. Phys. Lett. 87(3), 034105 (2005).
[Crossref]

Jensby, K.

C. Rønne, K. Jensby, B. J. Loughnane, J. Fourkas, O. F. Nielsen, and S. R. Keiding, “Temperature dependence of the dielectric function of C6H6(l) and C6H5CH3(l) measured with THz spectroscopy,” J. Chem. Phys. 113(9), 3749–3756 (2000).
[Crossref]

Jeon, S.-G.

Y.-S. Jin, G.-J. Kim, C.-H. Shon, S.-G. Jeon, and J.-I. Kim, “Analysis of Petroleum Products and Their Mixtures by Using Terahertz Time Domain Spectroscopy,” J. Korean Phys. Soc. 53(4), 1879–1885 (2008).
[Crossref]

Jin, Y.-S.

Y.-S. Jin, G.-J. Kim, C.-H. Shon, S.-G. Jeon, and J.-I. Kim, “Analysis of Petroleum Products and Their Mixtures by Using Terahertz Time Domain Spectroscopy,” J. Korean Phys. Soc. 53(4), 1879–1885 (2008).
[Crossref]

Jones, A. P.

A. P. Jones, “Indoor air quality and health,” Atmos. Environ. 33(28), 4535–4564 (1999).
[Crossref]

Keiding, S. R.

C. Rønne, K. Jensby, B. J. Loughnane, J. Fourkas, O. F. Nielsen, and S. R. Keiding, “Temperature dependence of the dielectric function of C6H6(l) and C6H5CH3(l) measured with THz spectroscopy,” J. Chem. Phys. 113(9), 3749–3756 (2000).
[Crossref]

Khan, F. I.

F. I. Khan and A. Kr. Ghoshal, “Removal of Volatile Organic Compounds from polluted air,” J. Loss Prev. Process Ind. 13(6), 527–545 (2000).
[Crossref]

Kim, G.-J.

Y.-S. Jin, G.-J. Kim, C.-H. Shon, S.-G. Jeon, and J.-I. Kim, “Analysis of Petroleum Products and Their Mixtures by Using Terahertz Time Domain Spectroscopy,” J. Korean Phys. Soc. 53(4), 1879–1885 (2008).
[Crossref]

Kim, J.-I.

Y.-S. Jin, G.-J. Kim, C.-H. Shon, S.-G. Jeon, and J.-I. Kim, “Analysis of Petroleum Products and Their Mixtures by Using Terahertz Time Domain Spectroscopy,” J. Korean Phys. Soc. 53(4), 1879–1885 (2008).
[Crossref]

Kindzierski, W. B.

M. A. Bari and W. B. Kindzierski, “Ambient volatile organic compounds (VOCs) in communities of the Athabasca oil sands region: Sources and screening health risk assessment,” Environ. Pollut. (Oxford, U. K.) 235, 602–614 (2018).
[Crossref]

M. A. Bari and W. B. Kindzierski, “Concentrations, sources and human health risk of inhalation exposure to air toxics in Edmonton, Canada,” Chemosphere 173, 160–171 (2017).
[Crossref]

Kr. Ghoshal, A.

F. I. Khan and A. Kr. Ghoshal, “Removal of Volatile Organic Compounds from polluted air,” J. Loss Prev. Process Ind. 13(6), 527–545 (2000).
[Crossref]

Lampreia, I. M. S.

J. C. R. Reis, I. M. S. Lampreia, A. F. S. Santos, M. L. C. J. Moita, and G. Douhéret, “Refractive index of liquid mixture: Theory and Experiment,” ChemPhysChem 11(17), 3722–3733 (2010).
[Crossref]

Lee, S. C.

S. C. Lee, M. Y. Chiu, K. F. Ho, S. C. Zou, and X. Wang, “Volatile organic compounds (VOCs) in urban atmosphere of Hong Kong,” Chemosphere 48(3), 375–382 (2002).
[Crossref]

Lewis, C. M.

R. Bowling Barnes, W. S. Benedict, and C. M. Lewis, “The Far Infrared Absorption of Benzene,” Phys. Rev. 47(2), 129–130 (1935).
[Crossref]

Liu, Y.

Y. Liu, M. Shao, L. Fu, S. Lu, L. Zeng, and D. Tang, “Source profiles of volatile organic compounds (VOCs) measured in China: Part I,” Atmos. Environ. 42(25), 6247–6260 (2008).
[Crossref]

Y. Liu and P. H. Daum, “Relationship of refractive index to mass density and self-consistency of mixing rules for multicomponent mixtures like ambient aerosols,” J. Aerosol Sci. 39(11), 974–986 (2008).
[Crossref]

Loughnane, B. J.

C. Rønne, K. Jensby, B. J. Loughnane, J. Fourkas, O. F. Nielsen, and S. R. Keiding, “Temperature dependence of the dielectric function of C6H6(l) and C6H5CH3(l) measured with THz spectroscopy,” J. Chem. Phys. 113(9), 3749–3756 (2000).
[Crossref]

Lu, S.

Y. Liu, M. Shao, L. Fu, S. Lu, L. Zeng, and D. Tang, “Source profiles of volatile organic compounds (VOCs) measured in China: Part I,” Atmos. Environ. 42(25), 6247–6260 (2008).
[Crossref]

Lucci, F.

F. Gozzi, G. Della Ventura, A. Marcelli, and F. Lucci, “Current Status of Particulate Matter Pollution in Europe and Future Perspectives: a Review,” J. Mater. Environ. Sci. 8, 1901–1909 (2017).

Lupi, S.

F. D’Apuzzo, P. Candeloro, F. Domenici, M. Autore, P. Di Pietro, A. Perucchi, P. Roy, S. Sennato, F. Bordi, E. M. Di Fabrizio, and S. Lupi, “Resonating terahertz response of periodic arrays of subwavelength apertures,” Plasmonics 10(1), 45–50 (2015).
[Crossref]

S. Lupi, “Terahertz Spectroscopy of Novel Superconductors,” Adv. Condens. Matter Phys. 2011, 1–9 (2011).
[Crossref]

Marcelli, A.

F. Gozzi, G. Della Ventura, A. Marcelli, and F. Lucci, “Current Status of Particulate Matter Pollution in Europe and Future Perspectives: a Review,” J. Mater. Environ. Sci. 8, 1901–1909 (2017).

Matsushita, A.

T. Ikeda, A. Matsushita, M. Tatsuno, Y. Minami, M. Yamaguchi, K. Yamamaoto, M. Tani, and M. Hangyo, “Investigation of inflammable liquids by terahertz spectroscopy,” Appl. Phys. Lett. 87(3), 034105 (2005).
[Crossref]

Minami, Y.

T. Ikeda, A. Matsushita, M. Tatsuno, Y. Minami, M. Yamaguchi, K. Yamamaoto, M. Tani, and M. Hangyo, “Investigation of inflammable liquids by terahertz spectroscopy,” Appl. Phys. Lett. 87(3), 034105 (2005).
[Crossref]

Moita, M. L. C. J.

J. C. R. Reis, I. M. S. Lampreia, A. F. S. Santos, M. L. C. J. Moita, and G. Douhéret, “Refractive index of liquid mixture: Theory and Experiment,” ChemPhysChem 11(17), 3722–3733 (2010).
[Crossref]

Mounaix, P.

J. El Haddad, B. Bousquet, L. Canioni, and P. Mounaix, “Review in terahertz spectral analysis,” Trends Anal. Chem. 44, 98–105 (2013).
[Crossref]

Mrozek, R. C. F.

R. C. F. Mrozek, W. F. Sherman, and G. R. Wilkinson, “Far infrared spectra of liquid and solid benzene,” Microchim. Acta 95(1-6), 349–352 (1988).
[Crossref]

Naftaly, M.

Nielsen, O. F.

C. Rønne, K. Jensby, B. J. Loughnane, J. Fourkas, O. F. Nielsen, and S. R. Keiding, “Temperature dependence of the dielectric function of C6H6(l) and C6H5CH3(l) measured with THz spectroscopy,” J. Chem. Phys. 113(9), 3749–3756 (2000).
[Crossref]

O. F. Nielsen, “Chapter 3. Low-frequency spectroscopic studies and intermolecular vibrational energy transfer in liquids,” Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 93, 57 (1996).
[Crossref]

Perucchi, A.

F. D’Apuzzo, P. Candeloro, F. Domenici, M. Autore, P. Di Pietro, A. Perucchi, P. Roy, S. Sennato, F. Bordi, E. M. Di Fabrizio, and S. Lupi, “Resonating terahertz response of periodic arrays of subwavelength apertures,” Plasmonics 10(1), 45–50 (2015).
[Crossref]

Plusquellic, D. F.

D. F. Plusquellic, K. Siegrist, E. J. Heilweil, and O. Esenturk, “Applications of Terahertz Spectroscopy in Biosystems,” ChemPhysChem 8, 2412–2431 (2007).
[Crossref]

Qin, J.

J. Qin, Y. Ying, and L. Xie, “The Detection of Agricultural Products and Food Using Terahertz Spectroscopy: A Review,” Appl. Spectrosc. Rev. 48(6), 439–457 (2013).
[Crossref]

Reis, J. C. R.

J. C. R. Reis, I. M. S. Lampreia, A. F. S. Santos, M. L. C. J. Moita, and G. Douhéret, “Refractive index of liquid mixture: Theory and Experiment,” ChemPhysChem 11(17), 3722–3733 (2010).
[Crossref]

Rønne, C.

C. Rønne, K. Jensby, B. J. Loughnane, J. Fourkas, O. F. Nielsen, and S. R. Keiding, “Temperature dependence of the dielectric function of C6H6(l) and C6H5CH3(l) measured with THz spectroscopy,” J. Chem. Phys. 113(9), 3749–3756 (2000).
[Crossref]

Roy, P.

F. D’Apuzzo, P. Candeloro, F. Domenici, M. Autore, P. Di Pietro, A. Perucchi, P. Roy, S. Sennato, F. Bordi, E. M. Di Fabrizio, and S. Lupi, “Resonating terahertz response of periodic arrays of subwavelength apertures,” Plasmonics 10(1), 45–50 (2015).
[Crossref]

Santos, A. F. S.

J. C. R. Reis, I. M. S. Lampreia, A. F. S. Santos, M. L. C. J. Moita, and G. Douhéret, “Refractive index of liquid mixture: Theory and Experiment,” ChemPhysChem 11(17), 3722–3733 (2010).
[Crossref]

Sennato, S.

F. D’Apuzzo, P. Candeloro, F. Domenici, M. Autore, P. Di Pietro, A. Perucchi, P. Roy, S. Sennato, F. Bordi, E. M. Di Fabrizio, and S. Lupi, “Resonating terahertz response of periodic arrays of subwavelength apertures,” Plasmonics 10(1), 45–50 (2015).
[Crossref]

Shao, M.

Y. Liu, M. Shao, L. Fu, S. Lu, L. Zeng, and D. Tang, “Source profiles of volatile organic compounds (VOCs) measured in China: Part I,” Atmos. Environ. 42(25), 6247–6260 (2008).
[Crossref]

Sherman, W. F.

R. C. F. Mrozek, W. F. Sherman, and G. R. Wilkinson, “Far infrared spectra of liquid and solid benzene,” Microchim. Acta 95(1-6), 349–352 (1988).
[Crossref]

Shon, C.-H.

Y.-S. Jin, G.-J. Kim, C.-H. Shon, S.-G. Jeon, and J.-I. Kim, “Analysis of Petroleum Products and Their Mixtures by Using Terahertz Time Domain Spectroscopy,” J. Korean Phys. Soc. 53(4), 1879–1885 (2008).
[Crossref]

Siegrist, K.

D. F. Plusquellic, K. Siegrist, E. J. Heilweil, and O. Esenturk, “Applications of Terahertz Spectroscopy in Biosystems,” ChemPhysChem 8, 2412–2431 (2007).
[Crossref]

Smith, R. M.

R. M. Smith and M. Arnold, “Terahertz time-domain spectroscopy of solid samples: principles, applications, and challenges,” Appl. Spectrosc. Rev. 46(8), 636–679 (2011).
[Crossref]

Tang, D.

Y. Liu, M. Shao, L. Fu, S. Lu, L. Zeng, and D. Tang, “Source profiles of volatile organic compounds (VOCs) measured in China: Part I,” Atmos. Environ. 42(25), 6247–6260 (2008).
[Crossref]

Tani, M.

T. Ikeda, A. Matsushita, M. Tatsuno, Y. Minami, M. Yamaguchi, K. Yamamaoto, M. Tani, and M. Hangyo, “Investigation of inflammable liquids by terahertz spectroscopy,” Appl. Phys. Lett. 87(3), 034105 (2005).
[Crossref]

Tatsuno, M.

T. Ikeda, A. Matsushita, M. Tatsuno, Y. Minami, M. Yamaguchi, K. Yamamaoto, M. Tani, and M. Hangyo, “Investigation of inflammable liquids by terahertz spectroscopy,” Appl. Phys. Lett. 87(3), 034105 (2005).
[Crossref]

Wang, X.

S. C. Lee, M. Y. Chiu, K. F. Ho, S. C. Zou, and X. Wang, “Volatile organic compounds (VOCs) in urban atmosphere of Hong Kong,” Chemosphere 48(3), 375–382 (2002).
[Crossref]

Werder, R. D.

H. R. Wyss, R. D. Werder, and Hs. H. Günthard, “Far infrared spectra of twelve organic liquids,” Spectrochim. Acta 20(4), 573–579 (1964).
[Crossref]

Wilkinson, G. R.

R. C. F. Mrozek, W. F. Sherman, and G. R. Wilkinson, “Far infrared spectra of liquid and solid benzene,” Microchim. Acta 95(1-6), 349–352 (1988).
[Crossref]

Wyss, H. R.

H. R. Wyss, R. D. Werder, and Hs. H. Günthard, “Far infrared spectra of twelve organic liquids,” Spectrochim. Acta 20(4), 573–579 (1964).
[Crossref]

Xie, L.

L. Xie, Y. Yao, and Y. Ying, “The Application of Terahertz Spectroscopy to Protein Detection: A Review,” Appl. Spectrosc. Rev. 49(6), 448–461 (2014).
[Crossref]

J. Qin, Y. Ying, and L. Xie, “The Detection of Agricultural Products and Food Using Terahertz Spectroscopy: A Review,” Appl. Spectrosc. Rev. 48(6), 439–457 (2013).
[Crossref]

Xu, J.

X. C. Zhang and J. Xu, Introduction to THz Wave Photonics (Springer, 2010).

Yamaguchi, M.

T. Ikeda, A. Matsushita, M. Tatsuno, Y. Minami, M. Yamaguchi, K. Yamamaoto, M. Tani, and M. Hangyo, “Investigation of inflammable liquids by terahertz spectroscopy,” Appl. Phys. Lett. 87(3), 034105 (2005).
[Crossref]

Yamamaoto, K.

T. Ikeda, A. Matsushita, M. Tatsuno, Y. Minami, M. Yamaguchi, K. Yamamaoto, M. Tani, and M. Hangyo, “Investigation of inflammable liquids by terahertz spectroscopy,” Appl. Phys. Lett. 87(3), 034105 (2005).
[Crossref]

Yan, H.

Z. P. Zheng, W. H. Fan, and H. Yan, “Terahertz absorption spectra of benzene-1,2-diol, benzene-1,3-diol and benzene-1,4-diol,” Chem. Phys. Lett. 525-526, 140–143 (2012).
[Crossref]

Yao, Y.

L. Xie, Y. Yao, and Y. Ying, “The Application of Terahertz Spectroscopy to Protein Detection: A Review,” Appl. Spectrosc. Rev. 49(6), 448–461 (2014).
[Crossref]

Ying, Y.

L. Xie, Y. Yao, and Y. Ying, “The Application of Terahertz Spectroscopy to Protein Detection: A Review,” Appl. Spectrosc. Rev. 49(6), 448–461 (2014).
[Crossref]

J. Qin, Y. Ying, and L. Xie, “The Detection of Agricultural Products and Food Using Terahertz Spectroscopy: A Review,” Appl. Spectrosc. Rev. 48(6), 439–457 (2013).
[Crossref]

Yu, C.

C. Yu and D. Crump, “A Review of the Emission of VOCs from Polymeric Materials used in Buildings,” Build. Environ. 33(6), 357–374 (1998).
[Crossref]

Zeng, L.

Y. Liu, M. Shao, L. Fu, S. Lu, L. Zeng, and D. Tang, “Source profiles of volatile organic compounds (VOCs) measured in China: Part I,” Atmos. Environ. 42(25), 6247–6260 (2008).
[Crossref]

Zhang, X. C.

F. M. Al-Douseri, Y. Chen, and X. C. Zhang, “THz wave sensing for petroleum industrial applications,” Int. J. Infrared Millimeter Waves 27(4), 481–503 (2007).
[Crossref]

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref]

X. C. Zhang and J. Xu, Introduction to THz Wave Photonics (Springer, 2010).

Zhang, X.-C.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref]

Zheng, Z. P.

Z. P. Zheng, W. H. Fan, and H. Yan, “Terahertz absorption spectra of benzene-1,2-diol, benzene-1,3-diol and benzene-1,4-diol,” Chem. Phys. Lett. 525-526, 140–143 (2012).
[Crossref]

Zou, S. C.

S. C. Lee, M. Y. Chiu, K. F. Ho, S. C. Zou, and X. Wang, “Volatile organic compounds (VOCs) in urban atmosphere of Hong Kong,” Chemosphere 48(3), 375–382 (2002).
[Crossref]

Adv. Condens. Matter Phys. (1)

S. Lupi, “Terahertz Spectroscopy of Novel Superconductors,” Adv. Condens. Matter Phys. 2011, 1–9 (2011).
[Crossref]

Anal. Chem. (1)

J. B. Baxter and G. W. Guglietta, “Terahertz Spectroscopy,” Anal. Chem. 83(12), 4342–4368 (2011).
[Crossref]

Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. (1)

O. F. Nielsen, “Chapter 3. Low-frequency spectroscopic studies and intermolecular vibrational energy transfer in liquids,” Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 93, 57 (1996).
[Crossref]

Appl. Phys. Lett. (1)

T. Ikeda, A. Matsushita, M. Tatsuno, Y. Minami, M. Yamaguchi, K. Yamamaoto, M. Tani, and M. Hangyo, “Investigation of inflammable liquids by terahertz spectroscopy,” Appl. Phys. Lett. 87(3), 034105 (2005).
[Crossref]

Appl. Spectrosc. Rev. (3)

R. M. Smith and M. Arnold, “Terahertz time-domain spectroscopy of solid samples: principles, applications, and challenges,” Appl. Spectrosc. Rev. 46(8), 636–679 (2011).
[Crossref]

L. Xie, Y. Yao, and Y. Ying, “The Application of Terahertz Spectroscopy to Protein Detection: A Review,” Appl. Spectrosc. Rev. 49(6), 448–461 (2014).
[Crossref]

J. Qin, Y. Ying, and L. Xie, “The Detection of Agricultural Products and Food Using Terahertz Spectroscopy: A Review,” Appl. Spectrosc. Rev. 48(6), 439–457 (2013).
[Crossref]

Atmos. Environ. (2)

Y. Liu, M. Shao, L. Fu, S. Lu, L. Zeng, and D. Tang, “Source profiles of volatile organic compounds (VOCs) measured in China: Part I,” Atmos. Environ. 42(25), 6247–6260 (2008).
[Crossref]

A. P. Jones, “Indoor air quality and health,” Atmos. Environ. 33(28), 4535–4564 (1999).
[Crossref]

Build. Environ. (1)

C. Yu and D. Crump, “A Review of the Emission of VOCs from Polymeric Materials used in Buildings,” Build. Environ. 33(6), 357–374 (1998).
[Crossref]

Chem. Phys. Lett. (1)

Z. P. Zheng, W. H. Fan, and H. Yan, “Terahertz absorption spectra of benzene-1,2-diol, benzene-1,3-diol and benzene-1,4-diol,” Chem. Phys. Lett. 525-526, 140–143 (2012).
[Crossref]

Chemosphere (2)

M. A. Bari and W. B. Kindzierski, “Concentrations, sources and human health risk of inhalation exposure to air toxics in Edmonton, Canada,” Chemosphere 173, 160–171 (2017).
[Crossref]

S. C. Lee, M. Y. Chiu, K. F. Ho, S. C. Zou, and X. Wang, “Volatile organic compounds (VOCs) in urban atmosphere of Hong Kong,” Chemosphere 48(3), 375–382 (2002).
[Crossref]

ChemPhysChem (2)

D. F. Plusquellic, K. Siegrist, E. J. Heilweil, and O. Esenturk, “Applications of Terahertz Spectroscopy in Biosystems,” ChemPhysChem 8, 2412–2431 (2007).
[Crossref]

J. C. R. Reis, I. M. S. Lampreia, A. F. S. Santos, M. L. C. J. Moita, and G. Douhéret, “Refractive index of liquid mixture: Theory and Experiment,” ChemPhysChem 11(17), 3722–3733 (2010).
[Crossref]

Environ. Pollut. (Oxford, U. K.) (1)

M. A. Bari and W. B. Kindzierski, “Ambient volatile organic compounds (VOCs) in communities of the Athabasca oil sands region: Sources and screening health risk assessment,” Environ. Pollut. (Oxford, U. K.) 235, 602–614 (2018).
[Crossref]

Int. J. Infrared Millimeter Waves (1)

F. M. Al-Douseri, Y. Chen, and X. C. Zhang, “THz wave sensing for petroleum industrial applications,” Int. J. Infrared Millimeter Waves 27(4), 481–503 (2007).
[Crossref]

J. Aerosol Sci. (1)

Y. Liu and P. H. Daum, “Relationship of refractive index to mass density and self-consistency of mixing rules for multicomponent mixtures like ambient aerosols,” J. Aerosol Sci. 39(11), 974–986 (2008).
[Crossref]

J. Chem. Phys. (1)

C. Rønne, K. Jensby, B. J. Loughnane, J. Fourkas, O. F. Nielsen, and S. R. Keiding, “Temperature dependence of the dielectric function of C6H6(l) and C6H5CH3(l) measured with THz spectroscopy,” J. Chem. Phys. 113(9), 3749–3756 (2000).
[Crossref]

J. Korean Phys. Soc. (1)

Y.-S. Jin, G.-J. Kim, C.-H. Shon, S.-G. Jeon, and J.-I. Kim, “Analysis of Petroleum Products and Their Mixtures by Using Terahertz Time Domain Spectroscopy,” J. Korean Phys. Soc. 53(4), 1879–1885 (2008).
[Crossref]

J. Loss Prev. Process Ind. (1)

F. I. Khan and A. Kr. Ghoshal, “Removal of Volatile Organic Compounds from polluted air,” J. Loss Prev. Process Ind. 13(6), 527–545 (2000).
[Crossref]

J. Mater. Environ. Sci. (1)

F. Gozzi, G. Della Ventura, A. Marcelli, and F. Lucci, “Current Status of Particulate Matter Pollution in Europe and Future Perspectives: a Review,” J. Mater. Environ. Sci. 8, 1901–1909 (2017).

J. Phys. Chem. (1)

A. H. Buep and M. Baron, “Dielectric Properties of Binary Systems.7. Carbon Tetrachloride with Benzene, with Toluene, and with p-Xylene at 298.15 and 308.15 K,” J. Phys. Chem. 92(3), 840–843 (1988).
[Crossref]

Microchim. Acta (1)

R. C. F. Mrozek, W. F. Sherman, and G. R. Wilkinson, “Far infrared spectra of liquid and solid benzene,” Microchim. Acta 95(1-6), 349–352 (1988).
[Crossref]

Nat. Mater. (2)

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref]

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref]

Opt. Lett. (1)

Photonics Res. (1)

E. Castro-Camus and M. Alfaro, “Photoconductive devices for terahertz pulsed spectroscopy: a review,” Photonics Res. 4(3), A36 (2016).
[Crossref]

Phys. Rev. (1)

R. Bowling Barnes, W. S. Benedict, and C. M. Lewis, “The Far Infrared Absorption of Benzene,” Phys. Rev. 47(2), 129–130 (1935).
[Crossref]

Plasmonics (1)

F. D’Apuzzo, P. Candeloro, F. Domenici, M. Autore, P. Di Pietro, A. Perucchi, P. Roy, S. Sennato, F. Bordi, E. M. Di Fabrizio, and S. Lupi, “Resonating terahertz response of periodic arrays of subwavelength apertures,” Plasmonics 10(1), 45–50 (2015).
[Crossref]

Spectrochim. Acta (1)

H. R. Wyss, R. D. Werder, and Hs. H. Günthard, “Far infrared spectra of twelve organic liquids,” Spectrochim. Acta 20(4), 573–579 (1964).
[Crossref]

Trends Anal. Chem. (1)

J. El Haddad, B. Bousquet, L. Canioni, and P. Mounaix, “Review in terahertz spectral analysis,” Trends Anal. Chem. 44, 98–105 (2013).
[Crossref]

Other (1)

X. C. Zhang and J. Xu, Introduction to THz Wave Photonics (Springer, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. a) Schematic optical layout of the experimental THz-TDS setup. b) Profiles of free space (blue dotted line) and empty sample cell (red solid line) THz signals are reported.
Fig. 2.
Fig. 2. a) The refractive indexes and b) absorption coefficients of benzene, styrene, toluene and p-xylene vs. frequency. Arrows indicate not compensated water absorptions.
Fig. 3.
Fig. 3. a) The refractive indexes and b) absorption coefficients of pure styrene (blue) and p-xylene (red) in their liquid phase at room temperature. The experimental data (green lines) of mixture can be well represented through a linear combination (purple lines) of optical data of pure styrene and p-xylene with volume fractions corresponding to their nominal values (see text).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n ( ν ) = 1 + [ ϕ s ( ν ) ϕ r ( ν ) ] c 2 π ν d
α ( ν ) = 4 k ( ν ) π ν c = 2 d ln [ | E s ( ν ) E r ( ν ) | ]
n ( ν ) m i x = x S n ( ν ) S + x P n ( ν ) P
α ( ν ) m i x = x S α ( ν ) S + x P α ( ν ) P